.

Enhancing Mathematical through Visualization

LAUR Repository

Show simple item record

dc.contributor.editor Habre, Samer
dc.date.accessioned 2015-09-14T09:33:58Z
dc.date.available 2015-09-14T09:33:58Z
dc.date.copyright 2013
dc.date.issued 2017-10-12
dc.identifier.isbn 9781466640504 en_US
dc.identifier.uri http://hdl.handle.net/10725/2142
dc.description.abstract String art dates back to the 19th century when it was initially invented to ease the delivery of some mathematical ideas. Since then, the art has evolved and so has its use in mathematics. In this chapter, the authors see how some of the phase portraits for 2 x 2 linear homogeneous iterative systems exhibit some artistic behavior that resembles this form of art. The investigation gives a sufficient condition for the solutions of such systems to form closed cycles. However, in other situations the cycles formed are infinite, producing some fascinating examples of string art. en_US
dc.description.tableofcontents Chapter 1 Technology and Differential Equations............................1 John Hubbard Chapter 2 Sometimes Less is More: Examples of Student-Centered Technology as Boundary Objects in Differential Equations.........................................................12 Karen Keene, Chapter 3 “Click, Drag, Think!” Posing and Exploring Conjectures with Dynamic Geometry Software.................................................................... 37 Thomas Gawlick Chapter 4 Dynamical Mathematical Software: Tools for Learning and for Research.......... 70 Samer Habre, Chapter 5 Nonlinear is Essential, Linearization is Not Enough, Visualization is Absolutely Necessary.................................................................89 Beverly West Chapter 6 Vectors and Differential Equations: A Visual Approach using Autograph......... 113 Douglas Butler Chapter 7 Interactive Applets in Calculus and Engineering Courses.................................. 127 Heidi Burgiel Chapter 8 Applets for Mathematical Learning.................................................................... 145 Robert Terrell Chapter 9 Dynamical Software and the Derivative Concept............................................... 153 Ljubica Dikovic Chapter 10 Supporting the Development of College-Level Students’ Conceptions of Statistical Inference.......................................167 Maria Meletiou-Mavrotheris, Chapter 11 Coping with Infinity: Using TI-NspireTM CAS to Bring Alive Multiple Representations in Mathematics...............................................201 Bjørn Felsager Chapter 12 String Art and Linear Iterative Systems......................................................212 Samer Habre en_US
dc.language.iso en en_US
dc.publisher Information Science Reference
dc.subject Mathematics en_US
dc.subject Study and Teaching en_US
dc.subject Data Processing en_US
dc.title Enhancing Mathematical through Visualization en_US
dc.type Book en_US
dc.title.subtitle The Role of Dynamical Software en_US
dc.author.school SAS en_US
dc.author.woa N/A en_US
dc.author.department Mathematics en_US
dc.description.embargo N/A en_US
dc.publication.place Hershey, Pa
dc.identifier.doi http://dx.doi.org/10.4018/978-1-4666-4050-4.ch01 en_US
dc.identifier.ctation Habre, S. (2013). String Art and Linear Iterative Systems. In S. Habre (Ed.), Enhancing Mathematics Understanding through Visualization: The Role of Dynamical Software (pp. 212-221). Hershey, PA: Information Science Reference. en_US
dc.book.chapter String Art and Linear Iterative Systems en_US
dc.chapter.author Habre, Samer


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account