.

Simulated Annealing and Genetic Algorithms for Optimal Regression Testing

LAUR Repository

Show simple item record

dc.contributor.author Mansour, Nashat
dc.contributor.author El-Fakih, Khaled
dc.date.accessioned 2016-01-27T11:06:40Z
dc.date.available 2016-01-27T11:06:40Z
dc.date.copyright 1999
dc.date.issued 2016-01-27
dc.identifier.issn 1040-550X en_US
dc.identifier.uri http://hdl.handle.net/10725/2968
dc.description.abstract The optimal regression testing problem is one of determining the minimum number of test cases needed for revalidating modified software in the maintenance phase. We present two natural optimization algorithms, namely, a simulated annealing and a genetic algorithm, for solving this problem. The algorithms are based on an integer programming problem formulation and the program’s control flow graph. The main advantage of these algorithms, in comparison with exact algorithms, is that they do not suffer from an exponential explosion for realistic program sizes. The experimental results, which include a comparison with previous algorithms, show that the simulated annealing and genetic algorithms find the optimal or near-optimal number of retests within a reasonable time. Copyright  1999 John Wiley & Sons, Ltd. en_US
dc.language.iso en en_US
dc.title Simulated Annealing and Genetic Algorithms for Optimal Regression Testing en_US
dc.type Article en_US
dc.description.version Published en_US
dc.author.school SAS en_US
dc.author.idnumber 198629170 en_US
dc.author.woa N/A en_US
dc.author.department Computer Science and Mathematics en_US
dc.description.embargo N/A en_US
dc.relation.journal Journal of software maintenance: Research and practice en_US
dc.journal.volume 11 en_US
dc.article.pages 19-34 en_US
dc.keywords Software testing en_US
dc.keywords Optimal retests en_US
dc.keywords Software revalidation en_US
dc.keywords Integer programming en_US
dc.keywords Natural optimization en_US
dc.keywords Metropolis algorithm en_US
dc.identifier.doi http://dx.doi.org/10.1002/(SICI)1096-908X(199901/02)11:13.0.CO;2-M en_US
dc.identifier.ctation Mansour, N., & El-Fakih, K. (1999). Simulated annealing and genetic algorithms for optimal regression testing. Journal of Software Maintenance, 11(1), 19-34. en_US
dc.author.email nmansour@lau.edu.lb
dc.identifier.url http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-908X(199901/02)11:1%3C19::AID-SMR182%3E3.0.CO;2-M/abstract


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account