.

A Numerical Scheme for the Propagation of Internal Waves in an Oceanographic Model

LAUR Repository

Show simple item record

dc.contributor.author Bourdarias, Christian
dc.contributor.author Gerbi, Stéphane
dc.contributor.author Lteif, Ralph
dc.contributor.editor Cancès, Clément
dc.contributor.editor Omnes, Pascal
dc.date.accessioned 2025-02-20T08:01:42Z
dc.date.available 2025-02-20T08:01:42Z
dc.date.copyright 2017 en_US
dc.date.issued 2017-05-24
dc.identifier.isbn 9783319573939 en_US
dc.identifier.uri http://hdl.handle.net/10725/16620
dc.description.abstract In this paper , we introduce a new reformulation of the Green-Naghdi model in the Camassa-Holm regime for the propagation of internal waves over a flat topography to improve the frequency dispersion of the original model. We develop a second order splitting scheme where the hyperbolic part of the system is treated with a high-order finite volume scheme and the dispersive part is treated with a finite difference approach. Numerical simulations are then performed to validate the model. en_US
dc.language.iso en en_US
dc.publisher Springer en_US
dc.subject Finite volume method -- Congresses en_US
dc.title A Numerical Scheme for the Propagation of Internal Waves in an Oceanographic Model en_US
dc.type Conference Paper / Proceeding en_US
dc.author.school SoAS en_US
dc.author.idnumber 201801894 en_US
dc.author.department Computer Science and Mathematics en_US
dc.description.physdesc xv, 559 pages : illustrations en_US
dc.publication.place Cham en_US
dc.keywords Green Naghdi model en_US
dc.keywords Nonlinear shallow water en_US
dc.keywords Splitting method en_US
dc.keywords Finite volume en_US
dc.keywords Finite Difference en_US
dc.keywords WENO reconstruction en_US
dc.description.bibliographiccitations Includes bibliographical references. en_US
dc.identifier.doi https://doi.org/10.1007/978-3-319-57394-6_11 en_US
dc.identifier.ctation Bourdarias, C., Gerbi, S., & Lteif, R. (2017). A Numerical Scheme for the Propagation of Internal Waves in an Oceanographic Model. In Finite Volumes for Complex Applications VIII-Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017 8 (pp. 101-108). Springer International Publishing. en_US
dc.author.email ralph.lteif@lau.edu.lb en_US
dc.conference.date June 2007 en_US
dc.conference.pages 101-108 en_US
dc.conference.place Lille, France en_US
dc.conference.title Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems en_US
dc.identifier.tou http://libraries.lau.edu.lb/research/laur/terms-of-use/articles.php en_US
dc.identifier.url https://link.springer.com/chapter/10.1007/978-3-319-57394-6_11 en_US
dc.orcid.id https://orcid.org/0000-0001-6356-7512 en_US
dc.publication.date 2017 en_US
dc.author.affiliation Lebanese American University en_US
dc.relation.numberofseries 200 en_US
dc.title.volume Springer proceedings in mathematics & statistics en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account