.

Curvature-based multistep quasi-Newton method for unconstrained optimization

LAUR Repository

Show simple item record

dc.contributor.author Obeid, Samir
dc.contributor.author Moghrabi, I.A.R.
dc.date.accessioned 2015-11-27T09:14:03Z
dc.date.available 2015-11-27T09:14:03Z
dc.date.copyright 1999
dc.date.issued 2016-02-02
dc.identifier.issn 1560-7526 en_US
dc.identifier.uri http://hdl.handle.net/10725/2697
dc.description.abstract Multi-step methods derived in [1–3] have proven to be serious contenders in practice by outperforming traditional quasi-Newton methods based on the linear Secant Equation. Minimum curvature methods that aim at tuning the interpolation process in the construction of the new Hessian approximation of the multi-step type are among the most successful so far [3]. In this work, we develop new methods of this type that derive from a general framework based on a parameterized nonlinear model. One of the main concerns of this paper is to conduct practical investigation and experimentation of the newly developed methods and we use the methods in [1–7] as a benchmark for the comparison. The results of the numerical experiments made indicate that these methods substantially improve the performance of quasi-Newton methods. en_US
dc.language.iso en en_US
dc.title Curvature-based multistep quasi-Newton method for unconstrained optimization en_US
dc.type Article en_US
dc.description.version Published en_US
dc.author.school SAS en_US
dc.author.idnumber 197929220 en_US
dc.author.woa N/A en_US
dc.author.department Natural Sciences en_US
dc.description.embargo N/A en_US
dc.relation.journal Sibirskii Zhurnal Vychislitel'noi Matematiki en_US
dc.journal.volume 2 en_US
dc.journal.issue 3 en_US
dc.article.pages 281-293 en_US
dc.identifier.ctation Moghrabi, I. A. R., & Obeid, S. A. (1999). Curvature-based multistep quasi-Newton method for unconstrained optimization. Сибирский журнал вычислительной математики, 2(3), 281-293. en_US
dc.author.email sobeid@lau.edu.lb
dc.identifier.url http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sjvm&paperid=341&option_lang=rus


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account