Abstract:
Quantitative evaluation of the marginal outage costs associated with generating systems involves, among other things, the construction of a model of the system capacity outages. This model is inherently discrete and application of the well-known and basic recursive technique requires lengthy computations when applied to large power systems. Alternatively, continuous distributions and fast Fourier transforms can be used to approximate the generating system capacity model. These techniques can in some cases introduce inaccuracies in the results, which depend on the system under consideration. Several authors have used these approximate techniques in the calculation of capacity outage probabilities, the study of parameter uncertainty in generating capacity reliability evaluation, the calculation of the expected energy production costs and the maintenance scheduling of generating facilities. This paper discusses the potential application of the approximate techniques in the evaluation of the marginal outage costs of a power system. The results of the approximate techniques are illustrated by comparison with those produced by the exact recursive technique for the IEEE-Reliability Test System.
Citation:
Ghajar, R., & Billinton, R. (1993). Comparison of alternative techniques for evaluating the marginal outage costs of generating systems. IEEE transactions on power systems, 8(4), 1550-1556.