MODEL-BASED DISTRIBUTED

OBJECT COMPUTING

by
Antoine F. Elhage

Submitted in pattial fulfillment of the
requirements for the degree of

Master In Computer Science

‘Thesis Advisor

Haidar M. Harmanani

School of Arts and Sciences

LEBANESE AMERICAN UNIVERSITY
Byblos

Juby 2002

LEBANESE AMERICAN UNIVERSITY

GRADUATE STUDIES

We hereby approve the thesis of

Antoine F. Elhage

Candidate for the Master of Science degree:

(chair) r. Haidar M. Harmanani

Dr. Walid T. Keirouz

Dr. Raymond F. Ghajar

Date: August 2, 2002

*We also certify that written approval has been obtained for

any proprietary material contained therein.

I grant to the LEBANESE AMERICAN UNIVERSITY the right to use
this work, irrespective of any copyright, for the University's own purpose
without cost to the University or to its students, agents and employees. I
further agree that the University may reproduce and provide single copies
of the work, in any format other than in or from microforms, to the public

for the cost of reproduction.

il

iv

To my parents

TABLE OF CONTENTS

LIST OF FIGURESoooot it sree ettt ssee s e srnenesassssssssssssssnesnsssssanas VII
ACKNOWLEDGMENTSooiiinereeniierniensesesnseess s sressssnsss s saesssessans VIII
ABSTRACT ...t cteetiete e siestssse st si s sae s e s be b eanen e she st sbesbeens IX
CHAPTER 1. INTRODUCTIONcccovirvirerrirecreinnieerneseccesnsissssssenesnssesaens 1
1.1 L€ 1= 115 -1 P ST 1
1.2 Problem DesCriptioncccovreinininiiiiniis i 2
1.3 (7111 10T OO 5
CHAPTER 2. REVIEW OF LITERATUREcccccvmrvirininniininncceenie e 6
2.1 I3 Tnqe 7o (0Te1n o)1 DRURUU OO PSRRI 6
2.2 Client-Server Programming..........ccocceeevsrereriesiiniisissionesiesessesssssesssens 7
23 TCP/IP LEVELS..cueicieiiece et ceee st scr e sr st s sse s b s ssas s 8
2.4 Remote Procedure Calls.........ccccoevvieneeriinnmnniiiie e 10
2.5 Remote Method INVOCAtIONcccocerieirneriirecerenne s e 12
2.5.1 The RMI Architecture........cooeeneeiierieinirerrcerreeissiiniecsnnne e 14

2.6 Microsoft DCOM......ccccoeiiiricrieiiininniiiiinni s ses s 15
2.6.1 The DCOM ATChItECtUIEcvveveeerierrerrrie et 16

2.7 CORBAL.....o ettt sttt sre bt se s e s n e 18
2.7.1 The CORBA ORB Architecturecccoeeeiminiiniiinineininniiieins 19

2.8 COMPALISOM...cirrirenriirrereeietseeresreere s s s s et st asb b st b st s sa e aesnanaenne 22
2.8.1 Comparing Apples t0 APPIES......cccvveverevrivinecrniininnes 25
2.8.2 A Note on the Terminologyccocveerereereriiriereensieneriesseserieenennns 25
CHAPTER 3. MODEL-BASED DISTRIBUTED OBJECT COMPUTING...31
3.1 INErOQUCHION. ... ccuviitierecttctee ettt e e s e e siesn bt s bt besbasanesnnas 31
3.2 The Benefits From MDOCcccccoccenercnnieineen e snssniersnens 31
3.3 Technical RAtionaleccccceerirveririescriiecineren e ns 32
3.4 Object-Oriented Frameworkccccvvnmivninininiecininnen 33
3.5 System ArchiteCture......ccoeoevrmeceiiiiiiiiniii e 34
3.5.1 The MDOC Kernelc.covevrvceinirirenneneeneeenenressesesrsncsesnessssenes 34
352 Dynamic ModelS........ccccoivminninninnnriisini e 35
353 Property ODJECtS......ccceeerirrrrrerenineinntsesinisisssee s seissa e 35
3.54 MELNOAS. ...ocvecriecieeiere e e reveens 35
3.5.5 Unified Part Modelcoceveveroieneninnccnieninieniiieeenenien s 35
3.5.6 Modular, Virtual Layers Architecture.........c.cceceeveivevrevnncrcncennes 36
3.5.7 Constraint MeChaniSmccocveverveereenreninnennnencenesnene e 37
358 Model Tree Search.........covcveveerreniinniiieiicn s 38
3.5.9 Parametric DesiZN...ccvcvcirecririeririiiereres et seese e 38
35,10 Event TrigeIS.....ccoverrererrccesiesiiiseenie i eresresncsnsseessssnisssssaesns 38

I R € =03 11151 1 2O ORI 39
3.7 Geometric REasONiNg........ccoceevverieriienirceeiies e et s e saeseens 40
3.8 Process Planning.........ccccoveerrenenririinieniinniisseseesise s esssseens 40
3.9 GIaphiCs..ccevi e e 41
3.10 Parametric Feature Based Desigc.ccceevvcvenierenneeriennneneeneenreeienecene 41
311 User INterface.....ccvvvoerireie et s 41
3.12 Attribute Tagging And Propagationcceeveccncnininicnininninnennnn 42
3,13 Mesh Generation......ccccvvreeereeeenieeirereereee s sseesrrsestass e st ssesssesssnnes 43

3.14 Analysis MOAEHNG.......ccccouvmemirimmiiiinerniene i 43

3.15 Compact And Portable ArchiteCture........coemvvnerierninmirncceniniiciiennn, 44
3,16 SUMIMATY .ovirieneeeeneerenreiiesisnisisie st et as e st s se st n st snt s 44
CHAPTER 4. CASE STUDY ..ottt enes 46
4.1 INrOAUCHION....ecuiietireereeceresee e sttt s sa e s et e 46
4.2 TIPOTL..cciiiirieiiiiiti st e s 48
4.3 FIHETINZ...ciirieceeeeerirecite sttt sr st 49
4.4 WEIdu.ooouiiieeeeeeceiee ettt sttt et 50
4.5 FINal RESUIL...cociiiiiecieriereeee et 51
4.6 Steering Knuckle Designcocovviiniiiiirinininininineeniciie e 52
4.7 Cabin Climate CONtrol..........ccerveuerrmmiiininiineninese s 53
CHAPTER 5. CONCLUSIONS AND FUTURE WORK.........cccoevvviinininnenne 54
GLOSSARY ..ovvictieretrereciereeteste s seeses st raesssbs s st e sba s be e b s bssae e s an e anassenenareens 55
BIBLIOGRAPHYoooiiiitiierieitie ettt ss e sn s st 56

vi

LIST OF FIGURES

Figure 2-1 Client connects to 2 tegistry setver, accesses a RMI setvice, and downloads

new code as requited from a Web SEIVEL. .t 13
Figute 2-2 RIMI ALCHItECIULE .vvvuvrsmrrirrissssceresssssesssensmss s sstsssssssss s ssssssssss s sass s s ssnesesens 14
Figure 2-3 COM components inl the Same PLOCESScuvrvrriummimmsisinsssssissssssssinnss s 16
Figure 2-4 COM components in different processes... e 17
Figure 2-5 DCOM: COM components on different machinescooooeeeeeeeeemmsinsssisnsssscinssssssnens 18
Figure 2-6 CORBA client sends a request through its local ORB to a remote ORB's

SCEVAILE «.vvvvveeraessnseassessssssessssssssssessesssessestsesssbsos bR R e e E R AR AR AR R bR b0 19
Figure 2-7 CORBA setrvant sends back a response to a remote ORB w....vvveniiiiiinnnnnccin: 19
Figure 2-8 CORBA and ORBSs AfChiteCtUe ..cccvuuvurencninniiinriimnss i 20
Figute 4-1 IMPotted CABovvreeeereiss s s 48
Figure 4-2 FIltered CAB....ivvicnnrsiesissississs s sass s s s 49
Figure 4-3 Welded CAB.......oovvirrssssesmisss st s s 50
Figure 4-4 FINal RESUL cooooevecvvvevvvevssssissnsssesssessmssssses s snessmmsssesssssssssssssss s ssssssssaaas s snsssssssssss 51
Figure 4-5 Steering Knuckle DESighi ... et sssssinssse 52
Figure 4-6 Steering Knuckle Design GEOMELLY wuvuuuuurvvemiisimirimneissisinisssssssssssssssssssssssenesees 52
Figure 4-7 Steeting Knuckle Design Meshed ... 52
Figure 4-8 Cabift CHMate CONLIOL..urmmmmrrmmmsssesmissermrissseisismssssisssssssssss s ssisss s 53

vii

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Dr. Haidar Harmanani for his
assistance in the preparation of this thesis. In addition, special thanks to Dr. Walid
Keirouz, whose familiarity with the needs and ideas of the project was helpful
during the phases of this undertaking.

Thanks also to the VCE department members of the Volvo Information
Technology AB for their valuable input and support. For the type I spent with
them in Sweden to accomplish this technology and make out of it a useful
product.

I would like to express my sincere gratitude to the Lebanese American University
whose financial support during my graduate studies made it all possible.

Finally, I would like to thank my friends and family for their long support.

Vviii

MODEL-BASE DISTRIBUTED

OBJECT COMPUTING

ABSTRACT

by
Antoine F. Elhage

Four trends are shaping the future of commercial software development. First, the
software industry is moving away from programming applications from scratch to
integrating applications using reusable components. Second, there is great
demand for distribution technology that provides remote method invocation
and/or message-oriented middleware to simplify application collaboration. Third,
there are increasing efforts to define standard software infrastructure frameworks
that permit applications to interwork seamlessly throughout heterogeneous
environments. Finally, next-generation distributed engineering modeling
applications require quality-of-service (QoS) guarantees for latency, bandwidth,
and reliability.

A key software technology supporting these trends is distributed object computing
(DOC) middleware. DOC middleware facilitates the collaboration of local and
remote application components in heterogeneous distributed environments. The
goal of DOC middleware is to eliminate many tedious, error-prone, and non-
portable aspects of developing and evolving distributed applications and services.
At the heart of DOC middleware are Object Request Brokers (ORBs), such as

CORBA, DCOM, and Java RMI

ix

This thesis describes how the DOC concept was used to create a new Model-based
Distributed Object computing (MDOC) technology that creates a robustness
object oriented environment to optimize and automate modeling through the
Intranet / Internet.

In particular this document will describe the architecture, security layers,

connectivity, and the client/server application of MDOC.

CHAPTER 1. INTRODUCTION

1.1 General

Traditionally, product design, manufacturing and inspection process planning,
finite element modeling and analysis were done independently as a part of the
required processes for the design to-production cycle of custom parts. In the last
15 years, computer systems have been extensively used in product design
automation, while the manufacturing process design and planning has remained a
manual effort with little or no automation. In the area of finite element modeling
and FEA, a number of applications have been developed to address these issues.
As a result, independent solutions for design (CAD), analysis (FEA), and
manufacturing (primarily machining) have been developed and are widely
available. Although additional efforts have focused on integrating these individual
applications, these efforts have not addressed the issues required to integrate and
automate the entire design-to-manufacturing cycle for concurrent engineering.
This trend has primarily taken the appréach of integrating these applications by
using file transfer from one to another. Since a design is evaluated by simply
transferring the data from one application to another to execute the different
processes, these applications do not share a common underlying part model that
enables the dynamic linking of all these processes for bi-directional data
exchange. The limitation to this approach is the lack of a unified part model that is
the basic requirement for simultaneous engineering to enable the integration of the
different disciplines involved in the design-to-production of custom parts.
Therefore, no process knowledge for analysis, manufacturing, and inspection is

made available at the design level to assist in the product design cycle.

Another shortcoming of current techniques is that they do not provide the direct
interpretation of the part design to automatically generate the enhancement to the
part geometry required to automate the down-stream processes. To overcome this
deficiency, existing tools have focused on assisting the user in remodeling the part
to create different representations as required for each downstream process. For
example, tools for automatic mesh generation are widely used to assist the
analysis engineers in creating the finite element model to be used for analysis.
These tools, furthermore, enable the engineer to enhance the mesh attributes for
deriving the model required for the analysis process. These tools do not enable the
design engineer to enhance the part geometry as an input for analysis, therefore,
eliminating the intermediate steps. Similarly, manufacturing and inspection
applications require the user to redesign the part in terms of manufacturing and
inspection features for process automation rather than directly interpreting the
design for inspection and manufacturability. Therefore, existing CAD/CAM/CAE
systems are islands of automation that require manual remodeling of the part
model to automate the relevant processes such as machining, analysis, and

inspection.

12 Problem Description

Concurrent engineering requires the engineers from various disciplines to interact
with each other for resolving conflicts that may occur because of the different
requirements set by the downstream processes. To simulate these interactions, a
unified part model to enable the multiple representations and requirements of the
downstream processes is required. A unified part model enables engineers from
various disciplines to simultaneously interact with the part representation for

concurrent engineering. Another requirement of concurrent engineering is a single

2

underlying framework that seamlessly integrates the different processes required
for the multiple engineering disciplines without resorting to creating multiple
models (which contradicts the requirements of a unified model).

In addition, open access to the part representation is another important
requirement because it enables the engineer to interact dynamically with the
unified part model and conduct “what-if”: scenarios to evaluate alternative designs
and processes.

Unlike existing CAD systems, MDOC uses a unique, single, underlying object-
oriented architecture that supports a virtual layer topology assuring seamless
integration of the different processes involved in the engineering cycles of custom
parts. The part (geometry, features, materials, function, etc.) and process
(manufacturing, inspection, analysis) designs are concurrently generated from,
and stored in, a single part model. This part model reflects the hierarchy of the
design intent. The relations among the various processes and their dependencies
on the part geometry are captured with that unified model. Dependencies are
automatically tracked and used to trigger the constraints to enforce these
relationships.

Another important feature missing in existing engineering systems is knowledge-
based modeling. Knowledge or expertise as related to the part geometry cannot be
captured into a generic methodology to assist in modeling and production
planning of custom parts. To address this deficiency MDOC enables the user to
define the part in a modular, object-oriented fashion so that the part components
can be used to address a wide spectrum of applications. Furthermore, MDOC
objects referencing the process definition (analysis, manufacturing, inspection)

and its relationship with the design also capture the knowledge to automate these

processes. Inheritance (as supported by MDOC) enables the user to combine a
number of existing objects to form a new part definition, modify its behavior, and
deduce its processes through using the inherited knowledge.

JAVA/RMI and Lisp were the chosen technologies to base MDOC on. RMI
empowers MDOC to distribute models, in the sense that it has at least two
components running on different machines and links transparently the non-
distributed applications that are limited in scalability. Thinking of these
applications as distributed applications and running the right components in the
right places benefits the user and optimizes the use of network and computer
resources. Lisp empowers MDOC the multiple inheritance capability, tagging and
propagation technique, and the re-generation of parts from the fixed mesh.
VOLVO was the first car company to adopt the MDOC Technology.

It used to take engineers at VOLVO a couple of months to finalize, analyze and
test a new design. Whenever they invented a new design, engineers used to take
this new design and generate various data format from it. These data were then
passed to different applications for the purpose of analyzing and testing. When the
output of these applications was collected, they used to check it and tweet the
design accordingly; then reformat and pass the data again to other applications
until they reach the stable optimized version.

Collaborating with Dr. Haidar Harmanani, VOLVO assigned a team of 7
engineers including myself to take this technology further into production.
MDOC was able to automate the process of importing a new design, link all these
applications to the design, and provides graphical capabilities to control the
quality of the finite element, repair them, backward propagation, and re-

generation of parts out of the fixed mesh.

1.3 Outline

Chapter 2 will cover the existing techniques with a brief description of the
architecture of each one plus a comparison between them. Chapter 3 will detail the
solution approach and the architecture of MDOC. Chapter 4 will cover the case
study of the VOLVO truck Cab plus snapshots. Chapter 5 will conclude the thesis

and go over the further studies and research.

CHAPTER 2. REVIEW OF LITERATURE

2.1 Introduction

Distributing an application is not an end in itself. Distributed applications
introduce a whole new kind of design and deployment issues. For this added
complexity to be worthwhile, there has to be a significant payback.

Some applications are inherently distributed: multi-user games, chat and
teleconferencing applications are examples of such applications. For these, the
benefits of a robust infrastructure for distributed computing are obvious.

Many other applications are also distributed, in the sense that they have at least
two components running on different machines. But because these applications
were not designed to be distributed, they are limited in scalability and ease of
deployment. Any kind of workflow or groupware application, most client/server
applications, and even some desktop productivity applications essentially control
the way their users communicate and cooperate. Thinking of these applications as
distributed applications and running the right components in the right places
benefits the user and optimizes the use of network and computer resources. The
application designed with distribution in mind can accommodate different clients
with different capabilities by running components on the client side when possible
and running them on the server side when necessary.

Designing applications for distribution gives the system manager a great deal of
flexibility in deployment.

Distributed applications are also much more scalable than their monolithic
counterparts. If all the logic of a complex application is contained in a single

module, there is only one-way to increase the throughput without tuning the

6

application itself: faster hardware (Johnson, 1997). Today's servers and operating
systems scale very well but it is often cheaper to buy another identical machine
than to upgrade to a server that is twice as fast. With a properly designed
distributed application, a single server can start out running all the components.
When the load increases, some of the components can be deployed to additional
lower-cost machines. Three of the most popular distributed object paradigms are
Microsoft's Distributed Component Object Model (DCOM), OMG's Common
Object Request Broker Architecture (CORBA) and JavaSoft's Java/Remote
Method Invocation (Java/RMI). Let us go over an introduction of the old
techniques and examine the differences between the three distributed object

paradigms from a programmer's standpoint and an architectural standpoint.

2.2 Client-Server Programming

TCP and IP were developed by a Department of Defense (DOD) research project
to connect a number different networks designed by different vendors into a
network of networks (the "Internet"). It was initially successful because it
delivered a few basic services that everyone needs (file transfer, electronic mail,
remote logon) acros‘s a very large number of client and server systems. Several
computers in a small department can use TCP/IP (along with other protocols) on a
single LAN. The IP component provides routing from the department to the
enterprise network, then to regional networks, and finally to the global Internet.
On the battlefield a communications network will sustain damage, so the DOD
designed TCP/IP to be robust and automatically recover from any node or phone
line failure. This design allows the construction of very large networks with less
central management (Gilbert, 1995). However, because of the automatic recovery,

network problems can go undiagnosed and uncorrected for long periods of time

7

As with all other communications protocol, TCP/IP is composed of layers:

e IP - is responsible for moving packet of data from node to node. IP
forwards each packet based on a four-byte destination address (the IP
number). The Internet authorities assign ranges of numbers to different
organizations. The organizations assign groups of their numbers to
departments. IP operates on gateway machines that move data from
department to organization to region and then around the world.

e TCP - is responsible for verifying the correct delivery of data from client
to server. Data can be lost in the intermediate network. TCP adds support
to detect errors or lost data and to trigger retransmission until the data is
correctly and completely received.

e Sockets - is a name given to the package of subroutines that provide access

to TCP/IP on most systems.

2.3 TCP/IP Levels

There are three levels of TCP/IP knowledge. Those who administer a regional or
national network must design a system of long distance phone lines, dedicated
routing devices, and very large configuration files. They must know the IP
numbers and physical locations of thousands of subscriber networks. They must
also have a formal network monitor strategy to detect problems and respond
quickly (Gilbert, 1995).

Each large company or university that subscribes to the Internet must have an
intermediate level of network organization and expertise. Half dozen routers
might be configured to connect several dozen departmental LANSs in several
buildings. All traffic outside the organization would typically be routed to a single

connection to a regional network provider.

However, the end user can install TCP/IP on a personal computer without any
knowledge of either the corporate or regional network. Three pieces of
information are required:
e The IP address assigned to this personal computer
e The part of the IP address (the subnet mask) that distinguishes other
machines on the same LAN (messages can be sent to them directly) from
machines in other departments or elsewhere in the world (which are sent to
a router machine)
o The IP address of the router machine that connects this LAN to the rest of
the world.
In the case of the PCLT server, the IP address is 130.132.59.234. Since the first
three bytes designate this department, a "subnet mask" is defined as 255.255.255.0
(255 is the largest byte value and represents the number with all bits turned on). It
is a Yale convention (which we recommend to everyone) that the routers for each
department have station number 1 within the department network. Thus the PCLT
router is 130.132.59.1. Thus the PCLT server is configured with the values:
My IP address: 130.132.59.234
Subnet mask: 255.255.255.0
Default router: 130.132.59.1
The subnet mask tells the server that any other machine with an IP address
beginning 130.132.59.* is on the same department LAN, so messages are sent to it
directly. Any IP address beginning with a different value is accessed indirectly by
sending the message through the router at 130.132.59.1 (which is on the

departmental LAN).

2.4 Remote Procedure Calls

Remote procedure calls (RPC) are exactly what they sound like: a model in which
client code invokes a procedure on a remote server. This is a bit further up the
chain of abstraction, whereas sockets are trapped at the lowest common level, data
—RPCs look to the calling application like normal function or subroutine call.
RPCs put distributed processing into a model familiar to all programmers. An
application programmer is able to include a header file and some libraries and
make calls to the remote resource (Christopher, 2000).

RPCs are not, of course, immune to the challenge of network applications. They
must deal with unexpected loses of connectivity. They rﬁust also deal with the
problem of differing platform data formats. But where sockets left you largely to
you own devices, RPCs build some support into the RPC runtime code. Losses of
connectivity are handled with an internal timeout mechanism. If no reply is
received in a specific interval, an error is propagated up into the application
making the call. This is novel for a programmer new to distributed computing, of
course. When was the last time you called a well-tested function in a monolithic
program only to have it suddenly fail for reasons outside your control? Almost
never, if it is truly well tested. Almost everything in a monolithic application is
within you control. Still, programmers trying to move to distributed processing
have to get used to some new ideas, no matter how great the support provided by
implementing technology.

Rather than map from each supported platform to every other supported platform,
RPCs support a wire format common to all platforms. It specifies all the basic data
types including their size and byte order. It is an arbitrary format designed to

provide common ground for all platforms, which use it. It becomes the

10

responsibility of each client and each server to translate from their binary format
into the common format and vice versa. Each RPC call, then, involves four
translations:

¢ Client to wire format

e Wire to server format

e Server back to wire (to return value)

e Wire format back to client format
Unlike socket programming, RPC programming tools programmers a bit more
support. Function interfaces — the parameter list and the return type — are specified
in an interface definition language. IDL is a text-based description of interfaces,
their methods, parameters, and return values. At build time, an IDL compiler
generates proxies and stubs. The client application compiles and links one of these
onto its executable image to handle client-side translations, and the server
application that implements the body of the RPC compiles and links the other.
RPCs are a good model for programmers in as much as every programmer is
intimately familiar with the concept of functions and subroutines (Christopher,
2000). The protocol of RPCs is implied by the functional interface: call the
subroutine synchronously with a given parameter list and wait until a known
return type is sent back from the server. Although synchronous calls have
problems in terms of scalability, this is much simpler than having to develop a
protocol and implement a state machine. Where good RPC development tools are
available for a platform, RPCs are one of the most accessible technologies for
doing distributed processing.
There is one area in which RPCs are somewhat lacking, though, and it is the

matter of maintaining state. State is essential to a traditional, top-down structured

11

application that is handled through global data. Obviously, though, when you have
a central server supporting multiple clients, the server has to maintain state
information for each client, or each client has to maintain state information for
itself. In the latter case, the state information must be provided to the server every
time an RPC is invoked.

If the server is stateful, something in the functional interface must suggest this.
The function call metaphor does not cover the idea of holding information from
one call to another, so you typically end up with calls along the lines of
SetSomeValue().It works, but there should be a more intuitive way f handling this.
Another factor that diminished the popularity of RPCs is the rise of object-
oriented programming and its close cousin, component software. RPCs hark back
to the heyday of structured programming — the 1970s. The fashion for nearly
twenty years has been objects, so it should not be surprising that we should desire ’
an object metaphor for distributed computing. Happily, there are several such

technologies, and they address the state issue.

2.5 Remote Method Invocation

Remote method invocation allows Java developers to invoke object methods, and
have them execute on remote Java Virtual Machines (JVMs). Under RMI, entire
objects can be passed and returned as parameters, unlike many remote procedure
call based mechanisms that require parameters to be either primitive data types, or
structures composed of primitive data types. That means that any Java object can
be passed as a parameter - even new objects whose class has never been
encountered before by the remote virtual machine (Reilly, 1998).

This is an exciting property, because it means that new code can be sent across a

network and dynamically loaded at run-time by foreign virtual machines. Java

12

developers have a greater freedom when designing distributed systems, and the
ability to send and receive new classes is an incredible advantage. Developers
don't have to work within a fixed codebase - they can submit new classes to
foreign virtual machines and have them perform different tasks. When working
with remote services, RMI clients can access new versions of Java services as they
are made available - there's no need to distribute code to all the clients that might
wish to connect. While code can be accessed from a local or remote file-system, it
can also be accessed via a web server, making distribution easier. RMI also
supports a registry, which allows clients to perform lookups for a particular
service. The following diagram shows the interaction between different
components of an RMI system. Clients that know about a service can look up its
location from a registry and access the service. If a new class is required, it can be

downloaded from a web server.

Figure 2-1 Client connects to a registry server, accesses a
RMI service, and downloads new code as required from a

web server.

Remote method invocation has a lot of potential, from remote processing and load
sharing of CPU's to transport mechanisms for higher-level tasks, such as mobile
agents that execute on remote machines (Reilly, 1998). Because of the flexibility
of remote method invocation, it has become an important tool for Java developers

13

when writing distributed systems. However, there are many legacy systems
written in C/C++, Ada, Fortran, Cobol, and other exotic languages. If legacy
systems need to interface with your RMI systems, or your RMI systems need to
interface with them, problems can occur. RMI is Java specific, and you'll need to

write a bridge between older systems.

2.5.1 'The RMI Architecture

The RMI system is designed to provide a direct, simple foundation for distributed
object oriented computing. The architecture is designed to allow for future
expansion of server and reference types so that RMI can add features in a coherent
way (Reilly, 1998).

When a server is exported, its reference type is defined. The references for these
objects are appropriate for UnicastRemoteObject servers, which are point-to-point
unreplicated servers. Different server types would have different reference
semantics. For example, a MulticastRemoteObject would have reference

semantics that allowed for a replicated service (Wollrath, Riggs & Waldo, 1996).

ExpServer. getP alicy();
arshal parameters
BB end Request

©|U nmarshal parameters
Zlnvoke Implementation

5 IR eturn new TodaysP alicy();

R eceive return (or exception)
& Marshal return (or exception)

: [T nm ar shal reply
eturn value (throw ex ception)

Figure 2-2 RMI Architecture

14

When a client receives a reference to a server, RMI downloads a stub that
translates calls on that reference into remote calls to the server. As shown in
Figure 2, the stub marshals the arguments to the method using object serialization,
and sends the marshalled invocation across the wire to the server. On the server
side the call is received by the RMI system and connected to a skeleton, which is
responsible for unmarshalling the arguments and invoking the server's
implementation of the method. When the server's implementation completes,
either by returning a value or by throwing an exception, the skeleton marshals the
result and sends a reply to the client's stub. The stub unmarshals the reply and
either returns the value or throws the exception as appropriate. Stubs and
skeletons are generated from the server implementation, usually using the
program rmic. Stubs use references to talk to the skeleton. This architecture allows
the reference to define the behavior of communication. The references used for
UnicastRemoteObject servers communicate with a single server object running on
a particular host and port. With the stub/reference separation RMI will be able to
add new reference types (Reilly, 1998). A reference that dealt with replicated
servers would multicast server requests to an appropriate set of replicants, gather
in the responses, and return an appropriate result based on those multiple
responses. Another reference type could activate the server if it was not already
running in a virtual machine. The client would work transparently with any of

these reference types.

2.6 Microsoft DCOM

DCOM that is often called 'COM on the wire' supports remoting objects by running

on a protocol called the Object Remote Procedure Call (ORPC). This ORPC layer

15

is built on top of DCE's RPC and interacts with COM's run-time services. A
DCOM server is a body of code that ié capable of serving up objects of a
particular type at runtime. Each DCOM server object can support multiple
interfaces each representing a different behavior of the object. A DCOM client
calls into the exposed methods of a DCOM server by acquiring a pointer to one of
the server object's interfaces. The client object then starts calling the server
object's exposed methods through the acquired interface pointer as if the server
object resided in the client's address space. As specified by COM, a server object's
memory layout conforms to the C++ vtable layout. Since the COM specification is
at the binary level it allows DCOM server componénts to be written in diverse
programming languages like C++, Java, Object Pascal (Delphi), Visual Basic and
even COBOL. As long as a platform supports COM services, DCOM can be used

on that platform. DCOM is now heavily used on the Windows platform.

2.6.1 'The DCOM Atchitecture
DCOM is an extension of the Component Object Model (COM). COM defines
how components and their clients interact. This interaction is defined such that the
client and the component can connect without the need of any intermediary
system component. The client calls methods in the component without any
overhead whatsoever (Box, 1997). Figure 3 illustrates this in the notation of the

Component Object Model:

Figure 2-3 COM components in the same process

16

In today's operating systems, processes are shielded from each other. A client that
needs to communicate with a component in another process cannot call the
component directly, but has to use some form of interprocess communication
provided by the operating system. COM provides this communication in a
completely transparent fashion: it intercepts calls from the client and forwards
them to the component in another process. Figure 4 illustrates how the

COM/DCOM run-time libraries provide the link between client and component.

i COM COM
Client run-time run-time Component
Security Security
Provider DCE RPC Provider DCE RPC
LPC b LPC

Figure 2-4 COM components in different processes

When client and component reside on different machines, DCOM simply replaces
the local interprocess communication with a network protocol. Neither the client
nor the component is aware that the wire that connects them has just become a
little longer (Box, 1997).

Figure 5 shows the overall DCOM architecture: The COM run-time provides
object-oriented services to clients and components and uses RPC and the security
provider to generate standard network packets that conform to the DCOM wire-

protocol standard.

17

COM COM

Cliert run-fime run-time Companent
Security Security
Pravider DCE RPC Provider DCE RPC
Protocal Stack Protocol Stack
N\
AN
DCOM network-
protocol
Figure 2-5 DCOM: COM components on different
machines
2.7 CORBA

Common Object Request Broker Architecture (CORBA) is a competing
distributed systems technology that offers greater portability than remote method
invocation. Unlike RMI, CORBA isn't tied to one language, and as such, can
integrate with legacy systems of the past written in older languages, as well as
future languages that include support for CORBA. CORBA isn't tied to a single
platform (a property shared by RMI), and shows great potential for use in the
future. That said, for Java developers, CORBA offers less flexibility, because it
doesn't allow executable code to be sent to remote systems (Morgan, 1998).
CORBA services are described by an interface, written in the Interface Definition
Language (IDL). IDL mappings to most popular languages are available, and
mappings can be written for languages written in the future that require CORBA
support (Reilly, 1998). CORBA allows objects to make requests of remote objects
(invoking methods), and allows data to be passed between two remote systems.
Remote method invocation, on the other hand, allows Java objects to be passed

and returned as parameters. This allows new classes to be passed across virtual

18

machines for execution (mobile code). CORBA only allows primitive data types,
and structures to be passed - not actual code.

Under communication between CORBA clients and CORBA services, method
calls are passed to Object Request Brokers (ORBs). These ORBs communicate via
the Internet Inter-ORB Protocol (IIOP). IIOP transactions can take place over TCP
streams, or via other protocols (such as HTTP), in the event that a client or server
is behind a firewall. The following diagram shows a client and a servant

communicating.

Figure 2-6 CORBA client sends a request through its local ORB Figure 2-7 CORBA servant sends back a response to a remote

to a remote ORB's servant ORB

2.7.1 'The CORBA ORB Architectute

The following figure illustrates the primary components in the CORBA ORB

architecture. Descriptions of these components are available below the figure.

19

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY

e
operation()

Q STANDARD INTERFACE STANDARD LANGUAGE MAFPING

. ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL

Figure 2-8 CORBA and ORBs Architecture

Object -- This is a CORBA programming entity that consists of an identity,
an interface, and an implementation, which is known as a Servant.

Servant -- This is an implementation programming language entity that
defines the operations that support a CORBA IDL interface. Servants can
be written in a variety of languages, including C, C++, Java, Smalltalk,
and Ada.

Client -- This is the program entity that invokes an operation on an object
implementation. Accessing the services of a remote object should be

transparent to the caller. Ideally, it should be as simple as calling a method

on an object, i.¢., obj->op(args). The remaining components in Figure 8

help to support this level of transparency.
Object Request Broker (ORB) -- The ORB provides a mechanism for
transparently communicating client requests to target object

implementations. The ORB simplifies distributed programming by

20

decoupling the client from the details of the method invocations. This
makes client requests appear to be local procedure calls. When a client
invokes an operation, the ORB is responsible for finding the object
implementation, transparently activating it if necessary, delivering the
request to the object, and returning any response to the caller.

ORB Interface -- An ORB is a logical entity that may be implemented in
various ways (such as one or more processes or a set of libraries). To
decouple applications from implementation details, the CORBA
specification defines an abstract interface for an ORB. This interface
provides various helper functions such as converting object references to
strings and vice versa, and creating argument lists for requests made
through the dynamic invocation interface described below.

CORBA IDL stubs and skeletons -- CORBA IDL stubs and skeletons
serve as the “"glue" between the client and server applications,
respectively, and the ORB. The transformation between CORBA IDL
definitions and the target programming language is automated by a
CORBA IDL compiler. The use of a compiler reduces the potential for
inconsistencies between client stubs and server skeletons and increases
opportunities for automated compiler optimizations.

Dynamic Invocation Interface (DII) -- This interface allows a client to
directly access the underlying request mechanisms provided by an ORB.
Applications use the DII to dynamically issue requests to objects without
requiring IDL interface-specific stubs to be linked in. Unlike IDL stubs

(which only allow RPC-style requests), the DII also allows clients to make

21

2.8

non-blocking deferred synchronous (separate send and receive operations)
and one-way (send-only) calls.

Dynamic Skeleton Interface (DSI) -- This is the server side's analogue to
the client side's DII. The DSI allows an ORB to deliver requests to an
object implementation that does not have compile-time knowledge of the
type of the object it is implementing. The client making the request has no
idea whether the implementation is using the type-specific IDL skeletons
or is using the dynamic skeletons.

Object Adapter -- This assists the ORB with delivering requests to the
object and with activating the object. More importantly, an object adapter
associates object implementations with the ORB. Object adapters can be
specialized to provide support for certain object implementation styles
(such as OODB object adapters for persistence and library object adapters

for non-remote objects).

Comparison

As mentioned above three of the most popular distributed object paradigms are

Microsoft's Distributed Component Object Model (DCOM), OMG's Common

Object Request Broker Architecture (CORBA) and JavaSoft's Java/Remote

Method Invocation (Java/RMI). Let us examine the differences between these

three models from a programmer's standpoint and an architectural standpoint. At

the end, you will be able to better appreciate the merits and innards of each of the

distributed object paradigms. And you will know what distributed object MDOC

is based on.

CORBA relies on a protocol called the Internet Inter-ORB Protocol (IIOP) for

remoting objects. Everything in the CORBA architecture depends on an Object

22

Request Broker (ORB). The ORB acts as a central Object Bus over which each
CORBA object interacts transparently with other CORBA objects located either
locally or remotely. Each CORBA server object has an interface and exposes a set
of methods. To request a service, a CORBA client acquires an object reference to
a CORBA server object. The client can now make method calls on the object
reference as if the CORBA server object resided in the client's address space. The
ORB is responsible for finding a CORBA object's implementation, preparing it to
receive requests, communicate requests to it and carry the reply back to the client.
A CORBA object interacts with the ORB either through the ORB interface or
through an Object Adapter - either a Basic Object Adapter (BOA) or a Portable
Object Adapter (POA). Since CORBA is just a specification, it can be used on
diverse operating system platforms from mainframes to UNIX boxes to Windows
machines to handheld devices as long as there is an ORB implementation for that
platform. Major ORB vendors like Inprise have CORBA ORB implementations
through their VisiBroker product for Windows, UNIX and mainframe platforms
and Iona through their Orbix product (Vinky, Bakken & Schantz, 1997).

DCOM that is often called 'COM on the wire', supports remoting objects by running
on a protocol called the Object Remote Procedure Call (ORPC). This ORPC layer
is built on top of DCE's RPC and interacts with COM's run-time services. A
DCOM server is a body of code that is capable of serving up objects of a
particular type at runtime. Each DCOM server object can support muitiple interfaces
each representing a different behavior of the object. A DCOM élient calls into the
exposed methods of a DCOM server by acquiring a pointer to one of the server
object's interfaces. The client object then starts calling the server object's exposed

methods through the acquired interface pointer as if the server object resided in

23

the client's address space. As specified by COM, a server object's memory layout
conforms to the C++ vtable layout. Since the COM specification is at the binary
level it allows DCOM server components to be written in diverse programming
languages like C++, Java, Object Pascal (Delphi), Visual Basic and even COBOL.
As long as a platform supports COM services, DCOM can be used on that
platform. DCOM is now heavily used on the Windows platform. Companies like
Software AG provide COM service implementations through their Entire X
product for UNIX, Linux and mainframe platforms; Digital for the Open VMS
platform and Microsoft for Windows and Solaris platforms (Box, 1997).
Java/RMI relies on a protocol called the Java Remote Method Protocol (JRMP).
Java relies heavily on Java Object Serialization, which allows objects to be
marshaled (or transmitted) as a stream. Since Java Object Serialization is specific
to Java, both the Java/RMI server object and the client object have to be written in
Java. Each Java/RMI Server object defines an interface, which can be used to
access the server object outside of the current Java Virtual Machine (JVM) and on
another machine's JVM. The interface exposes a set of methods, which are
indicative of the services offered by the server object. For a client to locate a
server object for the first time, RMI depends on a naming mechanism called an
RMI Registry that runs on the Server machine and holds information about
available Server Objects. A Java/RMI client acquires an object reference to a
Java/RMI server object by doing a lookup for a Server Object reference and
invokes methods on the Server Object as if the Java/RMI server object resided in
the client's address space. Java/RMI server objects are named using URLs and for
a client to acquire a server object reference, it should specify the URL of the

server object as you would with the URL to a HTML page. Since Java/RMI relies

24

on Java, it can be used on diverse operating system platforms from mainframes to
UNIX boxes to Windows machines to handheld devices as long as there is a Java
Virtual Machine (JVM) implementation for that platform. In addition to Javasoft

and Microsoft, a lot of other companies have announced Java Virtual Machine

ports (Reilly, 1998).

2.8.1 Comparing Apples to Apples
CORBA 3.0 will add a middleware component model (much like MTS or EJB) to
CORBA. Since it is still in a pre-spec stage, we do not know much about how the
CORBA middleware comp;)nent model is going to look like. As of CORBA 2.x,
there is no middleware component model that CORBA defines. There is a lot of
comparison going on between COM and EJB. This is entirely wrong. This is like
comparing apples to oranges. The competing technologies are MTS and EJB.

Hence, the real comparison should be between MTS and EJB (Vinoski, 1997).

2.8.2 A Note on the Tetminology

Let us now look at some of the terminology.

e Resource Dispenser (RD)
The ODBC Resource Dispenser manages a pool of database connections. The
Resource Dispenser can also reclaim connections for use by other clients.
When a client gets a connection from the Dispenser, it is automatically
enlisted in the object's transaction. Resource Dispensers are about making
efficient use of a limited pool of resources.

e Resource Manager (RM)
Resource Managers are the services that provide the resources to be used in

transactions. Resource Managers are about managing the effect of transactions

25

on resources by making sure that the effects of a transaction are either
committed or rolled back accordingly.

Microsoft Distributed Transaction Coordinator (MS-DTC)

A transaction is an atomic unit of work: either all the actions in a transaction
are committed or none of them are. Work can be committed as an atomic
transaction even if it spans multiple resource managers, potentially on separate
computers. A Transaction Coordinator is a transaction manager that
coordinates transactions, which span multiple resource managers. In the MTS
environment, a transaction is coordinated by the Distributed Transaction
Coordinator (DTC).

Shared Property Manager (SPM)

Shared Properties are properties global to the middleware MTS component.
Since these properties may be shared with multiple clients, there is a distinct
problem of Synchronization that has to be handled. The Shared Property
Manager synchronizes access to shared properties.

Microsoft Message Queue (MSMQ)

The Microsoft Message Queue Server (MSMQ) guarantees a simple, reliable
and scalable means of asynchronous communication freeing up client apps to
do other tasks without waiting for a response from the other end. It provides
loosely-coupled and reliable network communications services based on a
messaging queuing model. MSMQ makes it easy to integrate applications,
implement a push-style business event delivery environment between
applications, and build reliable applications that work over unreliable but cost-

effective networks.

26

COM Transaction Integrator (COMTI)

COM Transaction Integrator (COMTI) enables Microsoft Transaction Server
to execute applications running under CICS or IMS on an IBM MVS system.
COMTI ships with SNA Server version 4.0

Java Naming and Directory Interface (JNDI)

An API for naming-service-independent resource location. This provides Java
applications with a unified interface to multiple naming and directory services
on the enterprise. JNDI enables seamless connectivity to heterogeneous
enterprise naming and directory services. Developers can now build powerful
and portable directory-enabled applications using this industry standard.

Java Transaction Service (JTS)

This is an API to ensure data integrity across several systems and databases
using two-phased commits and rollbacks. The API is compatible with the
OMG's Object Transaction Service (OTS). The Java Transaction API (JTA)
specifies standard Java interfaces between a transaction manager and the
parties involved in a distributed transaction system: the resource manager, the
application server, and the transactional applications.

Java Message Service (JMS)

JMS provides a reliable, flexible service for the asynchronous exchange of
critical business data and events throughout an enterprise. The JMS API adds
to this a common API and provider framework that enables the development
of portable, message based applications in the Java programming language.
The JMS API improves programmer productivity by defining a common set of
messaging concepts and programming strategies that will be supported by all

JMS technology-compliant messaging systems.

27

Middleware Component Models take a high level approach to building distributed
systems. They free the application developer to concentrate on programming only
the business logic, while removing the need to write all the "plumbing" code that
is required in any enterprise application development scenario. For example, the
enterprise developer no longer needs to write code that handles transactional
behavior, security, database connection pooling or threading, because the
architecture delegates this task to the server vendor.

When it comes to Middleware Component Models there are several ‘de-jure’ and
'de-facto' Standards in the industry today. In this article, we will look at two of
them namely, The Microsoft Transaction Server (MTS) Architecture from
Microsoft and JavaSoft's Enterprise JavaBeans (EJB). Let us examine the
differences between these models from a programmer's standpoint and an
architectural standpoint. At the end, you will be able to better appreciate the
merits and innards of each of these Middleware Component Architectures.

MTS, based on the Component Object Model (COM) which is the middleware
component model for Windows NT, is used for creating scalable, transactional,
multi-user and secure enterprise-level server side components. MTS provides a
surrogate for in-process server-side components. MTS can also be defined as a
component-based programming model. An MTS component is a type of COM
component that executes in the MTS run-time environment. MTS supports
building enterprise applications using ready-made MTS components and allows
you to "plug and work" with off-the shelf MTS components developed by
component developers. Just as a COM component can be modeled on the basis of
interfaces and their implementation, MTS enforces modeling based on the

component's state and behavior. MTS, through the COM infrastructure, handles

28

communication between components using DCOM. This allows MTS to expose
its components to Windows applications from anywhere on the net or the web. As
long as you are only running on Windows NT, MTS components can be deployed
on top of existing transaction processing systems including traditional transaction
processing monitors, web servers, database servers, application servers, etc.
Legacy system integration with non-Windows systems and MTS is achieved using
the COM Transaction Integrator (COM-TTI) technology. Also, it is important to
realize that MTS is a stateless component model, whose components are always
packaged as an in-proc DLL. Since they are composed of COM objects, MTS
components can be implemented in a variety of different languages including
C++, Java, Object Pascal (Delphi), Visual Basic and even COBOL!

EIB is a middleware component model for Java and CORBA and is a specification
for creating server-side, scalable, transactional, multi-user and secure enterprise-
level applications. It defines a set of specifications and a consistent component
architecture framework for creating distributed n-tier middleware. It would be fair
tocalla be;an written to EJB spec a Server Enterprise Bean. Most importantly,
EJBs can be deployed on top of existing transaction processing systems including
traditional transaction processing monitors, web servers, database servers,
application servers, etc. Since these components are written using Java, EJBs
containing the business logic are platform-independent and can be moved to a
different, more scalable platform should the need arise. If you are hosting a
mission-critical application and need to move your EJBs from one platform to the
other, you can do it without any change in the business-logic code. This allows
you to "plug and work" with off-the-shelf EJBs without having to develop them or

have any knowledge of their inner workings. EJB provides both a stateless and a

29

stateful model and are packaged as jar files. Since EJB is built on top of Java
technology, EJB components can only be implemented using the Java Language.
The architectures of CORBA, DCOM and Java/RMI provide mechanisms for
transparent invocation and accessing of remote distributed objects. Though the
mechanisms that they employ to achieve remoting may be different, the approach

each of them take is more or less similar.

30

CHAPTER 3. MODEL-BASED DISTRIBUTED OBJECT

COMPUTING

3.1 Introduction

MDOC is the solution approached that provides a versatile object oriented
frameworks to solve the mention problems, the use of old methods and integrate
the isolated legacy application needed to finalize a design. As mentioned in the
introduction, since MDOC is based on Java/RMI, MDOC takes advantage of RMI
to create heterogeneous distributed application and the java programming
language to create object oriented environment.

MDOC also benefits from RMI and the java programming language to create a
whole new environment that enables engineers to share the design of complex
modeling applications. MDOC gives the user the robustness to share the design
with any engineer on the net with high security architecture manner and a very
intelligent environment. MDOC use is also to improve the design and decrease the

time frame of that design.

3.2 The Benefits From MDOC

The advantages of MDOC are:

o Object Oriented: MDOC robustness makes its growth exponential. MDOC
architecture was designed in a way to make its library of objects
expendable. It is very easy to add an object to the library.

e Mobile Behavior: MDOC can move behavior client to server and server to
client. For example, you can define an interface for examining rigid beams

stress analysis at a specific connection to see whether they conform to

31

current defined constraint. When a constraint is created, the client can
fetch an object that implements that interface from the server. When the
constraints change, the server will start returning a different
implementation of that interface that uses the new constraints. The
constraints will therefore be checked on the client side-providing faster
feedback to the user and less load on the server-without installing any new
software on user's system. This gives you maximal flexibility, since
changing constraints requires you to add a new object on the server host.

« Design Patterns: Passing objects lets you use the full power of object-
oriented technology in distributed computing, such as two and three tier
systems. When you can pass behavior, you can use object oriented design
patterns in your solutions. All object oriented design patterns rely upon
different behaviors for their power; without passing complete objects-both
implementations and type the benefits provided by the design patterns
movement are lost.

e Safe and Secure: MDOC uses built-in security mechanisms that allow your
system to be safe when users download implementations. MDOC uses the
security manager defined to protect systems from hostile objects thus
protecting your systems and network from potentially hostile downloaded
code. In severe cases, a server can refuse to download any

implementations at all.

3.3 Technical Rationale

MDOC provides a Knowledge Based Engineering (KBE) framework that captures
knowledge from the modeled domain and creates parametric models with that

knowledge. MDOC is "adaptive" in that it can be used to model a wide range of
32

domains that have interacting components and constrained behavior between

them. MDOC can be adapted to diverse engineering applications.

3.4 Object-Oriented Framework

MDOC framework supports a single underlying object-oriented architecture.

| MDOC's object-oriented design paradigm provides two different types of
relations. A class-subclass relation allows data abstraction, encapsulation, sharing
of data structures and behavior, and polymorphism. Subclasses can be derived
from any of the MDOC classes, or from user-defined classes. Multiple inheritance
is available for classes. A class can be derived from an existing class, and new
properties can be added, or formulas and values redefined for existing properties,
as shown below:
(define-class class-name
‘inherit-from (class-list)
.properties (property-list)

. :sub-objects (subobject-list)
)
The class-list is a list of classes to inherit from; the property-list is a list of object
properties that are defined similar to the objects. The subobject-list is a list of
objects directly located under the object being defined in the part-subpart
hierarchical assembly. A part-subpart relation enables the creation of a tree
structured unified part model where the children of any node of the tree represent
sub-objects. Various aspects of the problem can be structured hierarchically
according to the domain being modeled (Design, Analysis, Manufacturing,

Costing & Inspection).

33

MDOC provides an expanded set of classes that support a wide spectrum of

applications. Such classes are the basis of various modules supported within

MDOC.

3.5 System Architecture

The MDOC modeling framework consists of several modules (sets of classes and
methods), relating to the different knowledge domains, each focusing on a
different functionality. All the modules are written within the MDOC object-
oriented architecture although they do communicate with external programs
through the Virtual Layer Architecture. Additional modules can be defined and
loaded into MDOC to adapt the language for a specific purpose. Since MDOC is
modular, only the necessary systems need to be loaded into MDOC. If a problem
requires a modeling framework without graphics or geometry, only the kernel
needs to be loaded for that application. Applications invoking different aspects of
the system built in MDOC will utilize a common user interface to the system.
User familiarization is required only with one interface irrespective of the
applications. The Design, Analysis, Manufacturing, and Inspection modules all

utilize a common MDOC interface.

3.5.1 The MDOC Kernel

The lowest level of the MDOC modeling paradigm provides the language
constructs for defining classes, methods, and the constraint mechanism. All
subsequent objects simply augment the language. The MDOC core system
provides the ability to dynamically instantiate classes and methods and to add,
edit, and delete objects and properties at runtime. The constraint mechanism, the

part hierarchy, and other basic language constructs are also provided by MDOC.

34

3.5.2 Dynamic Models
Since design is inherently iterative and dynamic, MDOC is also dynamic in
nature. Values and formulas of properties can be changed after the model is
instantiated. MDOC also permits the addition and deletion of objects and
properties after the model is instantiated. Methods can be defined against any
MDOC class or one derived from an MDOC class. This lets the user modify
behavior of classes according to the needs of the application. Polymorphism as

well as “virtual functions' can be utilized.

3.5.3 Property Objects
MDOC permits the definition of new property classes inheriting from existing
ones such as property-object. Properties can be added to and methods written
against a property class like any other class. In fact, a property-object is also
derived from the MDOC object class. The property objects are the basis for
accessing the virtual interfaces to communicate with external databases, foreign

applications, geometric modelers, etc.

3.54 Methods
Methods can be defined against any MDOC class or one derived from an MDOC
class. This allows the user to modify behavior of classes according to the needs of

the application. Polymorphism as well as “virtual functions' can be utilized.

3.5.5 Unified Part Model

Various aspects of a problem can be detailed through a single unified model in
MDOC. The design strategy and related engineering and production processes are
captured within a single part model, represented by a hierarchy of objects. An

example of such an application is the design automation and analysis of a

35

combustion engine. A geometric design is created followed by the association of
various physical attributes with the geometry. Then the attributes for a finite
element model, and the strategy required for generating the mesh model along
with various input files for the analysis solver, are maintained. MDOC enables the
various aspects of the engineering processes to be stored in a single model in a
structured fashion. Furthermore, knowledge for manufacturing, inspection, cost,
and tooling can be incorporated into the same model for the automation of the
manufacturing and inspection process plans. Feedback could be provided at
various stages to different entities in the model. A complete user interface for the
problem including input and output forms, menus, etc. can also be associated with

the same part model that encompasses the various aspects of the application.

3.5.6 Modular, Virtual Layers Architectute

MDOC supports a modular underlying architecture consisting of a number of
virtual layers that make it easy to interface to foreign applications or modules.
Different modules within MDOC can be easily replaced or extended.

A number of solid modelers are supported. An MDOC application can interface
among different solid modelers without changes in the application code. Through
the MDOC virtual layering interface, additional applications such as engineering
analysis solvers, other solid/surface modelers, or any other engineering
applications can be seamlessly integrated. The MDOC syntax is independent of
the underlying foreign application since all communication is handled though the
virtual layers. MDOC objects are fully portable and can seamlessly interface with
other modelers or applications without changes to the user defined objects in the

application source code.

36

Since MDOC supports a modular underlying architecture, additional modules
required by the user can be easily integrated. Existing third party applications can
be integrated with MDOC independent of the language or the operating system
that they are developed in. Existing modules are written in C, C++, FORTRAN,
JAVA, and LISP. The wide range of languages is proof that MDOC allows easy,
open integration of additional modules.

The MDOC paradigm provides a common interface to a number of solid modelers
in addition to different mesh generators and analysis solvers. This interface is
implemented through a Modular and Virtual Layer Architecture, providing a
common consistent interface to underlying foreign applications. Another
advantage of the Virtual Layer Architecture is that a design can be created using
different modeling engines. For example, the same geometric design could be
created using the SHAPES, ACIS or Parasolid solid modelers to compare
accuracy and performance, or imported via STEP or IGES from various CAD
systems. Similarly an analysis model could be exported to various solvers such as

FLUENT or SPECTRUM without requiring changes in the analysis model.

3.5.7 Constraint Mechanism

MDOC's underlying constraint mechanism supports demand driven and
dependency backtracking behaviors. Demand driven refers to the fact that the
value of a property is not calculated until it is demanded. Until a value is
demanded, an internal flag refers to the property value as being unbound or the
property being smashed. Several properties that affect a certain property can be
modified, but the affected property does not need to be recalculated every time,
only when it is finally needed. Dependency backtracking is the mechanism that
actually propagates constraint changes throughout the part model. When a

37

property is modified, all the properties in its effect list are smashed. When a
property is smashed, it further smashes all properties in its effect list, propagating
the change by notifying entities that they need to be recalculated when demanded

next.

3.5.8 Model Tree Search
MDOC employs a unique mechanism for associating properties and objects
within formulas and values referred to as the referencing. The the mechanism
provides the means for querying the model for properties and objects as well as
establishing constraint relationships. Additional functionality and querying
mechanisms are provided to enable extended definition of constraints and
dependencies. The select-object function provides a means of selecting objects

over the entire model, or for a particular branch of the tree.

3.5.9 Parametric Design
The constraint mechanism coupled with the tree-search provides the parametric
modeling environment. Several properties of the model can be changed and then
the results can be computed, which may result in new geometry or different
outputs. A "what-if" scenario can be achieved without the user having to manually
notify entities of change. The change-value and change-formula methods assist in

modification of properties.

3.5.10 Event Triggers

Although a demand driven paradigm suffices for several applications, situations
arise that require notification of entities that may be outside the domain of
dependencies and certain actions need to occur at the moment an event takes
place. The system defines classes that can be inherited into objects to define

38

actions on creation, deletion, change and smashing of properties or objects. An
example of the use of an event trigger is in the way MDOC handles the freeing of
external pointers on notification from MDOC events. When a property that holds
a pointer external to MDOC is smashed, a trigger is activated that invokes the
system call to destroy the pointer and unbound the property. This cannot be done
using dependencies alone since the pointer is external to the constraint network.
This mechanism is unique to the MDOC functionality of the Virtual Interface that

independently manages automatic allocation of memory to external applications.

3.6 Geometty

MDOC supports advanced parametric solid and surfacing capabilities including
"web" geometry with complete topology access and mixed Boolean operations.
The advanced geometry module supports seamless virtual interfaces to Shapes,
Parasolid, and ACIS. Additional solid/surface modeling kernels could be easily
integrated via the MDOC Virtual Layer Interface (VGL). MDOCs VGL enables
the user to preserve the MDOC application code while extending its compatibility
to other applications and modelers.

The various applications of MDOC including design automation, layout and
configuration, manufacturing planning, and finite element modeling and analysis,
have different geometric requirements. These individual requirements are satisfied
through the capability of augmenting the part model for different representations
to satisfy various demands of the different applications. These different
representations are manipulated through a unified part model. MDOC presents a
number of objects/classes for modeling simple primitives in addition to complex
geometrical operations. Complex Boolean operations for mixed-dimensional

solid, surface, and/or wireframe representations, incorporating non-manifold

39

topology, are also supported. Additional objects for advanced modeling of free-
form surfaces (NURBS, Beziers, etc.) also exist. MDOC supports 2 STEP and

IGES interface to external CAD systems.

3.7 Geometric Reasoning

MDOC supports geometric reasoning for process planning automation to integrate
the part design with the manufacturing, inspection, or analysis plans for
simultaneous engineering. Various queries and methods to enhance and modify
the part geometry as required by the manufacturing, analysis, and inspection
processes, are also supported by MDOC. For example, queries about a distributed
set of points on a free form surface, along with their normals and connected path
could be dynamically queried and presented in a separate object. This object could

also be used for an inspection plan.

3.8 Process Planning

MDOC provides a suite of objects, which are fully integrated, supporting the
general requirements of manufacturing and inspection process planning
automation. Present manufacturing capabilities includes machining, supporting
milling and hole making process planning as well as cost estimation. Also a
unique tool path planner for NC is fully integrated within MDOC. This dynamic
tool path generation supports up to five axis NC tool path planning. The
automated path planner supports geometrical reasoning capabilities which are
suitable for applications in spot welding, arc welding, spray painting, water jet
cutting, Eddy Current inspection, and other applications that require the position
and motion control of a tool/probe moving on or about complex shapes and

surfaces. Capabilities to control multiple path offsets, distance from, and

40

orientation between the tool and the surface are also automated. The uniqueness of
the integrated and dynamic link between the geometrical modeler and the path

planner comes from MDOC:s single underlying object-oriented architecture.

3.9 Graphics

Through its virtual layer capabilities, MDOC supports advanced visualization
techniques for manipulation and display of the geometrical objects. These
capabilities include limited functionality for post processing and visualizations,
such as color mapping using various grouping techniques. MDOC supports

various objects for creating dynamic charts such as bar charts, curve fitting charts,

etc.

3.10 Parametric Feature Based Design

MDOC provides a unique interactive design environment. It is parametric,
constraint driven, free form feature based, and has solid and surface modeling
capabilities. Geometric as well as non-geometric features can be modeled. The
system enables easy referencing and parametric association for feature properties

that could be linked to external processes as a part of the Virtual Layer interface.

3.11 User Interface

MDOC provides a complete set of interface classes including forms, buttons,
radio boxes, check boxes, input forms, and pop up menus supported on
Unix/Motif and Windows N'T/95. Since the user interface model is represented
using the same knowledge representation system as the applications, it too is
dynamic in nature, and the attributes of the user interface entities, (color/size of

buttons), can be altered dynamically.

41

3.12 Aturibute Tagging And Propagation

MDOC provides a unique mechanism for facilitating association of information
with entities in a geometric model. Attribute Tagging and Propagation is being
utilized for facilitating association of engineering processes information with
entities in a geometric model. This information typically needs to be conveyed to
downstream processes such as manufacturing, inspection, meshing or analysis.
Typically, when a geometric model is constructed, several stages of construction
geometry are required. These construction entities are then booleaned,
transformed, swept, revolved, etc., to create the final model. In a parametric
modeling environment, reconfiguring the model involves the modification of
parameters at the construction level and the regeneration of the geometric model.
All supplementary information would need to be reconveyed to the final geometry
as well as downstream processes every time the model is reconfigured. This could
be a very tedious task requiring major interaction with the user and delays in the
engineering cycle. MDOCs unique parametric modeling paradigm provides the
capability to propagate attributes through geometric operations thereby
automating the procedure of geometrical enhancement of the final geometry to
extract the required data for complete automation of the finite element modeling
and analysis processes as well as any other engineering processes.

First, using Attribute Tagging, the supplementary information is associated with
construction configurable geometry. Next, every downstream operation, including
final design, analysis, and manufacturing has the information passed on through
Attribute Propagation. Attribute Propagation ensures that every operation on the
geometry, including reads and writes, Booleans, sweeps, etc., propagate the

attributes through the operation. As a result, when the model is reconfigured, i.e.,

42

upstream design entities are modified in geometry or other properties, the
Attribute Propagation mechanism ensures that supplementary information is
passed downstream automatically. The Attribute Tagging and Propagation
mechanism is integrated with the demand driven and backward propagation

mechanism using Event Property objects.

3.13 Mesh Generation

The Automatic Mesh Generation system is an MDOC module that allows tight
integration of various mesh generation and analysis applications. MDOC provides
a Virtual Interface to support various third party mesh generators. The system
permits the selection of geometry to mesh, tagging the vertices, edges and faces of
geometry for selective refinement of the mesh, and meshing the geometry by
calling the external mesh generator. It provides objects for meshing as well as a
user interface. It also provides various objects and user interfaces for visualizing

the mesh and querying the mesh database created by the mesh generator.

3.14 Analysis Modeling

The Finite Element Analysis (FEA) Modeling module will enable the definition of
an analysis problem by defining regions of interest, material models, boundary
conditions, solution strategies, and other requirements for analyzing various
problems utilizing a Mesh Generator and a Finite Element Solver. The various
entities of interest are modeled as MDOC classes that can be utilized to instance a
complete FEA problem model. The problem can be associated with the geometric
objects as well as the mesh. The system generates several files that the solver can
read and execute to generate results. This system can be extended to provide a

Virtual Solver Layer that can talk to various FEA solvers.

43

3.15 Compact And Portable Architecture

The complete MDOC paradigm, including the various modules, requires less than
30MB of disk space. MDOC requires 100MB of swap space with 64MB of RAM
recommended (32MB RAM could meet the requirements of various applications).
The relatively small requirements of swap and memory size reflect MDOC's
object oriented unique architecture. MDOC is supported on UNIX platforms and
Intel based PC's running WINDOWS NT, 98, or 95. The compact size of the
MDOC system is proof of its innovative advanced architecture when compared to
the requirements for storage, swap size, and electronic memory of other

competitive products.

3.16 Summary

The MDOC paradigm provides a versatile, parametric modeling environment
supporting a unified part model for integrated design and process automation. The
MDOC object-oriented modeling framework allows the user to develop
applications using dynamic objects for composing adaptive models that can be
tailored to various engineering requirements at runtime. The dynamic environment
is suited to simulating "what-if" scenarios and iterative modeling environments.
MDOC offers a flexible modeling environment that can be used for a wide
spectrum of engineering problems requiring the integration of various engineering
disciplines all supported within an adaptive object oriented part model. MDOC
enables the abstraction of the modeled domain into a set of interacting entities that
can be applied to problems requiring a high degree of visualization and complex

geometric operations for integrated design and process automation.

44

MDOC is a revolutionary modeling framework that shortens the design-to-
manufacturing cycle, resulting in rapid part production with lower cost. Complex
parts and detailed process plans for manufacturing, analysis, and inspection are
concurrently designed and developed in a fraction of time compared to current
methods. Improved quality and efficiency is realized by producing intelligent,
error-free designs.

Finally MDOC is now mostly used to solve electrical and mechanical problem
like car design, boiler design, etc ... MDOC enabled VOLVO to save millions of

dollars (G. Bjérkman, Personal Communication, January 21, 2000).

45

CHAPTER 4. CASE STUDY

4.1 Introduction

The following case study will detail how VOLVO used the MDOC technology to
analyze a truck Cab. The study will go over the steps that VOLVO went through
to achieve this analysis. The result VOLVO reached is demonstrated with a few
snapshots.

VOLVO started the analysis by importing the Cab geometries from
Parasolid/IGES and using the power of MDOC to automatically identify these
geoms and map them into objects.

The middle surface service was the next things to do. Because of the lack of
powerful Hex mesh engines nowadays, the middle surface of each objects is
automatically generated by MDOC with an interface that empowers the users to
validate these mid-surfaces manually. After the creation of the middle surfaces the
mesh service is then triggered and generates a mesh element for each object.
Engineers then check the quality of the FEA and with a graphical interface filter
the object with bad mesh in order to repair the finite element mesh then Fix the
filtered objects mesh and re-mesh. Iterate till a satisfied solution is reached.
Regenerating geometry out of the repaired finite element is a very powerful
service that is useful if engineers were unable to reach a satisfied solution. This
service provides the ability to generate the surfaces of the objects (shapes) from a
mesh.

Weld service is responsible for identifying the weld seed points and weld these

objects together with a graphical representation of the weld elements. Now the

46

next step is to mesh these objects again and check the quality of the finite element
produced by the mesh engine after welding them together.

Tterate on repairing the mesh and re-mesh until the approach of an acceptable quad
finite element. Note that getting rid of 100% of tri mesh was something
impossible but optimizing them to quad mesh was the responsibility of quality
control service and the iteration effort of engineers.

Generation of LsDyna files takes place and gets delivered to LsDyna server which
produces an output and this output gets loaded to GL view to simulate a crash and
view the distortion on the cab from this crash (E. Persson, Personal
Communication, March 24, 2000).

MDOC and this case study were implemented at VOLVO Car in Sweden. A team
of 7 engineers including me worked for almost one year and used this case study
to test MDOC. Research and development initially took place followed by the
architectural design and implementation of the MDOC code. After several
iterations, the project was facing a critical dead end and VOLVO was too close to
stop funding it. Thanks to the team effort, perseverance and had work were able to
resolve this project and turn it into a success. More than 350 objects, and

approximately 14364 line of code were written.

47

4.2 Import

The right side of the image below shows a graphical representation of the truck
cab bbjects and the finite element mesh of a couple of them. The right side shows
the tree service, the list of objects imported from Parasolid/IGES, and the palette
that provides the user the capabilities to rotate, shade, unshed, hide, unhide, and
draw/undraw the surfaces of each object and its mesh.

Model Tree

TER]
> HAIN
f-p FORMS
Ir;i? COPYRIGHT-FORM

HEADER _

Figure 4-1 Imported CAB

48

4.3 Filtering

The left side of the image below shows a graphical representation of the finite
element. The right side shows a form that provides the ability to draw the mesh of
each object separately, and in turn verify this mesh and control the quality of its
elements. It also has the ability to repair this mesh, remesh and generate new

surfaces out if the repaired mesh.

~Model Tree

< INTERFACE

D MAIN

1| - FORHS

: P COPYRIGHT-FORM
-4 HEADER

INAL-0002
§FINAL-0003
FINAL-0004
{{ FINAL-0005

Figure 4-2 Filtered CAB

49

4.4 Weld

The right side of the image below shows weld elements generated automatically
by the weld service. The right side shows a form that provides the ability to
control the automation of the MDOC process. As you can see this form gives you
access to trigger each service separately and the power to stop and start each

service as needed to optimize time.

| FINAL-0002
FINAL-0003
JFINAL-0004

| FINAL-0034

Figure 4-3 Welded CAB

50

4.5 Final Result

The image below shows the final result of a mesh of an object after being welded
to other objects. Notice the presence of the tri-mesh and how the quality of the
mesh is no longer as finite as before the weld. The left side also shows a form that

provides the ability to draw the shell, the mesh and the seeds.

1-ob3ect-27
1-ob3ect-28

I T

Figure 4-4 Final Result

51

4.6 Steering Knuckle Design

The following pictures show the geometry for an environment for the design and
analysis of automobile steering knuckles. The environment enables engineers to
rapidly design and analyze a steering knuckle with a few mouse clicks. This
environment takes a minimal amount of input design parameters and dynamically
creates a complete 3-D solid model, engineering drawings, and a Finite Element
mesh/analysis. Any changes made to the geometry dynamically update in the

mesh and in the corresponding Finite Element model (loads and constraints).

Figure 4-5 Steering Knuckle Design

Ewrrng

ook

Figure 4-6 Steering Knuckle Design Geometry

Figure 4-7 Steering Knuckle Design Meshed

32

4,7 Cabin Climate Control

The following picture shows a sample of the cabin integrated control volume
detailed design with the various air-handling components. The cabin features that
were selected for detailing include the A, B, and C pillars, front and rear
windshields, instrument panel, side mirror reflecting areas, consoles, front and
back seats of the car, demister inlet and exit surfaces etc. The system architecture
of the analysis model is designed and implemented to enable integration with the

defroster system shown below. The result provides the engineer with a powerful

tool to configure and simulate the flow of air in and out of the cabin model.

Figure 4-8 Cabin Climate Control

33

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

With the help of VOLVO, MDOC technology is now used by engineers to
produce cars.

MDOC saved engineering efforts, minimized trial and error, and reduced the
creation of physical prototypes crash (C. Vikstedt, Personal Communication, May
4,2000).

With MDOC all the models are now centralized, secured, and accessible from
everywhere via the web. Therefore, the versioning issue is no longer a problem.
The MDOC set of services, that enable the regeneration of the geometry after
improving their mesh element quality and the ready access to visual feedbacks,
was a great success in saving lots of human efforts and money.

MDOC provided an Object oriented framework highly effective for modeling.
Helped in minimizing development effort, and in integrating legacy applications.
An object in the MDOC library that other services automatically adapt to,
represent the integrated application.

Engineers at VOLVO are nowadays asking for additional features to optimize
time and money. The most important one is to support object thickness to be able
to handle hex mesh. The integration of GL view is VOLVO’s next step to be able
to simulate the distortion of a CAB.

Creation of CABs from library of parts is in progress nowadays.

Web services-based architecture is the next challenge and the creation of a
framework for wrapping legacy applications into web services is MDOC’s next

step.

54

GLOSSARY

DOC: Distributed object computing.

MDOC: Mode-based Distributed object computing
CORBA: Common Object Request Broker Architecture
OMG: Object management group

ORBs: Object request brokers

ORPC: Object remote procedure

DDCEF: Distributed Document Component Facility
DII: Distributed Document Component Facility
DSI: Dynamic skeleton interface

DCOM: Distributed component object model
COM: Component object model

RMI: Remote method invocation

JVM: Java virtual machine

RPC: Remote procedure calls

JNI: Java’s native method interface

IDL: Interface definition language

BOA: Basic object adapter

POA: Portable object adapter

ORPC: Object remote procedure call

JRMP: Java remote method protocol

MTS: Microsoft transaction server

EJB: Enterprise javabeans

55

BIBLIOGRAPHY

Box, D. Essential COM. MA: Addison-Wesley, 1997.

Christopher, B. Professional windows DNA. Building Distributed Web
Applications With VB, COM+, MSMQ, SOAP, and ASP. Canada: Wrox press,
2000.

Gilbert, H. Introduction to TCP/IP. NY: PCLT, 1995.

Johnson, R. Frameworks = patterns + components. Communication of the ACM,
1997 Oct. 40.

Morgan, B. CORBA meets Java. [On-line]. Available:
http://www javaworld.com/jw-10-1997/jw-10-corbajava.html (1998, October).

Reilly, D. Introduction to remote method invocation. [On-line]. Available:
hitp://www .davidreilly.com/jcb/articles/javarmi/javarmi.html (1998, October).

Reilly, D. Java & CORBA - a smooth blend. [On-line]. Available:
http://www.davidreilly.com/jcb/articles/javaidl/javaidl.html (1998, October).

Reilly, D. Mobile Agents - Process migration & its implications. [On-line].
Available: http://www.davidreilly.com/topics/software_agents/mobile agents/
(1998, November).

Vinoski, S. Corba: integration diverse applications within distributed
heterogeneous environments. IEEE Communication Magazine, 1997 Feb.
issuel4.

Wollrath, A. Riggs, R. & Waldo, J. A distributed object model for the java
system. USENIX Computing Systems, 1996 Nov. issue 9.

Zinky, J. A., Bakken, D. E., & Schantz, R. Architectural support for quality of
service for CORBA Objects. Theory and Practice of Object Systems, 1997 Feb.
issue 3.

36

