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with Exploration of Cell Configurations 
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Abstract 
 

In the state of the art Field-Programmable Gate Arrays (FPGAs), logic circuits are 
synthesized and mapped on clusters of look-up tables. However, when additions need to be 
performed, an adder along with a carry-chain is used to ensure a fast execution of such an 
arithmetic operation. This carry-chain is a dedicated wire available in the architecture of the 
FPGA and is as such independent of the external programmable routing resources. 

The proposed idea introduces variable-structure Boolean matching as well as 
decomposition of mapped functions in order to take advantage of the carry-chains when 
they are not used for addition operations. Previously synthesized and mapped logic 
functions are adapted so that their outputs are routed using the dedicated carry-chains 
instead of the external programmable interconnects. Mapping onto these chains yields a 
reduction in the overall external routing resources as well as the general routing congestion. 

Moreover, a generic software platform was developed allowing users to identify and test 
various basic-unit structures and compare their performances on particular logic circuits 
depending on criteria specified by the user. Such structures may vary from currently 
available FPGA architectures to customized theoretical structures well-suited for a specific 
design(s). This tool can also propose particular cell structures to map logic circuits while 
respecting the user's constraints and insuring the optimization of specific parameters. 

 

 

Keywords: Field Programmable Gate Array, Technology Mapping, Boolean Matching, 
Decomposition, Carry Chain, Cell Configuration. 
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Chapter One 

Introduction 

       

Field Programmable Gate Arrays (FPGAs) are known to have an advantage over 

Application-Specific Integrated Circuits (ASICs) with their ability to implement a wider 

range of applications and designs. Such flexibility is achieved through the presence of a 

large set of programmable interconnects that ensures the connectivity of all FPGA cells. 

However, ensuring such full grid connectivity comes at a compromise of speed, power 

consumption and size, as well as the density of the FPGA’s logic cells. On one hand, 

programmable interconnects introduce delays slowing down critical paths while being 

the main contributors in the total static and dynamic power dissipation. On the other 

hand, the majority of the FPGA’s area is dedicated to its routing resources, which 

reduces the amount of logic components that can fit on that FPGA. As such, increasing 

the FPGA’s size is constrained due to the area consumed by its programmable routing 

connections  [1],  [2]. It is also frequent to face scenarios where a design that does not use 

all the logic cells of a particular FPGA fails to be implemented due to lack of available 

routing resources. 

As such, reducing a design’s utilization of routing resources became a necessity in large 

circuits, small devices or even power constrained applications. As such, compilation 
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tools try to optimize the use of interconnects through various mapping, placement and 

routing algorithms. 

Moreover, minor modifications on the logic cells of the current main FPGAs, such as 

Altera and Xilinx FPGAs, might introduce some important reductions in the power 

consumption, used routing resources, delay, etc. Exploring such possible modifications 

in the current state-of-the-art FPGAs requires the presence of an analytical tool that 

would perform the necessary computations. Such a tool is needed to map main design 

circuits on some modified FPGA cell structures while reporting relevant statistics and 

comparative information.  

Furthermore, designers are limited with the compilation tools of current FPGA 

companies which support their manufactured -in the market- FPGAs. However, 

designers wishing to perform modifications to the internal architecture of the FPGAs’ 

logic cells cannot use such compilation tools to explore the benefits of the new 

architecture on their particular applications. So, such designers find themselves forced to 

implement their own tool trying to simulate the changes in the architecture and their 

respective effects; or to compromise and implement their application on one of the 

available architectures at possible costs of area, power, delay, etc. 

This proposed work comes as a solution to these issues by presenting the designers with 

such an analytical tool that can be customized depending on the user’s requirements. It 

also proposes an enhanced mapping technique that would use some available dedicated 

routing resources to route FPGA cells while reducing the used external routing 

resources, and as such their congestion. 
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The presentation of this work starts by covering the related research in this field, as well 

as any required material for a further understanding of the proposed approaches, in a 

literature review presented in Chapter 2. Then Chapter 3 explains the proposed and used 

approaches such as the Boolean Matching technique and the flexible-structure Boolean 

Matching technique used to map on general structures and particularly on carry-chains 

of Altera Stratix FPGAs. It also proposes some decomposition techniques used to 

enhance whichever used mapping approach. Furthermore, an elaboration and clear 

explanation of an enhanced mapping technique that uses the previously proposed 

approaches and aims on the reduction of routing congestion is proposed in Chapter 4. 

The analytical tool that allows designers to explore modified and new logic cell 

structures is presented in Chapter 5. Then, in order to properly highlight the efficiency 

and benefits of these approaches, Chapter 6 summarizes the major experiments 

conducted and their respective results. Finally, Chapter 7 provides general conclusions 

on the overall work and results, while it also lists possible future work that would 

improve the current techniques. 
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Chapter Two 

Literature Review 

 

2.1 Structure of the Altera Stratix FPGAs 

 

The latest Altera Stratix II, III and IV Field Programmable Gate Arrays (FPGAs) 

are composed of Logic Array Blocks (LABs) where each LAB is built using several 

Adaptive Logic Modules (ALMs)  [3],  [4],  [5]. These ALMs are designed using Look-Up 

Tables (LUTs), multiplexers, adders and registers. Each ALM has 8 inputs and two 

outputs. Its LUTs can be distributed to form two Adaptive LUTs (ALUTs) where each 

ALUT can independently implement a logic function and drive it on one of the outputs. 

The overall ALM can implement any up-to-6-input functions and a subset of 7-input 

functions as well. 

ALMs can operate in four different modes: Normal mode, Extended-LUT mode, 

Arithmetic mode and Shared-Arithmetic mode. The main modes of interest are the 

Normal mode and the Arithmetic mode.  

When in Normal mode, the ALM is used to implement combinational logic functions 

using the LUTs. However, the ALM’s Arithmetic mode is used whenever arithmetic 
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operations need to be performed (such as additions), so it uses the dedicated adders 

along with the carry-chain as shown in Figure 1. 

4-LUT

4-LUT

+

4-LUT

4-LUT

+

Carry-in

Carry-out

datae0

dataf0
datac
datab
dataa

datad
datae1

dataf1

Sum-out

Sum-out

 

Figure 1: Adaptive Logic Module (ALM) in Arithmetic mode 

 

The used carry-chain is a dedicated wire whose main role is to pass the carry-out of a 

previous addition as a carry-in to the current addition without major delays  [6]. Using 

this wire allows a fast propagation of the carry without necessitating the use of any 

external programmable routing resources which are known to be rather slower than a 

hard-wired path.  
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2.2 Altera Quartus Tool 

 

Altera Quartus II is a design tool produced by the Altera Incorporation. This software 

allows designers to synthesize and analyze designs, simulate and conduct some timing 

analysis as well as configuring the device at hand (such as an FPGA or a CPLD) to 

implement a particular circuit or application  [7]. 

Once Quartus performs synthesis and mapping, an option called Verilog Quartus 

Mapping (VQM) Writer can be used to generate an atom-based netlist of logic functions, 

in Verilog. 

This tool takes a digital circuit either as a Verilog/VHDL file or as a Block Diagram file, 

and performs synthesis, mapping, placement and routing. If needed, Quartus can 

generate the mapping netlist of the design in question through the VQM writer option. 

This writer simply lists all the nets generated for a particular design after synthesis and 

mapping, in a text file with the “.vqm” extension. Each net can be expressed in the 

following format (assuming a Stratix II FPGA)  [7]: 
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Stratixii_lcell_comb <lcell_name> 
( 

.dataa (<data_a source>), 
 .datab (<data_b source>), 
 .datac (<data_c source>), 
 .datad (<data_d source>), 
 .datae (<data_e source>), 
 .dataf (<data_f source>), 
 .datag (<data_g source>), 

.cin (<carry in source>), 

.sharedin (<shared function input source>), 
 
.combout (<combinational output>), 
.sumout(<arithmetic sum output>), 
.cout(<carry output>), 
.sharedout(<shared function output>) 

); 
defparam <lcell_name>.lut_mask = <lut mask>; 
defparam <lcell_name>.shared_arith = <on, off>; 
defparam <lcell_name>.extended_lut = <on, off>; 

 

When the logic cell is used in normal mode, one should expect the following format:  

Stratixii_lcell_comb <lcell_name> 
( 

.dataa (<data_a source>), 
 .datab (<data_b source>), 
 .datac (<data_c source>), 
 .datad (<data_d source>), 
 .datae (<data_e source>), 
 .dataf (<data_f source>), 
 .datag (<data_g source>), 

  
.combout (<combinational output>), 

); 
defparam <lcell_name>.lut_mask = <lut mask>; 
defparam <lcell_name>.shared_arith = <on, off>; 
defparam <lcell_name>.extended_lut = <on, off>; 

 

However, when the logic cell is used in Arithmetic mode, one should expect the 

following format:  
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Stratixii_lcell_comb <lcell_name> 
( 

.dataa (<data_a source>), 
 .datab (<data_b source>), 
 .datac (<data_c source>), 
 .datad (<data_d source>), 
 .datae (<data_e source>), 
 .dataf (<data_f source>), 
 .datag (<data_g source>), 

 .cin (<carry in source>), 
  
.sumout(<arithmetic sum output>), 
.cout(<carry output>), 

); 
defparam <lcell_name>.lut_mask = <lut mask>; 
defparam <lcell_name>.shared_arith = <on, off>; 
defparam <lcell_name>.extended_lut = <on, off>; 

 

 

Quartus users can actually perform a reverse process where knowing the format of such 

netlists, a Verilog file can be created to design a particular circuit using such logic cell 

expressions. The Verilog file can be fed back to Quartus as a new design file where 

Quartus would perform the usual flow and implement the designed circuit.  
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2.3 Related Work 

 

Throughout the years, researchers have developed numerous algorithms tackling the 

mapping problem and trying to optimize it  [8],  [9] depending on certain parameters such 

as power minimization  [10],  [11], area and delay  [12]. The area optimization problem 

was proven to be NP-hard when mapping is applied on 4-or-more-input Look-Up Tables 

(LUTs), and as such heuristics needed to be developed in order to properly address such 

an optimization  [13],  [14]. 

Ideas in the same context of the proposed approach, trying to use Boolean Matching 

techniques to optimize the mapping process have been presented. Some proposed a 

Boolean Matching technique for mapping on networks of Programmable Logic Blocks 

(PLBs)  [15], expressing it as a Boolean Satisfiability problem; however their approach 

remained algorithmic since no manipulations on the structure were tried while 

performing the Boolean Matching technique. Others tried to add to the algorithmic 

power some intelligence derived from observed architectural symmetries of the structure 

used  [16]; however, this approach did not venture into configuring the structure at hand 

in order to achieve better mappability. 

 

Some researchers tried to optimize the Boolean Matching technique in general by 

exploring the flexibility added using Don’t Cares which increases the probability of 

finding the function at hand  [17]. A similar idea will be partially explored in one of the 

proposed approaches. 
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Various logic decomposition techniques with respect to technology mapping have been 

also researched trying to optimize the mapping process for either area or delay  [18], 

 [19]. However, such techniques are generating new algorithms to improve mapping of 

logical circuits over current FPGA’s logic cells and with its present normal mode 

architecture.  

 

One attempt of mapping logic functions on the FPGAs’ carry-chain has been tried  [20]; 

however the approach uses the carry-select chains which have been replace by the ripple 

carry-chain in modern FPGAs; and as such, the technique became obsolete.  Another 

approach used the fast carry chains in order to design compressor trees  [21]. 

 

A simplified version of this work has been first proposed as part of a mapping technique 

and a 6-input function decomposition approach, combined with a chaining algorithm, 

trying to map logic functions onto FPGAs’ carry-chains in order to optimize the use of 

routing resources  [22]. It has also been used as a simulation approach to generate data 

for a theoretical proposition of generic logic chains, trying also to reduce the congestion 

of the external routing resources  [23]. 
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Chapter Three 

Generic Boolean Matching Technique 

 

3.1 Cell Configurations 

 

The Adaptive Logic Module (ALM) of the Stratix II-V FPGAs uses the fast carry-chain 

whenever it is operating in arithmetic mode, as shown in its general structure of Figure 

1. Knowing that during the mapping process, each logic function will be typically 

mapped to a half-ALM. This half-ALM consists of two 4 input-LUTs and a multiplexer 

when the ALM is in normal mode as opposed to two 4 input-LUTs and an adder when 

the ALM is in arithmetic mode. 

This general arithmetic structure of the ALM can be configured in various ways; 

however, logically, each adder must be used to implement one function. As such, even 

in the arithmetic mode, each function is mapped onto one set of two LUTs and an adder. 

For simplicity reasons, each half-ALM will be referred to as a logic cell. From Figure 1, 

it is clear that each set of two LUTs can have up to five external inputs while respecting 

the overall constraint of eight inputs per ALM. So in this section, various configurations 

will be explored and the most important and relevant structures will be listed. Each 

structure is a possible configuration of one or multiple logic cells, depending on the 
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structure. The structures are named, for each logic cell, in an X-Y-Z format where X is 

the number of inputs used by the logic cell’s first LUT, Y is the number of inputs used 

by the logic cell’s second LUT and Z is the number of shared inputs between these two 

LUTs. 

 

3.1.1 - Structure 3-3-2 

 

Figure 2: ALM in a 3-3-2 structure 

 

This structure can be configured by forcing the first logic cell to be independent of input 

a (dataa) and the second logic cell of b (datab), as shown in Figure 2. This way, the two 
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logic cells do not share any inputs and as such each one depends on a totally different 

and independent set of five inputs: datab, datac, dataf0 and datae0 for the first logic cell 

and dataa, datad, datae1 and dataf1 for the second logic cell. Therefore, in this 

configuration, both logic cells have a 3-3-2 structure but for simplicity reasons it is 

called the 3-3-2 structure instead of the 3-3-2_3-3-2 structure.  

 

3.1.2 - Structure 4-4-3 

 

Figure 3: Logic cell in a 4-4-3 structure 

 

Figure 3 represents this particular configuration, where inputs a and b (dataa and datab) 

are both dedicated to the same logic cell. As such, the LUTs have an overall of five 

inputs and each one of these LUTs have four inputs with three shared among each other. 

One of the main advantages of this structure, represented in Figure 3, is its ability to map 

up to 6-input functions if the carry-in of the adder is considered as an additional input. 
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However, looking at the two logic cells of the ALM, having a 4-4-3 structure on the first 

logic cell leaves only 3 independent inputs to the second logic cell. In order to properly 

benefit from the ALM and not waste the remaining available resources, the second logic 

cell can be used with a 2-2-1 configuration to map a subset of up-to-4-input functions. 

This 2-2-1 configuration will be presented in details in section 3.1.4. 

 

3.1.3 - Structure 4-4-4 

 

The 4-4-4 structure is very similar to the 4-4-3 structure and can be directly derived from 

it. This configuration can be achieved by having all four inputs of the LUTs of the logic 

cell shared among each other. One can notice from the general structure that three inputs 

of the first LUT are already shared with the second LUT, while each LUT reserves one 

independent input for itself. So in order to derive the 4-4-4 structure, pins e0 and f0 

(datae0 and dataf0) must be assigned to the same input or variable and as such it would 

be considered as if these two pins are actually connected, as shown in Figure 4. For 

example, one possible implementation of a function f(v,w,x,y,z) on the 4-4-4 structure 

can be achieved by: 

• assigning ‘v’ to datae0 

• assigning ‘v’ also to dataf0  

• assigning ‘w’ to datac 

• assigning ‘x’ to datab 

• assigning ‘y’ to data 

• assigning ‘z’ to the Carry-in 
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Figure 4: Half-ALM in a 4-4-4 Structure 

This 4-4-4 structure can map up to 5-input functions. Using this configuration, the 

ALM’s resources are mainly dedicated to one logic cell while the other cell is limited to 

only three inputs. So, an efficient way of using these remaining resources would be to 

force the second logic cell to a 2-2-1 configuration. This 2-2-1 configuration will be 

discussed in details in section 3.1.4.  

 

3.1.4 - Structure 2-2-1  

 

This is a very specific structure that is used whenever the logic cell is limited to only 

three available independent inputs for the LUTs. So in this 2-2-1 configuration, each 

LUT has two inputs, one shared and one independent, as shown in Figure 5. 
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2-LUT

2-LUT

+

Carry-in

Carry-out

datad

datae1

dataf1

Sum-out

 

Figure 5: Half-ALM in a 2-2-1 Structure 

 

This configuration is typically needed for the second logic cell of the ALM when the 

first logic cell is configured as a 4-4-3 or a 4-4-4 structure.  

 

Figure 6: ALM in a 4-4-3_2-2-1 structure 
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In the first case, represented in Figure 6, after using a 4-4-3 structure on the first half 

ALM to map a 6-input function, the ALM is left with three inputs from the LUTs side 

(four if the carry-in is considered). Therefore, in order to properly benefit from the 

second logic cell, a 2-2-1 configuration is used to possibly map up to four-input 

functions. 

 

Similarly, the second case is when the first logic cell is configured using a 4-4-4 

structure where the same scenario occurs, and forcing a 2-2-1 structure on the second 

logic cell allows efficient use of the remaining resources available in the ALM. 

Otherwise, the remaining LUTs and adder are useless and the ALM is partially used. 

 

Figure 7: ALM in a 4-4-4_2-2-1 structure  
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3.2 Boolean Matching Technique 

 

The main idea in this work is to try to efficiently use the already available FPGA’s 

dedicated routing resources such as the carry-chain wire in order to pass output values 

and connect functions. As such, using the carry-chain would optimize and reduce the use 

of the external and programmable routing resources. However, carry-chains are only 

used when the ALMs operate in arithmetic mode. So the ALMs need to be used in 

arithmetic mode, to implement non-arithmetic operations. And by that, the necessity to 

map on the adders arises. Placing the output of one function on the carry-chain through 

the adder’s carry-out, allows the next function to use it as an input through its carry-in, 

as shown in Figure 8. 

 

Figure 8: Carry propagation in arithmetic mode 

However, a limited number of non-arithmetic logic functions can be mapped on the 

logic cell of the ALM’s arithmetic mode. Therefore, the Boolean Matching technique 
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was developed in order to identify the non-arithmetic logic functions that can be mapped 

on such architecture. This section explains in details the approach that was adopted and 

the technique used to specify if a specific function can be mapped on a particular 

configuration of the logic cell in arithmetic mode. 

For simplicity reasons, the technique will be explained on one particular structure, which 

is the 3-3-2 structure; however, the same technique can be applied on the remaining 

structures in a similar way.  

Taking into consideration the carry-in as an additional input, a logic cell can be looked 

at as a 5-input structure. Since the output of each cell needs to be placed on the fast 

carry-chain, the Sum-out of the adder will be disregarded and the carry-out will be the 

main output of the macro cell, as seen in Figure 9. 

 

Figure 9: Logic cell in a 3-3-2 structure 

The presence of the adder in the structure of these macro cells, as well as the 

characteristics of the LUTs (size and shared inputs) limits the number of functions that 

can be mapped to it. A small library was generated in order to identify which functions 
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can be mapped on such a structure and therefore be placed on the fast carry-chain. 

Coming up with this library requires careful analysis of the behavior of the adder and the 

LUTs separately. 

The behavior of the adder is well known; however, one can express the carry-out of this 

adder, which is the output of the Logic Cell, in terms of the adder’s inputs as shown in 

Table 1. If these inputs are equal to each others, the carry-out will be also equal to these 

inputs. However, if the inputs are not equal (i.e. one is the opposite of the other), the 

carry-out will be equal to the value of the carry-in.  

 

 

 

  

 

On the other hand, each of the two LUTs, separately, can implement any function. 

However, the shared two inputs limit their possible outputs, since the output of one LUT 

might depend on the output of the other. So exploring the dependencies between the 

outputs of the LUTs with respect to the four different LUTs’ inputs is an essential step in 

identifying the range of functions that can be mapped onto the structure of the logic cell 

in arithmetic mode. Table 2 lists the states of the LUTs outputs with respect to all 

possible combinations of the inputs. The output of the first LUT (LUT1) depends on the 

inputs i0, i1 and i2 while the output of the second LUT (LUT2) depends on the inputs i0, i1 

A B Carry-in Carry-out 
0 0 0 A 
0 0 1 A 
0 1 0 Cin 
0 1 1 Cin 
1 0 0 Cin 
1 0 1 Cin 
1 1 0 A 
1 1 1 A 

Table 1: Behavior of the Carry-out of the adder 
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and i3. So for example, the state a0 is the output of LUT1 when its inputs are 000, b1 is 

the output of LUT2 when its inputs are 001, etc. Analyzing Table 2, one can notice that it 

can be divided into four different sections where the outputs’ states in each section are 

totally independent of the outputs’ states in any of the other three sections. For example, 

the first section includes states a0, a1, b0 and b1. Furthermore, comparing all four 

sections, it can be also noticed that they have identical state patterns, which means that 

analyzing one section of the list provides sufficient information on all four sections. So 

now, the truth table is reduced to only one section, composed of four variables (the four 

different states of the LUTs outputs).  

i0 i1 i2 i3 LUT1 LUT2 

0 0 0 0 a0 b0 
0 0 0 1 a0 b1 
0 0 1 0 a1 b0 
0 0 1 1 a1 b1 
0 1 0 0 a2 b2 
0 1 0 1 a2 b3 
0 1 1 0 a3 b2 
0 1 1 1 a3 b3 
1 0 0 0 a4 b4 
1 0 0 1 a4 b5 
1 0 1 0 a5 b4 
1 0 1 1 a5 b5 
1 1 0 0 a6 b6 
1 1 0 1 a6 b7 
1 1 1 0 a7 b6 
1 1 1 1 a7 b7 

Table 2: Relation between the LUTs outputs 

Knowing the possible dependencies between the outputs of the LUTs, the last step 

consists of listing the possible values of the carry-out which results from processing the 

outputs of the LUTs along with the carry-in through the adder. Therefore, only the 
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subsequences of the functions that can be mapped to the macro cell structure in 

arithmetic mode are saved. The list of these 24 =16 subsequences is stored in a library 

where each subsequence has a length of 8-bit. These subsequences can be generated by 

listing all possible states’ combinations and passing it, along with the carry-in, through 

the adder by following the adder’s behavior stated in Table 2.  

LUT1 LUT2 Cin Possible output subsequences 
a0 b0 0 0 0 0 0 0 … 
a0 b0 1 0 0 1 1 0 … 
a0 b1 0 0 0 0 0 0 … 
a0 b1 1 0 1 0 1 0 … 
a1 b0 0 0 0 0 0 0 … 
a1 b0 1 0 0 1 1 1 … 
a1 b1 0 0 0 0 0 0 … 
a1 b1 1 0 1 0 1 1 … 

           

Table 3: Generation of possible output subequences 

So now Table 2 can be updated where each state of the LUTs outputs can be replaced by 

actual values of 0 or 1. Thus, for each combination of these state values, along with the 

carry-in, a possible output subsequence can be generated on the carry-out. So whenever 

the outputs of the two LUTs are identical (whether equal to 0 or to 1) the carry-out of the 

adder has the same value as the output of the LUTs; however, if the outputs of the LUTs 

are opposite, the carry-out will be equal to the carry-in. Following this logic, all output 

subsequences can be generated by simply considering all the input combinations. There 

are a total of 16 output subsequences having a length of 8 bits each. Table 3 shows the 
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generation of some subsequences for particular values of the LUT outputs or in other 

words, particular values of the adder’s inputs. 

 

Having any function at hand, this newly created library helps identifying whether or not 

it can be mapped to the half ALM in arithmetic mode and with that, the placement of its 

output on the carry-chain. In order to test the eligibility of any function, its mask (or the 

function’s truth table) must be divided into four parts, where each part must be checked 

against the generated library: 

• If all parts of this function exist in the library, then the function can be mapped to 

the macro cell 

• If at least one part of this function cannot be found in the library, then the 

function cannot be mapped to the structure. 

 

Moreover, it is known that the output sequence of any truth table can change when 

considering a different order of the inputs. So having the truth table of a particular 

function, the probability of mapping that function to the structure might be improved by 

permuting the inputs’ order of this function since it might lead to a new output sequence. 

Applying the Boolean Matching Technique to this new output sequence might allow the 

function to be mapped on the considered logic cell. 

One of the main advantages of this library is that it does not necessitate storing all 32 bit 

long output combinations. Instead, only a small set of sequences with sufficient 
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information is saved, which reduces the memory required for the storage of such 

libraries. 

Finally, as stated earlier, this technique was generalized so that I can support any of the 

configurations listed earlier. 

 

This Boolean Matching technique was first presented in  [22] combined with an effective 

chain-selection algorithm to optimize the use of routing resources. However, at that 

time, the technique was limited to the 3-3-2 structure and could not support various 

configurations. Furthermore, section 3.3 will present an enhancement on this Boolean 

Matching technique so that it supports not only various configurations of the Stratix 

ALMs in arithmetic mode, but also some theoretical structures that has not been 

designed or manufactured yet. This will introduce a higher flexibility and the possibility 

of researching and exploring potential performance improvement through new logic cell 

architectures. 

 

  



 

25 
 

3.3 Flexible Structure Boolean Matching Technique 

 

After coming up with the Boolean Matching Technique to identify the functions 

mappable on particular structures, a generalization of this technique was explored trying 

to cover all possible configurations, realistic or hypothetical. This technique was 

enhanced by allowing a variety of modifications on the used logic cell, while respecting 

the following terms: 

• A general architecture composed of two LUTs whose outputs are feeding a three-

input function has to be respected. 

• Each LUT can have a variable number of inputs independently of the other LUT. 

No upper-bound is set for the LUT’s inputs. For example, assuming that LUT1 

has 5 inputs, LUT2 might have 8 inputs. 

• The total number of shared inputs between the two LUTs is variable and can take 

any value. 

• The adder can be replaced by any three-input function as long as its behavior is 

known. The carry-in can simply be considered as an additional input. 

As long as the new hypothetical structure does not cover and map all functions, the 

enhanced technique uses the same general method to generate a library of mappable 

subsequences, and identifies mappable functions by testing its existence in this newly 

generated library. The testing approach is similar to the previously explained one, except 

that some parameters will differ: 
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• The library’s sequences will change depending on the function used to replace 

the adder. i.e. for the same LUTs parameter, changing the carry-out function by 

another one will change the library’s sequences. 

• The length of the library’s sequences will vary depending on the LUTs number 

of inputs as well as the number of shared inputs 

• The number of partitions, which is the number of times a function is divided to 

generated testable sequences (on a 3-3-2 structure the number of partitions is 4) 

might change depending on the total number of inputs and the length of the 

library’s sequences. 

• The size of the library (i.e. the number of available sequences) would change 

with all parameters, such as the function replacing the adder, the number of 

LUTs inputs and number of shared inputs. 

 

This enhanced mapping technique was embedded in a tool that allows the designer to 

compare various configurations and structures generating relevant information for 

particular specifications and preferences. This tool can also propose a particular 

structure depending on the user’s design and priorities for some predefined parameters. 

This tool is presented in details in Chapter 5. 

On a side note, this technique is limited by the structure at hand. This means that if the 

structure can support a maximum of 5 inputs, the Boolean Matching technique cannot 

map 6-or-more-input functions. Furthermore, if a 5-input function cannot be mapped 
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using the Boolean Matching technique, this function is labeled as ‘unmappable’ and 

nothing is further done to try and map it.  

For this purpose, decomposition techniques were proposed so that unmappable functions 

(rejected by the Boolean Matching Technique or having a structure-unsupported number 

of inputs) can be decomposed into two functions that might be mappable. These 

decomposition techniques will be discussed in details in section 3.4. 
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3.4 Decomposition Techniques 

 

Decomposition techniques became a necessity once statistics were generated over 

common benchmarks and where a substantial number of logic functions were found to 

be unmappable on the various configurations of the ALMs’ arithmetic mode of the 

Altera’s Stratix FPGA.  

So if the function cannot be mapped, as is, then decomposing it into two functions, while 

maintaining its overall logical behavior, might actually map it. Two different 

decomposition techniques were adopted depending on the nature of the function: the 

decomposition of 6-input functions and the decomposition of 5-and-less-input functions. 

 

3.4.1 - Decomposition of 6-input functions 

 

As seen in the section 3.1, 6-input functions can only be mapped on a 4-4-3 structure 

when mapping is performed on ALMs in arithmetic mode. However, statistics showed 

that for the used MCNC benchmarks, a small set of these 6-input functions can be 

actually mapped on the 4-4-3 configuration. So a decomposition technique was 

developed, trying to map as many 6-input functions as possible.  

This technique takes a 6-input function and tries to decompose it into two 5-or-less-input 

functions while maintaining the same overall logical behavior. Assuming that the 

function to be decomposed is f, the idea is to find two functions f1 and f2 such that f1 
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would be mapped on the first logic cell of the ALM with its output placed on the carry-

chain through the carry-out. f2 is placed on the second logic cell, taking f1 as an 

additional input through the carry-in while its output is placed on the carry-chain, 

through the carry-out of the second logic cell. Choosing f1 and f2 should abide to the 

following conditions: 

• f1 should be independent of one of the function’s 6 inputs. 

• f1 should be mappable on a logic cell with a 3-3-2 configuration. 

• f2 should be independent of two inputs: 

 The input that f1 is using as carry-in 

 One of the function’s 6 inputs, as long as it is not the same input f1 is 

independent of. 

• f2 should be mappable on one 3-3-2 structured logic cell with f1 being the input 

placed on the carry-chain.  

Assuming that the 6-input function is ݂ ൌ ,ݑሺܨ ,ݒ ,ݓ ,ݔ ,ݕ  ሻ then one possible set ofݖ

ሼ݂1, ݂2ሽ could be: 

൜݂1 ൌ ,ݑሺܨ ,ݒ ,ݓ ,ݔ   ሻݕ
݂2 ൌ ,ݑሺܨ ,ݒ ,ݓ ,ݖ ݂1ሻ 

 

The decomposition of the 6-input functions and the process of finding f1 and f2 is 

represented in details in the diagram of Figure 10. Note that f_ind_i and f_ind_j are 

functions derived from f and independent of the inputs i and j respectively. Since these 

independent functions are derived from a 6-input function, they depend on a maximum 
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of 5 inputs. Before ORing the two functions, common minterms between functions f1 

and f2 are set as Don’t Cares in function f2 since these minterms exist in both functions 

which will be later on ORed. So changing these minterms to DC introduces more 

flexibility to function f2 and, as such, increases its probability of being mapped. 

 

 

Figure 10: 6-input function decomposition process 
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Now, adding the conditions of having f1 and f2 mappable on the 3-3-2 structure, the 

decomposition and mapping process can be represented as shown in Figure 11. If one 

possible decomposition (i.e. one set of {f1, f2}) turned out to be unmappable, new 

decompositions are tried through exploration of more {f1, f2} sets by changing the 

inputs from which the independent functions are derived. Figure 11 explains this process 

in details. 
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Figure 11: 6-input function decomposition and mapping process 
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3.4.2 - Decomposition of 5-and-less-input functions 

 

Several possible configurations have up to 5 inputs (such as 3-3-2, 4-4-4 and 4-2-2 

configurations) and as such can implement a large set of 5-and-less input functions. 

However, some functions still cannot be mapped on any of these structures. So a 

decomposition technique was developed as a way to map such unmappable functions.  

In this section, all encounters of the term ‘function’ would be a reference to the 5-and-

less-input functions since this decomposition technique is only used on such functions. 

So this decomposition approach divides any function f into two functions f1 and f2, in 

such a way that: 

• f1 is a 5-or-less-input function. 

• f2 is also a 5-or-less-input function.  

• If the initial function f is an X-input function, then f2 should have up to X-1 

inputs out of the X-inputs, where the omitted input should be the one placed on 

the carry-in in f1. One additional input of f2 should be f1. 

Assuming that the function to be decomposed is ݂ ൌ ,ݒሺܨ ,ݓ ,ݔ ,ݕ  ሻ and that z was theݖ

input placed on the carry-in of the function f1, then one possible set of ሼ݂1, ݂2ሽ could 

be: 

൜݂1 ൌ ,ݒሺܨ ,ݓ ,ݔ ,ݕ   ሻݖ
݂2 ൌ ,ݓ,ݒሺܨ ,ݔ ,ݕ ݂1ሻ 
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Now this function f needs to be mapped on the ALM in arithmetic mode. So, each of f1 

and f2 should be mapped on one logic cell; while the output of f1 is passed onto f2 

through the carry-out carry-in connection. To be able to successfully decompose f and 

map both f1 and f2, four additional conditions need to be satisfied: 

• f1 should be mappable on the logic cell with the 3-3-2 configuration. 

• f2 should also be mappable on the logic cell with the 3-3-2 configuration. 

• f2 should be mappable with f1 being the input read from the carry-in. 

• f2 should be independent of the input that f1 uses as carry-in. 

 

Adding some intelligence to the decomposition, this technique starts from an initially 

known-to-be-mappable function f1. Using this f1, it tries to derive f2 while insuring the 

overall logical behavior of the function f. To do so, f2 has to be a function of f1and up to 

four other inputs of f. Figure 12 lists in details the steps to be followed in order to 

successfully decompose and map such functions. 
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Figure 12: 5-and-less-input functions decomposition and mapping process 
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Furthermore, the complexity and performance of this decomposition technique can be 

enhanced using some previous knowledge of the library used to perform Boolean 

matching. Instead of decomposing the function and then checking whether the newly 

generated functions can be mapped or not, Boolean matching is somehow embedded 

inside the decomposition technique so that it would only decompose if that ensures 

mappability. 

Starting from an initially known function f1, the technique should exhaustively try all 

possible mappable functions as f1. That is a complex and time consuming procedure. So 

the adopted alternative is the improved approach of Figure 13. In this approach, the 

function is first partitioned into segments as if it is being subjected to the Boolean 

matching technique. Then for each partition/segment, decomposition is applied using the 

library’s subsequences as the first sub-functions on which decomposition is based. This 

approach can be further explained as follows: 

• The function f can be divided into four partitions similar to the process used 

during the Boolean Matching technique. Each partition or sequence of f shall be 

called P_f. 

• For every P_f the library is searched: 

 Every sequence in the matrix is considered as a partition of f1 (known as 

P_f1) and the process tries to derive a partition of f2 (P_f2) using P_f1.  

 P_f2 is derived as a partial function that has the same logical behavior as 

the partial function P_f. The inputs of P_f2 can be all the inputs of f 

except the one used as carry-in in f1. P_f2 also uses P_f1 as an additional 
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input. The derivation of P_f2 might not always be feasible since it might 

depend on unused inputs (such as f1’s input which was used as carry-in). 

 If P_f2 was successfully derived, the technique will then verify its 

mappability on the the 3-3-2 configuration by performing the normal 

Boolean Matching technique over one partition. In other words, the 

library is searched for the existence of P_f2 since finding it in the library 

signals its mappability. 

 If one P_f2 was successfully derived and mapped, the technique would 

have found, for this partition, at least one set of {P_f1, P_f2} that 

generates P_f. As such, it starts applying the same process on the 

remaining partitions. 

• If for one P_f the technique was not able to find any set of {P_f1, P_f2} that 

would generate P_f, then the entire function f cannot be mapped. This is due to 

the fact that even if the entire f1 and f2 are derived, the Boolean Matching 

technique will not be able to map it on the 3-3-2 structure since, for at least one 

partition, their respective sequences were found to be unmappable. 

• If, for each partition, the technique was able to find at least one set of {P_f1, 

P_f2} that would generate P_f, then the function f can be successfully mapped on 

two logic cells with 3-3-2 structures. So now f is mapped through its 

decompositions {f1, f2} where f1 is mapped on the first logic cell with its output 

generated through the carry-out, while f2 is mapped on the second logic cell 

using f1 as an input through the carry-in. 
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 In order to generate f2, a reverse process must be performed, where the 

successfully derived sequences of P_f2, for all partitions, are joined to 

form the required f2. As similar process is applied to derive f1. 

 

Figure 13: Improved decomposition of 5-and-less-input functions 
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Chapter Four 

Enhanced Mapping Technique using the 

Generic Boolean Matching 

 

This chapter proposes an enhanced mapping approach for the Altera Stratix Field 

Programmable Gate Arrays (FPGAs), using the so-called Generic Boolean Matching 

technique which performs mapping on flexible structure configurations while using the 

decomposition processes. 

This technique aims on mapping logic non-arithmetic functions on FPGAs while using 

the Adaptive Logic Modules (ALMs) in arithmetic mode instead of the typical normal 

mode. This approach tries to propagate non-arithmetic outputs and connect logic cells 

using the hard-wired carry-chain which is already implemented in the ALM but only 

used while performing arithmetic operations,. Mapping non-arithmetic operations on the 

carry-chains routes functions without using the external routing resources, which 

reduces the congestion on the programmable interconnects, power dissipation, etc. 

 

Altera uses the Quartus II tool to perform synthesis, mapping, placement and routing of 

any design, before implementing it on the FPGA. However, since only the mapping 
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process of synthesized functions is of interest and a comparison between the proposed 

approach and the currently used mapping technique is needed, Quartus will be used to 

perform the synthesis, placement and routing only, as shown in the diagram of Figure 

14. 

 

Figure 14: Modified flow of compilation phases 

 

However, the proposed mapping technique does not directly map synthesized functions 

but relies on Quartus’ mapping instead. In other words, this technique requires Quartus 

to perform synthesis and mapping, after which it parses the mapped cells and tries to 

remap it using the new approach. So the previous diagram can somehow be updated as 

shown in Figure 15. 

Routing (Quartus)

Placement (Quartus)

Our Enhanced Mapping Technique

Synthesis (Quartus)
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Figure 15: Updated tool flow 

 

So this approach starts by parsing Quartus’ mapping netlist and locating the 

benchmark’s functions. Then for each function, the technique tries to map it on the one 

half-ALM in arithmetic mode. It might even try to map the selected function on several 

configurations of the logic cell depending on the function’s nature and number of used 

inputs. Once decisions have been reached for all available functions in the design, a new 

mapping netlist is generated and returned back to Quartus to perform placement and 

routing. 

The detailed flow diagram can be found in Figure 16. 

Routing (Quartus)

Placement (Quartus)

Our Enhanced Mapping Technique

Mapping (Quartus)

Synthesis (Quartus)
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Figure 16: Detailed flow diagram 

 

4.1 Netlist Parser (VQM Parser) 

 

Once Quartus performs synthesis and mapping, an option called Verilog Quartus 

Mapping (VQM) Writer can be used to generate an atom-based netlist of logic functions, 

in Verilog.  

The approach starts by parsing the vqm file generated through Quartus after synthesis 

and mapping. This parser creates a list of extracted functions along with their respective 

inputs and truth table. Each extracted function can have between two inputs and seven 

inputs. Once the functions are listed, a Data Flow Graph (DFG) is created, keeping track 

Routing (Quartus)

Placement (Quartus)

Netlist Regeneration

Mapping decisions using the new approach

Functions Identification  using the netlist parser

Mapping (Quartus)

Synthesis (Quartus)
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of the function’s successors and predecessors. Successors to a current operation are 

simply functions using the current output as an input. As such, the current operation 

becomes a predecessor to those functions.  

 

4.2 The Enhanced Mapping Process 

 

Traversing the DFG, every function is extracted separately and subjected to the mapping 

process. The Flexible-Structure Boolean matching technique that was presented in 

Chapter 3 tries to map each function on various structures depending on the function’s 

number of inputs and truth table. If the function cannot be mapped on some selected 

structures, decomposition is performed.  

In order to study this mapping technique in details, it must be divided into three sections, 

each presenting one approach depending on the function’s number of inputs. These 

sections were selected knowing that the number of inputs of the DFG’s functions range 

between 2 and 7 inputs. 

 

4.2.1 - 7-input functions approach 

 

These 7-input functions are rather rare to encounter and are usually mapped using the 

‘Extended-LUT’ mode. As such, the impact of these functions on the generated statistics 
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and overall improvement is rather negligible. So at this stage, the proposed mapping 

technique will not map such functions on the ALM’s arithmetic mode but instead, it will 

simply keep it as is and map it eventually on the ALM in extended-LUT mode. 

 

4.2.2 - 6-input functions approach 

 

Since the flexible-structure mapping technique is used, functions can be mapped on any 

of the realistic configurations of the logic cells of the ALM in arithmetic mode, as listed 

in Chapter 3. However, the only configuration that supports 6-input functions is the 4-4-

3 structure of Figure 3.  

So the approach tries to map a selected 6-input function f on the 4-4-3 configuration 

using the flexible-structure mapping technique. If f is not mappable, then the 6-input 

function decomposition technique is used to decompose it into two 5-or-less-input 

functions. If both techniques fail to map the selected function, then the approach 

renounces on trying to map it on the ALM in arithmetic mode and thus the typical 

normal mode is used.  

However, in the case where f is mappable on the 4-4-3 configuration then the approach 

explores its successors trying to find one that can be successfully mapped on a 2-2-1 

configuration while using f through the carry-in pin. If such a successor is found, the 

ALM will be used in a 4-4-3_2-2-1 configuration reducing the number of logic cells 

needed to map these two functions. That is due to the fact that, whenever in normal 
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mode, mapping a 6-input function uses 2 logic cells (an entire ALM), while now only 

one logic cell (half-ALM) is needed for mapping that same function. On the other hand, 

even if no successor is successfully mapped on the 2-2-1 configuration, the function f 

will still be mapped on the 4-4-3 structure. However, in this case, the ALM is underused 

and its second logic cell will be only passing the carry value without performing any 

useful operation.  

The diagram in Figure 17 illustrates the steps to be followed when applying this 

approach. 
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Figure 17: 6-input functions mapping process 
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4.2.3 - 5-and-less-input functions approach 

 

This approach covers all functions having a number of inputs between 2 and 5. It tries to 

map the function f on configurations supporting five independent inputs. Several 

structures are tried during the mapping process of each function, depending on the 

configuration’s priority. These priorities are pre-specified depending on the cost each 

configuration introduces, in such a way that a configurations’ priority decreases as its 

cost increases.  

Two structure configurations, as well as the decomposition technique, will be tried 

depending on the following priorities: 

I. The 3-3-2 structure: This structure has the highest priority since it allows 

mapping two up-to-5-input functions, each on one logic cell without any 

overhead or loss. If a function can be mapped using this configuration, no other 

trials are necessary. 

II. The 4-4-4 structure: Experiments proved that this configuration can map a much 

higher percentage of functions than any other structure. However, such 

mappability comes at the cost of having the second logic cell forced to a 2-2-1 

structure which can map a rather small subset of up-to-4-input functions. When 

no functions are found to be mapped on the 2-2-1 structure, the 4-4-4 

configuration consumes the entire ALM, introducing a loss of one half-ALM or 

logic cell. 
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III. Decomposition: The decomposition technique is the final option that is only used 

when mapping on the two previous configurations fails. This method has the 

least priority since it always introduces an overhead of an increase in the used 

logic cells since for every decomposed function, and entire ALM is needed (two 

logic cells, one for each of f1 and f2). 

 

Therefore, initially, the technique tries to map the selected function f on a 3-3-2 

structure. If it is not successfully mapped, the 4-4-4 structure is tried next. If f can be 

mapped on this 4-4-4 configuration, then successors are searched for one that can be 

mapped on a 2-2-1 with f being the input on its carry-in, in order to form a 4-4-4_2-2-1 

ALM configuration. 

However, if the selected function f cannot be mapped on any of the previous 

configurations, decomposition is performed using the 5-or-less-input function 

decomposition technique. 

When all these steps fail, the approach stops trying to map f using the arithmetic mode, 

and as such it remains mapped using the normal mode. 

 

The diagram of Figure 18 properly visualizes the steps followed in this approach. 
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Figure 18: 5-or-less-input functions mapping process 
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4.3 Regeneration of the mapping netlist 

 

Once mapping decisions have been reached for all functions of the DFG, a new mapping 

netlist is generated in order to reflect the new changes and mapping preferences of every 

function.  

The generation of the new mapping netlist (or vqm file) must respect the following 

guidelines: 

• The general interface should remain identical to the initial vqm file, such as 

entity declaration, inputs, outputs, wires, etc. 

• All 7-input functions and functions that were not successfully mapped must be 

declared using the normal mode, as in the initial vqm. 

• The declaration of the functions successfully mapped using the arithmetic mode 

must be changed so that: 

o The selected input is placed on the carry-in. 

o The output is generated on the carry-out. 

o The mask is changed to properly represent the function at hand. 

o The ALM pins used to convey the inputs must be precised depending on 

the configuration used to map the function. 

• If decomposition is used, the following modifications should be performed: 

o Update the function’s declaration so that it becomes the declaration of 

the first sub-function (f1), by changing the mask and the used inputs. 
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o A new cell declaration must be added to represent the second sub-

function (f2). 

 The carry-in is the output of f1. 

 The carry-out is a new wire added to the file. 

 The mask reflects the logical behavior of f2. 

 The inputs are the ones used for f2. 

o All successors of the decomposed function f must be updated so that they 

use the output of f2 instead of f. 

 

It might be relevant to mention that in this mapping technique, all available functions are 

tested for potential mappability using the arithmetic mode of the ALMs. Whenever such 

mappability is achieved, the function is mapped onto the carry-chain. This process is 

done opportunistically so that every chance of mappability is seized. However, that 

might not be the optimal way of mapping onto carry-chains if the overall objective is to 

maximize the reduction of used routing resources while maintaining the area overhead 

under control. In such cases, it might be more efficient to use some algorithmic 

intelligence to choose the functions that will be placed onto the chains, since, as the 

experimental results proved, routing and placement might add some more area overhead 

to the original overhead resulting from the mapping process.  
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Chapter Five 

A Generic Software Platform 

 

Combining all the previously proposed techniques and approaches one final tool 

was generated exploiting the flexibility of the structures on which these techniques are 

applied. This generic software platform can analyze, test various basic-unit structures 

and compare their performances on particular logic circuits depending on criteria 

specified by the user. Such structures may vary from currently available FPGA 

architectures to customized theoretical structures well-suited for a specific design(s). 

This tool can also propose particular cell structures to map logic circuits while 

respecting the user's constraints and insuring the optimization of specific parameters. 

 

5.1 The need for such platform 

  

It is previewed that this tool will be useful for two main parties: 

I. Current FPGA companies’ designers, especially Altera’s since the main idea was 

proposed as an enhancement on its Stratix FPGAs. This tool will allow these 

designers to explore either minor or major modifications onto the current logic 

cells architectures and compare these new architectures to the already 
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implemented ones looking for improvements in mappability, area, routing or any 

other preferred parameters.   

II. Designers searching for logic cells’ architectures that would best implement their 

designs or applications while optimizing some personally defined parameters. 

The search for such architectures does not have to be limited to the logic cells of 

devices currently available in the market but can also be extended to hypothetical 

logic cells with user-specified architectures. 

 

5.2 The tool’s capabilities 

 

This tool is based on one main structure shown in Figure 19, to which all flexibility 

measures were added allowing it to cover a wide range of possible configurations and 

modified/new architectures. 

 

Figure 19: Tool's base configuration 
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The added flexibility to this base configuration can be performed at different levels 

where users can either select one flexibility level, multiple or even all levels during a 

single use. These levels can be quantified as follows: 

1. The LUTs can have a variable and unlimited number of inputs as illustrated in 

Figure 20. 

k-LUT

k-LUT

3-input 
function

i1
i2

ik

j1
j2

jk
 

Figure 20: Configuration with k-input LUTs 

 

2. The sizes of the LUT can be totally uncorrelated, where each LUT can have a 

different size (or number of inputs) independently of the second LUT, as shown 

in Figure 21. 

 

Figure 21: Configuration with variable-input LUTs (k1, k2) 
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3. The two LUTs can share inputs. The number of shared inputs can vary 

depending on the configuration, as long as it does not exceed the logical 

maximum, which is the minimum number of inputs the LUTs are using. This 

flexibility level is represented using Figure 22. 

 

 

Figure 22: Configuration with k-input LUTs and n shared inputs 

 

4. The 3-input function can perform any 3-input logical operation. The user is 

allowed to specify the behavior of this component by simply providing its truth 

table. 

 

So if all flexibility levels are combined together, one would end up with a configuration 

of unbounded variable-input LUTs, with the possibility of having ‘n’ shared inputs, and 

any three input combinational function taking as inputs the outputs of the LUTs and an 

additional external input. This configuration is illustrated in Figure 23. 
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Figure 23: Fully flexible configuration 

 

5.3 User’s options 

 

This tool allows to the user to perform a wide range of operations depending on his/her 

goals and objectives. However, the user is required to specify the configuration(s) on 

which the designs need to be tested, through a set of parameters. 

 

5.3.1 - User-specified Parameters 

  

Depending on the purpose of the conducted experiments, the user has to specify some 

parameters that would identify the objective and/or configuration(s) required. These 

parameters are: 

• The first LUT’s number of inputs ‘k1’. 
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• The second LUT’s number of inputs ‘k2’. 

• The number of shared inputs ‘n’. 

• The logical behavior of the three input function used (by providing its truth 

table). 

• The objective(s) of the conducted experiment (one or more can be chosen): 

 Verifying mappability of functions on the chosen basic-unit structure. 

 Measuring the amount of used routing resources and its related 

congestion. 

 Quantifying the area needed to map a particular design on a particular 

structure. 

 

5.3.2 - Modes of operation 

 

Once the parameters have been chosen, users have to choose a mode of operation 

depending on their objectives. The chosen mode of operation will reflect the designer’s 

end goal, as well as the analysis/conclusions that need to be derived from the 

experiment. The available modes of operation can be listed as follows: 

 Mode 1: In this mode, the used structure has fixed overall configuration. In other 

terms, the LUTs’ characteristics k1, k2 and n are chosen by the user as well as 

the 3-input function’s behavior. This mode can be selected whenever the 

designer wishes to map a specific circuit on a particular architecture. Statistics 

can be generated, as always, for the chosen objectives, such as percent 



 

58 
 

mappability, area used by the circuit, etc. This mode can help designers assess 

the efficiency and performance of newly designed basic-unit structures. 

 

 Mode 2: In this mode, the structure used is partially fixed in a way that the 

LUTs’ characteristics k1, k2 and n must be predetermined and specified by the 

user. However, the tool tries all 256 possible 3-input functions (2ଶయ ൌ 2଼ ൌ 256ሻ 

and then reports statistics depending on the user selected objectives. This mode is 

useful when designers wish to perform some modifications on the currently 

available structures, trying to improve their performance. 

 

 Mode 3: The structure, on which functions are mapped in this mode, has full 

LUTs flexibility while the 3-input function is predetermined by the user. So for a 

specific logical behavior at the output of the LUTs, the tool will try all possible 

LUT configurations by varying k1, k2 and n. Then it will report the configuration 

that best suits the designer’s preferences. However, trying to reduce the runtime 

of the experiments, it is preferred to set a range from which k1, k2 and n can take 

their values. This mode was mainly used when exploring various configurations 

of the Stratix FPGAs logic cells, such as the 3-3-2, 4-4-3 and 2-2-1 structures 

while applying the enhanced mapping technique.  

 

 Mode 4: This is a combination of modes 2 and 3, where the structure preserves it 

full flexibility. All 256 possible 3-input functions are tried at the outputs of the 

LUTs, while for every 3-input function selected, all possible LUT configurations 
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are explored by varying the values of k1, k2 and n (again with a specified range 

of possible values). It is important to note that this mode is very exhaustive and 

has a rather high runtime. However, this mode would reveal most useful when 

designers desire to widen the scope of their research and explore various possible 

modifications to available structures in FPGAs or even new out of the scope 

configurations.  

 

 Mode 5: This mode takes two specific structures with particular configurations 

and compares these configurations according to some user-specified parameters. 

This mode can even map particular designs on both structures and then choose 

which structure is optimal for the user’s application depending again on the 

user’s priority and preferred optimality parameters. This particular mode enables 

designers to compare either two FPGA available structures trying to choose the 

one that better suits the application at hand, or to compare a totally theoretical 

structure with one that already exists for possible improvement in the current 

FPGA’s architecture; or even, to compare two totally new hypothetical 

configurations, trying to choose which one maps the desired circuit with the most 

optimized designer-specific parameters.  

Going back to the importance of such a tool to the potential users, the modes can be 

distributed in terms of the respective interest of each of the two main parties listed 

earlier, as follows: 

I. Current FPGA companies’ designers would be mainly interested in modes 1, 2, 3 

and 5 where the tool allows them, through these modes, to explore minor 
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modifications on the logic cells used in their current respective FPGAs. It also 

helps them collect data and analyze statistics of high priorities, such as the 

routing resources congestion, total area used, etc. The tool also enables them to 

compare the performance of their currently used structures and the newly 

modified ones, helping them assess the importance of any modification. 

 

II. Designers searching for logic cells’ architectures that would best implement their 

circuits would probably be interested in all modes but mainly in modes 4 and 5. 

On one hand, mode 4 allows such designers to search a wide configuration space 

for a basic-unit structure that suits their preferences and specific applications 

with a minimized cost. Such a wide exploration might cover available FPGA’s 

logic cells as well as hypothetical and purely theoretical structures. On the other 

hand, mode 5 allows those users to specifically choose two architectures and 

compare them according to some personally defined parameters. The two 

comparable architectures can be of two currently available FPGA cells, or two 

hypothetical basic-unit structures or even a combination of both.  

All of these options provide the users with a high flexibility software platform that 

directly answers to their individual needs and preferences.  
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Chapter Six 

Experimental Results 

 

Several sets of experiments were conducted to properly reflect the benefits and 

improvement achieved through the various techniques and approaches proposed in this 

work. First, an overview of the benchmarks used will the presented highlighting each 

benchmark’s characteristics. Then results of the mapping techniques applied will be 

listed along with data collected and analysis performed using the software platform. 

   

6.1 Used Benchmarks 

 

Experiments were conducted using the MCNC benchmarks, and more precisely, the Big 

20 benchmarks. These benchmarks are known as the most used for conducting research 

experiments on new FPGA architectures and technologies. 

As it is called, this set of benchmarks consists of 20 circuits distributed between 

combinational and sequential logic files. However since the proposed enhanced mapping 

technique and software platform support only combinational functions, experiments will 

be conducted using only combinational benchmarks. 
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Table 4 lists the used combinational benchmarks out of the big 20 and provides, for 

every benchmark the total number of used Adaptive Logic Modules (ALMs) after 

compiling it using the Altera Quartus II tool on a Stratix II FPGA. It also provides, for 

each benchmark the total number of interconnects used after Quartus’ synthesis, 

mapping, placement and routing process.  

Benchmark Number of used  
ALMs 

Number of used 
Interconnects 

ex5p 197 3173 

alu4 311 2978 

apex4 362 4872 

apex2 401 4042 

seq 428 4713 

ex1010 479 5084 

spla 938 11303 

pdc 968 11194 

Table 4: Benchmarks' characteristics 

The benchmarks in all statistics and experimental results will be listed in ascending 

order of the number of used ALMs after Quartus’ compilation, as shown in Table 4. 

 

Once the benchmark has been compiled using Quartus, the mapping netlist files can be 

parsed looking for synthesized logic function that would be mapped on logic cells. Such 

functions can have variable inputs ranging between two and seven. Table 5 provides the 

distribution of such functions for every benchmark. This means that, again for every 
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benchmark used, Table 5 lists the number of X-input functions available where X varies 

between two and seven. 

 

Benchmark Total 
functions 

7-input 
functions 

6-input 
functions 

5-input 
functions 

4-input 
functions 

3-input 
functions 

2-input 
functions 

ex5p 344 1 44 128 68 59 44 

alu4 542 5 74 229 76 91 67 

apex4 606 1 120 237 101 101 46 

apex2 668 2 128 251 111 103 73 

seq 718 1 128 289 125 108 67 

ex1010 733 5 208 288 122 67 43 

spla 1524 6 285 561 253 196 223 

pdc 1535 16 319 593 263 180 164 

TOTAL 6670 37 1306 2576 1119 905 727 

Table 5: Distribution of functions in every benchmark 
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6.2 Conducted Experiments 

 

Several experiments have been conducted to simulate various cell configurations and 

test the enhanced mapping technique that was proposed. Some experiments were also 

conducted, using the proposed tool, for the sake of exploring wide ranges of cell 

configurations, new and previously available, where a comparison has been developed 

depending on some comparable parameters. 

 

6.2.1 - Enhanced Mapping Technique’s experimental results 

 

In order to measure the performance of the new enhanced mapping technique and 

properly compare it to the currently used mapping process, the following experiments 

were preformed in order to generate respective data and statistics. These experiments 

were conducted using the previously specified MCNC benchmarks. 

For each experiment and each benchmark, Quartus performs synthesis and mapping then 

the logic cell functions are extracted from the mapping netlist using the vqm parser. 

After that, the mapping technique is applied; a new netlist file is generated and fed back 

to quartus to perform placement and routing. Statistical data are extracted from both the 

mapping technique and Quartus.  
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Under this section, two different experiments were conducted following the same 

procedure; however differing in the specifications of the enhanced mapping technique. 

I. The enhanced mapping technique is used with all its options as stated in Chapter 

4; however, the decomposition of 5-or-less-input functions is not performed. In 

other words, if a 5-or-less-input function cannot be mapped on the 3-3-2 

structure or on the 4-4-4 structure, then the function will not be mapped on the 

logic cell in arithmetic mode, but instead it will be mapped using the normal 

mode. 

II. The enhanced mapping technique is used with all its options including the 

decomposition of 5-or-less-input functions. 

 

Results of the enhanced mapping technique-experiment I (EMT-I) are presented in Table 

6 and Table 7. Its respective comparative charts are illustrated in Figure 24 and Figure 

25. 
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Benchmark 
-Normal Mode- 
Number of used 

interconnects  

-Arithmetic mode- 
Number of used 

interconnects 

Percent 
improvement 

(decrease in used 
interconnects) 

ex5p 3173 1989 37.31% 

alu4 2978 2604 12.56% 

apex4 4872 3677 24.53% 

apex2 4042 3921 2.99% 

seq 4713 4254 9.74% 

ex1010 5084 4628 8.97% 

spla 11303 10576 6.43% 

pdc 11194 10531 5.92% 

Maximum percent improvement 37.31% 

Average percent improvement 13.56% 

Minimum percent improvement 2.99% 

Table 6: Experimental results of used interconnects after applying EMT-I 

 
Figure 24: Representation of the improvement in used interconnects for EMTI 
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Benchmark 
-Normal Mode- 
Number of used 

ALMs  

-Arithmetic mode- 
Number of used 

ALMs 

Percent overhead 
(increase in used 

ALMs) 

ex5p 197 320 62.44% 

alu4 311 378 21.54% 

apex4 362 424 17.13% 

apex2 401 540 34.66% 

seq 428 523 22.2% 

ex1010 479 550 14.82% 

spla 938 1446 54.16% 

pdc 968 1496 54.55% 

Maximum percent overhead 62.44% 

Average percent overhead 35.19% 

Minimum percent overhead 14.82% 

Table 7: Experimental results of used ALMs after applying EMT-I 

 
 

 

Figure 25: Representation of the overhead in used ALMs for EMTI 
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Since the enhanced mapping technique aims on reducing the number of used routing 

resources and the overall routing congestion by mapping using the arithmetic mode, the 

experiment measures the total number of used interconnects and compares it with the 

interconnects used while mapping using the normal mode.  

This enhanced mapping technique (experiment I) achieves a reduction in the used 

interconnects with an average of 13.56% and a maximum of 37.31%, by mapping mom-

arithmetic functions on the arithmetic mode instead of the normal mode. 

However, and as expected, this reduction in the used routing resources is achieved at the 

expense of an increase in the number of used ALMs. Such an increase is acceptable 

since the area dedicated for routing resources is much larger than the one dedicated for 

logic components, so a decrease in overall used routing resources means a large area 

reduction. Nevertheless, one should keep in mind that the reported number of used 

ALMs is not highly accurate since these ALMs might be only partially used. 

 

Results of the enhanced mapping technique-experiment II (EMT-II) are presented in 

Table 8 and Table 9. Their respective comparative charts are illustrated in Figure 26 and 

Figure 27. 
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Benchmark 
-Normal Mode- 
Number of used 

interconnects  

-Arithmetic mode- 
Number of used 

interconnects 

Percent 
improvement 

(decrease in used 
interconnects) 

ex5p 3173 2502 21.15% 

alu4 2978 3161 - 6.15% 

apex4 4872 3785 22.31% 

apex2 4042 4297 -6.31% 

seq 4713 4734 -0.45% 

ex1010 5084 5359 -5.41% 

spla 11303 6111 45.93% 

pdc 11194 5435 51.45% 

Maximum percent improvement 54.45% 

Average percent improvement 15.32% 

Minimum percent improvement -6.31% 

Maximum percent improvement over benchmarks with 
improvement 54.45% 

Average percent improvement over benchmarks with 
improvement 31.25% 

Minimum percent improvement over benchmarks with 
improvement 21.15% 

Table 8: Experimental results of used interconnects after applying EMT-II 
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Figure 26: Representation of the improvement in used interconnects for EMTII 

The results of this experiment are rather different that the ones of experiment I.  

As shown in Table 8, the effect of decomposition on the overall used routing resources 

was not systematic or predictable. For some benchmarks the percent reduction in the 

used interconnects was the highest seen so far; however, for other benchmarks, the 

number of used interconnects increased after decomposition. This un-expected increase 

is to a certain extend the result of doubling the number of used logic cells per function 

during decomposition. Delivering inputs on all logic cells can be one contributor to the 

increase in the used external routing resources. Another reason for such an increase is 

due to Quartus’ added logic cells to pass on the carry-out (onto the carry-chain) 

whenever a chain of functions has been interrupted. 

Studying the reasons for these increases and understanding it might help as a future 

work in improving the performance of decomposition. 
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When only improvement cases are considered, the decrease of used routing resources is 

rather high and one major observation is that the improvement was mainly achieve on 

large benchmarks. 

Such improvement, as before, introduces an overhead in the number of (partially or 

fully) used ALMs as shown in Table 8. 

 

Benchmark 
-Normal Mode- 
Number of used 

ALMs  

-Arithmetic mode- 
Number of used 

ALMs 

Percent overhead 
(increase in used 

ALMs) 

ex5p 197 574 191.37% 

alu4 311 646 107.72% 

apex4 362 774 113.81% 

apex2 401 816 103.49% 

seq 428 939 119.39% 

ex1010 479 959 100.21% 

spla 938 1571 67.48% 

pdc 968 1385 43.08% 

Maximum percent overhead 191.37% 

Average percent overhead 105.82% 

Minimum percent overhead 43.08% 

Maximum percent overhead over benchmarks with 
improvement 54.45% 

Average percent overhead over benchmarks with 
improvement 103.94% 

Minimum percent overhead over benchmarks with 
improvement 21.15% 

Table 9: Experimental results of used ALMs after applying EMT-II 
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Figure 27: Representation of the overhead in used ALMs for EMTII 

 

The number of used ALMs is almost doubled in this experiment, which is mainly due to 

the decomposition of 5-or-less-input functions. Instead of mapping such a function on 

one logic cell, decomposition is mapping it on two which, along with some Quartus’ 

added overhead, results in such an increase in used ALMs. 

Even with a high overhead, such technique would reveal useful when area is not a 

critical issue as opposed to power consumption, for example, which might be reduced 

through a minimization of the used routing resources. 
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6.2.2 - Statistics of mapping on specific configurations 

 

The software platform proposed in Chapter 5 is used in this section, to test the 

mappability of logic functions on particular configurations and to generate related 

statistics. Two experiments were conducted under this scope, where each experiment 

goes through the benchmarks, parsing the logic functions and trying to map those 

functions onto a specific structure. The structures of interest are the 3-3-2 structure and 

the 4-4-4 structure; however any other structure can be chosen. The reported statistics 

highlight the percentage of directly mappable functions on the structure (i.e. without the 

use of decomposition) and then it provides the overall percentage of mappable functions 

after performing decomposition. It also reports the efficiency of the decomposition 

technique when applied on the set of unmappable functions. 

For both experiments, statistics are divided in terms of the number of inputs of the 

functions to be mapped, which ensures clearer comparisons and a better understanding 

of the results. 

Table 10 generates percentages over all benchmarks on the 3-3-2 structure, while the 

remaining Tables 11-18 report detailed statistics for every benchmark used. 
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Statistics for all benchmarks 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100% 77.00% 37.5% 63.19% 

2-input 
functions 10.89% 100% 100% 0.0% 

3-input 
functions 13.56% 100% 66.29% 100% 

4-input 
functions 16.77% 100% 66.66% 100% 

5-input 
functions 38.62% 80.12% 4.19% 79.25% 

6-input 
functions 19.58% 24.57% 24.57% 0.0% 

7-input 
functions 0.55% - - - 

Table 10: Mapping statistics over all benchmarks on a 3-3-2 structure 
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Statistics for alu4 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 78.96% 40.4% 64.7% 

2-input 
functions 12.36% 100.0% 100.0% 0.0% 

3-input 
functions 16.78% 100.0% 76.92% 100.0% 

4-input 
functions 14.02% 100.0% 73.68% 100.0% 

5-input 
functions 42.25% 79.91% 6.55% 78.5% 

6-input 
functions 13.65% 14.86% 14.86% 0.0% 

7-input 
functions 0.92% - - - 

Table 11: Mapping statistics over the alu4 benchmark on a 3-3-2 structure 
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Statistics for apex2 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100% 80.68% 46.55% 63.86% 

2-input 
functions 10.92% 100.0% 100.0% 0.0% 

3-input 
functions 15.41% 100.0% 96.11% 100.0% 

4-input 
functions 16.61% 100.0% 87.38% 100.0% 

5-input 
functions 37.57% 85.25% 1.59% 85.02% 

6-input 
functions 19.16% 29.68% 29.68% 0.0% 

7-input 
functions 0.29% - - - 

Table 12: Mapping statistics over the apex2 benchmark on a 3-3-2 structure 
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Statistics for apex4 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 75.08% 30.03% 64.38% 

2-input 
functions 7.59% 100.0% 100.0% 0.0% 

3-input 
functions 16.66% 100.0% 53.46% 100.0% 

4-input 
functions 16.66% 100.0% 41.58% 100.0% 

5-input 
functions 39.1% 70.88% 0.42% 70.76% 

6-input 
functions 19.8% 32.5% 32.5% 0.0% 

7-input 
functions 0.16% - - - 

Table 13: Mapping statistics over the apex4 benchmark on a 3-3-2 structure 
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Statistics for ex5p 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 83.72% 38.95% 73.33% 

2-input 
functions 12.79% 100.0% 100.0% 0.0% 

3-input 
functions 16.15% 100.0% 61.01% 100.0% 

4-input 
functions 19.76% 100.0% 64.7% 100.0% 

5-input 
functions 37.2% 84.37% 0.78% 84.25% 

6-input 
functions 12.79% 20.45% 20.45% 0.0% 

7-input 
functions 0.29% - - - 

Table 14: Mapping statistics over all benchmarks on a 3-3-2 structure 
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Statistics for ex1010 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 65.48% 31.65% 49.5% 

2-input 
functions 5.86% 100.0% 100.0% 0.0% 

3-input 
functions 9.14% 100.0% 64.17% 100.0% 

4-input 
functions 16.64% 100.0% 55.73% 100.0% 

5-input 
functions 39.29% 65.27% 6.25% 62.96% 

6-input 
functions 28.37% 28.84% 28.84% 0.0% 

7-input 
functions 0.68% - - - 

Table 15: Mapping statistics over the ex1010 benchmark on a 3-3-2 structure 
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Statistics for pdc 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100% 77.39% 36.09% 64.62% 

2-input 
functions 10.68% 100.0% 100.0% 0.0% 

3-input 
functions 11.72% 100.0% 55.55% 100.0% 

4-input 
functions 17.13% 100.0% 69.96% 100.0% 

5-input 
functions 38.63% 86.84% 6.74% 85.89% 

6-input 
functions 20.78% 20.68% 20.68% 0.0% 

7-input 
functions 1.04% - - - 

Table 16 Mapping statistics over the pdc benchmark on a 3-3-2 structure 
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Statistics for seq 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 78.69% 37.18% 66.07% 

2-input 
functions 9.33% 100.0% 100.0% 0.0% 

3-input 
functions 15.04% 100.0% 73.14% 100.0% 

4-input 
functions 17.4% 100.0% 64.8% 100.0% 

5-input 
functions 40.25% 80.96% 3.11% 80.35% 

6-input 
functions 17.82% 24.21% 24.21% 0.0% 

7-input 
functions 0.13% - - - 

Table 17: Mapping statistics over the seq benchmark on a 3-3-2 structure 
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Statistics for spla 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 78.28% 39.56% 64.06% 

2-input 
functions 14.63% 100.0% 100.0% 0.0% 

3-input 
functions 12.86% 100.0% 60.71% 100.0% 

4-input 
functions 16.6% 100.0% 68.77% 100.0% 

5-input 
functions 36.81% 80.92% 3.56% 80.22% 

6-input 
functions 18.7% 23.5% 23.5% 0.0% 

7-input 
functions 0.39% - - - 

Table 18: Mapping statistics over the spla benchmark on a 3-3-2 structure 
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The main observations derived from this set of results can be summarized as follows: 

•  All two input functions can be mapped on the structure without the need for any 

decomposition. 

• With decomposition, all three and four-input functions were successfully mapped 

onto the structure. 

• Without decomposition, an extremely low percentage of five-input functions were 

mappable on the structure.  

• Decomposition maps a high percentage of five-input functions 

• The percentage of overall mappable functions is highly boosted using the 

decomposition technique.  

This experiment highlights the importance of the decomposition technique and the 

improvement it provides in terms of mappability. That is not only reflected from the 

increase in mapping percentages before and after decomposition, but also in the fact that 

the probability of a function’s mappability increases as the number of inputs of the 

function decreases. Following this reasoning, decomposing into less-input functions 

increases the chances of mapping the function in question. 
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The second experiment was conducted using the same procedures as in the first 

experiment however now mapping is performed on a 4-4-4 structure. Table 19 provides 

statistics for all input functions and all benchmarks while Tables 20-27 report statistics 

for every benchmark.  

 

Statistics for all benchmarks 

 

Contribution 
to the total 
number of 

inputs 

% mapped 
functions 

% mapped 
without <6-

input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially 

unmappable 
functions  

All 
functions 100.0% 72.89% 72.89% 0.0% 

2-input 
functions 10.89% 100.0% 100.0% 0.0% 

3-input 
functions 13.56% 100.0% 100.0% 0.0% 

4-input 
functions 16.77% 100.0% 100.0% 0.0% 

5-input 
functions 38.62% 80.27% 80.27% 0.0% 

6-input 
functions 19.58% 3.29% 3.29% 0.0% 

7-input 
functions 0.55% - - - 

Table 19: Mapping statistics over all benchmarks on a 4-4-4 structure 
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Statistics for alu4 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 77.85% 77.85% 0.0% 

2-input 
functions 12.36% 100.0% 100.0% 0.0% 

3-input 
functions 16.78% 100.0% 100.0% 0.0% 

4-input 
functions 14.02% 100.0% 100.0% 0.0% 

5-input 
functions 42.25% 79.91% 79.91% 0.0% 

6-input 
functions 13.65% 6.75% 6.75% 0.0% 

7-input 
functions 0.92% - - - 

Table 20: Mapping statistics over the alu4 benchmark on a 4-4-4 structure 
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Statistics for apex2 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 76.04% 76.04% 0.0% 

2-input 
functions 10.92% 100.0% 100.0% 0.0% 

3-input 
functions 15.41% 100.0% 100.0% 0.0% 

4-input 
functions 16.61% 100.0% 100.0% 0.0% 

5-input 
functions 37.57% 85.65% 85.65% 0.0% 

6-input 
functions 19.16% 4.68% 4.68% 0.0% 

7-input 
functions 0.29% - - - 

Table 21: Mapping statistics over the apex2 benchmark on a 4-4-4 structure 
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Statistics for apex4 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 69.14% 69.14% 0.0% 

2-input 
functions 7.59% 100.0% 100.0% 0.0% 

3-input 
functions 16.66% 100.0% 100.0% 0.0% 

4-input 
functions 16.66% 100.0% 100.0% 0.0% 

5-input 
functions 39.1% 70.88% 70.88% 0.0% 

6-input 
functions 19.9% 2.5% 2.5% 0.0% 

7-input 
functions 0.16% - - - 

Table 22: Mapping statistics over the apex4 benchmark on a 4-4-4 structure 

 

  



 

88 
 

Statistics for ex5p 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 81.1% 81.1% 0.0% 

2-input 
functions 12.79% 100.0% 100.0% 0.0% 

3-input 
functions 17.15% 100.0% 100.0% 0.0% 

4-input 
functions 19.76% 100.0% 100.0% 0.0% 

5-input 
functions 37.2% 84.37% 84.37% 0.0% 

6-input 
functions 12.79% 0.0% 0.0% 0.0% 

7-input 
functions 0.29% - - - 

Table 23: Mapping statistics over the ex5p benchmark on a 4-4-4 structure 
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Statistics for ex1010 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 57.7% 57.7% 0.0% 

2-input 
functions 5.86% 100.0% 100.0% 0.0% 

3-input 
functions 9.14% 100.0% 100.0% 0.0% 

4-input 
functions 16.64% 100.0% 100.0% 0.0% 

5-input 
functions 39.29% 65.27% 65.37% 0.0% 

6-input 
functions 28.37% 1.44% 1.44% 0.0% 

7-input 
functions 0.68% - - - 

Table 24: Mapping statistics over the ex1010 benchmark on a 4-4-4 structure 
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Statistics for pdc 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 73.94% 73.94% 0.0% 

2-input 
functions 10.68% 100.0% 100.0% 0.0% 

3-input 
functions 11.72% 100.0% 100.0% 0.0% 

4-input 
functions 17.13% 100.0% 100.0% 0.0% 

5-input 
functions 38.63% 86.84% 86.84% 0.0% 

6-input 
functions 20.78% 4.07% 4.07% 0.0% 

7-input 
functions 1.04% - - - 

Table 25: Mapping statistics over the pdc benchmark on a 4-4-4 structure 
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Statistics for seq 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 74.79% 74.79% 0.0% 

2-input 
functions 9.33% 100.0% 100.0% 0.0% 

3-input 
functions 15.04% 100.0% 100.0% 0.0% 

4-input 
functions 17.4% 100.0% 100.0% 0.0% 

5-input 
functions 40.25% 81.31% 81.31% 0.0% 

6-input 
functions 17.82% 1.56% 1.56% 0.0% 

7-input 
functions 0.13% - - - 

Table 26: Mapping statistics over the seq benchmark on a 4-4-4 structure 
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Statistics for spla 

 

Contribution to 
the total 

number of 
inputs 

% mapped 
functions 

% mapped 
without <6-input 
decomposition 

% mapped through 
<6-decomposition 

(out of the total 
initially unmappable 

functions  

All 
functions 100.0% 74.73% 74.73% 0.0% 

2-input 
functions 14.63% 100.0% 100.0% 0.0% 

3-input 
functions 12.86% 100.0% 100.0% 0.0% 

4-input 
functions 16.6% 100.0% 100.0% 0.0% 

5-input 
functions 36.81% 81.28% 81.28% 0.0% 

6-input 
functions 18.7% 3.85% 3.85% 0.0% 

7-input 
functions 0.39% - - - 

Table 27: Mapping statistics over the spla benchmark on a 4-4-4 structure 

The main observations on the statistics obtained from this experiment can be: 

• Decomposition is useless if this structure is chosen. No functions require the use of 

the decomposition technique in order to me mapped. 
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• All two-input, three-input and four-input functions are fully mappable on the 

structure (without the need for decomposition). 

• The structure itself has rather high mappability percentages (again without the use of 

the decomposition technique). 

 

These experiments performed using the proposed generic software platform allow the 

designers to compare structures such as the 3-3-2 and the 4-4-4 and choose the one that 

better fits their preferences. Even though the 3-3-2 structure has higher overall 

mappability percentages, designers might prefer the 4-4-4 structure since it maps 

functions without the use of decomposition and as such without any theoretical increase 

in area and used basic-unit structures.  
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Chapter Seven 

Conclusions 

 

This work proposes some generic approaches that would enhance mapping on current 

FPGAs’ cells as well as user-specified basic-unit structures. These approaches vary 

between variable cell configuration, Boolean Matching and decomposition techniques. 

Experimental results show that the enhanced mapping technique manages to reduce the 

congestion of the routing resources since it can decrease the used interconnects by about 

13.5%, on average. Moreover, this achievement can be even improved if a 

decomposition technique is embedded inside the enhanced mapping approach in order to 

increase the percentage of mappable functions and as such decrease the used 

interconnects. On large benchmarks, this newly-enhanced approach manages to decrease 

the used routing resource by up to half the amount that would usually be needed. Such a 

decrease in the congestion of the routing connections might stimulate a decrease in area 

and power consumption.  

Furthermore, the proposed generic unit-based software platform provides the designer 

with high flexibility in the search for a structure that optimizes specific user-defined 

parameters while implementing particular applications. This tool, through its numerous 

modes and options, allows the designers to search the currently available architectures as 

well as a wide search-space of hypothetical structures in order to choose the structure 
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that fully implements the required circuit while abiding by the designer’s predefined 

conditions and preferences. Not to forget that this tool also enables current FPGA 

companies’ designers to perform minor modifications on their current cell structures, 

simulate and compare the performance of these modified cells to the performance of the 

current state-of-the-art FPGAs. Doing so might allow these companies to locate a minor 

modification to their logic cells that might substantially improve the performance of 

their FPGAs.   

Future work can tackle various aspects of the proposed approaches. On one side, some 

intelligence needs to be added to the enhanced mapping technique whenever functions 

are mapped on ALMs in arithmetic mode. This intelligence might be in form of an 

algorithm that heuristically chooses the functions to be chained as opposed to the 

random approach that is currently used. Such a chain-selection algorithm would further 

reduce the congestion of the routing resources while minimizing the overhead in area 

and used ALMs. On a different angle, the proposed mapping technique is performed 

after going through synthesis using tools such as Quartus. These tools are not aware of 

the mode of operation of the proposed mapping technique and as such synthesis is 

performed as a general step and is not optimized for this specific mapping technique. So 

a possible future work would be in embedding both synthesis and mapping into one tool 

that performs both operations with some knowledge and intelligence so that synthesis 

generates functions in a way that ensures their mappability depending on the 

configuration of the used structure.  
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