Efficient Methods and Techniques for the

Open-Shop Scheduling Problem
BN
9

C.
By

Steve Bou Ghosn

Submitted in partial fulfillment of the requirements

For the Degree of Master of Science

Thesis Advisor: Dr. Haidar Harmanani

Computer Science and Mathematics Division
LEBANESE AMERICAN UNIVERSITY

February 2007

Student Name

Thesis Title:

Program:

Division /Dept:

School:

Approved by:

Thesis Advisor:

Member

Member

Member

Date:

LEBANESE AMERICAN UNIVERSITY

School of Arts and Sciences

Thesis Approval

STEVE BOU GHOSN I.D.#: 199805410

EFFICIENT METHODS AND TECHNIQUES FOR THE OPEN-SHOP SCHEDULING
PROBLEM

Computer Scient_:e
Computer Science and Mathematics

School of Arts and Sciences, Byblos

DR. HAIDAR M. HARMANANI

DR. DANIELLE AZAR

DR. CHADINOUR

NOVEMBER 29, 2006

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Haidar Harmanani for his guidance throughout
my M.S. studies. I would also like to thank Dr. Danielle Azar and Dr. Chadi Nour for
being on my Thesis committee. Finally, I would like to thank my friends and family

for their continuous support.

i

Table of Contents

Table Of FIGUIESo.viiiiiit e v
Table OF TaABLES........oee e iv
ADSETACE ..o \4
Chapter 1 INtrodUCHION. ... 1
1.1 The Job Shop Scheduling Problem ... 1
1.2 The Open Shop Scheduling Problem..................coo 1
1.3 Branchand Bound ... 7
1.4 Genetic AlGOTIthMSccoiiiiiiii i 8
15 Simulated ANNEAIINGoooviiiiiiiii i 9
1.6 Problem Description and Thesis Outline ... 12
Chapter 2 Related WOTK ..ot 13
2.1 Exact MethodsSoooiiiiiiiii i 14
2.1.1 Branch and Bound ..o 14

2.2 Approximate and Heuristic Methods ... 15
221 Uniform Genetic Algorithm approachesccccooieil 16
222 Hybrid Genetic Algorithm Approachesc.ccoceviiii 18
Chapter 3 Solution Implementation using Genetic Algorithms................................. 22
3.1 Chromosome Encoding.............cooocoiiiiiiiiiiiiiiii e 22
3.2 Chromosome Initializationoooiviiiiiiiiiii 25
3.3 Fitness FUNCHIONttt 26
3.4 Intelligent MOVe LOZIC.........ooooiiiiiiiiiiii 29
3.5 Genetic OPEratorsoviiiiiiieii e 36
351 Mutation Operator Implementation.................cccccoovviiiieiiiiiinn 36
351 Crossover Operator Implementation................ccccoeieviiiniiiiieen e, 40

3.6 Tuning and TeStINGocoiiiiiiiiiii e 44
Chapter 4 Solution Implementation using Simulated Annealing 53
4.1 Solution ENCOAING...........cooiiiiiiiiiiiiie e 53
4.2 Solution Initialization..................cccooiiiiiiiio e 54
43 COSt FUNCLION. ..ottt 55
4.4 Neighbor FUNCLIONoooiiiiiiiiii 56
441 Shift and Rotate Operator...............occooeiiiiiiii e, 57
442 Non Uniform Swap Operator.............cccccoeeiiiiiiiiiiiiiniiiiee e, 58

4.5 Metropolis ANNEAINGoooiiiiiiii i 60
46 Additional OptimizZatiOnSoeoiiiiiiiiiiiii e 62
47 Tuning and TeStINGcccooiiiiiiiiii e 64
Chapter 5 Final ConClUSIONSooiiiiiiiiiiiiiii e, 74
BIbLIOGIAPNY ..o oo 82

il

Table of Figures

Figure 1: A chart representing the results in Table 2. 4
Figure 2: A chart representing the results in Table 3 ... 5
Figure 3: Simulated annealing algorithm ... 11
Figure 4: Chromosome encoding and interpretation.......................ccooioiioon 23
Figure 5: Objective function pseudo code.............cc.oociviiiiiiiiiiii 28
Figure 6: Intelligent Move LOZICooooiviiiiiiiiii i 34
Figure 7: Mutation operator pseudo cOde..............ccooiiiiiiiiiiiiiiii 39
Figure 8: Crossover operator pseudocodeocoovviiiiiiiiiiiii 43
Figure 9: Plot for Taillard 4 x4 — O......ooooiiiiiiiiiiii e 49
Figure 10: Plot for Taillard 15 x 15 — 0., 49
Figure 11: Solution encoding and interpretation....................occooiiiiiiiiin, 53
Figure 12: Annealing Metropolis algorithm pseudo code..................occooi 62
Figure 13: Plot for Taillard 4 X 4 — 0.t 69
Figure 14: Plot for Taillard 15 X 15 — 0. 69
Figure 15: Case Study (150, 500, 100, 1, 0.6) Generation Optimal Fitness Plot........ 78
Figure 16: Case Study (150, 500, 100, 1, 0.3) Generation Optimal Fitness Plot........ 79

Table of Tables

Table 1: A 4 x 4 benchmark problem for the OSSP..................ccoo 3
Table 2: Schedule for benchmark problem in Table 1 with the makespan =278 4
Table 3: Optimal schedule for problem in Table 1 with makespan=275................. 5
Table 4: Chromosome Initialization Procedure..........................ooooi 26
Table 5: Taillard Benchmark Results...................ccoooiii 47
Table 6: Taillard Benchmark Results (continued)ooocvii, 48
Table 7: Comparison between the results obtained by the different methods............ 51
Table 8: Taillard Benchmark Results.................cooccocoiii 67
Table 9: Results Comparison of the different methods.................................. 70
Table 10: Results Comparison between GAand SAo..coi 74

iv

Abstract

In this paper we investigate the use of two different heuristic techniques to the open-
shop scheduling problem and we make a comparison between them. The open-shop
scheduling problem is NP hard and due to that it’s very important to find heuristic
approaches that can generate better approximate solutions. This work first focuses on
solving the open-shop scheduling problem using genetic algorithms. We present an
interesting implementation of genetic operators that combines the use of deterministic
moves and pure random moves. We then perform tuning and testing of our approach
and present detailed results for each problem instance of the Taillard benchmarks. We
also compare our results with those obtained in other recent research works on the
subject. In the second part of our work we focus on an approach based on simulated
annealing. We perform tuning and testing for our annealing approach and present
detailed result comparisons for all the Taillard Benchmarks. Finally we compare both
the results obtained by ga and annealing and conclude that even though all results are
good, in general our annealing implementation seems to perform better than our GA
implementation, especially for larger problem sizes. We also justify the reasons why

we think our ga approach didn’t perform as good as the annealing.

Chapter 1 Introduction

1.1 The Job Shop Scheduling Problem

The general job shop scheduling problem is an optimization problem with
tremendous theoretical and practical importance, and has been the focus of intensive
research during the last decade. A job shop consists of a number of jobs to be
processed, each of these jobs is composed of tasks or operations, and each of these
tasks is to be processed on a particular processor. There are a limited number of
processors or machines, each of which performs a different task. A schedule for a
given processor specifies the exact time interval, start time and finish time, during
which each job in the shop is to be processed in that particular processor. A schedule
for the shop is a set of processor schedules, one for each processor and each schedule
satisfies resources constraints. Among the individual processor schedules, the one
with the latest completion time determines the overall finish time of the shop
schedule, also known in the literature as makespan. The optimal schedule (or optimal

makespan) is the one which has the least finish time among all possible schedules.

1.2 The Open Shop Scheduling Problem

In the general job shop problem the tasks that compose a job are usually dependent on
each other, and should be processed in a particular order. The open shop scheduling
problem (OSSP) is a variation of the general job scheduling problem and it is the

main focus of this work. The open shop scheduling problem differs from the general

job shop problem mainly in that the tasks that compose a job can be processed in any
particular order. A real life situation that illustrates the open shop job scheduling
problem could be that of a large automotive garage with specialized areas. A car may
require the following work: replace exhaust pipes and muffler, align wheels, and tune
up. These three tasks may be carried out in any order. However, since the exhaust
system, alignment, and tune-up sections are in different buildings, it is not possible to

perform two tasks simultaneously.

Stated formally, an open shop consists of n > 1 jobs and m > 1 processors, each job i
(1 <i< n)is composed of m tasks. The processing time for task j of job i is #;, task j
of job i is to be processed on processor j, where 1 <j < m. A schedule for a processor
j is a sequence of tuples <i, start_time(i), finish time(i)>, that implies job i is
processed continuously on processor j from start_time(i) to finish_time(i). There may
be more than one fuple per job and it is required that each job i spends exactly #; total

time on processor j.

A non preemptive schedule is one in which the individual processor schedule has at
most one tuple <i, s(i),f(i)> for each job i to be scheduled. A schedule in which no
restriction is placed on the number of fuples per job per processor is preemptive. All

non preemptive schedules are also preemptive, while the reverse is not true.

The open shop scheduling problem is also interesting from the theoretical standpoint,
despite it being seemingly simpler than the general job shop problem due to its lack
of ordering constraints. This is because, as previous research has shown, removing
the ordering constraints allows solving efficiently the job shop problem only if we use
preemptive scheduling, but not the non preemptive one. In fact, determining the

optimal non preemptive schedule for the open shop is an NP hard problem [1].

To illustrate the OSSP, we present in Table 1 a small but popular benchmark instance

of a problem consisting of 4 jobs and 4 processors:

Table 1: A 4 x 4 benchmark problem for the OSSP

In Table 2 and Figure 1 we present a possible schedule for the sample instance in
Table 1 that isn’t optimal, followed by an optimal schedule shown in Table 3 and

Figure 2.

1 3 1,3 29 0 29
1 4 1,4 43 80 123
1 2 1,2 24 150 174
1 1 1,1 5 233 238
2 2 2,2 80 0 80
2 1 2,1 70 80 150
2 4 2,4 69 150 219
2 3 2,3 56 219 275
3 1 3,1 45 0 45
3 2 3,2 58 80 138
3 3 3,3 29 150 179
3 4 3,4 45 219 264
4 4 4,4 74 0 74
4 3 4,3 61 80 141
4 2 4,2 83 150 233
4 1 4,1 45 233 278

Table 2: Schedule for benchmark problem in Table 1 with the makespan = 278

Figure 1: A chart representing the results in Table 2

1 3 1,3 29 0 29
1 4 1,4 43 80 123
1 1 1,1 5 150 155
1 2 1,2 24 219 243
2 2 2,2 80 0 80
2 1 2,1 70 80 150
2 4 2,4 69 150 219
2 3 2,3 56 219 275
3 1 3,1 45 0 45
3 2 3,2 58 80 138
3 3 3,3 29 150 179
3 4 3,4 45 219 264
4 4 4,4 74 0 79
4 3 43 61 80 141
4 2 4,2 45 141 186
4 1 4,1 83 192 275
Table 3: Optimal schedule for problem in Table 1 with makespan = 275

TP ; T
s B B B ‘512‘ g“. 1?’5 1%5) \g) !3*} R

Figure 2: A chart representing the results in Table 3

We can establish two partial lower bounds for the optimal schedule makespan. The

first one is the maximum completion time among the jobs to process. Every job must

necessarily take a processing time which is at least the sum of the times required to
perform each of its component tasks. Therefore, the optimal makespan can't be
smaller than the maximum completion time among the jobs. The second lower bound
is the maximum completion time for the jobs allocated to a given processor. Every
processor must necessarily take a processing time which is at least the sum of the
times required to perform each of the jobs allocated to it. Therefore, if #; is the time

that is allocated to job i in processor j, then:

n m
L1 =max;_;(X7i)
j=1

n
L2 = max 37:1(.21%])
1=

The maximum of these two partial lower bounds give us a final lower bound for the

optimal makespan:
n m m L
L = max(max i=1(.21 Tij), max j=1(= Tij))
J: 1=

Equation 1: Lower Bound of Optimal makespan

Equation 1 shows a lower bound for the optimal makespan that can be easily
determined in all cases. The optimal makespan can never be less than the lower

bound but is not necessarily equal to the lower bound. In fact, as previously

mentioned finding the optimal makespan for the non preemptive open shop
scheduling is an NP complete problem. Because of that, most of the research has
focused on finding efficient heuristic methods that generate approximate solutions,
such as genetic algorithms, simulated annealing and tabu search. But there has been

also some research done on exact methods like branch and bound.

1.3 Branch and Bound

The general idea of Branch and Bound is to divide the problem's search space into
smaller subregions and then discard some of those regions that are determined to be
redundant or useless in order to find the optimal solution. A branch and bound
procedure basically relies on two strategies or methods, a branching and a bounding
strategy. The branching strategy is in charge of covering the feasible area of the
search space by several smaller feasible sub-regions (for example by portioning it).
This procedure is then applied recursively to each of the sub-regions, forming a tree
structure denominated the search tree or branch and bound tree. The bounding
strategy determines updated lower and upper bounds per iteration and determines
which areas of the search tree are now out of bounds and therefore can be safely
discarded. How good a branch and bound algorithm is depends directly on the quality
of the branching strategy and the bounding strategy, if these are well tailored for the
problem at hand, then the search performance can increase dramatically as the

algorithm would just be focusing on relevant search areas.

1.4 Genetic Algorithms

Genetic algorithms (GA) are approximate techniques to find solutions to complex
optimization problems. These solutions, despite not being exact, are usually very
close to the optimal. Genetic algorithms in a way mimic the evolutionary process of
nature by trying to select the best out of a group of solutions(natural selection) and
by recombining promising solutions into a new one to generate a new "offspring" that
could be closer to optimal. Genetic algorithms represent the possible solutions of a
problem in the format of chromosomes. A set of chromosomes (candidate solutions)

represents a population.

An initial population is determined randomly, then the fitness (the potential of a
solution to be the optimal) of all chromosomes/solutions is computed. Based on the
fitness of each chromosome, the algorithm then proceeds to either combining
different chromosomes to generate new ones or to randomly modify particular
chromosomes individually. The former is called crossover or sexual reproduction
(since it involves a pair of chromosomes) and the latter is called mutation or asexual
reproduction. Crossover and mutation are the main operators used by genetic
algorithms in order to generate a new evolved population that becomes the input for
the next iteration of the algorithm. The idea is that on each iteration the population of
solutions should further evolve into fitter solutions that are closer and closer to the

optimal, the iterations are usually called generations.

In order to use genetic algorithms to solve a problem, we require first a valid way of
encoding a solution so that it can be can be manipulated by the algorithm. For
example, a solution could be represented by a group of numbers, characters, boolean
values, etc. We also require a way to evaluate how good a given solution is, therefore
we must supply a fitness function that analyzes a chromosome and determines how fit
it is with respect to the problem we are attempting to solve. Additionally, we require
appropriate genetic operators (crossover and mutation) which should be tailored
specifically to the problem, because the performance of the GA and the quality of the
solutions we obtain will greatly depend on them. Last but not least, we need a
termination criterion that could be simply a limit on the number of generations or

iterations.

1.5 Simulated Annealing

Simulated Annealing is one of the most popular heuristic techniques used for solving
optimization problems. Some of the optimization problems that have been tackled
using annealing are: the traveling salesman, graph partitioning, linear arrangement,
job scheduling and many others. Annealing basically models the process by which a
metal is heated at very high temperature to the extent that its atoms gain sufficient
energy to break their chemical bonds and become free to move, and its respective
cooling process afterwards, by which the temperature is lowered gradually in order
for the atoms to solidify back into a structure. In order for the heated material to

properly crystallize, a proper initial heating temperature and a proper cooling rate

must be used. When applying this to optimization problems, we map material to
solutions that are being altered. The initial temperature is the state at which we have
our initial solution and during the cooling process we try to alter the solution
gradually, following a schedule, such that by the time the temperature is close to O,
we would obtain a solution which is the optimal or very close to the optimal. By
altering the solution we basically mean exploring its close neighborhood and trying to
find a better neighbor solution which would become the current solution. If we
choose the wrong initial temperature or a cooling rate that is too slow or too fast, we

might end up with a solution of poor quality.

The main property of annealing that makes it very effective is the fact that it doesn’t
only accept improving solutions but it also has some tolerance to accept solutions
which have a worse value than the current. This is very important because it prevents
the stagnation of the solution in local optima and allows a more thorough exploration
of the search space. The heuristic determines whether to accept a solution or not
basing on the current temperature, if the temperature is high then the probability of
accepting a given solution even if it has a lower score is high, as the temperature
decreases also the probability of choosing non improving solutions decreases; This is
all matching the annealing process in which as a given metal starts to be cooled in a
controlled manner, the atoms of the metal will be able to move with more freedom at
higher temperatures than at lower temperatures. The movement of atoms is analogous

to replacing current solutions with neighbors during the optimization process.

10

The probability used in annealing in order to determine if we should accept a move at

a given temperature is:

Prob :e_(A%BT)

Where T denotes the current temperature, Kg is the Boltzmann constant and AE is the
difference between the value of the solution we are trying to choose and the value of

the current solution. The complete simulated annealing process is shown in Figure 3:

Kdporithrs Stmufated Annsating S0 Tod
{3y ix thie suantal solution)

(¥t the inttial temperaturs)

{x 1 the covling valey

Begm

otk (Tin
Butury (Do
Faed

Figure 3: Simulated annealing algorithm

11

1.6 Problem Description and Thesis Outline

In this thesis we will develop and evaluate heuristic solutions to solve the OSSP using
GA and simulated annealing. We will first present a study of the most important
research done concerning the open shop problem. All related work and our comments
are discussed in Chapter 2. Then we will dedicate Chapter 3 to explain our approach
to solve the open shop problem using genetic algorithms. We will also have a section
dedicated exclusively to discuss testing and results in this chapter. In Chapter 4 we
will expose a different approach based on Simulated Annealing. A section will be
dedicated to presenting the results obtained in details. Finally in Chapter 5 we

compare both approaches and present our final conclusions.

12

Chapter 2 Related Work

One of the earliest and most significant efforts related to the open shop scheduling
problem is the work by Gonzalez et al [1]. In their work, they propose a linear time
algorithm to find the schedule with the optimal (minimum) finish time for an open
shop with two processors, and a polynomial time algorithm to find the optimal
schedule for an open shop with three processors or more on the condition that
preemption was allowed. In the case of finding a non preemptive optimal schedule for
an open shop with more than three processors no exact algorithm was found that
could solve it in polynomial time. Furthermore, the authors proved that the problem
is NP hard by reducing it to the partition problem. The partition problem is an
optimization problem that belongs to a set of very complex problems collectively
named NP complete, these problems share the peculiarity and differ from other
problems in computer science and operations research in the fact that researchers
don't seem to find any algorithm that solves the problem efficiently for large input. To
be considered efficient an algorithm should solve the problem in an order of

polynomial time'.

' A problem is considered NP hard if an NP complete problem can be reduced to it, meaning that if a
technique was found to solve one of the problems, then the same technique could be applied to solve
the other.

13

2.1 Exact Methods

Exact Methods or algorithms are those that obtain a solution for a problem that can be
proven and verified to be correct. Many exact methods are considered exhaustive
because they analyze a large percentage of the total search space of a problem. Some
advanced optimization algorithms like Branch & Bound can obtain exact solutions
while greatly reducing the extent of the search space region that they have to process.
Exact methods (even the most powerful ones) aren't efficient when solving NP
complete problems due to the humongous search space of these problems. The
algorithms can find the optimal solution but take a lot of time when the input is
moderately large; the performance they offer doesn't allow solving the open shop
efficiently for large input. Despite that, researchers have proposed a few exact
algorithms that can be useful in solving the open shop for some particular cases. The

most popular of these methods is Branch and Bound.

2.1.1 Branch and Bound

In general Branch & Bound doesn't seem to be suitable to solve the job shop
scheduling problem, for example Carlier & Ipinson [2] came up with a branch and
bound algorithm that produced quite good results but took too much time even for
medium scale benchmarks like the 10 x 10 (10 jobs and 10 machines). This was
because the method relied heavily on schedule generation and this proved to be

infeasible when dealing with the large search space of the job shop problem. Since

14

the open shop has even a bigger search space than the general job shop problem, it
can be safely guessed that the branch and bound might not be the best approach to
tackle this problem. That said, there have been a few efforts to apply branch and
bound to the open shop and the results obtained are quite acceptable. One of the most
impressive works is that of Brucker et al [3], who based their initial efforts on the
resolution of a one machine problem with positive and negative time lags. Their later
work aimed at fixing in each node the disjunctions on the critical path of a heuristic
solution. This method worked for most problem instances, but some problems of size
7 were still not solvable. Gueret et al [4] improved on Brucker's algorithm by using
intelligent backtracking, that is when discarding a node not just going back to the
direct parent, but rather proceeding further through the ancestors until finding a more

relevant section that would avoid losing any optimal solutions.

2.2 Approximate and Heuristic Methods

A heuristic is a technique that solves a problem by obtaining results or solutions that
can't be directly proven to be correct. Heuristics are useful due to their ability to
produce good solutions that even though not necessarily optimal are quite close to the
optimal, in a reasonable amount of time. Because of the large search space in NP
complete problems, exact methods can never find an optimal solution in acceptable
time if the input is too big; therefore recent research has focused more on heuristics in
order to solve these problems. Heuristics sacrifice accuracy in exchange of

computational performance and conceptual simplicity. Some examples of very

15

powerful and popular heuristics are genetic algorithms, simulated annealing, ant
colony optimization and tabu search. Concerning the open shop scheduling, most of
the recent research is based on genetic algorithms, but there are some very innovative
approaches that combine the use of GA with another heuristic like Tabu Search in
order to obtain improved results. We will first discuss the pure GA approaches in the

literature and then we will follow with a discussion of the hybrid GA approaches.

2.2.1 Uniform Genetic Algorithm approaches

The first researcher to use genetic algorithms to attempt to solve job shop scheduling
problems using genetic algorithms was Davis [5]. His implementation wasn't very
refined; it used a memory intensive chromosome representation and very simple
genetic operators. Still his contribution was important, as he proved the feasibility of
using GA and set the basis for future efforts. Among other subsequent meaningful
efforts of applying GA to job shop scheduling problems are those of Nakano [6] who
represented the chromosome using a binary encoding and used special algorithms for
repairing genomes. His work was able to obtain results that were competitive with
Branch & Bound results in less time, but wasn't able to improve on the best results
obtained. Fang, Ross and Corne [7] were able to improve on Nakano [6] by using the
ordinal representation that Grefenstette et al [8] applied to the TSP. This
representation had the advantage of producing only valid schedules when altered by

the mutation and crossover operators, allowing more accurate solutions in

16

considerably les time. They also suggested how to adjust their approach to work with
the open shop scheduling problem, and later in Fang, Ross and Corne [9] they
actually adapted their previous approach to the open shop scheduling problem and
implemented it obtaining good results.

Fang, Ross and Corne [9] basically use chromosomes of size 2p where p is equal to
the number of jobs multiplied by the number of operations per job (the number of
operations per job is equal to the number of machines), and allow each gene in the
chromosome to have a value which is in the range [1, j], where j is the total number of
jobs. The fitness function interprets a chromosome by analyzing each pair of
consecutive genes in the following way: The first gene in the pair is interpreted as an
operation index x, while the next gene is a job index y. Thus the chromosome is next
interpreted as to basically schedule the x™ unhandled operation of the y™ unhandled
job as early as possible. In order to schedule jobs and operations they use a schedule
builder that keeps track of which jobs have already been handled and which
operations have been handled for each job. The schedule builder accomplishes this
task by using a circular list>. The fitness function uses the schedule builder to always
schedule jobs and operations in the earliest possible slot and keeps track of and
returns the highest finishing time which is the makespan of the schedule and the

fitness of the chromosome.

% If the values of the genes are bigger than the size of the list, the modulus operand is applied with the

size of the list to find the actual index in the list that the value represents.

17

2.2.2 Hybrid Genetic Algorithm Approaches

Even though the uniform GA approaches marked a clear improvement over the
performance of the exact methods, the results obtained still left room for
improvement. Many recent research efforts attempted the use of a hybrid GA instead
of the classic pure approach in order to improve on the quality of the solutions. This
involves combining the use of GA with another heuristic. Usually these approaches
use the heuristic to perform local search, while allowing the GA to perform the search
for global optima through the subset of local optima.

Fang, Ross and Corne [9] proposed two different hybrid GA implementations. They
represented the solution using the same style of chromosomes they used in their pure
GA approach but with the difference that only job indexes were encoded and not the
operations. Therefore they used chromosomes of size p, half the size of their pure GA
chromosome representation. In their first hybrid implementation, they decide on a
fixed heuristic beforehand and use that heuristic to choose the operation at each step
(As opposed to having the operation encoded in the chromosome like the pure
approach). So basically the values of the genes are job indices, assuming the index
value is 'a' that tells us to choose an operation using the fixed heuristic and then
schedule that operation for the a™ uncompleted job at the earliest time possible. The
scheduler works in the same way as in their pure GA approach that we discussed in

section2.2.1.

18

In their second implementation instead of using a fixed heuristic to choose the
operation to schedule for a job, they used many different heuristics depending on each
particular situation. In order to know which heuristic to use in each particular case,
they encoded it in the chromosome in a separate gene that was next to the gene
containing the job index. Just like the value for a gene corresponding to a job is an
index to the list of available jobs, also the value that corresponds to a heuristic
encoding is an index into the list of available heuristics. They called this approach the
"evolving heuristic choice" as opposed to the previous approach that was
denominated the "fixed heuristic choice".

Khoury and Miryala [10] presented a Hybrid GA implementation similar to what is
proposed in Fang et. al [9]. Basically they encoded the solutions in chromosomes
with values representing job indexes to handle. Just like Fang’s approach the job
index is an index to an unhandled job and we apply the modulus operator in order to
obtain an actual unfinished job index. Also handling a job consisted mainly in
scheduling one of the currently unhandled operations at the earliest available slot. To
choose which of the unhandled operations of a given job to schedule first, they use a
heuristic that gives priority to operations with larger processing times. The results
obtained from this hybrid GA proved to be better than the two other approaches that
were discussed by the authors in the same work. One of these approaches was using a
pure GA that had the operations also encoded in the chromosome and one that used a
variation on genetic algorithms called a selfish gene algorithm. All in all, their hybrid

GA proved to be the most successful approach (they ran each GA 100 times for each

19

sample of Taillard's standard benchmarks [11]) and it even managed to obtain a

solution better than the best known at that time for one of the 20 X 20 problem

instances.

Comment On Khoury and Miryala’s hybrid approach:

Khoury and Miryala’s second approach suggests just encoding a hint on what is the
next job we should try to schedule, this is as opposed to clearly encoding not just the
job but also the precise task in that job, like he does in his Permutation GA. This of
course in a way makes the possible range of values in a chromosome smaller as we
are just encoding part of the problem, which is a schedule that only tells us the order
in which to choose the jobs to schedule but not the tasks. So basically each
chromosome doesn’t really represent one exact schedule for the open shop problem
but actually a group of different schedules depending on the order we choose for
tackling the individual tasks that compose each job. This means that for each solution
the GA obtains, we need to do a second exploration in order to find the actual optimal
schedule, this second exploration is usually done with a different heuristic (annealing,
tabu search, etc) and that’s why this kind of encoding is usually used with hybrid
approaches. Khoury and Miryala [10] use a simple algorithm which just decides on
the order of tasks by handling the tasks with the larger completion times first,
basically equating each solution of his GA to one actual schedule and skipping a more
thorough exploration altogether. This shortens the search space but at the same time

removes possible optimal solutions. That’s why its no surprise that for some large

20

problem instances they seem to get the optimal answer while for some medium size
instances they seems to obtain results that are far off the optimal. This is because in
some problems we could be lucky to have an optimal or near optimal solution that has
the tasks in each job ordered according to maximum completion time, but that is not
necessarily always the case and it’s not appropriate to assume it unless one can
provide valid proof that the optimal will be in this format in most or all cases. From
our testing experience, optimal solutions don’t necessarily follow that pattern.

In our work we have based our encoding on the Permutation GA instead of trying to
improve on the second approach presented in [10] (The “Hybrid” GA) despite the fact
that the latter is reported as having much better results for the large benchmarks. The
reason for not using that approach is because encoding the chromosome in that way
would violate an essential condition for a good encoding which is that the encoding

should potentially be able to represent all possible solutions in the solution space.

21

Chapter 3 Solution Implementation using Genetic

Algorithms

3.1 Chromosome Encoding

When dealing with possible ways of encoding the solutions for the OSSP we must
take into consideration that a good encoding must satisfy the following conditions:

a) The encoding should have the potential to represent all possible solutions in the
solution space (including all optimal solutions).

b) The encoding should be appropriate with respect to the operators, meaning that the
operators should be able to manipulate the chromosomes in order to explore
successfully the solution space and be able to gradually approach the optimal.

A solution for the OSSP consists of a schedule or a given order in which the
operations that conform each job are to be executed. Since we are trying a pure GA
approach (as opposed to the hybrid GA approach), we have chosen to encode every
chromosome as a set of integers each corresponding to an operation in the schedule.
The possible gene values are in the range from 0 to [(m x n) — 1] where m is the
number of processors and # the total number of jobs. The integer value of each gene
can be decoded to obtain the operation number and the number of the job that owns
that operation, the decoding is done in the following way: if the value of a given gene
is V where (0 <V < m x n), then the processor that owns the operation is the

quotient of the division of the value by the number of processors ('V div m) and the

22

operation number is the remainder of the same division ('V mod m). For example in
the case of the 4 x 4 problem instance, a gene value of 13 would be interpreted as the
second operation of the third job (the remainder is 1, but we consider O the first
operation). As described above, a complete chromosome describes a schedule and
taking as an example the 4 x 4 problem again, a chromosome would consist of 16
genes (since there are in total 4 x 4 operations) and the values of the chromosomes
would be permutations of the values from 0 to 15. A possible chromosome sample

would be the one in Figure 4:

/

Schedule third task
of first job

Schedule first task

of second job Scratch Area

Figure 4: Chromosome encoding and interpretation

This would be interpreted as: first schedule the third task of the first job, then
schedule the first task of the second job, then schedule the second task of the fourth
job and so on. The actual scheduling procedure will be discussed later when we deal

with the implementation of the objective function. So far, this way of encoding is the

23

same one used by Khoury and Miryala [10] in their first solution implementation (the
permutation GA). We also would like to provide an explanation on why we are not
using a hybrid approach at all. The reason why we have opted for a pure approach 1s
that as this being our first research attempt on this area, we wanted to first explore
what is the maximum possible performance and accuracy that can be obtained from
the pure approaches in order to be properly aware of their limitations. We might work
on improving our results by trying hybrid approaches in future research. One big
advantage of using a pure approach is time, meaning that if a solution is found using
genetic algorithms and a full encoding then we don’t need to spend further time
processing that solution; whereas in a hybrid approach all those solutions are just
potential and we would need to spend extra processing time running a second
heuristic in each of those solutions to obtain a real complete solution.

Coming back to our approach, besides the data area of the chromosome that we
described previously, we will add an extra area that we will call the chromosome
scratch area. We will describe in more details how the scrafch area works in later
sections, but for the time being we just want to explain that the size of the scraich
area will depend on the amount of information on mutation decisions that we want to
communicate. The scratch area basically serves as a storage for information that the
objective function writes in order to help the operators make a more intelligent move,
also occasionally the operators could also store information in the scraich area that
could be of use to the objective function. This area is called scratch because it

doesn’t store actual scheduling information but rather some hints and other info

24

useful to help the operators make more informed choices, the information in the
scratch area can sometimes also save computation time by providing some data that
the receiving function would have to otherwise compute on its own. The scratch area
consists mainly of as many pairs of genes as the amount of mutation moves we want
to perform in each call to the mutation operator, and one gene that stores a position in
the data area of the chromosome at which the schedule represented by the
chromosome becomes invalid according to a certain criteria, for example exceeding
an established time limit. Knowing at which point the schedule becomes invalid can
be useful when applying crossover in order to make a more intelligent merge of

chromosomes, as we will see later when discussing the implementation of the

operators used.

3.2 Chromosome Initialization

The procedure to initialize a chromosome consists of first initializing the data area in
order to obtain random solutions. We must make sure that the value of each gene is in
the range [0 : (n x m) — 1] (where n = number of jobs and m = number of processors)
and that all the m x n genes in the data area have all different values. In order to
achieve this we use the following algorithm:

We generate a random number in the range [0 : (# x m) — 1] and we check if the value
is already present in the data area of the chromosome. If the value isn’t present then

we set that value in the current gene of the chromosome, otherwise if the value is

25

already present we keep repeating this process until we obtain a new value that isn’t
present. We do this for each gene in the data area of the chromosome.

Concerning the scratch area, we initialize it by setting each gene in this area to 0. At
this stage it is not important to have any meaningful value in the scratch area, as these
values will be set by the operators and the objective function at a later phase. The

value of 0 is used for initialization and indicates there is no information set.

The pseudo code in Table 4 illustrates the initialization procedure:

Yoid Chironosomelmitializanion] (o ¢

i

g A3 5
gat (3% grMachines * munberdehe;
For all genes in Ube datd area «f € do
&
2]

Range = { L. mugkerMauhives ¢ mmbasxdobe 11:
£ = gensrateRandonis PORmeae Y2
Whide {0 ValuwsTeInChromosome{ Re O 3 de

®oow Ganerabs Bandomintagar (Rangs E
Bre

& e

=
5
&t
s
®
#w
&
@
%
2]
ﬁ\:
»
fie
2
}J
]

Por &1l genes
Bty gpanetn

saturn: SAall dons

it

Table 4;: Chromosome Initialization Procedure

3.3 Fitness Function

The objective is to minimize the makespan, in order to do this we make use of a
fitness function to determine the value of a chromosome. Since each chromosome

represents a schedule, the fitness function analyzes the chromosomes in order to

26

determine the makespan (finish time) of the schedule. So the fitness function
basically receives a chromosome as input and returns (1 / makespan) as output.

In order to determine the makespan, we apply the following procedure to all genes in
the data area of the chromosome: First we decode the gene value to obtain the job
number and the machine number. Next from the job and machine number we obtain
the operation length (time this operation requires for completion). Finally we
schedule the operation.

After we have scheduled all operations we find the machine with the latest finish time
and we use its finish time as the makespan for the chromosome schedule.

When scheduling operations we always try to schedule operations at the earliest time
possible, we do that by checking the idle time sections between scheduled operations.
We try to fit a new operation in the earliest idle time area that is big enough to fit the
operation length, if there is no available time slot that is large enough then we
schedule the operation after the last operation that was scheduled in that machine.
Another constraint is that if the job that owns that operation is currently scheduled as
active in another machine at a given time that intersects with the time interval in
which the job is active in the current machine, then we can’t schedule the operation
even if we find a large enough gap. This is because of the basic constraint of the
OSSP that specifies that a job can’t be processed in two machines at the same time.
Figure 5 shows some sample pseudo code that illustrates some of the workings of the

objective function and the scheduler:

27

Posl Ojuctivei (hrngesows &)

vay yachkineiud
seve < O, twe v 8
irelid x talae, doue * Tasaed
2 luss

. Joxlusbes <, oynvstienbongeh < O

Hgs JE R KVERY

st toral idln tiwe oo U
35368t sadchednla Tabie Gashined

oy

Yo &b genes in ohy dags syes of chrawdsume ¢ 90

mschineimber ¢ SetBuchinetfimio genel;

ortivbex ¢ Setiaiuben {yxani ¢

cracatinhbangth * Sacdpexarionhenyehi obmbex,
wecHirdiunher 13

shp > Sxhednladyersbion(jodiwber, aavhinefumtac,

o Moy id
SE L tueaiid ol b > st)
s o= LA
if ¢ tdome swd davelid d
e lasy cloopasowx gege fo the {ndix of the cupnant
genn
dume > LR

Rofay = aoorwy
7 = kestgofar - lowsiRounds
HE O may 4 fdteTiwsloath € 1)

i
aur < dleTiweliais - aws
For a¥l mecbines d
Bpsars idde sime allowsd | ~iauk + 3} B
13teTimbindt » hesifofer - loverfownd - 1

Range v { 1, weucfioves §
nankeriovss » Pandopincegerd Ramge i
Inde = GpcHpvaluboFeondchadule; &, widawkovesy I3

Yar & Ha ver &3 daoxinined Y wkeckveay
Set pail of geney n Chs AOTASCH spes o bapain of valiuew

CHLUAE BT

Figure 5: Objective function pseudo code

28

3.4 Intelligent Move Logic

In this section we will describe the analysis that the objective function does in order
to determine a possible intelligent swap that could be applied to two genes in a
chromosome in order to improve the schedule it represents. The objective function
determines as many possible swaps as determined by the maxNumberOfMutations
parameter. The results are pairs of values indicating positions in the data area of the
chromosome to be swapped and are stored in the scratch area of the chromosome
(except in the last gene). Those intelligent swaps are hints that are intended for the
operators that process that chromosome (mutation and crossover). The idea is that
instead of having for example a purely random mutator like the one used in [10], the
mutator will be able to rather make an intelligent choice by following the hints
communicated by the objective function through the scratch area, so basically
chromosomes contain meta data that helps the different operators make a more
informed choice (without having to go through the hassle and performance
consuming action of rebuilding the schedule and analyzing it) while still keeping the
operators lightweight and performance efficient.

It remains to define the criteria used to determine what kind of swap in the
chromosome would be proper, in the sense that it would have stronger possibilities of
leading us to an optimal solution after generations of evolution. It must be noted that
making only intelligent moves could constrain the solutions too much and get us
stuck in a local optima; therefore it’s important to combine the intelligent approach

with a random approach. The amount of randomness and intelligence must be

29

balanced through tuning, we will discuss this in more details later when we deal with

testing and tuning.

The criteria for judging intelligent moves is based on the property that the optimal
finish time can never be less than the sums of the operation lengths of all operations
that have to run in a particular machine and also it can’t be less than the total
completion time of the operations that conform any single job. Basically, the
maximum of these two sums ie the maximum job completion time and the maximum
machine running time becomes a lower bound for the makespan of the schedule. This
means that if we are striving to find a utopian solution that would basically be the
lower bound (it could exist or not) we could base our analysis in that assumption and
make GA operator decisions based on that; For example we would know how much
idle time we are allowed for each machine by checking the difference of the total
running time in that machine with respect to the lower bound. If a given schedule
contains any machine that is exceeding it’s allowed idle scheduling time then we can
analyze the idle time gaps in the scheduling table for that particular machine and
perform a move that allows us to remove or minimize one of those particular idle
time gaps. One technique that could be done to perform this (which we used) is that
after finding an idle time gap that we would like to remove (to hopefully improve our
schedule), we find another operation that in a way constrained the scheduling of the
current operation and move that one to another position. To do this we work on the

fact that if there is idle time before this operation then it means that for sure this job is

30

being processed in another machine up till the starting time of its operation in the
machine we are currently analyzing. This is because as we discussed before there are
two reasons that constrain our scheduling of operations: 1) whether the idle time gap
can fit the operation and 2) whether the job that owns the operation is not being
executed in another machine at that same time. Since in this case obviously there was
a big enough idle time gap to schedule the operation, the only reason why we
scheduled it later is because this job was being executed on another machine,
therefore we scheduled it exactly at the finish time of the execution. So in order to
hopefully minimize the gap we actually swap the constraining operation to any other
place in the schedule (another position in the chromosome), but this will be the job of
the mutator, the Objective function merely writes the move hints and later the mutator
will perform the actual moves (if it deems proper). The moves are written in the
scratch area as pairs consisting of an operation to adjust and a corresponding
constraining causal operation.

Obviously, it would be wrong to assume the optimal is equal to the lower bound as
this could be not the case and we would end up in a futile quest for a never to be
found “holy grail” solution. Therefore it would seem that the assumptions necessary
in order to decide on intelligent moves are too risky, but from empirical research
experience we can see that the optimal for most if not all problem instances tends to
be quite close to the optimal, therefore one can establish a safety margin and add it to
the lower bound to make a new bound according to which to judge and decide on the

intelligent moves. In practice we always keep track of the allowed idle time for a

31

given machine and everytime a better solution is found we immediately update the
allowed idle times on each machine to make the algorithm become more “picky” and
strive for solutions that improve on the current found results.

Having said that, a question that remains is what criteria to use in order to choose the
gap to adjust, in a given machine schedule that could have two or more gaps which
basically contribute on breaking the idle time allowed limit. There are many possible
approaches for this, we basically used two on our implementation and testing: The
first approach simply traverses the gaps in order, then chooses the first problematic
gap. The second approach traverses the gaps randomly and again chooses the first
problematic gap found. We will discuss the different results from these two
approaches in the section for tuning and testing, at the end of the chapter. In fact, the
different techniques in selecting the gap to adjust are basically regulated by a tuning
parameter that we have experimented with during our testing.

Another important piece of information we can gather is the gene position at which
this schedule proves to be an “invalid” solution. The term “invalid” here doesn’t refer
to a chromosome that represents an unfeasible schedule like for example having two
equal genes or having a gene which isn’t in the range [0, (m x n) — 1] where m =
number of processors and n = number of jobs; in general we are basically maintaining
chromosome integrity through the processing done by all the operators involved, in
the next section we take a look at how the different operators work and we will
confirm this. So basically the term “invalid solution” refers in this context to a

solution that has exceeded the current sought level of quality, ie the quality of finish

32

time. If the current best finish time is for instance T any schedule which has a finish
time > T is considered invalid as it’s not improving on our current goals. While we
are evaluating a schedule using the objective function, after scheduling each operation
we can know the current finish time of the machine at which we are scheduling the
operation, when we find an operation that causes a machine to exceed its allowed
finish time, then we keep track of the position of the operation that “breaks” the
schedule and store that position at the place reserved for it precisely at the last gene of
the scratch area. This particular piece of information becomes useful when
performing crossover as we will explain later when dealing with the crossover

operator.

Figure 6 shows some sample pseudo code illustrating the intelligent move choosing

and analyzing:

33

Yoid GetMove InfoFromSchedule (integer infol, integer infoz:)
"
War scheduleInfo i = NULL, scheduleInfo _8i = NULL;

count. = 0, ret = 0y next&vailableTime =02
startTimeRange = 0,_endTimeRange =-0r
idleTime = 0O, maxIdleTime = 0; .index = 0, index2 =0

Totals iz & globeal srr&y which contains the total cowpletion time
for each machine (the sumration of the uperation. lengths of all
its tasks)

ffdetermine_which,machine gchedule to £ix
caze- 0 and case J:
for all machines
{
/73ér 3i to entry for last job of the current
/fmachine’s schedule table
si = scheduleTable | machine, nunberdobs)
if ¢ si—>finishTimaj¥ Totals [machine] -
idleTimeilloved [machinel)

{
Set- index = gurrent ‘machine nunber:;
timeTolmprove = si=>xfinishTime?
break out of loop:

3

}:2

case 1 and cgase 4:

twp = 0;
Loop undefinetely
{

Renge = [1, nuamberHachines]

tmp . = RandemInteger | Range 7.:
/dget. 51 to entey for last job of the. random
//wachine’ s schedule teble

=i = ‘scheduleTable{ tmp, nuwberJobs j:

if [si-¥finishTime - Totals[twp] >

[id1eTineiliowed[tmp] |

{
index = twbp;)
timeToImprove = si=>finishTime:
bre&ak out of lo0p!

Figure 6: Intelligent Move Logic

34

zavy 3 ang oazs 43
e all 3cke oo

% .
@i = gokeduleTablie(fndex, Job v i
ir f 3ed o= ow 3§ A7ans che fivet job inouhe liss
i
1dietinme = gi-babareTive ~ _ati~>finishTine:
3
BlNe
§
iiaTime = sl->gvarnTime:
kI
£ dodbeTime > spaldieTles)
i
wmex EiieTine » idiaTimes
irgtexd * Jah
3
A
23

gagy 3 oand cxade 4:
ut owp 2 O
ooy undefinetely

£
Faxge ¢ [0, nuawherdohs ~ 11
tup = PandonIntsgers Range 1:
i aoheduisTehid indey, TuRi:
A Emp P R) SAE pet the firsr Joi on She Liws
1
_53 = mubsduleTekls{index, g -~ 1¥s
sdieTime » sisbketaediTime » wi~>finishTige:
H
alae
i
ifdiaTisw = ai->staryTime’
i
if ¢ tdkeTime » 0
i
inYdesg = g
mpesk Hut of Ibop:
3
¥i

i e ogeheduieTanle (hodex, lodexd)s

infay = index * nurbaelshs & sisiobNuxker:

muvhiselnday = indasy

siwoToinprove » subsduleTabis Uindes, nmbeeiohe) SintahTined
Posinenl » et IndexOiVaiveinChoomposome{ O, infal 3

Figure 6: Intelligent Move Logic (cont.)

35

Z/Now let's get infoz

for a;l machines

{
if [i = index)
{

for all Jjobs

{
si = seheduleTable (1, 3);
if (si-¥jobNutber =

si->finishTime

_si-¥jobNuwber and
= _si—>startTimE i

{
index = i:
break our of loop:

Y

infpz = index * nunberdobs + _si->jobNumbel
PosInfo? = GetIndexOf¥alueInChromosome(C, infoZ):

Figure 6: Intelligent Move Logic (cont.)

3.5 Genetic Operators

3.5.1 Mutation Operator Implementation

The mutation operator performs mainly swaps between the genes of a given
chromosome. These swaps can be both, intelligent or just random; we will discuss
both approaches in this section. In order to determine whether to use the random or
the intelligent approach we set a parameter indicating a probability, and then based on
that probability we determine if we should use the random or the intelligent approach
every time the mutator is called. It’s very important to tune this parameter, and in fact
extensive time has been taken during testing to find the optimal adjustment of the

tuning variable, in order to reach the proper balance between randomness and

36

intelligence. The problem of following a purely intelligent approach is that it might
constrain too much the solutions we get and might make us get stuck on local optima.
The problem of following a purely random approach is that for large search spaces
(such as is the case for the medium to large problem instances in popular benchmarks
like Taillard) the genetic algorithm could take a huge amount of time in order to even
fairly approach the global optimal. Therefore as mentioned above it’s very important

to find a balance between both approaches to obtain the best results.

The first approach is purely random and basically consists of choosing a random
number in the range [0, (m x n) — 1] and then search through the data area of the
chromosome until we find a gene that has a value equal to that. Then we select
another random number and repeat the same procedure. Finally we swap the two

genes in order to alter the chromosome.

The second approach which is more intelligent uses the information stored in the
scratch area by the objective function. As explained in the previous section, the
objective section has intelligently chosen different pairs consisting of an operation
that is scheduled in such a way that it affects the performance of the schedule and
another operation that seems to cause the first one to be scheduled in that way. For
each of these pairs the mutator chooses randomly one of the operations hinted and
then moves it to another position in the chromosome (the new position is chosen

randomly just like in approach 1). The number of pairs and therefore mutation moves

37

is controlled by parameter maxMutationMoves, in most of our testing we have
usually set this parameter to 1 in order not to alter chromosomes too much in one
mutation operation. Nonetheless we also tried using a more aggressive mutator but it
didn’t prove to deliver better results as we will see in the section dealing with testing

and tuning.

38

Figure 7 shows some sample pseudocode that illustrates the workings of the mutator:

AABuTRs e npRerery Foyr she Fermmoandon 84
Mnearor { Chymmooncams O, Peal rurstloaProlsbiiivy

¥
LIt GE AT SRURAN LR
ST R OF I8t ‘gene IRIauy
s > N getdens -Gy kengiinl 3 <0102
Lo sl R N R7 ETAIE S R
5
aUNRFTay. il walne 3
)
32 ¢ Flipooin i murstisndrohbsbiidre ¢ @
$
Ranye ¥ EL, Y
ophing *» Pandominteger(Ragge:)i
cheei §onpeion)
{
e 3R)
Sfanvelligent (Watemwminisvic) sutatoy
Toor Bmil PRAITS 0% VRIME® . in The. SCruiil aves
¢
PEIL X SURATEHRY FerNaNtPal
4w RandvesTntegert (D,
indexi » Carindgexinlhnronceaeed U, Pxir dois
shgn indgent o SeaindgexinChronossgue{ C,
Pait.d ¥y
Erstexsd » Randominis 1o WoldmbaAresdie Y2
s < C{iwnsdawiys
Deisvel €, I8Bext ¥
; Insagnt O, Cmpe ingdend i
T2
Browk oatz
g - 34
Ff vandom wutanow
Far aii Juh o do
¢
i.i BT R DorstRavesltae
¥:
indexd o Randtemintegre] 2, Todatalreniise
& p
Bdh g s TR S
(x 2
3.5
Braak outy
}
$
§

Figure 7: Mutation operator pseudo code

39

3.5.1 Crossover Operator Implementation

The Crossover operator consists of 2 different possible modules, one performs
something similar to a uniform crossover but not precisely that as it can’t be really
applied as is to this case (it could be applied but we would need the objective function
to be aware of invalid chromosomes which is not the approach we have chosen as
described in previous chapters). The second approach uses the information stored in
the last gene of the scratch area by the Objective function.

As usual we use a probability parameter that can be tuned in order to determine how
often to use each different approach, it’s also possible to adjust the parameter so that a

particular approach is used exclusively.

The first approach as previously mentioned is similar to uniform crossover; We can’t
simply apply uniform crossover, which consists of taking the first gene from
chromosome one, the second gene from chromosome two, then the third again from
one and the fourth from two, and so on until all genes in the new chromosome 3
resulting from the merge of 1 and 2 is complete. The reason this approach is not
feasible is because we would be breaking the rule that states we cannot have duplicate

genes, as this method does not enforce the chromosome integrity for that matter.

40

So the method we use is a variation of this algorithm which consists of the following
steps (Please note that these operations are only applied to the data area of the
chromosome):

1) We extract the value of the current gene in chromosome one (the current
gene is initially the first one), if the value isn’t yet present in the new
chromosome, then we insert the value in the next available empty gene of
the new chromosome.

2) Ifthe value is already present in the new chromosome then we repeat step
1 by selecting the next gene until a value that isn’t present in the new
chromosome is found.

3) We then do the same procedure for chromosome 2.

4) We keep repeating this procedure until the new chromosome has all the
values of its genes set.

This approach guarantees that every pair of genes in the resulting chromosome
consists of a gene that originates from chromosome 1 and one from chromosome 2 ,
Hence it’s similarity to the uniform crossover approach while having the great

advantage of keeping chromosome integrity.

The second more intelligent approach attempts to do crosspoint crossover but not at
any random point but rather at a special position determined using the information in
the last gene of the scratch area. This information basically tells us the position of the

chromosome at which the schedule becomes inappropriate as it has lost its potential

41

as a quality solution. To illustrate why this information could become useful, take for
example the case where we just choose the crossover point randomly and that point is
less than or equal to the position where the schedule becomes inappropriate, in that
case if we use that section as the start of the new chromosome then we would be
generating a low quality schedule(with a makespan which is equal or bigger than the
current), on the other hand if we use a crosspoint which occurs before the critical
position and we cross it over with the section from the second chromosome, we could
be generating a potential good candidate solution(with a better makespan than the
current one). In this implementation we can also randomly decide from which of the
two chromosomes to take the cross point and which one to use as the start of the new
chromosome. After crossover we set the scratch area of the new chromosome to Os in
order to initialize it so that the objective function will fill it with proper information

after evaluating it.

Figure 8 shows a sample pseudo code that illustrates the Crossover function:

42

F/Crosmaver GpRIRTer for eha pemmuration GX
PGACTansovRY i Chronmsors Tk, Chispownme T4,
aheonarsons: Tl

20 g C¥ g%
ALt

s ¥ RRROMAGORGES L HRD X
1 me Ssene s R Qs i g

sremenmsane v - A4

bk &y oneNe
Logrilmna] Dlloare 52

Inveyst wszab
Tnveger wys ™ -

Ty oInduindived
£

{ faduddinvadidlvtieitules)

N

¥

LoRnt - = _
whiie { coankoS I¥.@i5e ¥

1 Perdowdnneser ({0431 e Y

S &l genge w0t
§
PRLE% B QL gskGens § gere 1)
A Walue Hrommeows (- xealue; Tl %

vesk oul of Joops

¥

Fuwlakdoaenes iy L
{

sxdue » OZ, gesGenel gene 1}
i ¢ I¥etumlndheotesate { Yaive, €

w

i
hreedy wun wf fuapg

¢wolnt, welug ¥R

P Y
$an
&
»

FE S-SR A AR |
ZrosRFoiny + Tirsdzge f032
® o arsRaPoive. « Ramdvwelstegsr({3, aux ~

3.0 € bBafors whs nwoxnboixy
Genx¥Riuss grne, Cl.guelepnsvatue] gane §

SEeven

Yar %31 genes
b

For R} penes in C2.stter the tvosaPoist

; PRSI
VAR Latextdensl)
S etGenvalwx{ ghane, valwe 2!

Four mil genes in ke soratob-grea. el OF
CH-rpetdenariny { goue, 1 y:

Figure 8: Crossover operator pseudocode

43

3.6 Tuning and Testing

In this section we will explain the tuning process and the results we obtained after
testing using the optimal parameters. The first parameters we experimented with were
the population size and the number of generations to run the GA. After considerable
testing and experimental experience (by starting with a high population and high
number of generations and then gradually lowering them down) and taking into
consideration the results when combining with the other tuning parameters (which
will be discussed after), It was determined that the optimal population size and
number of generations to run the GA are 400 and 1000 respectively.

As explained in the preceding sections, we have used an approach the combines the
use of randomness and intelligence when using the operators that genetically alter
chromosomes or generate new offspring. One important parameter that was discussed
when dealing with the mutation operator was the maxNumberMutations parameter
which basically specifies the degree of alteration a chromosome will suffer on each
call to the mutator. In the case of the intelligent approach it specifies how many
intelligent swaps we store in the chromosome scratch area and perform during
mutation phase. During the tuning process we realized that the optimal value for this
parameter is one, as changing chromosomes too much in one mutation iteration seems
to make the evolution process slower, apparently because we might be constraining

the solutions.

44

One very important parameter to tune is the probability of mutation and Crossover.
Normally when using genetic algorithms, the crossover probability should be high
whereas the mutation probability should be relatively low. During our testing we
realized that a high crossover probability doesn’t seem to work for the OSSP, the
higher the crossover probability, the longer it took to get results and they were farther
from the optimal. On the other hand increasing the mutation probability seemed to
improve both the quality of the results and the number of iterations required to reach
them. We think the reason for this results is that it’s hard to come out with a feasible
crossover operator that truly reflects the requirements of the OSSP, the current
implementation doesn’t really guarantee that an offspring chromosome would contain
the best of its two originating progenitors, because there is no guarantee that the
resulting schedule would be better, as its just a random merge of the previous
schedules resulting in a schedule that has little to do with any of the originating ones.
In the case of mutation the change to the schedule is lighter so it’s easier to control
the convergence of the chromosome to an optimal solution. After tuning we
determined that an optimal crossover rate is between 0.2 and 0.3, and the optimal
mutation rate is from 0.6 to 0.8. The mutation is what really helps the solution evolve
intelligently whereas the crossover is just another mechanism to introduce some
chaos to the solutions in case the intelligent mutations are constraining the solutions
too much, so that we prevent getting stuck in local optima. That’s the reason why we

are using a low crossover rate.

45

Within the mutation itself, it’s also important to regulate the amount of deterministic
moves, because using a lot of intelligence can restrict the chromosome evolution too
much and not let the solutions exceed a given limit (local optima), the crossover is
supposed to help with that, but since the mutation probability is much higher and the
crossover basically breaks the schedule completelely; we need another mechanism in
order to introduce some randomness in the mutation by making just a small random
variation to the schedule rather than making dramatic changes to the whole schedule
as in the crossover. We have discussed this approach before in the mutation operator
section and also the need for a probability parameter that determines the amount of
randomness and intelligence used in the mutator. From our testing we have
determined that the optimal value for this parameter is an intelligence probability of
0.6 and therefore a randomness probability of 0.4.

It’s also important to note that we are using a roulette wheel selector as this kind of
selector proved to obtain the best results among other selection criteria during the
tuning phase.

We used the Taillard set of benchmarks as the basis to evaluate our results. These
benchmarks are a set of job shop problem instances which were proposed by Taillard
with the intention of providing a common base of comparison for the results from all
different methods used to solve these problems. These problem instances are easy to
generate and their size corresponds to that used in industrial problems. For the open

shop, Taillard proposes problems were the number of processors and jobs is the same

46

(m x m), allows for 6 different sizes (4, 5, 7, 10, 15, 20) and provides 10 problem

instances for each size.

Table 5 shows the results obtained after running each of the Taillard Benchmark
problem instances using the optimal parameters. The GA was run 30 times for each
particular problem instance and we are presenting the best found solution and also the

average of all solutions found through the 30 runs.

4x4- 1 193 103

0 195
4x4-2 236 236 0 241
4x4-3 271 272 0.4 273
4x4-4 250 250 0 255
4x4-5 295 295 0 298
4x4-6 189 189 0 193
4x4-17 201 201 0 207
4x4-8 217 217 0 221
4x4-9 261 263 0.8 269
4x4-10 217 217 0 221
5x5-1 300 303 1.0 309
5x5-2 262 265 1.1 271
5x5-3 323 335 3.7 343
5x5-4 310 321 3.5 331
S5x5-5 326 338 3.7 344
5x5-6 312 318 1.9 327
5x5-7 303 309 2.0 312
5x5-8 300 305 1.7 307
5x5-9 353 361 2.3 369
5x5-10 326 336 3.1 343
Tx7-1 435 454 4.4 464
TxT7-2 443 461 4.1 485
7x7-3 468 470 0.4 496
T7x7-4 463 472 1.9 485
7x7-=3 416 419 0. 435

Table 5: Taillard Benchmark Results

47

31

7x7-6

7x7-1 422 430 2.4

7x7—-8 424 434 1.9

7x7-9 458 470 2.6

7x7-10 398 408 2.5

10x10-1 637 675 6.0

10x10-2 588 601 2.2

10x10-3 598 610 2.0

10x10-4 577 640 11.0
10x10-35 640 659 2.9

10x10-6 538 600 11.5
10x10-7 616 632 2.6

10x 10 -8 595 610 2.5

10x10-9 595 615 3.4

10x10-10 596 621 4.2

15x15-1 937 1127 20.3
15x15-2 918 1135 23.6
15x15-3 871 1025 17.7
15x15-4 934 1088 16.5
15x15-35 946 1107 17.0
15x15-6 933 1073 15.0
15x15-7 891 1058 18.7
15x15-8 893 1063 19.0
15x15-9 899 1013 12.7
15x15-10 902 1064 17.9
20x20-1 1155 1314 13.7
20x20-2 1241 1360 11.8
20x20-3 1257 1382 9.9

20x20-4 12438 1378 10.4
20x20-5 1256 1420 13.1
20x20-6 1204 1393 15.7
20x20-7 1294 1431 10.6
20x20-8 1169 1326 18.2
20x20-9 1289 1377 12.4
20x20-10 1241 1383 11.4

Table 6: Taillard Benchmark Results (continued)

48

Figure 9 and Figure 10 show plots representing the results we obtained for a small 4 x

4 problem instance and a large 15 x 15 problem instance

15 T Y 7 3 f ¥
2oy
I
|
{
205 [
% ¥
B i
~ H
= 1
AR "y
by
3
3,
i)
§
1957 3 7
b
: 3 $ 1 3 : t :)

190"
0 3 14 1= 20 et ke 33 46 45 30
sFen ot

Figure 9: Plot for Taillard 4 x4 -0

T e s
1:4Q'L .
12337
20T .

s 12101 -

2 1zo0f

B oot
i)

RECIs
L1650 :
£ s 3 i 1 i 3 1

t 50 PG IR0 2000 2800 300 3%g 0 400 430 300
e ations

Figure 10: Plot for Taillard 15x15-0

49

In order to compare the results from this approach with some of the results obtained
in the current research, we provide Table 7 which shows the results obtained using
this method against those obtained by Khoury and Miryala [10]. The table shows 15
problem instances selected from Taillard Benchmarks, the first 5 samples correspond
to small size problems (4 x 4), the next 5 samples correspond to medium size
problems (7 x 7) and the final 5 samples are large size problems (15 x 15). For each
problem we provide the lower bound, the current best and both the best solution and
the average of all solutions for our method (intelligent permutation GA) and for both
of the approaches presented in [10], the Permutation GA and the Hybrid GA. Please
note that in [10] the results are obtained after running 100 times each problem,

whereas ours were obtained after 30 runs for each problem.

50

4x4-1 193 193/195 193/194 213/213
4x4-2 236 236/241 236/240 240/244
4x4-3 271 272/273 271/271 293/293
4x4-4 250 250/255 250/252 253/255
4x4-5 295 295/298 295/299 303/304
Tx7-1 435 454/464 438/462 447/455
7x7-2 443 461/485 455/477 454/460
Tx7=7 422 430/455 443/464 450/456
7x7-9 458 470/493 465/483 467/475
7x7-10 398 408/434 405/426 406/411
15x15-1 937 1127/1159 957/998 937/948
15x15-3 871 1025/1131 904/946 871/886
15x15-4 934 1088/1167 969/992 934/944
15x15-8 893 1063/1136 928/962 893/905
20x20-1 1155 1314/1407 1230/1269 1165/1190

Table 7: Comparison between the results obtained by the different methods

From table 3.2 we can see that the results from the Intelligent Permutation GA seem

to be inferior to both the permutation GA and the Hybrid GA [10]. We have already

discussed in a preceding section why the Hybrid GA is not in our opinion a reliable

method to evaluate the OSSP. In the case of the permutation GA, this is supposed to

be equivalent to the intelligent GA but with the probability for a random move set to

1 and hence that of an intelligent move set to 0. From our empirical experience

increasing the intelligence probability, increases the quality of the results, but even

then we don’t get the results obtained in [10]. We are not sure what is the cause of the

difference in results, perhaps the fact that in their work the GA was run 100 times per

51

problem instance as opposed to the 30 times we used. In any case we can see that
none of the 2 methods give results that are close enough to the optimal for large
problem instances. The reason why our GA doesn’t seem to be a good method to use
for the OSSP could be due to the use of an improper crossover operator. Our GA
implementation seems to mainly rely on the mutation operator and this in a way
undermines the purpose of the GA method itself. That said it is easy to come up with
a simple crossover operator but it’s very difficult to figure out a proper Crossover
operator that would really make the GA work for the OSSP. Our conclusion in this
chapter is that it is difficult to come up with a proper GA implementation that gives
high quality results for the OSSP; Hence we will try to explore a different Heuristic
that doesn’t involve merging between existing solutions but rather relies on efficient
and optimized alteration of a given solution in order to gradually reach an optimal.
Possible heuristics that satisfy these conditions are Simulated Annealing and Tabu
Search. We chose to use Simulated Annealing in our research and we will discuss our

implementation, tuning and results in the next chapter.

52

Chapter 4 Solution Implementation using Simulated

Annealing

4.1 Solution Encoding

We will encode our solution in the same format used for the chromosome encoding
we presented in the previous chapter for the genetic algorithms implementation. The
encoding as presented previously consists of a set of integers each corresponding to
an operation in the schedule. The possible values for the elements that compose a
solution are in the range from 0 to [(zn x 1) — 1] where m is the number of processors
and n the total number of jobs. The integer value of each element can be decoded to
obtain the operation number and the number of the job that owns that operation, the
decoding is done in the same way described in the genetic algorithm encoding

section. A possible solution for the 4 x 4 OSSP Problem is shown in Figure 11 below:

Schedule second

/ task of first job

Schedule first task
of third job

Figure 11: Solution encoding and interpretation.

53

This would be interpreted as: first schedule the second task of the first job, then
schedule the first task of the third job, then schedule the third task of the second job
and so on. This way of encoding is again the same used for the genetic algorithm
encoding except that we don’t include a scratch area anymore. The reason why a
scratch area is no longer needed is because we experimentally determined that the use
of deterministic moves becomes counterproductive when using annealing, this will be
further discussed later when we deal with testing and tuning. So this encoding is
basically the same one used by Khoury and Miryala [10] in their first solution
implementation (the permutation GA).

We judge this encoding to be the most appropriate as it satisfies both essential
conditions: All possible solutions in the solution space can be represented using the
encoding and it is possible to come up with valid operators that can alter the
chromosomes in a way that makes possible to explore successfully the solution space

and be able to gradually approach the optimal.

4.2 Solution Initialization

The procedure to initialize a solution consists of obtaining random values for the
elements that compose a given solution. We must make sure that the value of each
element is in the range [0, (# x m) — 1] (where n = number of jobs and m = number of
processors) and that all the m x n elements in the solution have all different values. In

order to achieve this we use the following algorithm:

54

We generate a random number in the range [0, (nx m) — 1] and we check if the value
is already present in the solution. If the value isn’t present then we set that value in
the current element of the solution, otherwise if the value is already present we keep
repeating this process until we obtain a new value that isn’t present. We do this for

each element in the solution.

4.3 Cost Function

Since each solution represents a schedule, the objective function analyzes the
solutions in order to determine the makespan (finish time) of the schedule. So the
objective function basically receives an encoded solution as input and returns the
makespan as output.

In order to determine the makespan, we apply the following procedure to all elements
in the solution: First we decode the element value to obtain the job number and the
machine number. Next from the job and machine number we obtain the operation
length (time this operation requires for completion). Finally we schedule the
operation.

After we have scheduled all operations we find the machine with the latest finish time
and we return its finish time as the makespan for the chromosome schedule.

When scheduling operations we always try to schedule operations at the earliest time
possible, we do that by checking the idle time sections between scheduled operations.
We try to fit a new operation in the earliest idle time area that is big enough to fit the

operation length, if there is no available time slot that is large enough then we

55

schedule the operation after the last operation that was scheduled in that machine.
Another constraint is that if the job that owns that operation is currently scheduled as
active in another machine at a given time that intersects with the time interval in
which the job is active in the current machine, then we can’t schedule the operation
even if we find a large enough gap. This is because of the basic constraint of the

OSSP that specifies that a job can’t be processed in two machines at the same time.

4.4 Neighbor Function

The neighbor function is used to find another solution in the same neighborhood of
this one. This function is similar to the mutator we used for the genetic algorithms
implementation with the exception that we only apply random moves as opposed to a
proportion of random and intelligent moves as used for the GA implementation. The
reason why we discard completely the deterministic moves is that empirically they
have proved to decrease the quality of the solutions that are found, we will further
discuss this in the tuning and testing section. It’s also important to note that the
support for deterministic moves is more crucial in GA because we use a mutator that
would accept all random solutions without discrimination, but in annealing depending
on the current temperature we could be accepting solutions that are non improving
instead of only accepting improving solutions. As the temperature goes down the
solutions we accept get more constrained until we only accept solutions that move us
closer to the optimal. This support in annealing controls the randomness of the

approach and provides some kind of intelligence that allows us to move gradually

56

towards the global optimal while avoiding getting stuck in local optima. The neighbor
function performs mainly swaps between the elements that compose a given solution.
Since a solution is valid to the extent that it represents a valid schedule, swapping a
couple of elements will slightly alter the order of the execution of operations in the
schedule resulting in a new valid schedule which is similar to its originating schedule.
These swaps as described before are determined randomly. The number of swaps we
perform in each call to the neighbor function in order to generate a neighbor is
controlled by a tuning parameter, the number of these swaps should be small though,
in order not to alter solutions too much in a single annealing iteration. Besides pure
random swaps we also occasionally use other different strategies that when used with
restraint can lead to better performance and quality of solutions. We will now
describe these techniques, note that the use of these techniques is regulated using a
tuning parameter and the probability for their use is set to a very low value as they
can sometimes break completely the pattern of a given current solution. These

approaches are mainly used as extra support to avoid stagnation in local optima.

4.4.1 Shift and Rotate Operator

One technique that can be used to alter a solution in a more dramatic way than using
swaps while still keeping some of the patterns of the original solution and
guaranteeing that the resulting solution would be valid is by shifting and rotating the

solution.

57

I n order to do this we first determine a random number in the range [1, NS], where
NS is the number of elements that compose a given solution. We then shift the
solution to the right or to the left (this is determined by a toss of coin random
function) and as we shift we rotate the shifted elements to the other side. For example
in the case of the 3 x 3 problem instance, if the following solution:

2,4,7,09,1,5,8,6,3

Is shifted and rotated to the left 4 slots, we would obtain the following new valid
solution:

9,1,5,8,6,3,2,4,7,0

And if we shift and rotate it 3 slots to the right then we would obtain the following

valid solution:

8,6,3,2,4,7,0,9,1,5

4.4.2 Non Uniform Swap Operator

We have previously discussed the use of a tuning parameter that would determine
how many random element swaps to perform in order to find a neighbor to the current
solution. That is, in every call to the Neighbor function we perform as many swaps as
determined by that parameter. This approach is what we would call a uniform swap
operator. Another approach we have used in our testing is that of a non uniform swap
operator, meaning an operator that doesn’t always perform all the swaps determined

by the tuning parameter but rather checks a particular condition in order to decide if it

58

should perform a particular swap or not. The actual condition we have experimented
with in our research is that of setting a given probability and trying to randomly
generate a number in a given range for all swap attempts, if the generated number is
valid when confronted with the probability then we perform the swap, otherwise we
don’t. For example:

Assuming the number of swap moves is 5 and the probability of a swap is 0.7; and
also assuming that the random numbers generated for each swap (in the range [0,1])
are: 0.2, 0.65, 0.75,0.81, 0.37,

Then this would imply that only 2 out of the 5 swap moves wouldn’t be performed, in
particular the third and four swap moves are out of the probability range and therefore
aren’t performed. This technique can introduce a lot of variation since in every call to
the neighbor function we could be performing a different number of swaps, which is
good for exploration and avoiding local optima. At the same time this approach must
be used with restraint by reducing it’s frequency of use (giving it a low probability)
because it can change a solution in a drastic way as opposed to other methods like the
shift operator which are more prone to preserve the structure and essence of a
solution. Also as we mentioned before the use of more than one swap move at each
call of the neighbor function can also break solutions even if done in a uniform way,

so we must be very careful when deciding on the frequency of use of each method.

59

4.5 Metropolis Annealing

The basic annealing heuristic algorithm consists on setting an initial temperature and
gradually decreasing the temperature until we reach absolute zero. During this
gradual cooling procedure we examine the neighborhood of the current solution state
at each temperature level and we shift to a different solution state that could be an
improvement or not. The lower the temperature the less willing the algorithm is to
accept non improving moves. Theoretically, once the temperature reaches 0 only
improving moves are accepted. We refer as temperature level each of the elements of
the chain of temperatures that are obtained by multiplying the current temperature by
the cooling factor, the starting temperature for the chain is determined of course by
the initial temperature annealing parameter. In the basic annealing approach we only
move to one neighborhood state at each temperature level.

In our research and testing we have used a variation of the annealing heuristic
algorithm that has proved to deliver better results. We use the Metropolis annealing
which differs from the basic annealing mainly in the fact that at each temperature
level we do a more thorough exploration of the neighborhood. Instead of just trying to
find one neighbor, we try to explore the neighborhood to find M neighbors, where M
is a new tuning parameter which determines the depth of exploration and keeps
varying during the annealing process. We can interpret M as the time until the next
parameter update, basically a parameter update consist of lowering the temperature by

multiplying it by the cooling factor and increasing the current Time parameter by M.

60

The Time parameter keeps track of the elapsed time and it’s used to determine when
we should end the annealing process, in order to determine when to stop we also set
another parameter called Maxtime which is basically the total time that we plan to run
the annealing process. Note that we don’t just use the temperature reaching O as the
stopping criteria as we use to do for basic annealing, this is because M keeps growing
at each temperature level, so every level takes more time than the previous one and
this can result in the process taking a huge amount of time before the temperature
reaches 0, that’s why setting a time limit is a more effective stopping criteria. In order
to determine how much to increase M at each temperature level, we use an extra

parameter called B which is a tuning constant.

Figure 12 shows pseudocode that illustrates the Metropolis annealing process:

61

Anuneri

Bewsn

Ewd

ingHMerroroiist i, To € £, Ho Sexcims

Py 3% £he AnTisd Bolut i}

(Te 32 Tl DCHLTING SRMLQURTAE]

(1 &8 ffe ondling FRUR)

i Lo & nonsLRANY

(P Raer 59 CHE BOnRe: Time Tooawy the wasesling PERCETE]
P i tler tore antil the nest: parameszr gelaved '
(durfel amt Branlol ags ghe xugxent A beant
LRYRANT IV

T = T:;J
CurBol w S
BeoadSul » Lwuelois
Turdoey = Ghentive(CuwSod ¥
Rrgrlass o~ YEdens ive(Reaodnd i
Time = 02 '
Bepoat
e roge
Thwe:
Ty
B o= gs}}:;
Thile (Time we Hsowbikg }
feturn { NesyBud)

Tiwes + Br

Azvropniis{ Ourdiol, furlosy, Bustlal, Bagciout, T, ¥}

Bagin

East

Fazpal
Mewdol = Azmighburl Yardel)
Enulont, = C o HRwRal ¥
RDMAE LR galomy, ~ Cuydaek 3y
EE g atawuos 803 Then
' SOl = Wewdady
{ Wewlnot 4 Restioet } Thew
frantXol = Wawilady

Bt
gixe
12§ KEWERew g STy Then
Turdnl 2 HYerlod:
ingiy
Engig

Bhidw ¥ o= G

121 Cuessl, Sardost. Beat¥nd, Bestiost. T,

aciusions

B

Figure 12: Annealing Metropolis algorithm pseudo code

4.6 Additional Optimizations

62

The use of the Metropolis approach can become excessively time consuming
specially as the value of M grows. Since our objective is not just to obtain high

quality solutions that are close to the optimal but also to obtain them in a reasonable

amount of time, the need to find supportive improvements or optimizations arises.
There are basically two ways of improving the performance of the metropolis
algorithm, the first way is by improving the performance of the OSSP scheduling
algorithms we are using so that they are optimized to maximum and run in the least
possible time. The second way is to “tweak” the metropolis process, meaning to alter
the standard procedure in a way that we sacrifice some of its solution quality but gain
a good performance improvement instead. In our work we have implemented both
approaches and we will proceed to discuss them:

We used the second approach by adding a new tuning parameter that we called the
beta interval and basically this parameter regulates how often we increment M by the
beta factor. Instead of incrementing M at every temperature level, we would be
skipping the M increment in as many temperature levels as determined by the current
value of the beta interval parameter. This approach has proven in our testing to obtain

similar quality results but with a dramatic time improvement.

Concerning the first approach, an example of this in our work can be seen in the
scheduling algorithms we use; Particularly in a performance improvement we did to
the algorithm that determines if a current job we plan to schedule in a given machine
isn’t active at that time in any of the other machines. We originally had a list for each
machine that consisted of all jobs already scheduled in that machine and their times of
schedule. Therefore every time we were trying to schedule a job in a given machine,

we had to loop through all other machines and at each iteration traverse the list of one

63

of the machines and determine if the given job was being processed at that machine.
This proved to be extremely time consuming when used in our Metropolis approach,
so in order to improve the performance we added lists for each job which basically
contain info of the remaining available time in each job. Therefore whenever we want
to know if a given job is already active at a time, we just check one list, that of the job

to be scheduled instead of checking (m-1) lists (m is the total number of machines).

4.7 Tuning and Testing

In this section we will explain the tuning process and the results we obtained after
testing using the optimal parameters. One of the fundamental parameters for the
annealing process is the starting temperature, in order to determine the optimal
starting temperature we used the following method which is described in [12]. This
approach is based on the fact that initial temperature should ideally allow all possible
solutions whether improving or non improving to be accepted. This is because in an
ideal annealing process as the temperature decreases, the algorithm becomes more
reluctant to accept non improving solutions, and ideally when the temperature reaches
0 only improving moves are accepted.

Since the initial temperature To must allow all possible moves to be accepted, that
means that the acceptance proportion must be 1 or close to 1.

P(T¢) = Number of moves accepted / Total Number of Moves Attempted

We determine the initial temperature To by initially setting it to a small value and

computing P(To), if the value isn’t close to 1 then we keep gradually incrementing the

64

temperature by multiplying it by a constant K (K > 1) and repeating this procedure
until we reach a proportion which is 1 or very close to 1. The temperature we use to
obtain that proportion becomes our initial temperature. This procedure models the
process of heating the material until all its atoms are completely free. After
performing this process we determined that the optimal initial temperature(To) should
have a value of 400.

Another very important parameter we need to tune for our cooling schedule is the rate
at which we decrease the temperature. The cooling rate is determined by the o
parameter which should be smaller than 1 in order to decrease the temperature. Also
since we want to decrease the temperature as slowly as possible it follows that we
should select a value of o that is very close to 1. In our empirical testing we have
determined that the optimal value range is 0.99 < a < 0.999, and for most samples
setting o to 0.999 seems to give us the best results.

Since the approach we have followed for our annealing implementation is a
metropolis approach, then the heuristic doesn’t run until the temperature reaches 0 but
rather until we reach the previously defined maxtime tuning parameter. This maxtime
parameter depends on the problem sample, usually bigger samples require longer
running time in order to achieve good results. The parameters that we should tune for
the metropolis approach are the M and parameters. In our testing we have found out
that the optimal values for these parameters are 5 and 1.05 respectively.

We also discussed in section 4.6 an additional improvement for time performance and

in order to achieve that we introduced a new betalnterval parameter. In our testing we

65

started with a high value for this parameter and kept decreasing it until we found a
compromise of a time performance improvement and yet not a very high interval
value. The optimal value for the betalnterval parameter proved to be 20 iterations.
Another important empirical observation was that increasing the probability of
intelligence and deterministic approaches in the heuristic used to result in lower
results quality. The better results were obtained by using an almost purely random
approach.

The following are the results obtained after running each of the Taillard Benchmark
problem instances using the optimal parameters. The Simulated Annealing process
was run 30 times for each particular problem instance and we are presenting the best

found solution and also the average of all solutions found through the 30 runs.

66

4x4-2 236 236 0 240
4x4-3 271 271 0 273
4x4-4 250 250 0 252
4x4-5 295 295 0 300
4x4-6 189 189 0 191
4x4-7 201 201 0 205
4x4-38 217 217 0 218
4x4-9 261 261 0 267
4x4-10 217 217 0 221
5x5-1 300 300 0 303
5x5-2 262 262 0 265
5x5-3 323 323 0 330
5x5-4 310 310 0 323
5x5-5 326 326 0 337
5x5-6 312 312 0 325
5x5-7 303 303 0 314
5x5-8 300 300 0 310
5x5-9 353 353 0 357
5x5-10 326 326 0 336
7x7-1 435 435 0 446
Tx7T-2 443 447 0.9 462
7x7-73 468 482 3.0 499
7x7-4 463 473 2.2 484
T7xT-5 416 419 0.7 421
T7xT-6 451 465 3.1 475
TxT7-7 422 422 0 441
7x7-8 424 427 0.7 437
7x7-9 458 458 0 474
7x7-10 398 408 2.5 410

Table 8: Taillard Benchmark Results

67

10x10-1 645 13 662
10x 10 -2 588 589 02 614
10x10-3 598 611 2.2 647
10x 10 -4 577 577 0 599
10x10-5 640 645 0.8 653
10x10-6 538 549 2.04 574
10x10-7 616 632 2.6 643
10x10-8 595 610 2.5 621
10x10-9 595 615 3.4 621
10x 1010 596 602 1.0 623
15x15-1 937 942 0.5 952
15x15-2 918 968 54 985
15x15-3 871 878 0.8 904
15x15-4 934 963 3.1 971
15x15-5 946 999 5.6 1008
I5x15-6 933 957 2.6 963
15x15-7 891 912 24 953
15x15-8 893 929 41 933
15x15-9 899 905 0.7 918
15x15-10 902 909 0.8 924
20x20-1 1155 1200 3.9 1211
20x20-2 1241 1296 4.4 1324
20x20-3 1257 1282 1.99 1293
20x20-4 1248 1274 2.1 1290
20x20-5 1256 1289 2.6 1305
20x20-6 1204 1243 3.2 1289
20x20-7 1294 1337 33 1362
20x20-8 1169 1215 3.9 1231
20x20-9 1289 1307 1.4 1384
202x20-10 1241 1293 4.19 1326

Table 8: Taillard Benchmark Results (cont.)

68

Figure 13 and Figure 14 show plots representing the results we obtained for a small 4

x 4 problem instance and a large 15 x 15 problem instance

"1'2' ‘} H 1 < v { H i H ¢

N M

1

j
{!
|

-/ |

213

Fiiness

2ol 1

s :
i
i3

I

L1as
£ 3 10 i3 2¢ 23 34 33 41X 43 G4}

P MLLE pLpR

{Fenerstions

Figure 13: Plot for Taillard 4 x4 -0

} 9‘“;(, H k| ¥ ¥ Y ¥ 3
P400
1300 !

12000

Filness

110G

1006

! 3 I} : 3 i s

LA _
{ RGa0 10060 13000 20000 23000 30000 35000 306000
Croneg ations

Figure 14: Plot for Taillard 15 x 15-0

69

In order to compare the results from this approach with some of the results obtained
in the current research, we provide the following table which shows the results
obtained using this method against those obtained by Khoury and Miryala [10] and
against those obtained in a recent work by Liaw [13]. Liaw makes use of a hybrid
genetic algorithm that relies on tabu search. The table shows all problem instances
from Taillard Benchmarks, the first 20 samples correspond to small size problems (4
x 4) and (5 x 5), the next 20 samples correspond to medium size problems (7 x 7) and
(10 x 10), and the final 20 samples are large size problems (15 x 15) and (20 x 20).
For each problem we provide the lower bound, the current best and both the best
solution and the average of all solutions for our method (Metropolis Simulated
Annealing), for both approaches in [10] (the Permutation GA and the Hybrid GA) and
the best solution obtained by Liaw [13]. Please note that the results in [10] are
obtained after running 100 times each problem, whereas ours were obtained after 30
runs for each problem. We don’t include a comparison with our own GA results from

the previous chapter because we will compare and discuss those results in the

following chapter, which deals with the conclusions from our work.

: “Best ¥ S
4x4-1 193 193/194 193/194 213/213 193
4x4-2 236 236/240 236/240 240/244 236
4x4-3 271 271/273 271/271 293/293 271
4x4-4 250 250/252 250/252 253/255 250
4x4-5 295 295/300 295/299 303/304 295
4x4-6 189 189/191 189/192 209/219 189

Table 9: Results Comparison of the different methods

70

4x4-17 201 201/202 203/203 201
4x4-8 217 217/218 217/219 224/224 217
4x4-9 261 261/267 261/264 281/281 261
4x4-10 217 217/221 217/219 230/230 217
Sx5-1 300 300/303 301/312 323/324 300
5x5-2 262 262/265 262/271 269/279 262
5x5-3 323 323/330 331/345 353/355 323
5x5-4 310 310/323 N/A N/A 310
5x5-35 326 326/337 N/A N/A 326
5x5-6 312 312/325 312/328 327/339 312
5x5-7 303 303/314 N/A N/A 303
5x5-8 300 300/310 N/A N/A 300
5x5-9 353 353/357 353/367 373/376 353
5x5-10 326 326/336 326/340 341/343 326
7x7-1 435 435/446 438/462 447/455 435
7x7-2 443 447/462 455/477 454/460 443
7x7-3 468 482/499 N/A N/A 468
7x7-4 463 473/484 N/A N/A 463
7x7-35 416 419/421 N/A N/A 416
7x7-6 451 465/475 N/A N/A 451
7x7-7 422 422/441 443/464 450/456 422
7x7-8 424 427/437 N/A N/A 424
7x7-9 458 458/474 465/483 467/475 458
7x7-10 398 408/410 405/426 406/411 398
10x10-1 637 645/662 667/705 655/672 637
10x10-2 588 589/614 N/A N/A 588
10x10-3 598 611/647 N/A N/A 598
10x10-4 577 577/599 586/618 581/589 577
10x 1035 640 645/653 N/A N/A 640
10x10-6 538 549/574 555/583 541/549 538
10x 10-7 616 632/643 N/A N/A 616
10x10-8 595 610/621 N/A N/A 595
10x10-9 595 615/621 627/646 598/618 595

Table 9: Results Comparison of the Different Methods (cont.)

71

10x10-10 | 596 623/645 605/618 596
15x15-1 937 942/952 967/998 937/948 937
15x15-2 918 968/985 N/A N/A 918
15x15-3 871 878/904 904/946 871/886 871
15x15-4 934 963/971 969/992 934/944 934
15x15-5 946 999/1008 N/A N/A 946
15x15-6 933 957/963 N/A N/A 933
15x15-7 891 912/953 N/A N/A 891
15x15-8 893 929/933 028/962 893/905 893
15x15-9 899 905/918 N/A N/A 899
15x15-10 | 902 909/924 N/A N/A 902
20x20-1 1155 1200/1211 1230/1269 1165/1190 1155
20x 20 -2 1241 1296/1324 N/A N/A 1241
20x20-3 1257 1282/1293 1292/1346 1257/1267 1257
20x20-4 1248 1274/1290 N/A N/A 1248
20x20-35 1256 1289/1305 1315/1353 1256/1267 1256
20x20-6 1204 1243/1289 1266/1305 1207/1224 1204
20x20-7 1294 1337/1362 N/A N/A 1294
20x20-38 1169 1215/1231 N/A N/A 1169
20x20-9 1289 1307/1384 1339/1380 1289/1293 1289

Table 9: Results Comparison of the Different Methods (cont.)

From the table we can see that the results from the Metropolis Simulated Annealing

process are a big improvement over the GA results we obtained in the previous

chapter. Also we can verify that in general the results are slightly superior to the

permutation GA in [10]. On the other hand the hybrid approach in [10] seems to

deliver inferior results for the small problems but superior results for the large

benchmarks, We already explained our take on this on our comments on this

72

approach in chapter 2, we just present the results here for completeness but we don’t
consider its valid to compare any of these methods with the hybrid approach in [10].
On the other hand Liaw [13] obtains the optimal in all cases and claims to take a
maximum of approx. 2 minutes time for the largest benchmarks (20 x 20). His
technique consists on generating random solutions and running tabu search on each
solution separately in order to improve it to a local optimal, then all the local optima
solutions become the population fed to a GA that determines the global optimal. In
contrast our Metropolis Simulated Annealing heuristic runs around 2-3 minutes for a
4 x 4 problem, 3-4 minutes for a 5 x 5 problem, 8-10 minutes for a 7 x 7, 20-25 for a
10 x 10 and for the large problems it requires 40 — 45 mins for a 15 x 15 problem and
around 60 mins for a 20 x 20 problem. These time frames are a huge improvement
when compared to the almost 40 minutes that use to take to find an acceptable
solution for the 7 x 7 problem using the permutation GA approach. But these times
seem to pale in comparison to the times Liaw states are required to obtain the
optimals; but in a further analysis we realize that the 2 minutes Liaw states to run the
GA are not taking into consideration the time to move all members of the population
to a local optimal. If we are very optimistic and assume a population of 100 solutions
and we just give one minute of time in order for simulated annealing to upgrade the
solution to a local optima, we are already taking at least 100 minutes for any problem
instance. For these reasons we find the results we obtain from the Metropolis
Simulated Annealing method are a good compromise between solution quality and

time performance.

73

Chapter 5 Final Conclusions

This thesis proposed two different heuristic solutions to the OSSP based on GA and
annealing. The proposed techniques yielded acceptably good solutions in almost all
attempted benchmarks. Table 10 shows a comparison between the final results
obtained using the GA method and the SA method. The results consist of the best
solution found and the average solution after running the process 30 times using both

methods:

RS

4x4-1 193 193 194 193 195
4x4-2 236 236 240 236 241
4x4-3 271 271 273 272 273
4x4-4 250 250 252 250 255
4x4-5 295 295 300 295 298
4x4-6 189 189 191 189 193
4x4-7 201 201 205 201 207
4x4-8 217 217 218 217 221
4x4-9 261 261 267 263 269
4x4-10 217 217 221 217 221
5x5-1 300 300 303 303 309
5x5-2 262 262 265 265 271
5x5-3 323 323 330 335 343
5x5-4 310 310 323 321 331
5x5-5 326 326 337 338 344
5x5-6 312 312 325 318 327
5x5-7 303 303 314 309 312
5x5-8 300 300 310 305 307

Table 10: Results Comparison between GA and SA

74

= Funs) G HNS)
5x5-9 353 353 357 361 369
5x5-10 326 326 336 336 343
7x7-1 435 435 446 454 464
Tx7-2 443 447 462 461 485
7x7-3 468 482 499 470 496
Tx7-4 463 473 484 472 485
7x7-5 416 419 421 419 435
7x7-6 451 465 475 465 475
7x7-17 422 422 441 430 455
7x7-8 424 427 437 434 457
7x7-9 458 458 474 470 493
7x7-10 398 408 410 408 434
10x10-1 637 645 662 675 710
10x10-2 588 589 614 601 619
10x10-3 598 611 647 610 632
10x 10 -4 577 577 599 640 665
10x10-35 640 645 653 659 668
10x10-6 538 549 574 600 620
10x10-7 616 632 643 632 639
10x10-8 595 610 621 610 625
10x10-9 595 615 621 615 637
10x10-10 | 596 602 623 621 643
15x15-1 937 942 952 1127 1159
15x15-2 918 968 985 1135 1197
15x15-3 871 878 904 1025 1131
15x15-4 934 963 971 1088 1167
15x15-5 946 999 1008 1107 1192
15x15-6 933 957 963 1073 1165
15x15-7 891 912 953 1058 1143
15x15-8 893 929 933 1063 1136
15x15-9 899 905 918 1013 1119
15x15-10 | 902 909 924 1064 1157

Table 10: Results Comparison between GA and SA (cont.)

75

20x20-1 1155 1200 1211 1314 1407
20x20-2 1241 1296 1324 1360 1428
20x20-3 1257 1282 1293 1382 1415
20x20-4 1248 1274 1290 1378 1410
20x20-5 1256 1289 1305 1420 1452
20x20—-6 1204 1243 1289 1393 1425
20x20-7 1294 1337 1362 1431 1493
20x20 -8 1169 1215 1231 1326 1412
20x20-9 1289 1307 1384 1377 1443

Table 10: Results Comparison between GA and SA (cont.)

From the results in this table we observe that the annealing algorithm outperformed
the GA, especially for medium to large size problems. We have also observed that the
larger the problem instance is, the greater the difference by which the result quality in
SA surpasses that of GA. While both methods were ran for approximately the same
time, annealing always obtained results that were reasonably closer to the optimal
than those obtained by GA.

We attribute this to the crossover operators we have used. For GA to work properly it
is essential to have a crossover operator that is appropriate to the problem one is
trying to solve, meaning that when crossover is applied we should be obtaining
offspring solutions that are a combination of the qualities of their progenitor

solutions. In the case of the OSSP and our chromosome representation and crossover

76

implementation, despite the fact that we try to combine both chromosome schedules
and keep the best of each, most of the time the resulting schedule is totally different
than the originating ones. In an effort to improve these results we embedded more
intelligence into the different operators, however this ended up restricting the
solution.

In our testing we realized during the tuning of the crossover and mutation parameters,
that whenever we increased the crossover rate the results quality tended to decrease.
This decrease in solution quality worsened depending on how large the problem size
was. On the other hand the changes to the mutation parameter were directly
proportional with the quality of the results, the best results were obtained when the

mutation probability was 1.

To illustrate this let’s take for example the large benchmark 150: when running GA
for 1 run (population 100 and 500 generations) with the crossover probability set to
0.6 and the mutation set to 1, the following results are obtained (see Figure 15). In

this case the optimal found is 1186.

77

Fifpess

12207
12100

hedditnn

Lisa

‘3 ¢ } % i ; X I3 L
0 A 1000 1300 2000 1500 3000 350 400 450 SO0
(Genarations

1180

Figure 15: Case Study (150, 500, 100, 1, 0.6) Generation Optimal Fitness Plot

As shown above, the plot Figure 15 displays the changes in the fitness of the best
chromosome for each generation, of running Taillard 150 for 500 generation of a
population of 100 chromosomes, with a mutation probability of 1, and a crossover

probability of 0.6

If we reduce the crossover to 0.3 while keeping the mutation constant, we obtain the

following results shown in Figure 5.2. In this case the optimal found is 1134.

78

1280 ; ? ' * ‘ ‘ ‘
12601
1240
1220 oy

120070

Fitness

L1150

11s0r |

11407 [§

3 i i t3 i) i §; 3 &

1120 , _ , T
o S0 100 1800 2000 2300 300 350 400 450 MW
Creyerations

Figure 16: Case Study (150, 500, 100, 1, 0.3) Generation Optimal Fitness Plot

As shown above, the plot Figure 16 displays the changes in the fitness of the best
chromosome for each generation, of running Taillard 150 for 500 generation of a
population of 100 chromosomes, with a mutation probability of 1, and a crossover

probability of 0.3

We use these particular results to illustrate a general trend that we discovered during
the tuning and testing phase. From these results we observe that the mutation has a
more important effect in the positive results than the crossover and the latter if used in
high frequency can even become detrimental to the solution. So basically our research
showed us that in order to obtain the best results using our operators, we had to set the

mutation to a very high probability and the crossover to a low probability, this

79

showed that the mutation with its gradual and local changes was the main player for
obtaining the results whereas the crossover acted just as a way to escape from local
optima in some cases, by breaking the solution completely. This notion kind of
contradicted the idea of using GA, as usually for a problem to be properly expressed
the crossover rate should be high and the mutation low. This observation that the
mutation operator was more effective is what led us to experiment with annealing
which is a technique mainly based on a mutating the solution.

We though that for the way we implemented our operators and representation, a more
powerful mutating technique such as the one used in annealing which basically
combines a mutator with a powerful hill climbing strategy, would give us better
results, and this proved to be the case. It’s important to clarify that we aren’t
claiming that annealing is in general a better technique to solve the OSSP, we are
mainly claiming that is hard to come with a proper crossover operator implementation
for this problem. And that using the Metropolis SA gave better results than using GA
with our crossover operator implementation.

We also experimented adding extra operators to our ga, like a shift rotate operator and
an non uniform crossover. The non uniform crossover we implemented consisted in
applying a 2 point crossover but instead of swapping the whole region between the 2
points, we compared individually the bits and we swapped them according to a fixed
probability. Besides this we also experimented changing the criteria of machine
selection when trying to decrease idle time gaps, we tried choosing the machine with

the highest finish time as opposed to the first found and random choice criterias we

80

previously discussed. All of these new features didn’t seem to bring any serious
improvement with respect to the previous results obtained. Therefore, this further
confirms our theory that a pure ga approach might not be as suitable as other

approaches for the open shop scheduling problem.

81

Bibliography

1. Gonzalez, T. & Sahni, S. (1976). Open shop scheduling to minimize finish
time. Journal of the Association for Computing Machinery, 23(4), 665 — 679.

2. Carlier, J. & Pinson, E. (1989). An algorithm for solving the job shop problem.
Management Science, 35(2),164-176.

3. Brucker, P., Huring, J., & Wostmann, B. (1997). A branch and bound algorithm
for the open-shop problem. Discrete Applied Mathematics, 76, 43-59

4. Gueret, C. & Prins, C. (1998). Classical and new heuristics for the open-shop
problem: A computational evaluation. European Journal of Operational
Research, 107,306-314

5. Davis, L. (1985). Job shop scheduling with genetic algorithms. In I.J. Grefenstette
(Ed.), Proceedings of the First International Conference on Genetic
Algorithms and their Applications (pp.136-140). San Mateo : Morgan
Kaufmann.

6. Nakano, R. (1991). Conventional genetic algorithms for job-shop problems. In R.
K. Belew & L. B. Booker (Eds.), Proceedings of the Fourth International
Conference in Genetic Algorithm (pp.474-479). San Mateo : Morgan

Kaufmann.

82

7. Fang, HL., Ross, P. ,& Corne, D. (1993). A promising genetic algorithm approach
to job shop scheduling, rescheduling and open-shop scheduling problems. In
S. Forrest (Ed.), Proceedings of the Fifth International Conference in Genetic
Algorithms (pp.375-382). San Mateo : Morgan Kaufmann.

8. Grefenstette, J.J., Gopal, R., Rosmaita, B. ,& Van Gucht, D. (1985). Genetic
algorithms for the travelling salesman problem. In S. Forrest (Ed),
Proceedings of the First International Conference in Genetic Algorithms and
their Application (pp.60-168). San Mateo : Morgan Kaufmann.

9. Fang, HL., Ross, P. ,& Corne, D. (1994). A promising hybrid ga/heuristic
approach for open-shop scheduling problems. Proceedings of the 11 th
European Conference on Artificial Intelligence (pp.590-594). [n.p.] : Wiley.

10. Khuri, S. & Miryala, S.R. Genetic algorithms for solving open shop scheduling
problems. California, USA : San Jose State University.

11. Taillard, E. Benchmarks for basic scheduling problems. European Journal of
Operations Research, 64, 278-285

12. Sadiq, M.S. & Habib, Y. [n.d]. Jterative computer algorithms with applications
in ingeneering: Solving combinatorial optimization problems. [n.p.] : IEEE
Computer Society.

13. Liaw, C.F. A hybrid genetic algorithm for the open shop scheduling problem.

European Journal of Operational Research, 124, 28-42

83

