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IMPROVED SEARCH-TREE ALGORITHMS FOR THE CLUSTER
EDIT PROBLEM

ALI KASSEM GHRAYEB

Abstract

In the Cluster Edit problem, we are asked to transform a given graph into a 
transitive graph, via edge deletion or addition operations, to make sure that the vertices 
are partitioned into a disjoint union of cliques. Cluster Edit finds application in a 
number of domains, including computational biology and social networks. When 
parameterized by the number of permitted edge-edit operation (k), the problem can be 
solved in O (3k) time via a search-tree backtracking strategy. The current fastest worst-
case fixed-parameter algorithm described in [7] adopts the same strategy and solves 
Cluster Edit in O (1.82k).

This thesis presents new techniques to enhance any search tree- based algorithm 
for the Cluster Edit problem. These techniques, which include new heuristics and 
impose bounds on allowable edge operations per vertex, cause effective pruning of 
search-trees and yield noticeable improvements in experimental running times on 
almost all types of input instances.

Keywords: Cluster Edit, Capacitated Cluster Edit, Edit to Clique, Bounded Search-
Tree, Fixed Parameterized Tractability, Clique.
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I – INTRODUCTION

1.1 The Cluster Edit Problem

Given an undirected loopless graph G = (V, E) and an integer k ≥ 0, the Cluster 

Edit Problem asks to transform G into a disjoint union of cliques by deleting/adding at 

most k edges. Cluster Edit is NP-complete [7]. It has been in the graph theory literature 

since the 1980's [2].

Cluster Edit received considerable attention recently due to its highly relevant 

applications in many scientific areas. The recent parameterized algorithms for the 

problem started with a simple recursive backtracking algorithm of worst-case time 

complexity in O (3k) [2]. The same algorithmic techniques were used in [1] with an 

improved running time of O (2.62k). An O (2k) algorithm was introduced later by 

Bocker in [7]. Theoretically, the best published algorithm, in terms of worst-case 

running time, runs in O (1.82k) [7]. This latter algorithm is based on the previous O (2k) 

algorithm of [7], but uses more sophisticated search techniques.

The weighted version of Cluster Edit assumes a cost for deleting an edge or 

inserting a new one. In other words, the input graph is given with a function that maps 

each pair of vertices to a number that indicates the said cost. Several heuristics were 

developed for Weighted Cluster Edit (see [8], [9], [10], and [11] for a sequence of 

known heuristic techniques). The problem is APX-hard, and has a constant-factor 

approximation of 2.5 [12]. This thesis does not consider approximation strategies, but 

rather focuses on exact algorithmic techniques that work well in practice.

Cluster Edit has been a subject of interest to many applications, including

computational biology, social networks, marketing, machine learning, data mining, 
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document clustering and chemistry. In computational biology, the problem can be used 

for finding families of orthologous genes, or analyzing gene expression data for tissue 

classification [1]. Cluster Edit has been efficiently used to group customers with similar 

behavior into different types for efficient marketing (Arabie and Hubert, 1994). It has 

been also used to group services delivery engagements for workforce management and 

planning. In 2004, Bansal [2] explored Cluster Edit as a way to solve the Document 

Clustering Problem which aims to arrange documents in groups according to a function 

that describes the similarity of the documents. Finally, one of the most recent areas of 

interest, which is highly relevant to Cluster Edit, is Social Networks: a cluster 

represents a collection of individuals with dense friendship patterns internally and 

sparse friendship patterns externally. In such networks, Cluster Edit can be used to 

recognize communities within large groups of closely related people and to draw other 

meaningful information.

1.2 Graph Theoretic Background and Terminology

A graph G is a pair of sets G = (V, E). V is the set of vertices and the number 

of vertices n = |V| is the order of the graph. The set E contains the edges of the graph. 

In an undirected graph, each edge is an unordered pair {v, w}. The vertices v and w are 

called the endpoints of the edge. The term non-edge is used to designate a pair of 

vertices that are not connected by an edge. A path is a sequence of vertices such that 

from each of its vertices there is an edge to the next vertex in the sequence. Two 

vertices are connected if there is a path between them. A graph is connected if any two 

of its vertices are connected. A connected subgraph (V’,E’) is maximally connected if 

none of the vertices in V-V’ is connected to a vertex in V’. If a graph is not connected, 
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then its maximally connected subgraphs are its ‘’connected components.’’ A set of 

connected vertices where each vertex has edges to exactly two other vertices is called a 

circle. Two vertices are called adjacent if they share a common edge. The

neighborhood of a vertex v is the set of vertices adjacent to v and is denoted as N (v).

The degree of a vertex v is the total number of vertices adjacent to v and is denoted as 

d (v). A clique in a graph is a set of pair-wise adjacent vertices. In the simplest case a 

clique consists of only one vertex. A graph consisting of a union of cliques, where a 

vertex can only be a member of exactly one clique is called a cluster graph. In other 

words, a cluster graph is a graph whose connected components are cliques. 

In addition to the above common graph theoretic terminology, we shall use 

some terms that help us describe our methods. In this thesis, an edge that is not allowed 

to be in the cluster graph is called a forbidden edge. On the other hand, an edge that is 

decided to be in the solution graph is called a permanent edge. To cliquify means to 

transform a set of vertices into a clique by adding/removing edges. A set of three 

vertices connected by exactly two edges is called a conflict triple. A conflict triple can 

never be a part of a cluster graph. 

1.3 Existing Algorithms for the Cluster Edit Problem

1.3.1 A Simple Search-Tree Algorithm

The current best-known implemented algorithm for Cluster Edit runs in O (3k) 

time. The algorithm finds a conflict triple in the input graph and resolves it by 

exploring two cases per input instance: either by inserting a missing edge and 

proceeding recursively; or deleting one of the two existing edges of the triple.  In the 

sequel, this latter behavior is denoted by branching on a conflict triple. This means that 
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a number of decision choices are recursively explored, based on all the possible choices 

for resolving the conflict.

In this simple algorithm, the cost of deleting or inserting an edge is added to the 

accumulated edit cost for the current branch of the search tree. The algorithm continues 

to branch until all conflict triples have been resolved or there is no branch where the 

accumulated edit cost is less than or equal to k, the allowable edit budget. This yields 

to an algorithm with a search tree of size O (3k) (three choices per triple).

1.3.2 An O (2.62k) Cluster Edit Algorithm

The O (2.62k) algorithm improves only the worst-case behavior of the previous 

one. Again, the algorithm finds a conflict triple and arbitrarily selects one of the two 

edges in the conflict triple to branch on. The branching occurs in two ways, either (a) 

the edge is marked as forbidden or (b) the vertices of the edge are merged. In either 

way, the edit cost of the operation is added to the accumulated total edit cost. The 

algorithm continues to branch until either all conflict triples have been resolved or no 

branch with an edit cost of at most k remains.

1.3.3 An O (2k) Cluster Edit Algorithm

The O (2k) algorithm improves again the worst-case behavior only. It finds the 

edge in the graph with the lowest “branching number” and branches on it. This is done 

by either following (a) the branch where the selected edge has been deleted or (b) the 

branch where the Cluster Edit vertices of the selected edge have been merged. In both 

cases, the edit cost of the deletion (a) or merge (b) is added to the accumulated total 

edit cost of the whole graph. 
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The algorithm continues to branch using this approach until either all branching 

numbers are infinite or there is no branch that resolves the input graph with an 

accumulated edit cost of at most k. If all the branching numbers are infinite, a solution 

is found. This is because in a cluster graph, all pairs of vertices will either have zero 

cost for merging the vertices (if they are in the same cluster) or zero cost for forbidding

the edge between the vertices (if they are in different clusters). The costs for forbidding 

and merging two vertices are the components of the branching vector. If one of these 

two is zero, the branching vector gives an infinite branching number. 

What distinguishes the O (2k) algorithm from its predecessor is that the former 

examines the whole graph while the latter only considers the first observed conflict 

triple.

1.3.4 Cluster Edit in O (1.82k)

The current fastest published Cluster Edit algorithm runs in O (1.82k). It is 

based partly on the previous algorithm but uses a larger set of more specific branching 

rules. While the previous algorithm only branches on the edge with the lowest 

branching number, the O (1.82k) algorithm applies five more complex branching rules. 

Branching stops when each connected component of the graph is any of the following: 

path, cycle, a graph of size at most four, weak clique or a clique minus one edge. The 

algorithm stops (and possibly backtracks) if neither of the branching rules can be 

applied further to the remaining isolated subgraphs. The clustering is complete in the 

case of a weak clique. In the case of a path or a circle, the cost of resolving the 

remaining graph is found via dynamic programming. In the case of a clique minus an 

edge, the cost is determined by the minimum cost of adding the missing edge or the 
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minimum cost of splitting the almost-clique in two, with the vertices of the missing 

edge on either side of the splitting. To find the splitting cost, a min-cut algorithm is 

used. Brute force is used for graphs consisting of four vertices.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents our first 

technique: “Pareto Annotation: the add-delete capacities.” Chapter 3 presents the 

second technique “Branch-Guiding using dynamic edge-existence probabilities”. 

Chapter 4 discusses experimental results that show the effectiveness of our techniques. 

Chapter 5 is devoted for the conclusion.
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II - A Pareto Annotation: The Add-Delete Capacities

In almost all real applications of Cluster Edit, an input instance may result from 

imprecise data collection. The fact that a Cluster edit input is not exactly a cluster graph 

is often attributed to noise. The amount, or rate, of noise differs from one application to 

the other. Since we do not delete vertices, each vertex is assumed to be part of a clique-

cluster. The number of edges to add or delete per vertex is controlled by the amount of 

expected noise or expected effect of noise on each vertex. To model the expected noise, 

we introduce a more general version of Cluster Edit, dubbed Capacitated Cluster Edit, 

in which vertices are annotated with their add and delete capacities.  These capacities 

bound the number of edge modifications a vertex can experience during the search for a 

solution. For a vertex u, the add capacity c+ (u) represents the maximum allowed 

number of edges that can be added to u. Similarly, the delete capacity c- (u) represents 

the maximum number of edges that can be deleted from u. These capacities represent 

the maximum number of false positives (wrong edge to be deleted) and false negatives 

(missing edge) that could be attributed to noise. 

In addition to representing noise, the add-delete capacities can be used to 

provide a Cluster Edit instance with the knowledge about the data. Examples include 

power, error tolerance, ability, similarity, domination and other social characteristics 

depending on the clustering problem.

In the rest of this chapter, we will illustrate how the introduced annotation 

technique works as we discuss implicit bounds on the capacities, pruning constraints, 

the constraints that help find a no-instance quickly, and reduction rules that reduce the 

parameter k without branching. 
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2.1 Bounds on Capacities

Since k is the maximum number of edge modifications, c+ (u) can have a value 

between 0 and Min(k, N-d(u)) where N is the number of vertices in the input graph and 

d(u) is the number of neighbors of u. c- (u) can have a value between 0 and d(u).

2.2 Pruning Constraints

The pruning constraints improve the running time because, as the name 

suggests, they prune the search tree by (sometimes early) detection of failure. The 

constraints adopted in this work are: 

Pruning constraint 1: If u and v are two non-adjacent vertices such that c+ (u) =0 or 

c+ (v) =0, then: if the algorithm decides in one of its branches to add edge uv, then 

failure is reported. Backtrack.

The soundness of this constraint is obvious since u and v cannot be in the same clique 

because edge uv cannot be added. 

Pruning constraint 2: If u and v are two adjacent vertices and c-(u) =0 or c-(v) =0, 

then: if the algorithm decides to delete u and v, report failure. Backtrack. 

The soundness of this constraint is obvious since u and v cannot be isolated because 

edge uv cannot be deleted. 

Pruning constraint 3: Let d(u) and d(v) represent the current degree of u and v 

respectively. If u and v are not adjacent and d(u) – c-(u) > d(v) + c+(v) or d(v) – c-(v) > 

d(u) + c+(u), then: if the algorithm decides to add edge uv, report failure. Backtrack. 

Soundness: Two vertices cannot be in the same clique unless they have (eventually) the 

same degree. If c-(u) edges (the maximum permitted) were deleted from u, then the 

number of edges connected to u in the cluster graph is bounded below by d(u) – c-(u). 
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If c+(v) edges were added to v, then the number of edges connected to v would be 

bounded above by d(v) + c+(v). If d(u) – c-(u) > d(v) + c+(v) or d(v) – c-(v) > d(u) + 

c+(u), then u and v have different degrees in the target solution, which makes it 

impossible for them to be in the same clique. 

2.3 Pareto Annotation Rules

The following four reduction rules are due to our introduced annotation. They

help reduce the parameter k without branching:

Rule 1 (PAR 1)

Let uv and uw be two permanent edges, then edge vw must be permanent.

Rule 2 (PAR 2)

Let edge uv be a permanent edge and uw be a forbidden edge, then edge vw must be 

forbidden

Rule 3 (PAR 3)

Let u be a vertex satisfying c-(u) = 0, then cliquify the neighborhood of u. This is 

equivalent to setting every edge incident on u as permanent and applying PAR1.

This rule is sound since u and all its neighbors must be in the same cluster. 

Rule 4 (PAR 4)

Let u be a vertex with c+(u) = 0, then for every non-neighbor vertex v of u, set edge uv 

as forbidden.

This rule is sound since u will not be joined to any other vertex.
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Figure 1-Before applying reduction rules
Figure 2-After applying reduction rules

Figure 1 shows six connected vertices where deletion capacity of vertex u is 

zero.(c-(u) =0). The “black” edge represents a normal edge that connects two vertices; 

the “bold red” edge represents a permanent one; and the “dashed bold red” edge 

represents a forbidden edge between two vertices.

By applying “PAR 3”, we end up with a cluster of five vertices u, v, x, y, and z.

This is done by setting every “black” edge connected to u as permanent, applying 

“PAR 3” to the vertices of the cluster, then applying “PAR 4” between vertex t and all 

the vertices of the cluster. The overall process of edge modification will result in 

reducing the edge modification parameter by 15!

Figure 2 shows the graph which results after applying “PAR 3” to u where 

vertices u, v, x, y and z are permanently connected forming one cluster and t is 

forbiddingly isolated from the cluster.

Branch on conflicts that have Permanent and forbidden edges.

As shown in the above two examples, applying the reduction rules on vertices 

that have zero capacities significantly reduces the edge modification parameter without 

branching. In order to have such vertices more frequently in our graph while branching

and to benefit from the cascading property that is ascertained by rule 1 and 2 while
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modifying edges, we always branch on conflict triples that have one of their edges 

either permanent or forbidden. 

2.4 Pseudo-code of the New Algorithm

The following pseudo-code shows our modifications to Niedermeier’s 

algorithm due to introducing the add-delete capacities and applying the corresponding 

rules

PseudoCode

Array of vertices ZeroAdditionCapacities
Array of vertices ZeroDeletionCapacities
Graph G
Vertices u, v, w, x, y, z.
Int K

ClusterEdit(G,K)
If K>= 0

Find a conflict (u,v,w). Assume uv be the missing edge.
Add (u,v)
ClusterEdit (G,K)
BacktrackAddition (u,v)
Delete (w,u)
ClusterEdit (G,K)
BacktrackDeletion(w,u)
Delete (w,v)
ClusterEdit (G,K)
BacktrackDeletion(w,v)

Add(u,v)
If c+(u) = 0 or c+(v) = 0

Return
If d(u) – c-(u) > d(v) + c+(v) or d(v) – c-(v) > d(u) + c+(u)

Return
G = G union (u,v)
K = K -1
Set uv to permanent 
c+(u) = c+(u) -1 and c+(v) = c+(v) – 1
if c+(u) = 0
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Add u to ZeroAdditionCapacities
If c+(v) = 0

Add v to ZeroAdditionCapacities
If ZeroAdditionCapacities is not empty or ZeroAdditionCapacities is not 
empty

UpdateZeroCapacities

Delete(u,v)
If c-(u) = 0 or c-(v) = 0

Return
If d(u) – c-(u) > d(v) + c+(v) or d(v) – c-(v) > d(u) + c+(u)

Return
G = G /(u,v)
K = K -1
Set uv to forbidden 
c-(u) = c-(u) -1 and c-(v) = c-(v) – 1
if c-(u) = 0

Insert u to ZeroDeletionCapacities
If c-(v) = 0

Insert v to ZeroDeletionCapacities
If ZeroAdditionCapacities is not empty or ZeroAdditionCapacities is not 
empty

UpdateZeroCapacities

UpdateZeroCapacities
For each vertex x in ZeroAdditionCapacities

For each vertex y neighbor to x and xy doesn't belong to G
Set xy to forbidden then apply R1 and R2

For each vertex x in ZeroDeletionCapacities
For each vertex y neighbor to x and xy belong to G

Set xy to permanent then apply R1 and R2

BacktrackAddition(u,v)
G =G\(u,v)
K = K + 1

BacktrackDeletion(u,v)
G =G union (u,v)
K = K + 1
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To show the efficiency of the above reduction rules and constraints, they were 

implemented and tested. The results are presented in Chapter 4.
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III - Guided Branching Using Dynamic Edge-Existence 
Probabilities

Why to branch randomly if the current state of the graph can inspire us about 

promising areas of the search tree? Thus, based on the current state of the graph, we 

introduce a heuristic that guides the branching towards a smaller search tree (i.e., faster 

search algorithm). 

As mentioned before, for simplicity, we use the basic algorithm, which looks 

for a conflict and tries to resolve the conflict either by deleting one of its existing edges 

or by adding the missing one.

3.1 Dynamic Edge-Existence Probabilities

In order to guide the branching of this algorithm, an edge-existence probability 

is calculated for each edge of a conflict triple. As the name suggests, this is a value that 

tries to measure the likelihood of an edge to be in the solution graph.

The existence probability of an edge uv, p(uv), is a number between zero and 

one that is calculated based on the structure of the edges between vertices that have a 

distance one or two from u or v. So once one of these edges is modified, p(uv) is 

modified and has to be recalculated. That is why we refer to this heuristic technique as

“dynamic edge existence probabilities.”

In order for an edge to exist in the solution graph, its two end-points must have 

the same neighbors. Moreover, these neighbors must be connected. Based on this, we 

calculate the dynamic edge-existence probabilities, for an edge uv, as follows:

Let n1 be the number of common neighbors of u and v.

Let n2 be the sum of all neighbors of u and v. 
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Then r1 = n1/n2 represents the ratio of common neighbors of u and v over the total 

number of neighbors. 

Note that r1 = 1 when all pairs of common neighbors of u and v are adjacent and hence 

uv is more likely to be in the solution graph.

Now let e1 be the number of edges between the common neighbors of u and v.

Let e2 be the total number of edges that must be between the common neighbors of u 

and v for uv to exist in the solution graph. 

So e2 = n1*(n1-1)/2. 

Then r2 = e1/e2 is close to one when uv is more likely to be in the solution graph and 

close to zero otherwise. 

Since the edge existence of uv depends on both ratios, p(uv) = αr1 + βr2 where α + β = 

1.

Logically, α should be greater than β and experiments have shown that the best 

values for α and β are 0.8 and 0.2.

3.2 Niedermeier’s Algorithm after applying the above dynamic edge-existence 

heuristic

PseudoCode
Graph G
Int K 
P(uv) represents the dynamic edge existence of edge uv

ClusterEdit( G , K)
If K ≥ 0

Find a conflict (u,v,w). Assume uv is the missing edge.
If p(uw) ≤  p(vw) and p(vw) ≤ 1 – p(uv)

ClusterEdit( G\(u,w), K-1)
ClusterEdit( G\(v,w), K-1)
ClusterEdit( G U (v,w), K-1)

If p(uw) ≤  1 – p(uv) and 1 – p(uv) ≤  p(vw)
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ClusterEdit( G\(u,w), K-1)
ClusterEdit( G U (v,w), K-1)
ClusterEdit( G\(v,w), K-1)

If p(vw) ≤  p(uw) and p(uw) ≤ 1 – p(uv)
ClusterEdit( G\(v,w), K-1)
ClusterEdit( G\(u,w), K-1)
ClusterEdit( G U (v,w), K-1)

If p(vw)≤  1 – p(uv) and 1 – p(uv) ≤  p(uw)
ClusterEdit( G\(v,w), K-1)
ClusterEdit( G U (v,w), K-1)
ClusterEdit( G\(u,w), K-1)

If 1 – p(uv) ≤  p(uw) and p(uw) ≤ p(vw)
ClusterEdit( G\(u,w), K-1)
ClusterEdit( G U (v,w), K-1)
ClusterEdit( G\(v,w), K-1)

If p(vw)≤  1 – p(uv) and 1 – p(uv) ≤  p(uw)
ClusterEdit( G\(v,w), K-1)
ClusterEdit( G U (v,w), K-1)
ClusterEdit( G\(u,w), K-1)

The dynamic edge existence probabilities were implemented on the algorithm 

of O (3k) and experiments show the huge difference in the running time. Details about 

the implementation and the successful results are shown in Chapter 4. 
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IV - Experimental Results

4.1 Implementation Strategy

We implemented the basic recursive backtracking algorithm that branches on 

conflict triples, as described in [2]. We used adjacency matrices to represent graphs. 

This choice was made due to the heavy usage of the adjacency query in our code. We 

implemented three algorithms. The first implements our annotated version only, the 

second implements the edge-existence heuristic, while the third is a hybrid of the two.

Evaluation platform: all algorithms were implemented using C language. 

Running times were measured on an AMD Opteron-2.327 GHz with 2 GB of memory.

4.2 Data Sets

In the absence of publicly available un-weighted graph datasets that meet our

requirements, we used synthetic data generated using the following algorithm.

Random un-weighted graphs: Given the number of vertices N, the maximum

number of edge modification k, and the number of clusters C that should be present in 

the graph, we randomly group the N vertices into C groups where the size of each 

group is randomly selected such that the sum of all sizes is N. Then we fully connect all 

vertices of each group each forming a cluster. After that we choose k distinct vertex 

pairs (u,v) and delete edge uv if u and v are in the same cluster or insert the edge uv if u 

and v are in two different clusters.

4.3 Experimental Running Time for the Annotated Version

In order to test the efficiency of the add-delete capacities, several instances were 

generated using the above random graph generator and were ran on two different codes. 
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The first is an implementation of the generic branching algorithm of [2]. The second is 

an implementation of the same algorithm, equipped with the add-delete capacities as 

shown in the pseudo-code described in Chapter 2. 

# of Edge Modification = 50

# of Vertices = 100

# of clusters 3 4 5 6 7 8 9 10

Generic Branching
Runtime 0.05 0.04 13.7 33.4 2033 > 1d > 1d > 1d

Capacitated 
Algorithm Runtime 0.02 0.02 0.41 1.3 1.6 1.6 2.05 2.1

Table 1-Generic vs. Capacitated Set1

# of Edge Modification = 50

# of Vertices = 200

# of clusters 5 6 7 8 9 10 11 12 13 14

Generic Branching
Runtime 0.62 0.52 0.6 0.6 0.81 19.43 25.71 241.04 2192.79 16393.76

Capacitated 
Algorithm Runtime 0.46 0.45 0.45 0.36 0.77 9.06 12.64 5.61 38.41 13.54

Table 2-Generic vs. Capacitated Set2
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Tables 1 and 2 show the power of the capacitated version, which is several 

hundred times faster than the original one. Some instances of the original algorithm did

not finish in one day, so we had to interrupt the experiments, while solutions were

found by the capacitated one in a few seconds.

The results shown in the above tables are obtained on a number of instances. 

So we report the average running times. In table 2, all codes completed the search and 

we were able to measure the running times. The ratio of the running time shows that the 

capacitated version is 290 times faster than the original one.

4.4 Experimental Running Time for the Edge-Existence Heuristic

We use the same input instances as in the case of the algorithm based on add-

delete capacities. The following tables show the efficiency and power of the edge 

existence heuristic. Again, the basic algorithm of Niedermeier et al. was compared to a 

tuned version that guides the branching via the edge-existence heuristic as described in

the pseudo-code of chapter 3.

# of Edge Modification = 50

# of Vertices = 100

# of clusters 3 4 5 6 7 8 9 10

Generic Branching
Runtime 0.05 0.04 13.7 33.4 2033 > 1d > 1d > 1d

Edge-Existence 
Heuristic Algorithm
Runtime 0.04 0.04 1.3 1.4 12.7 18.6 55.43 124.98

Table 3-Generic vs. Edge-Existence Heuristic Set1
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# of Edge Modification = 50

# of Vertices = 200

# of clusters 5 6 7 8 9 10 11 12 13 14

Generic Branching
Runtime 0.62 0.52 0.6 0.6 0.81 19.43 25.71 241.04 2192.79 16393.76

Edge-Existence 
Heuristic Algorithm
Runtime 0.35 0.35 0.36 0.37 0.77 8.16 14.22 36.61 88.32 176.12

Table 4-Generic vs. Edge-Existence Heuristic Set2

As the above tables show, the edge-existence heuristic algorithm outperforms

the generic one in several hundred times. Many tested instances took more than one day 

without finishing when using Niedermier’s algorithm. Our tuned version managed to 

solve such instances in minutes.

4.5 The Hybrid Algorithm

Our hybrid algorithm includes the add-delete capacities to each vertex and 

branching is guided using the edge-existence probabilities. Several instances were 

tested. Instances and results are shown in table 5, table 6, and table 7.
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# of Edge Modification = 75

# of Vertices = 200

# of clusters 5 6 7 8 9 10 11 12 13 14

Capacitated 
Algorithm Runtime 0.48 0.66 108.46 1210.33 >5h >5 h >5h >5h >5h >5h

Hybrid Algorithm
Runtime 0.37 0.57 9.51 6.59 48.52 54.92 65.15 63.05 87.3 117

Table 5-Generic vs. Hybrid Set1

# of Edge Modification = 100

# of Vertices = 200

# of clusters 5 6 7 8 9 10 11 12 13 14

Capacitated 
Algorithm Runtime 44 74 83 35 303 227 357 264 351 481

Hybrid Algorithm
Runtime 1.2 2.1 2.71 2.9 3.96 4.3 4.3 4.8 5.1 5.6

Table 6-Generic vs. Hybrid Set2
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# of Edge Modification = 100

# of Vertices = 500

# of clusters 5 6 7 8 9 10 11 12 13 14

Capacitated 
Algorithm Runtime 4.5 6.1 4.4 6.3 5.7 5.4 8.4 10 117.3 158

Hybrid Algorithm
Runtime 2.6 4.2 2.54 4.48 3.9 3.8 3.7 5.1 12.1 24.6

Table 7-Generic vs. Hybrid Set3

The above results prove the significant improvement incurred by introducing 

capacities and using the edge-existence heuristic together. Even though the capacitated 

version is fast and can solve hard instances, the hybrid is much faster and hard 

instances are solved in few seconds. Table 5 shows some hard instances that took more 

than 5 hours without finding a solution by the capacitated version, while it took an 

average of 73 seconds to find a solution by the hybrid version. 

Using tables 6 and 7, the average runtime for both algorithms was calculated 

and results show that the hybrid version is about 24 times faster than the capacitated 

one.

Experiments show that the two techniques “Pareto-Annotation” and “Edge –

Existence Probabilities” perform faster on more dense graphs than on sparse graphs. As

we can see in table 6 and table 7, once the number of clusters increases i.e. the graph 

gets more sparse or less dense, the hybrid and the capacitated versions take more time

while the edge modification variable and the number of vertices is still fixed. This is 
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because the probabilities are more accurate on dense graphs than sparse ones. 

Moreover, because capacities can serve better in pruning the search tree, by reducing 

the edge modification variable faster when a vertex gets zero capacity, on dense graphs.
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V – Conclusion

We have presented two new search techniques that lead to a faster experimental 

performance for the un-weighted Cluster Edit problem. The add-delete capacities play 

the central role of pruning the search tree by enhancing a forward-checking method that 

allows for early detection of failure (or dead end), and by reducing the edge 

modification variable faster. Besides enhancing the experimental performance, the 

introduced add-delete capacities can model applications more realistically, especially in 

social networks applications. The edge-existence probability technique helps in guiding 

the search during branching, hence targeting better (or promising) areas in the search 

tree.

We implemented our approaches based on the simple algorithm of Cluster Edit 

that runs in O (3k) time. We tested the performance on randomly generated instances. 

Results showed that our techniques are much faster than the original algorithm on all 

tested instances.
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