dc.contributor.author |
Nasr, George E. |
|
dc.contributor.author |
Dibeh, Ghassan |
|
dc.contributor.author |
Achkar, Antoine |
|
dc.contributor.editor |
Wainer, Gabriel A. |
en_US |
dc.contributor.editor |
Vakilzadian, Hamid |
en_US |
dc.date.accessioned |
2017-08-25T09:51:23Z |
|
dc.date.available |
2017-08-25T09:51:23Z |
|
dc.date.copyright |
2007 |
en_US |
dc.date.issued |
2017-08-25 |
|
dc.identifier.isbn |
1565553160 |
en_US |
dc.identifier.uri |
http://hdl.handle.net/10725/6084 |
en_US |
dc.description.abstract |
A feedforward neural network model is used to forecast turning points in the business cycle of postwar Lebanon. The NN has as inputs seven indicators of economic activity and as output the probability of a recession. The three-layered network is estimated using the back propagation algorithm. The NN is then used to forecast recursively a half-year ahead the probability of a recession in that period. The NN shows that two of the economic indicators can be used to construct a composite index of leading indicators that can be used to predict business cycles in the future. |
en_US |
dc.description.sponsorship |
Society for Modeling and Simulation International (SCS) |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Society For Computer Simulation |
en_US |
dc.relation.ispartofseries |
Simulation series ; v. 39, no. 4 |
en_US |
dc.subject |
Computer simulation -- Congresses |
en_US |
dc.title |
Predicting business cycle turning points with neural networks in an information-poor economy |
en_US |
dc.type |
Conference Paper / Proceeding |
en_US |
dc.author.school |
SOB |
en_US |
dc.author.school |
SOE |
en_US |
dc.author.idnumber |
199390170 |
en_US |
dc.author.idnumber |
199490150 |
en_US |
dc.author.department |
Department of Economics (ECON) |
en_US |
dc.description.embargo |
N/A |
en_US |
dc.description.physdesc |
1261, [57] p.: ill. |
en_US |
dc.title.altrnative |
2007 Summer Computer Simulation Conference |
en_US |
dc.title.altrnative |
SCSC '07 |
en_US |
dc.publication.place |
San Diego, Calif. |
en_US |
dc.keywords |
Neural Networks |
en_US |
dc.keywords |
Forecasting |
en_US |
dc.keywords |
Business Cycles |
en_US |
dc.description.bibliographiccitations |
Includes bibliographical references. |
en_US |
dc.identifier.ctation |
Nasr, G. E., Dibeh, G., & Achkar, A. (2007, July). Predicting business cycle turning points with neural networks in an information-poor economy. In Proceedings of the 2007 Summer Computer Simulation Conference (pp. 627-631). San diego, CA.: Society for Computer Simulation International. |
en_US |
dc.author.email |
genasr@lau.edu.lb |
en_US |
dc.author.email |
gdibeh@lau.edu.lb |
en_US |
dc.conference.date |
July 15-18, 2007 |
en_US |
dc.conference.pages |
627-631 |
en_US |
dc.conference.place |
Marriot Mission Valley, San Diego, California |
en_US |
dc.conference.subtitle |
SCSC '07 : the, July 15-18, 2007 |
en_US |
dc.conference.title |
Proceedings of the 2007 Summer Computer Simulation Conference |
en_US |
dc.identifier.tou |
http://libraries.lau.edu.lb/research/laur/terms-of-use/articles.php |
en_US |
dc.identifier.url |
http://dl.acm.org/citation.cfm?id=1358008 |
en_US |
dc.publication.date |
2007 |
en_US |
dc.author.affiliation |
Lebanese American University |
en_US |