Abstract:
Diabetes Mellitus is a chronic metabolic disease marked by altered glucose homeostasis and insulin resistance. The phosphatase PTEN antagonizes the insulin-induced-PI3K-driven cascade that normally leads to GLUT4 membrane translocation. This study investigates the effect of Phenylbutyric Acid (PBA), a chemical chaperone and a potential mediator of PTEN activity, on glucose uptake in differentiated 3T3-L1 adipocytes. Adipocyte differentiation status was quantified by Oil Red O staining and the expression of AP2. Baseline and insulin-induced adipocyte glucose uptake were assayed with and without PBA treatment. Expression of GLUT1, GLUT4, PIP3, pAkt, pPTEN, and PARK-7 was examined by western blot. Plasma membrane expression of GLUT4 was determined using immunofluorescence. Leptin and adiponectin secretion was measure by enzyme-linked immunosorbent assay. PBA treatment, alone or with insulin induction, significantly increased glucose uptake in 3T3-L1 adipocytes. PBA significantly increased GLUT1 but not GLUT4 total protein expression. However, a significant increase in membrane GLUT4 protein translocation was observed. The expression of PIP3 and pAkt increased indicating enhanced PI3k pathway activity. There was a significant decrease in PTEN activity as evident by a rise in the phosphorylated form of this protein. PARK7 protein expression increased with PBA. Treating differentiated adipocytes with PBA did not alter their differentiation status, but decreased the leptin to adiponectin ratio. Conclusion: this study showed that PBA enhances adipocyte glucose uptake potentially through its effect on glucose transporter expression and/or trafficking via the PI3K signaling pathway; suggesting PBA as a possible candidate for the ancillary management of diabetes.
Citation:
Fakhoury, H., Osman, S., Ghazale, N., Dahdah, N., El-Sibai, M., & Kanaan, A. (2018). Enhanced glucose uptake in phenylbutyric acid-treated 3T3-L1 adipocytes. Cell and Tissue Biology, 12(1), 48-56.