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Abstract

Simulated Annealing (SA) and Genetic Algorithms (GA) have been
proposed for generating integer-value test cases for path coverage. In this
work, we suggest significant improvements to these algorithms and present
empirical results that show their capabilities. The improvements cover
algorithmic and implementation issues. They also add the capability of
generating real-value subject programs for path coverage. We empirically
compare the SA and GA algorithms with a hill-climbing algorithm, Korel’s
algorithm, for integer-value subject programs and compare SA and GA with
each other on real-value subject programs. Our empirical work uses eight
subject programs and a total of 49 paths. The results show that : (a) SA and
GA are superior to Korel’s algorithm in the number of covered paths, (b) SA
tends to perform slightly better than GA in terms of the number of covered
paths, and (c) GA is faster than SA; however, Korel, when it succeeds in

finding the solution, is the fastest.
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Chapter 1

Introduction

Testing is an essential technique for assuring software quality, where it aims
for giving confidence about the correctness of software. However, testing is an
expensive phase of the software development life cycle in terms of labor and cost.
Thus, it is important to develop automatable testing methods. In particular,
automating the process of determining input data, which satisfy selected testing

criteria, is important.

There are four levels of software testing: module, integration, system, and
acceptance testing. This work is concerned with module testing, where different
testing criteria lead to a variety of testing methods. These methods are usually
classified as black-box and white-box (Beizer, 1990; Marciniak, et al., 1994). Black-
box methods are based on the functions of the software, where test cases are derived
from the module specifications (Hetzel, 1991). Examples of such techniques are
equivalence partitioning, boundary value analysis, random testing, and functional
analysis-based testing (Beizer, 1990; Duran and Ntafos, 1994; Hamlet and Taylor,
1990; Howden, 1986; Stocks and Carrington, 1993).

White-box methods are based on the internal structure of the software, where
test cases are selected so that structural components are covered. Examples of such
techniques are statement testing, branch testing, path testing, predicate testing,
dataflow testing, structured testing, and domain testing (Jeng, 1994; Korel, 1992;
McCabe, 1982; Ramamoorthy et al., 1976 ; Rapps and Weyuker, 1985; Tai, 1993).
The most powerful form of structural testing is path coverage, that is testing all paths.

A good survey of testing methods is found in (Zhu et al., 1997).

Automating test case generation remains a very challenging problem.
Reported automated test case generators are usually path-oriented, goal-oriented,
random, or assertion-oriented (Korel, 1990; Korel and Alyami, 1996;

Ramamoorthyly et al., 1976). To find input test cases to execute a selected path,
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symbolic execution and execution-oriented methods have been proposed (Korel and
Alyami, 1996). In this thesis, we are interested in path testing, which is a powerful

structural testing strategy.

Path testing is a complicated problem. All of the previously presented
techniques are difficult to use in practice for realistic programs and require a large
amount of computation. For instance, the problem of test case generation is in general
unsolvable in the sense that there does not exist an effecient algorithm that can be
used to find assignments to input variables that will satisfy any given path predicate,

or even to determine its satisfiability (Huang, 1975).

In this work, we have improved the previously developed algorithms for path
testing, precisely, the Simulated Annealing Algorithm (SA) (Mansour and Joumaa,
1998) and the Genetic Algorithm (Joumaa, 1997). The previous work, only
established the validity of the idea of using SA and GA algorithms for path coverage
with integer-value test cases. However, their capabilities were not demonstrated. In
addition to the significant improvements, we expanded their capacity to solve real-
value input subject programs rather than being limited to the integer type solely. In
addition to that, we implemented Korel’s algorithm, which is a path coverage
algorithm. We experimented with the three algorithms on the same subject programs
and we compared their performance and capacity. This comparison has never been
done before, and there is «no data generated previously that could be used to
compare the effeciency and effectiveness of simulated approaches and genetic

algorithms approches » (Pargas et al., 1999).

This thesis is organized as follows. Chapter 2 presents the problem
formulation and the objective function used. Chapter 3 describes the simulated
annealing algorithm and the improvements that were performed on this algorithm.
Chapter 4 describes the improved genetic algorithm. Chapter 5 describes the
technique that was used to enable GA and SA to handle real-value input data. Chapter
6 describes Korel’s algorithm. Chapters 7 and 8§ present the empirical results for

integer and real data respectively. Chapter 9 gives our conclusions.



Chapter 2

Path Objective Function

Let a module be represented by a directed control-flow graph, where its nodes
are either assignment nodes or decision nodes. Associated with each decision node is
a branch predicate, which is a logical expression. The edges leaving such nodes are
annotated with true/false values for the predicate. A path through the module/program
corresponds to a particular flow of control. Therefore, a path test case is derived so
that the path from the beginning to the end of the program will be traversed along
either the true or the false branches. That is, the test cases should satisfy the path

predicate, which is a concatenation of branch predicates.

A path predicate is usually obtained by dragging branch predicates backward
from the exit graph node to the start node. Passing through an assignment statement,
the predicate remains unchanged unless the variable on the left-hand side of the
assignment operator occurs in the predicate. In the latter case, the variable is replaced
by the expression of the right hand side of the assignment statement. The final path
predicates constructed by using this technique are always expressed in terms of
constants and input variables. Consequently, to cause a path to be traversed during
execution, we should find the appropriate values to the input variables so that the

obtained path predicate is satisfied.

The objective function we describe next assumes that each predicate in the
concatenated path predicates is in equality format. We achieve this format by using
the following rules:

e Remove all not connectives involved. If a predicate is of the form (not E1 R

E2), then replace it with equivalent expression ( E1 R' E2), where E1 and E2

are expressions, R is a conditional relation, and R' is the complement of R.

e Transform inequalities to equalities as follows:



azb < (I, (x=b -a)
a<b & (@) (x=b - a)
ashb < (), (x=b - a)
a>b o  (@x),, (x=a-b)
azb &  (Ax)y, (x=a-b)

The process can be represented as aseries of mappings. Initially the input
variables

{x1, x2....., xn} are set at random and converted to binary format bi, and then
manipulated by GA and SA. The bit strings are then converted back to integer

numbers in order to evaluate the predicates of the required path.

As an example, consider a program P under test, P maps its input values to
two values Xpk and X'pk corresponding to the evaluation of the functions on the two
sides of each predicate K, which occur in the control flow of the selected path. Thus,
if there are m predicates in the selected path, P will map the input {x1, x2....., xn} to
m pairs of values {Xpl and X'pl}... {Xpk and X'pk} ... {Xpm and X'pm}. The
mapping will be different for each path corresponding to the input. The mapping will
use the integer format of the input and not the binary one, since complex expressions
may be computed to evaluate each side of the predicates ( Jones, Sthamer et al.,

1996).

After obtaining the values corresponding to both sides of a predicate K for
example, these values are converted back to binary format and passed to the objective
function. The objective function for this may be based on the hamming distance
between the operands of each predicate. The hamming distance operator maps pairs of
bit strings relating to the K™ predicate to a numeric value. It is a count based on the
number of different bits in the bit patterns for the two operands. The hamming

operator is normally weighted so that the least significant bit has a weighting of 1, the
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next 2 etc. This is necessary because if the most significant bits differ, then substantial

changes to the input pattern are usually needed ( Jones, Sthamer et al., 1996).

Thus, the objective function is obtained by the following formula.

n
2 2!
1=0

Consider the following example where the K" predicate is : A =4, and where A is an
input variable and not an expression. Assume that the GA or the SA algorithm
generated in one of its paths the value 7 for A. Then, 7 is converted to binary format to
obtain 111, 4 is also converted to binary format to obtain 100. The two strings differ

in bit indices 0 and 1, consequently, the value of the objective function is 1+2 =3

In the case of compound conditions, the value of the objective function for
each predicate may be determined separately, and an overall value calculated by using
multiplication for or predicates and addition for and predicates. Consider the
following example, where the path predicate is: a<b and a +1 < c . Assume that the
value of the objective function obtained for the first predicate (a < b) is 10, and that of
the second predicate (a+1<c) is 20, then the overall objective function value would be

30=10+20 since the conjunction relating the two predicates is «and»

We add that the proposed algorithms that will be described in later sections
can generate negative and positive numbers. Therfore, when the problem requires
generation of only negative or positive values, then these constraints should be added
to the path predicate already formed. This is essential, because these constraints are

problem dependent and not general.

Moreover, the additional variables that will be added in order to convert
inequalities to equalities are considered as input variables and are manipulated by the

Simulated Annealing and Genetic Algorithms.



Chapter 3

Improved Simulated Annealing Algorithm

Simulated annealing is motivated by an analogy to statistical mechanics of
annealing in solids (Rutenbar, 1989). To coerce some material into a low energy state,
the material is annealed, it is heated to a temperature that permits many atomic
rearrangements, then cooled carefully and slowly, allowing it to come to thermal
equilibrium at each temperature, until the material freezes. A low energy state usually

means a highly ordered state.

The simulated annealing algorithm simulates the natural phenomenon by a
search process in the solution space optimizing some cost function. It starts with some
initial solution at a high temperature and then reduces the temperature gradually to a
freezing point. At each temperature, regions in the solution space are searched by the
algorithm.

Simulated annealing proved to be successful in solving many optimization problems.
In this section, we describe how simulated annealing can be adapted to solve not only
optimization but also structural path testing problem. An outline of the SA algorithm

is given in Figure 1.



Initial configuration;
Determine initial temperature T(0);
Determine freezing temperature T
While (T(i) > Ty ) do
for i= 1 to CONST
Perturb configuration;
If (accept_perturbation) then
Accept perturbation();
End if;
End for;
Save best so far;
T(@+1) = a T(H);
End while;

Procedure accept_perturbation()
If (Az <= 0) then
Return (true);

Else
If (random(0,1) < e -Az/T()) then
Return (true);
Else
Return (false);
End if;
End if;

Figurel. The SA Algorithm.




3.1. Solution Representation

An important decision in the simulated annealing algorithm is to present the
sample test in a suitable form. In our work, we have found that the most efficient way
to search the domain is to express all the input variables in a single, concatenated
binary bit string. Therefore, if there are N input variables and the i variable occupies
n; bits, the total size of the bit string is thus, S=Xn; (i=1, ..., N).

In our algorithms, n; was constant for all types of variables and it was equal to 8.

Since we were using binary representation, values for each variable were formed by

using the signed integer representation.

Note that the input variables include also the auxiliary variables that are added
to covert inequalities to equalities, and they were manipulated by the simulated
annealing algorithm. To achieve the equalities the rules that were discussed in

Chapter 2 should be followed.

3.2. Objective Function

A detailed discussion of the objective function and it’s applicability on SA is

provided in Chapter 2.

3.3. Perturbation Operation

First, the configuration is randomly initialized, starting and freezing
temperatures are computed based on the fitness value of the initial population. Then,

perturbation to the configuration takes place by randomly selecting a bit position from
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the configuration and changing its value to the opposite value; if the original value is
1 then it is modified to 0 and vice versa. It can be seen that the perturbation loop
works for a constant number of iterations, CONST, which is dependent on the
complexity of the problem. In our work, we use

CONST = 50 * number of bits in the configuration.

In each iteration the perturbation is either accepted or rejected (Rutenbar, 1989).

3.4. Accept/ Reject Criterion

The acceptance criterion is outlined in Figure 1 in the accept_configuration
procedure. This procedure checks the change in the cost function due to a
perturbation. If the change decreases the cost function, the configuration is accepted.

However, if the perturbation causes the cost function to increase, it is accepted only

with a probability e -Az/T(1), Note that for smaller temperature values T(i), the
probability of accepting uphill moves becomes smaller, while at very low

temperatures uphill moves are no longer accepted (Rutenbar, 1989).

3.5. Cooling Schedule

The initial temperature To is the temperature that yields a high initial
acceptance probability of uphill moves. It is calculated by first accumulating the
difference between the old objective function value and the new one when the newly
obtained objective function value is higher than the one obtained on the previous
value of the chromosome. By doing such an accumulation and counting the number of
times when such an increase in the objective function has occurred, we will use these
two values to compute the average objective function by dividing the accumulated

value of the increase that occurred on the objective function over the frequency of
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such an increase. Afterwards, the negation of the average value is divided by the

logarithmic value of the selected acceptance probability.
The freezing point is the temperature at which the acceptance probability (2-

30y; thus, uphill moves becomes impossible; whilst, allowing only greedy moves.

The cooling schedule used in this work is simply T(i+1) = o T(i), with o =0.98.

3.6. Convergence and Algorithm’s Complexity

Convergence is reached when no improvement is obtained in the fitness
function over 100 consecutive passes. However, as the annealing algorithm searches
the solution space, the best so far solution found is always saved. This guarantees that
the output of the algorithm is the best solution it finds regardless of the temperatures
and solutions it terminates at. The SA algorithm’s complexity is O(number of

temperatures * (number of variables)?).

3.7. SA Applied to the Right Angle Triangle

To clarify the ideas mentioned in the preceding sections, the conversion of
inequalities into equalities and the computation of the objective function respectively,
we will provide an example taken from test case T2; precisely, the right angle

triangle.

SA works in a standard manner for all test cases; however, the difference
resides in the test cases themselves. In this sense, the transformations of inequalities
to equalities and the calculation of the objective function are problem dependent; i.e.,

vary from one test case to the other. In what follows we will show a tracing of the SA
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program execution flow, when applied on the right angle triangle. The program flow
graph of this chosen test case is shown in Figure 4, path 1, 2, 6, 8,9, 11, 12.

While (trials < 2000) and (ans = ‘Y’)

Initialize the configuration, oldpop, by randomly filling it with 1’s and 0’s

Convert the randomly generated binary values of the variables into integer
format and save it in all-val.

Compute the initial starting temperature by using the following algorithm:
Loop (10 * Ichrom ) times
Accumulate +ve AE and save it in sum;
Compute Average-AE = sum / #of +ve AE

Compute initial temperature = -(Avg-AE / log 0.9)

Compute the freezing temperature by using the following formula:
Tfreeze = - INC_OBJ / EXPOF2_PROB * 0.301)

= -(0.01/-30*0.0301) =0.001

Initialize best so far to be equal to oldpop

While (no convergence) and (temp > tfreeze) and (pass < Maxpass = 1000)
While (inner_pass < config_length * 50)
Perturb and save new configuration in newpop;
Compute the new objective function that is calculated in

the following manner for this particular test case:



if we follow the flow graph in Figure 4
we need first to have a # b:
azb=>a+a=b

Convert a + o into binary format

Convert b into binary format

Resl = 2 2! where i is the index of the bits that differ

Then we need to have b # c:
bzc=>b+pP=c
convert b + P to binary format

Convert ¢ to binary format

Res2 = 2 2! where i is the index of the bits that differ

Finally we need to obtain a’*b’=c?
Convert a> * b® to binary format

Convert ¢ to binary format

Res3 = 2 2! where i is the index of the bits that differ

Newpop.fitness =resl + res2 + res3

If newpop.fitness — oldpop.fitness < 0.0 then
Save the new population in oldpop;
Save best so far fitness value;

Save temperature at which best fitness value

12
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occurred;
Save best so far configuration;
Save best so far configuration’s equivalence in

integer format;
else

accept perturbation with a probability of et

End; {for inner loop}

If no improvement in the value of the objective function

occurs

for 100 consecutive trials then convergence occurs and

SA

stops its exploratory attempts. The values that SA

ended

up with are printed to the user. Accordingly, the user
will have the choice to allow SA to be restarted with a

new seed and thus with newly generated random

variables. This option is allowed to take place for 2000
times

Else

Temperature is decreased by a factor of 0.98,

temp= temp *0.98
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3.8. Improved SA

The improvements made to the previous SA algorithm/code were algorithmic

and implementation. Their objective was to use a better energy function and to

explore more points in the solution space. The algorithmic improvements included:

Updating the cooling schedule in a way that allows the temperature to be
decreased by a factor of 0.98 (instead of 0.95).

At each temperature, perturbation takes place to explore the possibility of
finding the solution. In order to let the SA algorithm perform even better
and to explore more points in the solution space, we decreased the
freezing temperature, at which SA is supposed to stop exploring more
points, from 0.011 to 0.001.

Implementing the concept of convergence, which is reached when no
improvement in the value of the objective function is observed after 100
consecutive passes. In this way we avoid spending time in exploring
points that are deemed to failure.

Changing the number of perturbations allowed at each temperature to
reach equilibrium. We made it a function of the configuration length (50
times the configuration length).

Changing the initial temperature from a user-defined fixed value to one
computed as explained in Section 3.5.

Changing the objective function to a weighted sum (as shown in Chapter
2) instead of a linear sum.

The new version of SA allows the algorithm to be rerun several times and
with every new attempt, SA starts from a different seed specified by the

amount to be added to the previous one. This way, SA is given the chance
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to explore many different starting points, and accordingly will increase

the possibilities of getting the appropriate solution.

After implementing these changes, we observed better results than the old
version of SA in terms of achieving more accurate solutions. However, the execution
time has increased as a normal consequence of such extensive exploration of the

solution space.
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Chapter 4

Improved Genetic Algorithm

Genetic algorithms are search algorithms based on the Darwinian principles of
natural selection and natural genetics. These genetic algorithms were first developed
by Holland (Holland, 1975). They combine survival of the fittest among string
structures with a structured yet randomized information exchange to form a search
algorithm. In every generation, a new set of artificial strings is created using bits and
pieces of the fittest of the old. While randomized, genetic algorithms efficiently
exploit historical information to speculate new search points with expected improved
performance. In other words, genetic algorithm is an example of a search procedure
that uses random choice as a tool to guide a highly exploitative search through a

coding of a parameter space.

In this thesis, GA was modified to improve its efficiency and performance to
achieve optimal results. In this regard, the new improved GA is now capable of
solving real number based problems as compared to the previous version, which was

solely limited to solving integer number based problems.



4.1. Genetic Algorithm

An outline of the genetic is presented in Figure 2.

Random generation of initial population, size POP;
Repeat
Evaluate fitness of individuals;
Preserve the fittest so far;
Rank individuals and allocate reproduction trials;
for i=1 to POP step 2
Randomly select 2 parents from list of reproduction trials;
Apply crossover and mutation;
Endfor
Until (convergence)

Solution = fittest;

Fig 2. Genetic Algorithm

4.2. Genetic Algorithm Operators

The following operators mainly constitute the genetic algorithm:
1) Reproduction
2) Crossover

3) Mutation

17
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4.2.1. Reproduction Scheme

Reproduction is a process in which individual strings are copied to their
objective function values. Initially each variable is initialized randomly; therefore,
generating a randomly chosen population. The subsequent generation is done by
selecting the fitter individuals from the old generation. The reproduction scheme
consists of ranking the individuals followed by random selection of mates. In
ranking, the individuals are sorted by their fitness value and are assigned a number of
copies according to a predefined scale of equidistant values for the population. The
ranks assigned to the fittest and least fit individual are 1.2 and 0.8 respectively.
Individuals which rank greater than 1 are first assigned single copies. Then, the
fractional part of their ranks and the ranks of the lower half of individuals are treated
as possibilities for assignment of copies (Jones, Sthamer et al, 1996).

The GA re-inserts the best so far solution in the population size whenever
there is no improvement in the solution. When a new population is obtained, the
fitness value of the individual with the least fitness value is compared with the fitness
of the best so far individual. If the fitness of the best so far individual is worst than
that of the best individual in the new population, then the new individual replaces the
best so far; otherwise, we replace the individual with the worst fitness function in the

new population with the best so far individual.

4.2.2. Crossover

After reproduction, crossover proceeds in two steps. First, members of the
newly reproduced strings in the mating pool are mated at random. Second, each pair
of strings undergoes crossing over as follows: an integer position, k, along the string is

selected uniformly at random, between 1 and the string length less one [1, 1-1]. Two
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new strings are created by swapping all characters between positions k+1 and 1
inclusively. Accordingly, The mechanics of reproduction and crossover mainly
consist of random number generation, string copies, and some partial string

exchanges.

4.2.3. Mutation

Mutation is the occasional (mutation rate is 0.01) random alteration of the
value of a string position. This simply means changing a 1 to a 0 and vice versa. In

other words, mutation is a random walk through the string space.

4.3. Fitness Evaluation

We use a fitness function that is equal to the reciprocal of the objective

function described in Chapter 2.

4.4. Convergence and Algorithm’s Complexity

Convergence is reached when no improvement in the value of the fitness value
is observed after 100 consecutive passes; (i.e., GA terminates its search in the solution
space when no improvement is observed). In this way we avoid spending time in
exploring points that are deemed to failure. The algorithm’s complexity is

O(number of generations * pop * number of variables).

4.5. Improved GA

To better results and to improve the performance of GA, we made some

modifications to the previous GA. The algorithmic improvements included:
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e Using a corrected fitness function which is equal to the reciprocal of the
objective function described in Chapter 2.

e Introducing convergence detection step to save the GA from exploring
more points than what is useful in the solution space.

e The new version of GA allows the algorithm to be rerun several times and
with every new attempt, GA starts from a different seed specified by the
amount to be added to the previous one. This way, GA is given the chance
to explore many different starting points, and accordingly will increase the

possibilities of getting the appropriate solution.

After implementing such changes, we observed improvement in the solutions

of GA, the results of which will be shown in Chapters 7 and 8.
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Chapter 5

Enhanced SA and GA for Using Real-Value Input

Data

To expand the capability of SA and GA in terms of dealing with data of type
different from integer, we added new features on the improved version of SA and GA,
enabling them to solve test cases, having real numbers as the variables data types. To
enable SA and GA to generate variables of type real, we had to consider each real
number as two separate parts, the ones before and after decimal point, then dealing
with each part as a variable by itself. For this purpose we developed a new function
that separates the real number into 2 different numbers. This is described in more
detail in Section 5.1. After obtaining the parts before and after the decimal point, the

objective function is then applied to these parts.

In case we have test cases that require arithmetic operations, we consider each
variable as being composed of two parts; (i.e., two variables, one representing the part
before the decimal point, and the other representing the part after the decimal point).
Then, these parts are randomly generated, and a new function, responsible for
combining these parts and returning a real variable value, is called. This function is
described in detail in Section 5.2. After obtaining the variables as real numbers, we
performed the arithmetic operations on the required variables. Then, the result of this

operation was sent to the function that splits each variable into two different parts.
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This was followed by applying the objective function to each part separately. A

detailed example will be provided in Section 5.4 to clarify this idea.

5.1 Split Real Numbers

This function takes as an input a single variable of type real, and returns the parts

before and after the decimal point as two different numbers. It works as follows:

1) Assign the real number X to an integer number. By doing this, we obtain the part
before the decimal point, call it part a.

2) Subtract part a from X and save this value in part b.

3) Keep on multiplying part b by 10 until the ceiling of part b becomes equal to the
number itself.

4) After exiting this loop, we will obtain the part after the decimal point.

Step 3 is needed because we can’t predict how many digits are there after the decimal

point, because it is randomly generated.

To clarify the idea behind this function, let’s consider a simple example. Assume

X=245.9867

After step one we will have part a = 245.

After step two, we will obtain part b = 245.9867 — 245 = 0.9867

Loop

Partb =partb * 10

Until ceiling(part b) = part b.
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When we exit this loop, we will get the part after the decimal part.

5.2 Return Real Numbers

This function is responsible for combining the two parts of a variable value,
before and after decimal point. It then returns the variable value as a real number.
This function works as follows:

It checks if the part after decimal is less than x , then it applies the formula:

real number = part before decimal + (part after decimal / x)

where x can be 10, 100, 1000, 10000, 100000, 1000000, 10000000,

100000000, 1000000000

Thus, this function covers all the possible number of digits that could be
generated randomly, and it finally returns one real number. For example, assume that
a certain variable is composed of two parts that are 124 and 89,765 as the parts before
and after decimal point respectively. When this function is called the part after the
decimal point, which is 89,765, satisfies the fifth condition allowing this function to
return the real number

124 + (89, 765 / 100,000) = 124.89765.

5.3 Solution Representation

In order to represent the solution we expressed all the input variables in a
single, concatenated binary bit string, and we assumed that each input variable is
equivalent to two input variables. Therefore, if there are N input variables (real
numbers), then it is equivalent to 2N input variables. Accordingly, if we have N input

variables it should be considered as 2N input variables, and the i variable is followed
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by i+1* variable, which represent the parts before and after the decimal point

respectively.

In other words, if we have N input variables of type real, then we consider
having 2N input variables and if we assume that the i" variable occupies 7; bits, then
the total size of the bit string is the summation of n; (1 =1, ..., 2N). The n; was
assigned the value 8. In addition to the actual variables, we should consider the
auxiliary variables that are needed to convert inequalities into equalities (Huang’s
technique). These auxiliary variables are computed in a way that considers the parts
before and after the after the decimal point of the actual input variables as being
different numbers. In this regard, if the equations in a certain test case require n
auxiliary variables to convert inequalities into equalities, then 2n auxiliary variables
are needed to do such conversions. This is due to the fact that we’re considering the

two parts of the real numbers separately.

Finally, to represent the last variable values that either SA or GA end up with,
we considered each two numbers and applied the function ‘“Return Real Numbers” on
these consecutive numbers. This process is repeated until all the variable values are
considered and presented. However, this doesn’t apply to the auxiliary variables that
are still represented individually, (i.e., each number apart). To clarify how this newly
developed version of SA/GA work when applied on real numbers, a detailed example

is provided in the following section.
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5.4 Example on New SA / New GA Applied to Real Numbers

We present an example about applying SA with real numbers. Assume we
have a test case that requires x +y < 2.5. The execution of SA/GA when run on this
test case is as follows:

Stepl: Consider that x is composed of two parts, x1 and x2; (i.e., the parts before and
after the decimal point respectively).
Step2: Consider that y is composed of two parts, y1 and y2; i.e., the parts before and
after the decimal point respectively.
Step3: Transform x +y < 2.5 into the following 2 equations:
xXl+yh)+a=2
x2+y2)+B=5
We end up with having 4 input variables instead of 2 and 2 auxiliary variables
instead of 1. In other word, we converted the function
X+y<25t0 (X+y)+0=2.5(2input variables, 1 auxiliary variable)
Then (x+y)+06=251t0 l+yl)+a=2
and x2+y2)+P=5
x1, x2 are the parts before and after the decimal point respectively on the
variable x.
y1, y2 are the parts before and after the decimal point respectively on the

variable y.

Step4: Generate x1, x2, y1, y2, a, 3 in sequence by assigning random values to these

variables and save it in the bit-string.

StepS: Combine x1 and x2 to get x by calling the function Return Real Numbers.



Step6: Combine y1 and y2 to get y by calling the function Return Real Numbers.
Step7: Add x and y, then save the resultin z.

Step8: Split the real number z into two separate parts, z1 and z2, the parts before and
after the decimal point respectively, by calling the function Split Real Number.
Step9: Add o to z1 in order to get z1 + C.

Step10: Call the objective function to compute z1 + o0 =2 (i.e. (x1 + yl) + ot = 2).
Stepl11: Add [ to z2 in order to get z2 + .

Step12: Call the objective function to compute z2 + § =5 (i.e. (x2+y2) + B=5).
Repeat steps 1 to 12 until x1, x2, y1, y2, o,  are generated in a manner that satisfies

the above equations. Then, go to step 13.

Step13: To represent the solution consider (x1,x2) and call the function Return Real
Number to obtain the final value of x. Now consider (y1,y2) to obtain y. In other
word, repeat step 13 until all real actual input variables are presented.

Step14: Consider o then 3 by simply presenting them from within the holding array.
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Chapter 6

Korel’s Algorithm for Path Testing

Korel’s technique focuses on pathwise test data generators that accept as input
the computer program and a testing criterion and then automatically generate test data
that meet the selected criterion. In Korel’s method, test data are developed using
actual values of input variables. When the program is executed on some input data,
the program execution flow is monitored. If during program execution, an undesirable
flow at some branch is observed then a real-valued function is associated with this
branch. This function is positive when a branch predicate is false, and negative when

the branch predicate is true (Korel, 1990).

The main objective is to minimize the branch function associated with the
predicate that caused the target path not to be passed. To minimize this branch
function, we start searching for a minimum with the first input variable while keeping
all the other input variables constant until the solution is found; (i.e., the branch
function becomes negative). Otherwise, we continue searching starting with the next
input variables. The search proceeds in this manner until all input variables are
explored in turn. After completing such a cycle, the procedure continuously cycles
around the input variables until the solution is found or no progress is achieved; (i.e.,
decrement of the objective function can be made for any input variable). In the later
case, the search process fails to find the solution. In the exploratory search, the
selected input variable is increased or decreased by a small amount, while the
remaining input variables are held constant. These are called the exploratory moves.

For each variable change, the program is executed and the constraint is checked for
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possible violation by comparing successful sub-path P1 with the path that is actually
being traversed. If P1 has been traversed, branch function Fi(x) is evaluated for the
new input. On the other hand, if P1 has not been traversed, the constraint violation 1s
reported. In these exploratory moves, the value of the branch function is compared to
the value of the branch function of the previous input.

In this way, it is thus possible to indicate a direction in which to proceed. If the
branch function is improved (decreased) when x; is decreased, the search should
proceed in the direction of decreasing x;. If both the decrement and increment of x; do
not cause the improvement of the branch function, the exploratory search fails to
determine the direction for the search. In this case, the next input variable is selected
for consideration. This process continues until the branch function becomes negative
or no progress (decrement of the branch function) can be made for any input variable
during the exploratory search. In the later case, the search procedure fails to find the
solution to the test data generation problem (Korel, 1990). The method is outlined in
Figure 4. The complexity of Korel’s algorithm is

O(number of variables * max path length * number of trials per variables).



While (not passed) Do

Randomize;

Randomly select initial input (X0)

If P is traversed then
X0 is the solution to the test data generation problem

Else
Let T = <tp1, 42, ..., tpz> be a program path traversed on X0
Let P1 = < ny, ngo, ..., N> be the longest subpath of P, referred to as a
successful subpath of P on X0 such that for all j, 1< j < 1, ny =ty
The branch violation occurs on execution of branch (ny; , ng+1)-

Let Fi(x) be a branch function of branch (ny; , nis1). The first subgoal is to
find a value of x which will preserve the traversal of P1 and cause Fi(x)
to be negative or zero at ny — (N , Nxi+1) thus will be successfully
executed. This process of solving subgoals is repeated until the solution
to the main goal is found.

Start searching for a minimum with the first input variable x.

Keep all other input variables constant until the solution to the main
goal is found

i.e. branch function becomes negative.

Continue the search with the next input variable x,.
The search proceeds in this manner until all input variables
X1, ..., Xp are explored in turn.

After completing such a cycle, the procedure continuously cycles
around the input variables until the solutionis found or no
progress (decrement of the branch function ) can be made for
any input variable.

In the later case, the search process fails to find the solution.

The selected input variable x; is increased and decreased by a small amount
Called exploratory moves.
Check for this input two things:
If subpath P1 is executed;
If Fi(x) is decreased;
If these two conditions are satisfied then
continue in the same direction of search
Else if no search direction is found then
take another variable and repeat the above process.

Fig 3. Korel’s Algorithm.
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Chapter 7

Empirical Results for Integer Data

In our experimental results we tested the four algorithms, SA, improved SA,
Korel, GA, and improved GA on a number of subject programs. By doing this we
were able to compare the obtained results and come up with a conclusion regarding
the performance of each algorithm. The algorithms were developed using Turbo C
under MS-DOS, and were run on Pentium with a 500 MHz memory. We tested these
algorithms on a number of subject programs the description of which is found in

Table 1.
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Table 1

Programs

Cyclomatic Complexity Description of Program

Triangle

Grading

Role Dice

Role Dice 2

Interview

Answer

Guess

Compute

5 This test case aims at classifying the type
of a triangle. It reads the lengths of the
three sides of a triangle, classifies the
triangle as being scalene, isosceles, right,
isoright, or equilateral. The flow graph of

this program is presented in Figure 2.

6 The below program code segment
computes a numerical score and then
records the letter grade.

6 This subject program generates suml in a
way that satisfies the game status.

10 This subject program generates suml and
sum?2 in a way that satisfies the game
status.

14 This subject program generates subject,
college, age and then decides whether to
interview the candidate or not.

2 This subject program generates an answer
then decides whether it satisfies the
arithmetic operation or not.

3 It guesses a number then checks whether
it’s the magic number.

2 It generates two numbers then checks
whether they satisfy a certain arithmetic
operation.

Table 1. Subject Programs.




7.1. Subject Program 1

Read a, b, c

1

Class = scalene

equilateral

isosceles isosceles

right

Figure 4 Flow Chart of Subject Program 1.
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This subject program consists of the following paths:

Pathl: 1,2,3,5,9, 11, 12 (isosceles with a=Db)
Path2:1,2,6,7,9, 11, 12 (isosceles with b = ¢)
Path3: 1,2, 3,4, 9, 11, 12 (equilateral)
Path4: 1,2, 6, 8,9, 10, 12 (right)
Path5: 1,2,6,7,9, 10, 12 (isosceles + right)
Path6: 1,2, 6, 8,9, 11, 12 (scalene)
Pathl Covered Values Time
SA No a=127 b=60 c=112 | 5.76sec
Improved SA Yes a=b=5 c=3 114sec
Korel Yes a=b=1 c=2 Osec
SA&Korel Yes a=b=2 c=1 Osec
GA No a=0, b=0, c=0 2.3sec
Improved GA Yes a=b=5, c=6 2.4sec
Table 2. Results of Pathl for Subject Program 1.
Path2 Covered Values Time
SA Yes a=41 b=c=30 5.6sec
Improved SA Yes a=4 b=c=7 114sec
Korel Yes a=3 b=c=1 Osec
SA&Korel Yes a=3 b=c=1 Osec
GA Yes a=4, b=4,c=4 2.3sec
Improved GA Yes a=15, b=c=13 2.41sec
Table 3. Results of Path2 for Subject Program 1.
Path3 Covered Values Time
SA No a=125 b=108 ¢=63 5.27sec
Improved SA Yes a=b=c=1 82 sec
Korel Yes . | a=b=c=1 Osec
SA&Korel Yes a=b=c=2 Osec
GA No a=5, b=4, c=4 2.3sec
Improved GA Yes a=b=c=2 2.4sec
Table 4. Results of Path3 for Subject Program 1.
Path4 Covered Values Time
SA No a=126 b=78 c=99 5.82sec
Improved SA Yes a=29 b=20 c=21 105sec
Korel No A=1516 b=11763 ¢=25890 1.15sec
SA&Korel Yes a=5b=3 c=4 122sec
GA No a=1, b=0, c=1 2.4sec
Improved GA Yes a=5, b=3, c=4 2.4sec

Table 5. Results of Path4 for Subject Program1.
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Path5 Covered Values Time
SA No a=95 b=90 c=31 5.21sec
Improved SA No a=6 b=c=4 80.5sec
Korel No a=3 b=c=2 1.098sec
SA&Korel No a=24 b=c=17 123sec
GA No a=l1, b=1, c=0 2.4sec
Improved GA No a=116, b=80,c=84 2.4sec
Table 6. Results of Path5 for Subject Programl.
Path6 Covered Values Time
SA Yes a=98b=47c=86 | 6.31sec
Improved SA Yes a=3b=5c=4 128sec
Korel Yes a=3b=2c=1 Osec
SA&Korel Yes a=3b=2c=1 Osec
GA No a=b=2, c=5 2.3sec
Improved GA Yes a=4, b=5, c=8 2.5sec

Table 7. Results of Path6 for Subject Program]1.
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7.2. Subject Program 2
1. #Right=0;
2. Do j=1to#Questions;
3. Ifkey(j) = Answer(j) then #right = #right + 1;
5. End
6. Score = (#Right / #Questions) * 100
7. If Score >=90 then Grade = A;

9

Else If Score >= 80 then Grade = B;

11. Else If Score >= 70 then Grade = C;
13. Else Grade =F;

Figure 5 Program Segment Code for Subject Program 2.
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Read #Right, #Questions

1

#Right

key(j) = Answer(})

#Right = #Right + 1

> 2

j = #Questions

Score = #Right / #Questions * 100

Grade = A

10

7

Grade =B
1 n| 13

2 1y
| Grade =C I | Grade =E]

14
9

Figure 6 Flow Chart of Program Subject 2.




The following paths have been tested:

Pathl: 1,2,6,7, 8, 14
Path2: 1,2,6,7,9, 10, 14

(Grade = A)

(Grade = B)

Path3: 1,2,6,7,9, 11, 12, 14 (Grade = C)
2,6,7,9,1

Path4: 1,

,11,13,14 (Grade =F)

37

Pathl Covered Values Time
SA Yes Questions = 102 | 1.37 sec
Right = 94
Improved SA Yes Questions = 120 43 sec
Right=111
Korel Yes Questions = 1 0.05 sec
Right = 1
SA&Korel Yes Questions = 2 0 sec
Right =2
GA Yes Questions = 112 2.3sec
Right =116
Improved GA Yes Questions = 127 2.3sec
Right =118
Table 8. Results of Pathl for Subject Program 2.
Path2 Covered Values Time
SA No Questions = 113 1.37sec
Right = 103
Improved SA Yes Questions = 120 40 sec
Right = 101
Korel No Questions = 3 2.14 sec
Right =2
SA&Korel Yes Questions = 39 50 sec
Right = 32
GA Yes Questions = 94 2.3sec
Right = 78
Improved GA Yes Questions = 85 2.3sec
Right =72

Table 9. Results of Path2 for Subject Program 2.



Path3 Covered Values Time
SA Yes Questions = 94 1.37sec
, Right =75
Improved SA Yes Questions =91 40 sec
Right = 70
Korel No Questions = 3 18.24sec
Right =2
SA&Korel Yes Questions = 114 76sec
Right = 87
GA Yes Questions = 113 2.4sec
Right = 85
Improved GA Yes Questions = 71 2.3sec
Right = 55
Table 10. Results of Path3 for Subject Program 2.
Path4 Covered Values Time
SA Yes Questions = 20 0.82sec
Right =7
Improved SA Yes Questions =73 4 sec
Right =16
Korel Yes Questions =2 0 sec
Right=1
SA&Korel Yes Questions = 3 0 sec
Right =2
GA Yes Questions = 85 2.3sec
Right =4
Improved GA Yes Questions = 104 1.9sec
Right=35

Table 11. Results of Path4 for Subject Program 2.
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7.3. Subject Program 3

Read suml

2

Gamestatus=2

Gamestatus=2

10

39

n

11

Gamestatus = 2

gamestaus =0

12

Mypoint=suml

13

Figure 7 Flow Chart of Subject Program 3 (Roledice part I).




This subject program consists of the following paths:

Pathl: 1,2,13
Path2: 1, 3, 4,13
Path3: 1, 3,5,6, 13
Path4: 1, 3,5,7,8,13
Path5:1,3,5,7,9, 10, 13
Patho: 1, 3,5,7,9, 11, 12, 13
Pathl Covered | Values Time
SA Yes Suml=7 1.9sec
Improved SA Yes Suml=7 | 7.7sec
Korel Yes Suml=7 Osec
SA&Korel Yes Suml=7 Osec
GA Yes Suml=7 1.9sec
Improved GA Yes Suml=7 | l.6bsec

Table 12. Results of Path1 for Subject Program 3.

Path2 Covered Values Time
SA Yes Suml=11 2.2sec
Improved SA Yes Suml=11 | 0.7sec
Korel No Suml=2 0.6sec
SA&Korel Yes Suml=11 6sec
GA Yes Suml=11 2.2sec
Improved GA Yes Suml=11 1.9sec

Table 13. Results of Path2 for Subject Program 3.

Path3 Covered | Values Time
SA Yes Suml=2 1.2
Improved SA Yes Suml=2 | 16.9sec
Korel Yes Suml=2 Osec
SA&Korel Yes Suml=2 Osec
GA Yes Suml=2 2.5sec
Improved GA Yes Suml=2 2.2sec
Table 14. Results of Path3 for Subject Program 3.
Path4 Covered | Values Time
SA Yes Suml=3 1.5sec
Improved SA Yes Suml=3 85sec
Korel Yes Sum1=3 Osec
SA&Korel Yes Suml1=3 Osec
GA Yes Suml=3 2.7sec
Improved GA Yes Suml=3 | 2.5sec

Table 15. Results of Path4 for Subject Program 3.
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Path5 Covered Values Time
SA No Sum1=28 1.8sec
Improved SA Yes Suml=12 139sec
Korel No Suml=4 0.6sec
SA&Korel Yes Suml=12 138sec
GA No Sum1=57 3.07sec
Improved GA No Sum1=30 2.8sec

Table 16. Results of Path5 for Subject Program 3.

Path6 Covered Values Time
SA Yes Suml1=119 1.8sec
Improved SA Yes Sumi1=127 164sec
Korel Yes Suml=4 0.6sec
SA&Korel Yes Suml1=0 Osec
GA Yes Suml=112 3.07sec
Improved GA Yes Suml=125 2.8sec

Table 17. Results of Path6 for Subject Program 3.
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7.4 Subject Program 4

Read suml,sum2

2

Gamestatus=2

Gamestatus=2

10

Gamestatus = 2

42

n

11

| gamestaus =0 |
12

Mypoint=suml

y

15
|Gamestatus 1|
wins”

r

Gamestatus=2

19

estatus=0

y

21

gamestatus=1

write(“player wins”)| | write(“player

23

@

Figure 8 Flow Chart of Subject Program 4 (Roledice partIl).




This subject program subject consists of the following paths:

Pathl: 1, 2, 13, 20, 21, 23
Path2: 1, 3, 4, 13, 20, 21, 23
Path3: 1, 3, 5, 6, 13, 20, 22, 23
Path4: 1, 3, 5,7, 8, 13, 20, 22, 23
Path5: 1, 3,5,7,9, 10, 13, 20, 22, 23
Pathé: 1,3,5,7,9,11,12,13,14,15,19,20,21,23
Path7: 1,3,5,7,9,11,12,13,14,16,17,19,20,22,23
Pathl Covered Values Time
SA Yes Suml=7 0.7sec
Sum2=10
Improved SA Yes Sum1=7 9.3sec
Sum2=25
Korel Yes Suml=7 Osec
Sum?2=1
SA&Korel Yes Suml=7 Osec
Sum?2=3
GA Yes Suml=7 2sec
Sum2=93
Improved GA Yes Suml=7 1.8sec
Sum?2=33
Table 18. Resuits of Path1 for Subject Program 4.
Path2 Covered Values Time
SA Yes Suml=11 1.09sec
Sum?2=105
Improved SA Yes Suml=11 23.5sec
Sum2=17
Korel No Suml1=2 0.9sec
Sum?2=2
SA&Korel Yes Suml=11 34sec
Sum2=66
GA Yes Suml=11 2.4sec
Sum2=102
Improved GA Yes Suml=11 2.1sec
Sum?2=1

Table 19. Results of Path2 for Subject Program 4.



Path3 Covered Values Time
SA Yes Suml=2 1.4sec
Sum?2=102
Improved SA Yes Suml=2 41sec
Sum2=114
Korel Yes Suml=2 Osec
Sum2=1
SA&Korel Yes Suml=2 Osec
Sum?2=3
GA Yes Sumi=2 2.6sec
Sum?2=25
Improved GA Yes Suml=2 2.3sec
Sum2=36

Table 20. Results of Path3 for Subject Program 4.

Path4 Covered Values Time
SA Yes Sumi=3 1.7sec
Sum?2=87
Improved SA Yes Sum1=3 119sec
Sum?2=119
Korel Yes Suml=3 Osec
Sum?2=1
SA&Korel Yes Suml=3 Osec
Sum?2=3
GA No Suml=2 2.9sec
Sum2=24
Improved GA Yes Suml1=3 2.6sec
Sum2=70

Table 21. Results of Path4 for Subject Program 4.
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PathS Covered Values Time
SA No Suml1=77 1.9sec
Sum?2=90
Improved SA Yes Suml=12 182sec
Sum?2=66
Korel No Suml=4 0.8sec
Sum2=2
SA&Korel Yes Sumli=12 131sec
Sum?2=54
GA No Suml=13 2.8sec
Sum?2=91
Improved GA No Suml=13 2.5sec
Sum2=114

Table 22. Results of Path5 for Subject Program 4.

Path6 Covered Values Time

SA Yes Sum1=69 2.1sec
Sum?2=2

Improved SA Yes Sum1=96 162sec
Sum2=2

Korel Yes Suml=4 0.05sec
Sum2=2

SA&Korel Yes Suml=4 Osec
Sum?2=2

GA Yes Suml=127 3.2sec
Sum?2=2

Improved GA Yes Sum1=97 3.13sec
Sum2=2

Table 23. Results of Path6 for Subject Program 4.

Path7 Covered Values Time
SA No Sum1=97 2.4sec
Sum2=39

Improved SA Yes Sum1=127 | 3llsec
Sum?2=7

Korel Yes Suml1=0 0.05sec
Sum2=7

SA&Korel Yes Suml1=0 0.05sec
Sum?2=7

GA No Sum1=107 3.5sec
Sum?2=5

Improved GA Yes Sum1=109 3.3sec
Sum?2=7

Table 24. Results of Path7 for Subject Program 4.
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7.5. Subject Program 5

Read subject, college, age

Subject =1

@ college =
37 n
4y 6n |9y 11 n

Interview interview interview|

=1 =1 =0

Interview=
0
5 7 10 12 yl1
interview
=]
Interview
=1 22 n| 24 32 interview
17 19 Interview=1
23 Interview=0 34
25 interview interview= 0
27 36 interview=0
38
39
40y 41 n
I printf(“accepted”) I rprintf(“rejected”) |

Figure 9 Flow Chart of Subject Program 3.



This subject program subject consists of the following paths:

Path1:1,2,3,4,5,39,40,42
Path2: 1,2,3,6,7,39,41,42
Path3: 1,2,8,9,10,39,40,42

Path4: 1,2,8,11,12,39,41,42

Path5: 1,13,14,15,16,17,39,40,42

Path6: 1,13,14,15,18,19,39,41,42

Path7: 1,13,14,20,21,22,23,39,40,42
Path8: 1,13,14,20,21,24,25,39,41,42
Path9: 1,13,14,20,26,27,39,41,42

Path10: 1,13,28,29,35, 36, 39, 41,42
Pathll: 1, 13, 28, 29, 30, 33, 34, 39, 41, 42
Path12: 1,13, 28, 29, 30, 31, 32, 39, 40, 42
Path13: 1, 13, 28, 37, 38, 39, 41, 42

Pathl Covered Values Time
Improved SA Yes Subject=1 college=1 agel25 68sec
Korel Yes Subject=1 college=1 age=26 | 0.27sec
Improved GA Yes Subject=1 college=1 age=38 | 2.25sec
Table 25. Resuits of Path1 for Subject Program 5.
Path2 Covered Values Time
Improved SA Yes subject=1 college=1 agel16 44sec
Korel No Subject=2 college=0 age=2 2.03sec
Improved GA Yes Subject=1 college=1 age=15 2.2sec
Table 26. Results of Path2 for Subject Program 5.
Path3 Covered Values Time
Improved SA Yes subject=1 college=2 34sec
Korel Yes Subject=1 college=2 age=2 Osec
Improved GA Yes Subject=1 college=2 2.14sec
Table 27. Results of Path3 for Subject Program 5.
Path4 Covered Values Time
Improved SA Yes subject=1 college=64 67sec
Korel Yes Subject=1 college=3 age=2 | 0.05sec
Improved GA Yes Subject=1 college=91 2.25sec

Table 28. Results of Path4 for Subject Program 5.
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PathS Covered Values Time
Improved SA Yes subject=2 college=1 age=24 110sec
Korel Yes Subject=2 college=1 age=1 0.05sec
Improved GA Yes Subject=2 college=1 age=23 2.5sec
Table 29. Results of Path5 for Subject Program 5.
Path6 Covered Values Time
Improved SA Yes subject=2 college=1 age=62 105sec
Korel Yes Subject=2 college=1 age=28 Osec
Improved GA Yes Subject=2 college=1 age=119 2.5sec
Table 30. Results of Path6 for Subject Program 5.
Path7 Covered Values Time
Improved SA Yes subject=2 college=2 age=89 156sec
Korel Yes Subject=2 college=2 age=26 Osec
Improved GA Yes Subject=2 college=2 age=27 2.8sec
Table 31. Results of Path7 for Subject Program 5.
Path8 Covered Values Time
Improved SA Yes subject=2 college=2 age=24 | 151sec
Korel Yes Subject=2 college=2 age=0 Osec
Improved GA Yes Subject=2 college=2 age=8 2.8sec
Table 32. Resuits of Path8 for Subject Program 5.
Path9 Covered Values Time
Improved SA Yes subject=2 college=64 103sec
Korel Yes Subject=2 college=3 age=3 | 0.05sec
Improved GA Yes Subject=2 college=109 2.5sec

Table 33. Results of Path9 for Subject Program 5.
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Path10 Covered Values Time
Improved SA Yes subject=7 college=14 106sec
Korel Yes Subject=7 college=1 age=2 0.2sec
Improved GA Yes Subject=7 college=24 2.5sec
Table 34. Results of Path10 for Subject Program 5.
Pathl1 Covered Values Time
Improved SA Yes subject=7 college=2 age=3 164sec
Korel Yes Subject=7 college=2 age=1 0.3sec
Improved GA Yes Subject=7 college=2 age=4 | 2.4sec
Table 35. Results of Path11 for Subject Program 5.
Path12 Covered Values Time
Improved SA Yes subject=7 college=2 age=62 157sec
Korel No Subject=3 college=0 age=2 2.14sec
Improved GA Yes Subject=7 college=2 age=84 2.8sec
Table 36. Results of Path12 for Subject Program 5.
Path13 Covered Values Time
Improved SA Yes subject=64 66sec
Korel Yes Subject=0 college=2 age=2 [ 0.3sec
Improved GA Yes Subject=102 2.3sec

Table 37. Results of Path13 for Subject Program 5.
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Chapter 8

Empirical Results for Real-Value Input Data

In this chapter we present the experimental results of the test cases applied to the new

SA and new GA using real-value input data.



8.1. Subject Program 6

Read a, b, ¢

1

Class = scalene

2
y a=b n
3 6
y n y
4 5 7
equilateral isosceles isosceles
11

right

Figure 10. Flow Chart of Subject Program 6.



This subject program consists of the following paths:

Pathl: 1,2, 3,5,9, 11, 12 (isosceles with a =b)

Path2:1,2,6,7,9, 11, 12 (isosceles with b =¢)

Path3: 1, 2, 3,4, 9, 11, 12 (equilateral)

Path4: 1, 2,6, 8,9, 10, 12 (right)

Path5: 1,2,6,7,9, 10, 12 (isosceles + right)

Path6:1,2,6,8,9, 11, 12 (scalene)

Pathl | Covered Values Time
SA Yes a=b=25.49 c=2.66 275sec
GA Yes a=b=8.74 ¢ = 5.38 3.24sec

Table 38. Results of Pathl for Subject Program 6.

Path2 | Covered Values Time
SA Yes a=7.47 b=c=8.98 275sec
GA Yes a=4.103, b=c=5.68 3.2sec
Table 39. Results of Path2 for Subject Program 6.
Path3 | Covered Values Time
SA Yes a=b= ¢=90.107 113.84s
GA Yes a=b=c=123.109001 2.96sec
Table 40. Results of Path3 for Subject Program 6.
Path4 | Covered Values Time
SA Yes a=126.199997 165sec
b=121.220001
¢=35.102001
GA No a=7.92 b=1.47 c=4.101 3sec

Table 41. Results of Path4 for Subject Program 6.

Path5 | Covered Values Time
SA No a=35.24 b=24.47 c=25.47 261sec
GA No a=121.919998, b=83.113998, 3.4sec

c=89.112

Table 42. Results of Path5 for Subject Program 6.

Path6 | Covered Values Time
SA Yes a=48.48 b=49.123 298sec

¢=2.110
GA Yes a=1.46 b=2.99 ¢=1.105 3.02sec

Table 43. Results of Path6 for Subject Program 6.




8.2. Subject Program 7

Read (answer)

1

a=10-(3*(answer * answer))

3 4

answer is correct answer is too high

Figure 11 Flow Chart of Subject Program 7.



This subject program contains the following paths:

Pathl:1,2,3,5
Path2:1,2,4,5

Paths | Solved Results Fitness | Time

Improved Pathl Yes Answer=0.116 0 36 sec

SA

Improved Path2 Yes Answer =5.15 0 19 sec

SA

Improved Path1 Yes Answer= 0.108 0 2 sec

GA

Improved Path2 Yes Answer = 3.32 0 2 sec

GA

Table 44. Results of Pathl, Path2 for Subject Program 7.
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8.3. Subject Program 8

Read guess, magic

Guess = magic

Printf(“right, guess is the magic”)

55

Printf(** too high”)

printf(*“too low”)

Figure 12 Flow Chart of Subject Program 8.




This subject program contains the following paths:

Pathl: 1,3,5,6

Path2:1,3,4,6

Path3: 1,2,6

Paths | Solved | Results Fitness | Time

Improved Pathl Yes | Guess=3.5 value= 0 94 sec
65.5

SA

Improved Path2 Yes | Guess=48.75 0 66 sec
Value=27.75

SA

Improved Path3 Yes | Guess=1.102 0 72 sec
Value=1.102

SA

Improved Pathl Yes | Guess=8.25 0 2.47
Value=97.25

GA

Improved Path2 Yes | Guess=103 0 2.36
Value=93

GA

Improved Path3 Yes | Guess=97.75 0 2.26sec
Value=97.75

GA

Table 45. Results of Pathl, Path2, Path3 for Subject Program 8.
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8.4. Subject Program 9
Read (first,second)
1
a= (first*first) + (second*second)
2

a>10.5
y n
3 4

printf(“too high”) printf(“too low™)

Fig. 13 Flow Chart of subject program 9
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This subject program contains the following paths:

Pathl:1,2,3,5
Path2:1,2,4,5
Paths | Solved | Results Fitness | Time

Improved | Pathl Yes | First=1.24 19 124sec
Second = 7.12

SA

Improved | Path2 | Yes First = 2.5 34 126 sec
Second = 1.5

SA

Improved | Pathl Yes | First=5.82 74 2.63
Second =9.24

GA

Improved | Path2 Yes | First=0.8 40 2.63
Second =3.1

GA

Table 46. Results of Pathl, Path2 for Subject Program 9.
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Chapter 9

Discussion of Results

After doing a thorough testing for the improved SA, improved GA, and
Korel’s Algorithm, we came up with important observations enabling us to compare
these algorithms efficiency and efficacy. After running these algorithms on 36 paths
in 5 subject programs of integer-value input data, SA failed on 1 path, GA on 3 paths
and Korel on 10 paths. On real-value input data, SA and GA were run on 13 paths in 4
subject programs. SA failed to cover only one path; whereas GA failed on 2 paths.
Results are found in Chapters 7 and 8. It’s important in this context to mention the

observations deduced from the empirical results.

First we noticed that new SA implementation proved to give better results than
the old SA. This is due to the fact that the old implementation when run on the test
cases at hand, failed to solve many paths except for one which is the “isoright” path in
the triangle test case (test case T2). It’s important to mention in this context that the
new SA was able to give either the right angle or the isosceles triangle as its solution,
but it failed to find them both simultaneously. This implies that it was able to find a

partial solution for this particular path.

The second observation resides in the fact that the new version of GA
generated better results than the old one in terms of correctly solving more paths. For

instance, new GA solved the right angle path that is considered one of the most
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complicated paths; whereas, old SA failed, in addition to many other paths the results

of which are shown in Chapter 8.

The third observation is that, when new SA, new GA, and Korel were
compared, we noticed that the first two algorithms gave better results than Korel. This
is based on the fact that Korel failed to traverse many paths like the right angle (path
4, test case T1), and paths 2 and 3 in test case T2, in addition to many other paths the
results of which are found in Chapter 8. Meanwhile, SA and GA were able to traverse
these paths. Although Korel’s algorithm failed to find many paths, it is still
considered the fastest algorithm among all other algorithms, when it succeds in
finding the soltuion. This is due to the fact that Korel, in case it succeeds in finding
the solution, it’ll take a small number of iterations and a negligible execution time.
However, SA and GA require more trials to find the solution, but execution time is
shorter than that of Korel when it fails. This is due to the fact that when Korel fails to
find the solution, it will require a high number of trials requiring a long execution
time. In other words, Korel is faster than GA and SA in case of success, but much
slower in case of failure. However, these two are more efficient in finding the right
solutions. According to the empirical results, the success rate of SA, in the integer-

value input data, is 92.3%, thao of GA is 84.6% and that of Korel is 72.2%.

Since Korel, when it succed, is considered the fastest algorithm, we propose
combining SA and Korel. The algorithm obtained after the combination allows Korel
to run first, if it finds a solution, the execution terminates. Otherwise, SA starts
running using the values that Korel ended up with, rather than starting from random

variables. The aim of this proposition is saving execution time when Korel succeeds
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in solving a particular test case; meanwhile, resorting to SA to handle complex subject

programs. Accordingly, the execution time will be less than that of SA by itself.

When comparing SA and GA, we observed that SA found more solutions than
GA. For instance GA failed on paths on path 5 of test case T3 and path 5 of test case
T4, whereas, SA succeeded in solving them, in addition to all the other paths of the all
the test cases except for one path that is the isoright mentioned previously. Moreover,
SA needs less memory space due to its simplified underlying data structure; whereas,
GA needs more memory space to hold the population of individuals. Accordingly,
when the number of variables increases, GA requires more space to hold the
population. The fact that might increase its execution time and decrease the difference
in execution time between SA and GA. According to the empirical results of the real-

value input data, the success rate of SA is 92.3% and that of GA is 84.6%.

Finally, it’s important to mention the difficulties and limitations of SA, GA
and Korel. When preparing the input files for the test cases that are to be run on
SA/GA, the user needs to specify, beforehand, the auxiliary variables that are needed
to transform inequalities into equalities; meanwhile, Korel doesn’t require such a
specification. Furthermore, for each path within the same test case, a separate input
file should be written in order for SA/GA to run using such an input file; Korel, on the
other hand, requires a single general input file for the whole paths within the same test
case. SA/GA do not recognize whether the specified path has been traversed
successfully or not; whereas Korel does. Korel doesn’t support compound conditions

within the same predicate (like or, and); whereas, SA/GA support such predicates.
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Korel can deal with integer values only, without supporting real numbers; whereas,

SA/GA support both real and integer numbers.
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Chapter 10

Conclusion

In this thesis we improved the Simulated Annealing Algorithm and the
Genetic Algorithms, to obtain better results than the previous versions. Moreover, we
implemented Korel’s algorithm as a hill climbing algorithm and compared it’s
performance and path-coverage capability with that of GA and SA. We also expanded
the capabilitics of SA and GA enabling them to solve integers as well as real-value
input data. Meanwhile, Korel’s algorithm is limited to integer values only.

The empirical results showed that SA and GA were able to cover more paths
than Korel, and that SA tends to perform better than GA. However, GA is faster than
SA, and Korel, when it works, is the fastest. For this reason, we propose combining
SA and Korel aiming at decreasing the execution time by exploiting Korel’s ability to

solve simple subject programs rapidly and that of SA to handle the complex ones.
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