.

Predicting business cycle turning points with neural networks in an information-poor economy

LAUR Repository

Show simple item record

dc.contributor.author Nasr, George E.
dc.contributor.author Dibeh, Ghassan
dc.contributor.author Achkar, Antoine
dc.contributor.editor Wainer, Gabriel A. en_US
dc.contributor.editor Vakilzadian, Hamid en_US
dc.date.accessioned 2017-08-25T09:51:23Z
dc.date.available 2017-08-25T09:51:23Z
dc.date.copyright 2007 en_US
dc.date.issued 2017-08-25
dc.identifier.isbn 1565553160 en_US
dc.identifier.uri http://hdl.handle.net/10725/6084 en_US
dc.description.abstract A feedforward neural network model is used to forecast turning points in the business cycle of postwar Lebanon. The NN has as inputs seven indicators of economic activity and as output the probability of a recession. The three-layered network is estimated using the back propagation algorithm. The NN is then used to forecast recursively a half-year ahead the probability of a recession in that period. The NN shows that two of the economic indicators can be used to construct a composite index of leading indicators that can be used to predict business cycles in the future. en_US
dc.description.sponsorship Society for Modeling and Simulation International (SCS) en_US
dc.language.iso en en_US
dc.publisher Society For Computer Simulation en_US
dc.relation.ispartofseries Simulation series ; v. 39, no. 4 en_US
dc.subject Computer simulation -- Congresses en_US
dc.title Predicting business cycle turning points with neural networks in an information-poor economy en_US
dc.type Conference Paper / Proceeding en_US
dc.author.school SOB en_US
dc.author.school SOE en_US
dc.author.idnumber 199390170 en_US
dc.author.idnumber 199490150 en_US
dc.author.department Department of Economics (ECON) en_US
dc.description.embargo N/A en_US
dc.description.physdesc 1261, [57] p.: ill. en_US
dc.title.altrnative 2007 Summer Computer Simulation Conference en_US
dc.title.altrnative SCSC '07 en_US
dc.publication.place San Diego, Calif. en_US
dc.keywords Neural Networks en_US
dc.keywords Forecasting en_US
dc.keywords Business Cycles en_US
dc.description.bibliographiccitations Includes bibliographical references. en_US
dc.identifier.ctation Nasr, G. E., Dibeh, G., & Achkar, A. (2007, July). Predicting business cycle turning points with neural networks in an information-poor economy. In Proceedings of the 2007 Summer Computer Simulation Conference (pp. 627-631). San diego, CA.: Society for Computer Simulation International. en_US
dc.author.email genasr@lau.edu.lb en_US
dc.author.email gdibeh@lau.edu.lb en_US
dc.conference.date July 15-18, 2007 en_US
dc.conference.pages 627-631 en_US
dc.conference.place Marriot Mission Valley, San Diego, California en_US
dc.conference.subtitle SCSC '07 : the, July 15-18, 2007 en_US
dc.conference.title Proceedings of the 2007 Summer Computer Simulation Conference en_US
dc.identifier.tou http://libraries.lau.edu.lb/research/laur/terms-of-use/articles.php en_US
dc.identifier.url http://dl.acm.org/citation.cfm?id=1358008 en_US
dc.publication.date 2007 en_US
dc.author.affiliation Lebanese American University en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account