Abstract:
The major driver for deploying next generation wireless cellular systems is their ability to efficiently deliver resource-demanding services, many of which require symmetric communication between an uplink mobile user and a downlink mobile user that belong to the same network. In this work, we propose a utility-based joint uplink/downlink scheduling algorithm suitable for wireless services involving pairwise communication among mobile users. While most existing literature focuses on downlink-only or uplink-only scheduling algorithms, the proposed algorithm aims at ensuring a utility function that jointly captures the quality of service in terms of delay and channel quality on both links. By jointly considering the time varying channel conditions in both the uplink and the downlink directions, the proposed algorithm avoids wasting of resources and achieves notable performance gains in terms of increased number of active connections, lower packet drop rate, and increased network throughput. These gains are achieved with a tradeoff cost in terms of complexity and signaling overhead. For overhead reduction in practical scenarios, we propose an implementation over clusters within the network
Citation:
Saad, W., Dawy, Z., & Sharafeddine, S. (2012). A utility-based algorithm for joint uplink/downlink scheduling in wireless cellular networks. Journal of Network and Computer Applications, 35(1), 348-356.