dc.contributor.editor |
Habre, Samer |
|
dc.date.accessioned |
2015-09-14T09:33:58Z |
|
dc.date.available |
2015-09-14T09:33:58Z |
|
dc.date.copyright |
2013 |
|
dc.date.issued |
2017-10-12 |
|
dc.identifier.isbn |
9781466640504 |
en_US |
dc.identifier.uri |
http://hdl.handle.net/10725/2142 |
|
dc.description.abstract |
String art dates back to the 19th century when it was initially invented to ease the delivery of some mathematical ideas. Since then, the art has evolved and so has its use in mathematics. In this chapter, the authors see how some of the phase portraits for 2 x 2 linear homogeneous iterative systems exhibit some artistic behavior that resembles this form of art. The investigation gives a sufficient condition for the solutions of such systems to form closed cycles. However, in other situations the cycles formed are infinite, producing some fascinating examples of string art. |
en_US |
dc.description.tableofcontents |
Chapter 1 Technology and Differential Equations............................1
John Hubbard
Chapter 2 Sometimes Less is More: Examples of Student-Centered Technology as Boundary Objects in Differential
Equations.........................................................12
Karen Keene,
Chapter 3 “Click, Drag, Think!” Posing and Exploring Conjectures with Dynamic Geometry Software.................................................................... 37
Thomas Gawlick
Chapter 4 Dynamical Mathematical Software: Tools for Learning and for Research.......... 70
Samer Habre,
Chapter 5 Nonlinear is Essential, Linearization is Not Enough, Visualization is Absolutely Necessary.................................................................89
Beverly West
Chapter 6 Vectors and Differential Equations: A Visual Approach using Autograph......... 113
Douglas Butler
Chapter 7 Interactive Applets in Calculus and Engineering Courses.................................. 127
Heidi Burgiel
Chapter 8 Applets for Mathematical Learning.................................................................... 145
Robert Terrell
Chapter 9 Dynamical Software and the Derivative Concept............................................... 153
Ljubica Dikovic
Chapter 10 Supporting the Development of College-Level Students’ Conceptions of Statistical
Inference.......................................167
Maria Meletiou-Mavrotheris,
Chapter 11 Coping with Infinity: Using TI-NspireTM CAS to Bring Alive Multiple Representations in Mathematics...............................................201
Bjørn Felsager
Chapter 12 String Art and Linear Iterative Systems......................................................212
Samer Habre |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Information Science Reference |
|
dc.subject |
Mathematics |
en_US |
dc.subject |
Study and Teaching |
en_US |
dc.subject |
Data Processing |
en_US |
dc.title |
Enhancing Mathematical through Visualization |
en_US |
dc.type |
Book |
en_US |
dc.title.subtitle |
The Role of Dynamical Software |
en_US |
dc.author.school |
SAS |
en_US |
dc.author.woa |
N/A |
en_US |
dc.author.department |
Mathematics |
en_US |
dc.description.embargo |
N/A |
en_US |
dc.publication.place |
Hershey, Pa |
|
dc.identifier.doi |
http://dx.doi.org/10.4018/978-1-4666-4050-4.ch01 |
en_US |
dc.identifier.ctation |
Habre, S. (2013). String Art and Linear Iterative Systems. In S. Habre (Ed.), Enhancing Mathematics Understanding through Visualization: The Role of Dynamical Software (pp. 212-221). Hershey, PA: Information Science Reference. |
en_US |
dc.book.chapter |
String Art and Linear Iterative Systems |
en_US |
dc.chapter.author |
Habre, Samer |
|