dc.contributor.author |
Bourdarias, Christian |
|
dc.contributor.author |
Gerbi, Stéphane |
|
dc.contributor.author |
Lteif, Ralph |
|
dc.contributor.editor |
Cancès, Clément |
|
dc.contributor.editor |
Omnes, Pascal |
|
dc.date.accessioned |
2025-02-20T08:01:42Z |
|
dc.date.available |
2025-02-20T08:01:42Z |
|
dc.date.copyright |
2017 |
en_US |
dc.date.issued |
2017-05-24 |
|
dc.identifier.isbn |
9783319573939 |
en_US |
dc.identifier.uri |
http://hdl.handle.net/10725/16620 |
|
dc.description.abstract |
In this paper , we introduce a new reformulation of the Green-Naghdi model in the Camassa-Holm regime for the propagation of internal waves over a flat topography to improve the frequency dispersion of the original model. We develop a second order splitting scheme where the hyperbolic part of the system is treated with a high-order finite volume scheme and the dispersive part is treated with a finite difference approach. Numerical simulations are then performed to validate the model. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer |
en_US |
dc.subject |
Finite volume method -- Congresses |
en_US |
dc.title |
A Numerical Scheme for the Propagation of Internal Waves in an Oceanographic Model |
en_US |
dc.type |
Conference Paper / Proceeding |
en_US |
dc.author.school |
SoAS |
en_US |
dc.author.idnumber |
201801894 |
en_US |
dc.author.department |
Computer Science and Mathematics |
en_US |
dc.description.physdesc |
xv, 559 pages : illustrations |
en_US |
dc.publication.place |
Cham |
en_US |
dc.keywords |
Green Naghdi model |
en_US |
dc.keywords |
Nonlinear shallow water |
en_US |
dc.keywords |
Splitting method |
en_US |
dc.keywords |
Finite volume |
en_US |
dc.keywords |
Finite Difference |
en_US |
dc.keywords |
WENO reconstruction |
en_US |
dc.description.bibliographiccitations |
Includes bibliographical references. |
en_US |
dc.identifier.doi |
https://doi.org/10.1007/978-3-319-57394-6_11 |
en_US |
dc.identifier.ctation |
Bourdarias, C., Gerbi, S., & Lteif, R. (2017). A Numerical Scheme for the Propagation of Internal Waves in an Oceanographic Model. In Finite Volumes for Complex Applications VIII-Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017 8 (pp. 101-108). Springer International Publishing. |
en_US |
dc.author.email |
ralph.lteif@lau.edu.lb |
en_US |
dc.conference.date |
June 2007 |
en_US |
dc.conference.pages |
101-108 |
en_US |
dc.conference.place |
Lille, France |
en_US |
dc.conference.title |
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems |
en_US |
dc.identifier.tou |
http://libraries.lau.edu.lb/research/laur/terms-of-use/articles.php |
en_US |
dc.identifier.url |
https://link.springer.com/chapter/10.1007/978-3-319-57394-6_11 |
en_US |
dc.orcid.id |
https://orcid.org/0000-0001-6356-7512 |
en_US |
dc.publication.date |
2017 |
en_US |
dc.author.affiliation |
Lebanese American University |
en_US |
dc.relation.numberofseries |
200 |
en_US |
dc.title.volume |
Springer proceedings in mathematics & statistics |
en_US |