Abstract:
Background: The expression of connexin 43 (Cx43) is disrupted in breast cancer, and re-expression of this protein in human breast cancer cell lines leads to decreased proliferation and invasiveness, suggesting a tumor suppressive role. This study aims to investigate the role of Cx43 in proliferation and invasion starting from non-neoplastic breast epithelium. (2) Methods: Nontumorigenic human mammary epithelial HMT-3522 S1 cells and Cx43 shRNA-transfected counterparts were cultured under 2-dimensional (2-D) and 3-D conditions. (3) Results: Silencing Cx43 induced mislocalization of β-catenin and Scrib from apicolateral membrane domains in glandular structures or acini formed in 3-D culture, suggesting the loss of apical polarity. Cell cycle entry and proliferation were enhanced, concomitantly with c-Myc and cyclin D1 upregulation, while no detectable activation of Wnt/β-catenin signaling was observed. Motility and invasion were also triggered and were associated with altered acinar morphology and activation of ERK1/2 and Rho GTPase signaling, which acts downstream of the noncanonical Wnt pathway. The invasion of Cx43-shRNA S1 cells was observed only under permissive stiffness of the extracellular matrix (ECM). (4) Conclusion: Our results suggest that Cx43 controls proliferation and invasion in the normal mammary epithelium in part by regulating noncanonical Wnt signaling.
Citation:
Fostok, S., El-Sibai, M., Bazzoun, D., Lelièvre, S., & Talhouk, R. (2019). Connexin 43 Loss Triggers Cell Cycle Entry and Invasion in Non-Neoplastic Breast Epithelium: A Role for Noncanonical Wnt Signaling. Cancers, 11(3), 339.