A complete classification of 2 x 2 linear iterative systems

LAUR Repository

Show simple item record

dc.contributor.author Habre, Samer S.
dc.contributor.author McDill, Jean-Marie
dc.date.accessioned 2015-09-14T07:05:02Z
dc.date.available 2015-09-14T07:05:02Z
dc.date.copyright 2008-02-01
dc.date.issued 2016-04-11
dc.identifier.issn 1933-2823 en_US
dc.identifier.uri http://hdl.handle.net/10725/2135
dc.description.abstract The study of 2 x 2 linear iterative systems is incorporated in many books on ordinary differential equations. As in the case of linear systems of differential equations, the classification of the equilibrium solution (0; 0) leads to an analysis of the eigenvalues and eigenvectors of the system matrix. However the authors do not know of any textbook that investigates the phase portraits for the many borderline cases in the trace-determinant Plane. The purpose of this paper is to fill in these details. In addition, a recent software developed by Hubert Hohn of Massachusetts College of Art for the purpose of this investigation is used for pictorial illustrations of these portraits. en_US
dc.language.iso en en_US
dc.title A complete classification of 2 x 2 linear iterative systems en_US
dc.type Article en_US
dc.description.version Published en_US
dc.author.school SAS en_US
dc.author.woa N/A en_US
dc.author.department Mathematics en_US
dc.description.embargo N/A en_US
dc.relation.journal Electronic Journal of Mathematics and Technology en_US
dc.journal.volume 2 en_US
dc.journal.issue 1 en_US
dc.article.pages 1-20
dc.identifier.ctation Habre, S., & McDill, J. M. (2008). A complete classification of 2 x 2 linear iterative systems. Electronic Journal of Mathematics and Technology, 2(1). en_US
dc.author.email shabre@lau.edu.lb
dc.identifier.url http://go.galegroup.com/ps/i.do?id=GALE%7CA178451799&sid=googleScholar&v=2.1&it=r&linkaccess=fulltext&issn=19332823&p=AONE&sw=w&authCount=1&u=lau&selfRedirect=true

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search LAUR

Advanced Search


My Account