.

Finite volume central schemes for three-dimensional ideal MHD

LAUR Repository

Show simple item record

dc.contributor.author Touma, R.
dc.contributor.author Arminjon, P.
dc.contributor.editor Benzoni-Gavage, Sylvie
dc.contributor.editor Serre, Denis
dc.date.accessioned 2018-09-12T13:13:36Z
dc.date.available 2018-09-12T13:13:36Z
dc.date.copyright 2008 en_US
dc.identifier.isbn 978-3-540-75712-2 en_US
dc.identifier.uri http://hdl.handle.net/10725/8451
dc.description.abstract We present second-order accurate central finite volume methods adapted here to three-dimensional problems in ideal magnetohydrodynamics. These methods alternate between two staggered grids, thus leading to Riemann solver-free algorithms with relatively favorable computing times. The original grid considered in this paper is Cartesian, while the dual grid features either Cartesian or diamond-shaped oblique dual cells. The div.B = 0 constraint on the magnetic field is enforced with a suitable adaptation of the constrained transport method to our central schemes. Numerical experiments show the feasibility of these methods and our results are in good agreement with existing results in the literature. en_US
dc.language.iso en en_US
dc.publisher Springer en_US
dc.title Finite volume central schemes for three-dimensional ideal MHD en_US
dc.type Conference Paper / Proceeding en_US
dc.author.school SAS en_US
dc.author.idnumber 200502835 en_US
dc.author.department Computer Science and Mathematics en_US
dc.description.embargo N/A en_US
dc.keywords Central schemes en_US
dc.keywords Stagger grid en_US
dc.keywords Dual cell en_US
dc.keywords Original grid en_US
dc.keywords Ideal magnetohydrodynamic en_US
dc.identifier.doi https://doi.org/10.1007/978-3-540-75712-2 en_US
dc.identifier.ctation Arminjon, P., & Touma, R. (2008). Finite Volume Central Schemes for Three-Dimensional Ideal MHD. In Hyperbolic Problems: Theory, Numerics, Applications (pp. 323-330). Springer, Berlin, Heidelberg. en_US
dc.author.email rony.touma@lau.edu.lb en_US
dc.conference.date July 17-21, 2006 en_US
dc.conference.pages 323-330 en_US
dc.conference.place Lyon, France en_US
dc.conference.subtitle theory, numerics and applications en_US
dc.conference.title The eleventh international conference on hyperbolic problems en_US
dc.identifier.tou http://libraries.lau.edu.lb/research/laur/terms-of-use/articles.php en_US
dc.identifier.url https://link.springer.com/chapter/10.1007/978-3-540-75712-2_27 en_US
dc.publication.date 2008 en_US
dc.author.affiliation Lebanese American University en_US
dc.title.volume Hyperbolic problems: theory, numerics, applications en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account