.

Low-Light Image Enhancement Using Image-to-Frequency Filter Learning

LAUR Repository

Show simple item record

dc.contributor.author Al Sobbahi, Rayan
dc.contributor.author Tekli, Joe
dc.contributor.editor Sclaroff, Stan
dc.contributor.editor Distante, Cosimo
dc.contributor.editor Leo, Marco
dc.date.accessioned 2024-11-08T11:37:50Z
dc.date.available 2024-11-08T11:37:50Z
dc.date.copyright 2022 en_US
dc.date.issued 2022-05-17
dc.identifier.isbn 9783031064302 en_US
dc.identifier.uri http://hdl.handle.net/10725/16288
dc.description.abstract Low-light image (LLI) enhancement techniques have recently demonstrated remarkable progress especially with the use of deep learning (DL) approaches. Yet most existing techniques adopt an image-to-image learning paradigm where DL model architectures are constrained due to latent image feature reconstruction. In this paper, we propose a new LLI enhancement solution titled LLHFNet (Low-light Homomorphic Filtering Network) which performs image-to-frequency filter learning. It is designed independently from custom DL architectures and can be seamlessly coupled with existing feature extractors like ResNet50 and VGG16. We have conducted a large battery of experiments using SICE and Pascal VOC datasets to evaluate LLHFNet’s enhancement quality. Our solution consistently ranks among the best existing image enhancement techniques and is able to robustly handle LLIs and normal-light images (NLIs). en_US
dc.language.iso en en_US
dc.publisher Springer en_US
dc.subject Image analysis -- Congresses en_US
dc.subject Image processing -- Digital techniques -- Congresses en_US
dc.title Low-Light Image Enhancement Using Image-to-Frequency Filter Learning en_US
dc.type Conference Paper / Proceeding en_US
dc.author.school SOE en_US
dc.author.idnumber 201306321 en_US
dc.author.department Electrical and Computer Engineering en_US
dc.description.physdesc 1 online resource (xxviii, 793 pages) : illustrations. en_US
dc.publication.place Cham en_US
dc.description.bibliographiccitations Includes bibliographical references. en_US
dc.identifier.doi https://doi.org/10.1007/978-3-031-06430-2_58 en_US
dc.identifier.ctation Al Sobbahi, R., & Tekli, J. (2022, May). Low-light image enhancement using image-to-frequency filter learning. In International Conference on Image Analysis and Processing (pp. 693-705). Cham: Springer International Publishing. en_US
dc.author.email joe.tekli@lau.edu.lb en_US
dc.conference.date 23-27 May, 2022 en_US
dc.conference.pages 693-705 en_US
dc.conference.place Lecce, Italy en_US
dc.conference.title Image Analysis and Processing – ICIAP 2022 en_US
dc.identifier.tou http://libraries.lau.edu.lb/research/laur/terms-of-use/articles.php en_US
dc.identifier.url https://link.springer.com/chapter/10.1007/978-3-031-06430-2_58 en_US
dc.orcid.id https://orcid.org/0000-0003-3441-7974 en_US
dc.publication.date 2022 en_US
dc.author.affiliation Lebanese American University en_US
dc.relation.numberofseries 13231 en_US
dc.title.volume Lecture Notes in Computer Science en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account