.

The Bilateral Minimal Time Function

LAUR Repository

Show simple item record

dc.contributor.author Nour, C.
dc.date.accessioned 2016-03-30T09:58:03Z
dc.date.available 2016-03-30T09:58:03Z
dc.date.copyright 2006
dc.date.issued 2016-03-30
dc.identifier.issn 0944-6532 en_US
dc.identifier.uri http://hdl.handle.net/10725/3447
dc.description.abstract In this paper, we study the minimal time function as a function of two variables (the initial and the terminal points). This function, called the “bilateral minimal time function”, plays a central role in the study of the Hamilton-Jacobi equation of minimal control in a domain which contains the target set, as shown in [11]. We study the regularity of the function, and characterize it as the unique (viscosity) solution of partial Hamilton-Jacobi equations with certain boundary conditions. en_US
dc.language.iso en en_US
dc.title The Bilateral Minimal Time Function en_US
dc.type Article en_US
dc.description.version Published en_US
dc.author.school SAS en_US
dc.author.idnumber 200502681 en_US
dc.author.woa N/A en_US
dc.author.department Computer Science and Mathematics en_US
dc.description.embargo N/A en_US
dc.relation.journal Journal of Convex Analysis en_US
dc.journal.volume 13 en_US
dc.journal.issue 1 en_US
dc.article.pages 61-80 en_US
dc.keywords Minimal time function en_US
dc.keywords Hamilton-Jacobi equations en_US
dc.keywords Viscosity solutions en_US
dc.keywords Regularity of value functions en_US
dc.keywords Nonsmooth analysis en_US
dc.keywords Proximal analysis en_US
dc.identifier.ctation Nour, C. (2006). The bilateral minimal time function. Journal of Convex Analysis, 13(1), 61. en_US
dc.author.email chadi.nour@lau.edu.lb
dc.identifier.url http://www.heldermann.de/JCA/JCA13/JCA131/jca13005.htm


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account