
 LEBANESE AMERICAN UNIVERSITY

ENHANCED TECHNOLOGY MAPPING
FOR FPGAs WITH EXPLORATION OF

CELL CONFIGURATIONS

By

GRACE JOSEPH ZGHEIB

A thesis
Submitted in partial fulfillment of the requirements

for the Degree of Master of Science in Computer Engineering

School of Engineering
August 2011

ii

Signatures Redacted

Signatures Redacted

Signatures Redacted

iii

Signatures Redacted

iv

Signatures Redacted

v

ACKNOWLEDGEMENT

I would like to express my gratitude to my advisor Dr. Iyad Ouaiss who kept a
watchful eye on my work progress and helped me find the path within the un-explored
fields of research through the fogs of uncertainty and confusion that any inexperienced
researcher faces.

I am also thankful for Dr. Zahi Nakad and Dr. Wissam Fawaz who will be assessing this
work as members in my thesis committee.

But above all, I owe this work and this achievement to those who stood by me throughout
the unstable path of a student/researcher’s life…to my friends and family!

vi

Enhanced Technology Mapping for FPGAs

with Exploration of Cell Configurations

Grace Joseph Zgheib

Abstract

In the state of the art Field-Programmable Gate Arrays (FPGAs), logic circuits are
synthesized and mapped on clusters of look-up tables. However, when additions need to be
performed, an adder along with a carry-chain is used to ensure a fast execution of such an
arithmetic operation. This carry-chain is a dedicated wire available in the architecture of the
FPGA and is as such independent of the external programmable routing resources.

The proposed idea introduces variable-structure Boolean matching as well as
decomposition of mapped functions in order to take advantage of the carry-chains when
they are not used for addition operations. Previously synthesized and mapped logic
functions are adapted so that their outputs are routed using the dedicated carry-chains
instead of the external programmable interconnects. Mapping onto these chains yields a
reduction in the overall external routing resources as well as the general routing congestion.

Moreover, a generic software platform was developed allowing users to identify and test
various basic-unit structures and compare their performances on particular logic circuits
depending on criteria specified by the user. Such structures may vary from currently
available FPGA architectures to customized theoretical structures well-suited for a specific
design(s). This tool can also propose particular cell structures to map logic circuits while
respecting the user's constraints and insuring the optimization of specific parameters.

Keywords: Field Programmable Gate Array, Technology Mapping, Boolean Matching,
Decomposition, Carry Chain, Cell Configuration.

vii

TABLE OF CONTENTS

CHAPTER ONE_INTRODUCTION ... 1

CHAPTER TWO_LITERATURE REVIEW .. 4

2.1 STRUCTURE OF THE ALTERA STRATIX FPGAS .. 4

2.2 ALTERA QUARTUS TOOL ... 6

2.3 RELATED WORK .. 9

CHAPTER THREE_GENERIC BOOLEAN MATCHING TECHNIQUE ... 11

3.1 CELL CONFIGURATIONS .. 11

3.1.1 ‐ Structure 3‐3‐2 .. 12

3.1.2 ‐ Structure 4‐4‐3 .. 13

3.1.3 ‐ Structure 4‐4‐4 .. 14

3.1.4 ‐ Structure 2‐2‐1 .. 15

3.2 BOOLEAN MATCHING TECHNIQUE .. 18

3.3 FLEXIBLE STRUCTURE BOOLEAN MATCHING TECHNIQUE ... 25

3.4 DECOMPOSITION TECHNIQUES ... 28

3.4.1 ‐ Decomposition of 6‐input functions ... 28

3.4.2 ‐ Decomposition of 5‐and‐less‐input functions ... 33

CHAPTER FOUR_ENHANCED MAPPING TECHNIQUE USING THE GENERIC BOOLEAN MATCHING 39

4.1 NETLIST PARSER (VQM PARSER) ... 42

4.2 THE ENHANCED MAPPING PROCESS .. 43

4.2.1 ‐ 7‐input functions approach ... 43

4.2.2 ‐ 6‐input functions approach ... 44

4.2.3 ‐ 5‐and‐less‐input functions approach .. 47

viii

4.3 REGENERATION OF THE MAPPING NETLIST .. 50

CHAPTER FIVE_A GENERIC SOFTWARE PLATFORM .. 52

5.1 THE NEED FOR SUCH PLATFORM ... 52

5.2 THE TOOL’S CAPABILITIES .. 53

5.3 USER’S OPTIONS ... 56

5.3.1 ‐ User‐specified Parameters .. 56

5.3.2 ‐ Modes of operation .. 57

CHAPTER SIX_EXPERIMENTAL RESULTS ... 61

6.1 USED BENCHMARKS ... 61

6.2 CONDUCTED EXPERIMENTS ... 64

6.2.1 ‐ Enhanced Mapping Technique’s experimental results ... 64

6.2.2 ‐ Statistics of mapping on specific configurations ... 73

CHAPTER SEVEN_CONCLUSIONS.. 94

BIBLIOGRAPHY .. 96

ix

TABLE OF FIGURES

Figure 1: Adaptive Logic Module (ALM) in Arithmetic mode ... 5

Figure 2: ALM in a 3-3-2 structure ... 12

Figure 3: Logic cell in a 4-4-3 structure .. 13

Figure 4: Half-ALM in a 4-4-4 Structure .. 15

Figure 5: Half-ALM in a 2-2-1 Structure .. 16

Figure 6: ALM in a 4-4-3_2-2-1 structure ... 16

Figure 7: ALM in a 4-4-4_2-2-1 structure ... 17

Figure 8: Carry propagation in arithmetic mode ... 18

Figure 9: Logic cell in a 3-3-2 structure .. 19

Figure 11: 6-input function decomposition process .. 30

Figure 12: 6-input function decomposition and mapping process 32

Figure 13: 5-and-less-input functions decomposition and mapping process 35

Figure 14: Improved decomposition of 5-and-less-input functions 38

Figure 15: Modified flow of compilation phases ... 40

Figure 16: Updated tool flow ... 41

Figure 17: Detailed flow diagram .. 42

Figure 18: 6-input functions mapping process .. 46

Figure 19: 5-or-less-input functions mapping process .. 49

x

Figure 20: Tool's base configuration ... 53

Figure 21: Configuration with k-input LUTs .. 54

Figure 22: Configuration with variable-input LUTs (k1, k2) .. 54

Figure 23: Configuration with k-input LUTs and n shared inputs 55

Figure 24: Fully flexible configuration .. 56

Figure 25: Representation of the improvement in used interconnects for EMTI 66

Figure 26: Representation of the overhead in used ALMs for EMTI 67

Figure 27: Representation of the improvement in used interconnects for EMTII 70

Figure 28: Representation of the overhead in used ALMs for EMTII 72

xi

TABLE OF TABLES

Table 1: Behavior of the Carry-out of the adder .. 20

Table 2: Relation between the LUTs outputs .. 21

Table 3: Generation of possible output sequences ... 22

Table 4: Benchmarks' characteristics ... 62

Table 5: Distribution of functions in every benchmark ... 63

Table 6: Experimental results of used interconnects after applying EMT-I 66

Table 7: Experimental results of used ALMs after applying EMT-I 67

Table 8: Experimental results of used interconnects after applying EMT-II 69

Table 9: Experimental results of used ALMs after applying EMT-II 71

Table 10: Mapping statistics over all benchmarks on a 3-3-2 structure 74

Table 11: Mapping statistics over the alu4 benchmark on a 3-3-2 structure 75

Table 12: Mapping statistics over the apex2 benchmark on a 3-3-2 structure 76

Table 13: Mapping statistics over the apex4 benchmark on a 3-3-2 structure 77

Table 14: Mapping statistics over all benchmarks on a 3-3-2 structure 78

Table 15: Mapping statistics over the ex1010 benchmark on a 3-3-2 structure 79

Table 16 Mapping statistics over the pdc benchmark on a 3-3-2 structure 80

Table 17: Mapping statistics over the seq benchmark on a 3-3-2 structure 81

Table 18: Mapping statistics over the spla benchmark on a 3-3-2 structure 82

xii

Table 19: Mapping statistics over all benchmarks on a 4-4-4 structure 84

Table 20: Mapping statistics over the alu4 benchmark on a 4-4-4 structure 85

Table 21: Mapping statistics over the apex2 benchmark on a 4-4-4 structure 86

Table 22: Mapping statistics over the apex4 benchmark on a 4-4-4 structure 87

Table 23: Mapping statistics over the ex5p benchmark on a 4-4-4 structure 88

Table 24: Mapping statistics over the ex1010 benchmark on a 4-4-4 structure 89

Table 25: Mapping statistics over the pdc benchmark on a 4-4-4 structure 90

Table 26: Mapping statistics over the seq benchmark on a 4-4-4 structure 91

Table 27: Mapping statistics over the spla benchmark on a 4-4-4 structure 92

1

Chapter One

Introduction

Field Programmable Gate Arrays (FPGAs) are known to have an advantage over

Application-Specific Integrated Circuits (ASICs) with their ability to implement a wider

range of applications and designs. Such flexibility is achieved through the presence of a

large set of programmable interconnects that ensures the connectivity of all FPGA cells.

However, ensuring such full grid connectivity comes at a compromise of speed, power

consumption and size, as well as the density of the FPGA’s logic cells. On one hand,

programmable interconnects introduce delays slowing down critical paths while being

the main contributors in the total static and dynamic power dissipation. On the other

hand, the majority of the FPGA’s area is dedicated to its routing resources, which

reduces the amount of logic components that can fit on that FPGA. As such, increasing

the FPGA’s size is constrained due to the area consumed by its programmable routing

connections [1], [2]. It is also frequent to face scenarios where a design that does not use

all the logic cells of a particular FPGA fails to be implemented due to lack of available

routing resources.

As such, reducing a design’s utilization of routing resources became a necessity in large

circuits, small devices or even power constrained applications. As such, compilation

2

tools try to optimize the use of interconnects through various mapping, placement and

routing algorithms.

Moreover, minor modifications on the logic cells of the current main FPGAs, such as

Altera and Xilinx FPGAs, might introduce some important reductions in the power

consumption, used routing resources, delay, etc. Exploring such possible modifications

in the current state-of-the-art FPGAs requires the presence of an analytical tool that

would perform the necessary computations. Such a tool is needed to map main design

circuits on some modified FPGA cell structures while reporting relevant statistics and

comparative information.

Furthermore, designers are limited with the compilation tools of current FPGA

companies which support their manufactured -in the market- FPGAs. However,

designers wishing to perform modifications to the internal architecture of the FPGAs’

logic cells cannot use such compilation tools to explore the benefits of the new

architecture on their particular applications. So, such designers find themselves forced to

implement their own tool trying to simulate the changes in the architecture and their

respective effects; or to compromise and implement their application on one of the

available architectures at possible costs of area, power, delay, etc.

This proposed work comes as a solution to these issues by presenting the designers with

such an analytical tool that can be customized depending on the user’s requirements. It

also proposes an enhanced mapping technique that would use some available dedicated

routing resources to route FPGA cells while reducing the used external routing

resources, and as such their congestion.

3

The presentation of this work starts by covering the related research in this field, as well

as any required material for a further understanding of the proposed approaches, in a

literature review presented in Chapter 2. Then Chapter 3 explains the proposed and used

approaches such as the Boolean Matching technique and the flexible-structure Boolean

Matching technique used to map on general structures and particularly on carry-chains

of Altera Stratix FPGAs. It also proposes some decomposition techniques used to

enhance whichever used mapping approach. Furthermore, an elaboration and clear

explanation of an enhanced mapping technique that uses the previously proposed

approaches and aims on the reduction of routing congestion is proposed in Chapter 4.

The analytical tool that allows designers to explore modified and new logic cell

structures is presented in Chapter 5. Then, in order to properly highlight the efficiency

and benefits of these approaches, Chapter 6 summarizes the major experiments

conducted and their respective results. Finally, Chapter 7 provides general conclusions

on the overall work and results, while it also lists possible future work that would

improve the current techniques.

4

Chapter Two

Literature Review

2.1 Structure of the Altera Stratix FPGAs

The latest Altera Stratix II, III and IV Field Programmable Gate Arrays (FPGAs)

are composed of Logic Array Blocks (LABs) where each LAB is built using several

Adaptive Logic Modules (ALMs) [3], [4], [5]. These ALMs are designed using Look-Up

Tables (LUTs), multiplexers, adders and registers. Each ALM has 8 inputs and two

outputs. Its LUTs can be distributed to form two Adaptive LUTs (ALUTs) where each

ALUT can independently implement a logic function and drive it on one of the outputs.

The overall ALM can implement any up-to-6-input functions and a subset of 7-input

functions as well.

ALMs can operate in four different modes: Normal mode, Extended-LUT mode,

Arithmetic mode and Shared-Arithmetic mode. The main modes of interest are the

Normal mode and the Arithmetic mode.

When in Normal mode, the ALM is used to implement combinational logic functions

using the LUTs. However, the ALM’s Arithmetic mode is used whenever arithmetic

5

operations need to be performed (such as additions), so it uses the dedicated adders

along with the carry-chain as shown in Figure 1.

4-LUT

4-LUT

+

4-LUT

4-LUT

+

Carry-in

Carry-out

datae0

dataf0
datac
datab
dataa

datad
datae1

dataf1

Sum-out

Sum-out

Figure 1: Adaptive Logic Module (ALM) in Arithmetic mode

The used carry-chain is a dedicated wire whose main role is to pass the carry-out of a

previous addition as a carry-in to the current addition without major delays [6]. Using

this wire allows a fast propagation of the carry without necessitating the use of any

external programmable routing resources which are known to be rather slower than a

hard-wired path.

6

2.2 Altera Quartus Tool

Altera Quartus II is a design tool produced by the Altera Incorporation. This software

allows designers to synthesize and analyze designs, simulate and conduct some timing

analysis as well as configuring the device at hand (such as an FPGA or a CPLD) to

implement a particular circuit or application [7].

Once Quartus performs synthesis and mapping, an option called Verilog Quartus

Mapping (VQM) Writer can be used to generate an atom-based netlist of logic functions,

in Verilog.

This tool takes a digital circuit either as a Verilog/VHDL file or as a Block Diagram file,

and performs synthesis, mapping, placement and routing. If needed, Quartus can

generate the mapping netlist of the design in question through the VQM writer option.

This writer simply lists all the nets generated for a particular design after synthesis and

mapping, in a text file with the “.vqm” extension. Each net can be expressed in the

following format (assuming a Stratix II FPGA) [7]:

7

Stratixii_lcell_comb <lcell_name>
(

.dataa (<data_a source>),
 .datab (<data_b source>),
 .datac (<data_c source>),
 .datad (<data_d source>),
 .datae (<data_e source>),
 .dataf (<data_f source>),
 .datag (<data_g source>),

.cin (<carry in source>),

.sharedin (<shared function input source>),

.combout (<combinational output>),
.sumout(<arithmetic sum output>),
.cout(<carry output>),
.sharedout(<shared function output>)

);
defparam <lcell_name>.lut_mask = <lut mask>;
defparam <lcell_name>.shared_arith = <on, off>;
defparam <lcell_name>.extended_lut = <on, off>;

When the logic cell is used in normal mode, one should expect the following format:

Stratixii_lcell_comb <lcell_name>
(

.dataa (<data_a source>),
 .datab (<data_b source>),
 .datac (<data_c source>),
 .datad (<data_d source>),
 .datae (<data_e source>),
 .dataf (<data_f source>),
 .datag (<data_g source>),

.combout (<combinational output>),

);
defparam <lcell_name>.lut_mask = <lut mask>;
defparam <lcell_name>.shared_arith = <on, off>;
defparam <lcell_name>.extended_lut = <on, off>;

However, when the logic cell is used in Arithmetic mode, one should expect the

following format:

8

Stratixii_lcell_comb <lcell_name>
(

.dataa (<data_a source>),
 .datab (<data_b source>),
 .datac (<data_c source>),
 .datad (<data_d source>),
 .datae (<data_e source>),
 .dataf (<data_f source>),
 .datag (<data_g source>),

 .cin (<carry in source>),

.sumout(<arithmetic sum output>),
.cout(<carry output>),

);
defparam <lcell_name>.lut_mask = <lut mask>;
defparam <lcell_name>.shared_arith = <on, off>;
defparam <lcell_name>.extended_lut = <on, off>;

Quartus users can actually perform a reverse process where knowing the format of such

netlists, a Verilog file can be created to design a particular circuit using such logic cell

expressions. The Verilog file can be fed back to Quartus as a new design file where

Quartus would perform the usual flow and implement the designed circuit.

9

2.3 Related Work

Throughout the years, researchers have developed numerous algorithms tackling the

mapping problem and trying to optimize it [8], [9] depending on certain parameters such

as power minimization [10], [11], area and delay [12]. The area optimization problem

was proven to be NP-hard when mapping is applied on 4-or-more-input Look-Up Tables

(LUTs), and as such heuristics needed to be developed in order to properly address such

an optimization [13], [14].

Ideas in the same context of the proposed approach, trying to use Boolean Matching

techniques to optimize the mapping process have been presented. Some proposed a

Boolean Matching technique for mapping on networks of Programmable Logic Blocks

(PLBs) [15], expressing it as a Boolean Satisfiability problem; however their approach

remained algorithmic since no manipulations on the structure were tried while

performing the Boolean Matching technique. Others tried to add to the algorithmic

power some intelligence derived from observed architectural symmetries of the structure

used [16]; however, this approach did not venture into configuring the structure at hand

in order to achieve better mappability.

Some researchers tried to optimize the Boolean Matching technique in general by

exploring the flexibility added using Don’t Cares which increases the probability of

finding the function at hand [17]. A similar idea will be partially explored in one of the

proposed approaches.

10

Various logic decomposition techniques with respect to technology mapping have been

also researched trying to optimize the mapping process for either area or delay [18],

 [19]. However, such techniques are generating new algorithms to improve mapping of

logical circuits over current FPGA’s logic cells and with its present normal mode

architecture.

One attempt of mapping logic functions on the FPGAs’ carry-chain has been tried [20];

however the approach uses the carry-select chains which have been replace by the ripple

carry-chain in modern FPGAs; and as such, the technique became obsolete. Another

approach used the fast carry chains in order to design compressor trees [21].

A simplified version of this work has been first proposed as part of a mapping technique

and a 6-input function decomposition approach, combined with a chaining algorithm,

trying to map logic functions onto FPGAs’ carry-chains in order to optimize the use of

routing resources [22]. It has also been used as a simulation approach to generate data

for a theoretical proposition of generic logic chains, trying also to reduce the congestion

of the external routing resources [23].

11

Chapter Three

Generic Boolean Matching Technique

3.1 Cell Configurations

The Adaptive Logic Module (ALM) of the Stratix II-V FPGAs uses the fast carry-chain

whenever it is operating in arithmetic mode, as shown in its general structure of Figure

1. Knowing that during the mapping process, each logic function will be typically

mapped to a half-ALM. This half-ALM consists of two 4 input-LUTs and a multiplexer

when the ALM is in normal mode as opposed to two 4 input-LUTs and an adder when

the ALM is in arithmetic mode.

This general arithmetic structure of the ALM can be configured in various ways;

however, logically, each adder must be used to implement one function. As such, even

in the arithmetic mode, each function is mapped onto one set of two LUTs and an adder.

For simplicity reasons, each half-ALM will be referred to as a logic cell. From Figure 1,

it is clear that each set of two LUTs can have up to five external inputs while respecting

the overall constraint of eight inputs per ALM. So in this section, various configurations

will be explored and the most important and relevant structures will be listed. Each

structure is a possible configuration of one or multiple logic cells, depending on the

12

structure. The structures are named, for each logic cell, in an X-Y-Z format where X is

the number of inputs used by the logic cell’s first LUT, Y is the number of inputs used

by the logic cell’s second LUT and Z is the number of shared inputs between these two

LUTs.

3.1.1 - Structure 3-3-2

Figure 2: ALM in a 3-3-2 structure

This structure can be configured by forcing the first logic cell to be independent of input

a (dataa) and the second logic cell of b (datab), as shown in Figure 2. This way, the two

13

logic cells do not share any inputs and as such each one depends on a totally different

and independent set of five inputs: datab, datac, dataf0 and datae0 for the first logic cell

and dataa, datad, datae1 and dataf1 for the second logic cell. Therefore, in this

configuration, both logic cells have a 3-3-2 structure but for simplicity reasons it is

called the 3-3-2 structure instead of the 3-3-2_3-3-2 structure.

3.1.2 - Structure 4-4-3

Figure 3: Logic cell in a 4-4-3 structure

Figure 3 represents this particular configuration, where inputs a and b (dataa and datab)

are both dedicated to the same logic cell. As such, the LUTs have an overall of five

inputs and each one of these LUTs have four inputs with three shared among each other.

One of the main advantages of this structure, represented in Figure 3, is its ability to map

up to 6-input functions if the carry-in of the adder is considered as an additional input.

14

However, looking at the two logic cells of the ALM, having a 4-4-3 structure on the first

logic cell leaves only 3 independent inputs to the second logic cell. In order to properly

benefit from the ALM and not waste the remaining available resources, the second logic

cell can be used with a 2-2-1 configuration to map a subset of up-to-4-input functions.

This 2-2-1 configuration will be presented in details in section 3.1.4.

3.1.3 - Structure 4-4-4

The 4-4-4 structure is very similar to the 4-4-3 structure and can be directly derived from

it. This configuration can be achieved by having all four inputs of the LUTs of the logic

cell shared among each other. One can notice from the general structure that three inputs

of the first LUT are already shared with the second LUT, while each LUT reserves one

independent input for itself. So in order to derive the 4-4-4 structure, pins e0 and f0

(datae0 and dataf0) must be assigned to the same input or variable and as such it would

be considered as if these two pins are actually connected, as shown in Figure 4. For

example, one possible implementation of a function f(v,w,x,y,z) on the 4-4-4 structure

can be achieved by:

• assigning ‘v’ to datae0

• assigning ‘v’ also to dataf0

• assigning ‘w’ to datac

• assigning ‘x’ to datab

• assigning ‘y’ to data

• assigning ‘z’ to the Carry-in

15

Figure 4: Half-ALM in a 4-4-4 Structure

This 4-4-4 structure can map up to 5-input functions. Using this configuration, the

ALM’s resources are mainly dedicated to one logic cell while the other cell is limited to

only three inputs. So, an efficient way of using these remaining resources would be to

force the second logic cell to a 2-2-1 configuration. This 2-2-1 configuration will be

discussed in details in section 3.1.4.

3.1.4 - Structure 2-2-1

This is a very specific structure that is used whenever the logic cell is limited to only

three available independent inputs for the LUTs. So in this 2-2-1 configuration, each

LUT has two inputs, one shared and one independent, as shown in Figure 5.

16

2-LUT

2-LUT

+

Carry-in

Carry-out

datad

datae1

dataf1

Sum-out

Figure 5: Half-ALM in a 2-2-1 Structure

This configuration is typically needed for the second logic cell of the ALM when the

first logic cell is configured as a 4-4-3 or a 4-4-4 structure.

Figure 6: ALM in a 4-4-3_2-2-1 structure

17

In the first case, represented in Figure 6, after using a 4-4-3 structure on the first half

ALM to map a 6-input function, the ALM is left with three inputs from the LUTs side

(four if the carry-in is considered). Therefore, in order to properly benefit from the

second logic cell, a 2-2-1 configuration is used to possibly map up to four-input

functions.

Similarly, the second case is when the first logic cell is configured using a 4-4-4

structure where the same scenario occurs, and forcing a 2-2-1 structure on the second

logic cell allows efficient use of the remaining resources available in the ALM.

Otherwise, the remaining LUTs and adder are useless and the ALM is partially used.

Figure 7: ALM in a 4-4-4_2-2-1 structure

18

3.2 Boolean Matching Technique

The main idea in this work is to try to efficiently use the already available FPGA’s

dedicated routing resources such as the carry-chain wire in order to pass output values

and connect functions. As such, using the carry-chain would optimize and reduce the use

of the external and programmable routing resources. However, carry-chains are only

used when the ALMs operate in arithmetic mode. So the ALMs need to be used in

arithmetic mode, to implement non-arithmetic operations. And by that, the necessity to

map on the adders arises. Placing the output of one function on the carry-chain through

the adder’s carry-out, allows the next function to use it as an input through its carry-in,

as shown in Figure 8.

Figure 8: Carry propagation in arithmetic mode

However, a limited number of non-arithmetic logic functions can be mapped on the

logic cell of the ALM’s arithmetic mode. Therefore, the Boolean Matching technique

19

was developed in order to identify the non-arithmetic logic functions that can be mapped

on such architecture. This section explains in details the approach that was adopted and

the technique used to specify if a specific function can be mapped on a particular

configuration of the logic cell in arithmetic mode.

For simplicity reasons, the technique will be explained on one particular structure, which

is the 3-3-2 structure; however, the same technique can be applied on the remaining

structures in a similar way.

Taking into consideration the carry-in as an additional input, a logic cell can be looked

at as a 5-input structure. Since the output of each cell needs to be placed on the fast

carry-chain, the Sum-out of the adder will be disregarded and the carry-out will be the

main output of the macro cell, as seen in Figure 9.

Figure 9: Logic cell in a 3-3-2 structure

The presence of the adder in the structure of these macro cells, as well as the

characteristics of the LUTs (size and shared inputs) limits the number of functions that

can be mapped to it. A small library was generated in order to identify which functions

20

can be mapped on such a structure and therefore be placed on the fast carry-chain.

Coming up with this library requires careful analysis of the behavior of the adder and the

LUTs separately.

The behavior of the adder is well known; however, one can express the carry-out of this

adder, which is the output of the Logic Cell, in terms of the adder’s inputs as shown in

Table 1. If these inputs are equal to each others, the carry-out will be also equal to these

inputs. However, if the inputs are not equal (i.e. one is the opposite of the other), the

carry-out will be equal to the value of the carry-in.

On the other hand, each of the two LUTs, separately, can implement any function.

However, the shared two inputs limit their possible outputs, since the output of one LUT

might depend on the output of the other. So exploring the dependencies between the

outputs of the LUTs with respect to the four different LUTs’ inputs is an essential step in

identifying the range of functions that can be mapped onto the structure of the logic cell

in arithmetic mode. Table 2 lists the states of the LUTs outputs with respect to all

possible combinations of the inputs. The output of the first LUT (LUT1) depends on the

inputs i0, i1 and i2 while the output of the second LUT (LUT2) depends on the inputs i0, i1

A B Carry-in Carry-out
0 0 0 A
0 0 1 A
0 1 0 Cin
0 1 1 Cin
1 0 0 Cin
1 0 1 Cin
1 1 0 A
1 1 1 A

Table 1: Behavior of the Carry-out of the adder

21

and i3. So for example, the state a0 is the output of LUT1 when its inputs are 000, b1 is

the output of LUT2 when its inputs are 001, etc. Analyzing Table 2, one can notice that it

can be divided into four different sections where the outputs’ states in each section are

totally independent of the outputs’ states in any of the other three sections. For example,

the first section includes states a0, a1, b0 and b1. Furthermore, comparing all four

sections, it can be also noticed that they have identical state patterns, which means that

analyzing one section of the list provides sufficient information on all four sections. So

now, the truth table is reduced to only one section, composed of four variables (the four

different states of the LUTs outputs).

i0 i1 i2 i3 LUT1 LUT2

0 0 0 0 a0 b0
0 0 0 1 a0 b1
0 0 1 0 a1 b0
0 0 1 1 a1 b1
0 1 0 0 a2 b2
0 1 0 1 a2 b3
0 1 1 0 a3 b2
0 1 1 1 a3 b3
1 0 0 0 a4 b4
1 0 0 1 a4 b5
1 0 1 0 a5 b4
1 0 1 1 a5 b5
1 1 0 0 a6 b6
1 1 0 1 a6 b7
1 1 1 0 a7 b6
1 1 1 1 a7 b7

Table 2: Relation between the LUTs outputs

Knowing the possible dependencies between the outputs of the LUTs, the last step

consists of listing the possible values of the carry-out which results from processing the

outputs of the LUTs along with the carry-in through the adder. Therefore, only the

22

subsequences of the functions that can be mapped to the macro cell structure in

arithmetic mode are saved. The list of these 24 =16 subsequences is stored in a library

where each subsequence has a length of 8-bit. These subsequences can be generated by

listing all possible states’ combinations and passing it, along with the carry-in, through

the adder by following the adder’s behavior stated in Table 2.

LUT1 LUT2 Cin Possible output subsequences
a0 b0 0 0 0 0 0 0 …
a0 b0 1 0 0 1 1 0 …
a0 b1 0 0 0 0 0 0 …
a0 b1 1 0 1 0 1 0 …
a1 b0 0 0 0 0 0 0 …
a1 b0 1 0 0 1 1 1 …
a1 b1 0 0 0 0 0 0 …
a1 b1 1 0 1 0 1 1 …

Table 3: Generation of possible output subequences

So now Table 2 can be updated where each state of the LUTs outputs can be replaced by

actual values of 0 or 1. Thus, for each combination of these state values, along with the

carry-in, a possible output subsequence can be generated on the carry-out. So whenever

the outputs of the two LUTs are identical (whether equal to 0 or to 1) the carry-out of the

adder has the same value as the output of the LUTs; however, if the outputs of the LUTs

are opposite, the carry-out will be equal to the carry-in. Following this logic, all output

subsequences can be generated by simply considering all the input combinations. There

are a total of 16 output subsequences having a length of 8 bits each. Table 3 shows the

23

generation of some subsequences for particular values of the LUT outputs or in other

words, particular values of the adder’s inputs.

Having any function at hand, this newly created library helps identifying whether or not

it can be mapped to the half ALM in arithmetic mode and with that, the placement of its

output on the carry-chain. In order to test the eligibility of any function, its mask (or the

function’s truth table) must be divided into four parts, where each part must be checked

against the generated library:

• If all parts of this function exist in the library, then the function can be mapped to

the macro cell

• If at least one part of this function cannot be found in the library, then the

function cannot be mapped to the structure.

Moreover, it is known that the output sequence of any truth table can change when

considering a different order of the inputs. So having the truth table of a particular

function, the probability of mapping that function to the structure might be improved by

permuting the inputs’ order of this function since it might lead to a new output sequence.

Applying the Boolean Matching Technique to this new output sequence might allow the

function to be mapped on the considered logic cell.

One of the main advantages of this library is that it does not necessitate storing all 32 bit

long output combinations. Instead, only a small set of sequences with sufficient

24

information is saved, which reduces the memory required for the storage of such

libraries.

Finally, as stated earlier, this technique was generalized so that I can support any of the

configurations listed earlier.

This Boolean Matching technique was first presented in [22] combined with an effective

chain-selection algorithm to optimize the use of routing resources. However, at that

time, the technique was limited to the 3-3-2 structure and could not support various

configurations. Furthermore, section 3.3 will present an enhancement on this Boolean

Matching technique so that it supports not only various configurations of the Stratix

ALMs in arithmetic mode, but also some theoretical structures that has not been

designed or manufactured yet. This will introduce a higher flexibility and the possibility

of researching and exploring potential performance improvement through new logic cell

architectures.

25

3.3 Flexible Structure Boolean Matching Technique

After coming up with the Boolean Matching Technique to identify the functions

mappable on particular structures, a generalization of this technique was explored trying

to cover all possible configurations, realistic or hypothetical. This technique was

enhanced by allowing a variety of modifications on the used logic cell, while respecting

the following terms:

• A general architecture composed of two LUTs whose outputs are feeding a three-

input function has to be respected.

• Each LUT can have a variable number of inputs independently of the other LUT.

No upper-bound is set for the LUT’s inputs. For example, assuming that LUT1

has 5 inputs, LUT2 might have 8 inputs.

• The total number of shared inputs between the two LUTs is variable and can take

any value.

• The adder can be replaced by any three-input function as long as its behavior is

known. The carry-in can simply be considered as an additional input.

As long as the new hypothetical structure does not cover and map all functions, the

enhanced technique uses the same general method to generate a library of mappable

subsequences, and identifies mappable functions by testing its existence in this newly

generated library. The testing approach is similar to the previously explained one, except

that some parameters will differ:

26

• The library’s sequences will change depending on the function used to replace

the adder. i.e. for the same LUTs parameter, changing the carry-out function by

another one will change the library’s sequences.

• The length of the library’s sequences will vary depending on the LUTs number

of inputs as well as the number of shared inputs

• The number of partitions, which is the number of times a function is divided to

generated testable sequences (on a 3-3-2 structure the number of partitions is 4)

might change depending on the total number of inputs and the length of the

library’s sequences.

• The size of the library (i.e. the number of available sequences) would change

with all parameters, such as the function replacing the adder, the number of

LUTs inputs and number of shared inputs.

This enhanced mapping technique was embedded in a tool that allows the designer to

compare various configurations and structures generating relevant information for

particular specifications and preferences. This tool can also propose a particular

structure depending on the user’s design and priorities for some predefined parameters.

This tool is presented in details in Chapter 5.

On a side note, this technique is limited by the structure at hand. This means that if the

structure can support a maximum of 5 inputs, the Boolean Matching technique cannot

map 6-or-more-input functions. Furthermore, if a 5-input function cannot be mapped

27

using the Boolean Matching technique, this function is labeled as ‘unmappable’ and

nothing is further done to try and map it.

For this purpose, decomposition techniques were proposed so that unmappable functions

(rejected by the Boolean Matching Technique or having a structure-unsupported number

of inputs) can be decomposed into two functions that might be mappable. These

decomposition techniques will be discussed in details in section 3.4.

28

3.4 Decomposition Techniques

Decomposition techniques became a necessity once statistics were generated over

common benchmarks and where a substantial number of logic functions were found to

be unmappable on the various configurations of the ALMs’ arithmetic mode of the

Altera’s Stratix FPGA.

So if the function cannot be mapped, as is, then decomposing it into two functions, while

maintaining its overall logical behavior, might actually map it. Two different

decomposition techniques were adopted depending on the nature of the function: the

decomposition of 6-input functions and the decomposition of 5-and-less-input functions.

3.4.1 - Decomposition of 6-input functions

As seen in the section 3.1, 6-input functions can only be mapped on a 4-4-3 structure

when mapping is performed on ALMs in arithmetic mode. However, statistics showed

that for the used MCNC benchmarks, a small set of these 6-input functions can be

actually mapped on the 4-4-3 configuration. So a decomposition technique was

developed, trying to map as many 6-input functions as possible.

This technique takes a 6-input function and tries to decompose it into two 5-or-less-input

functions while maintaining the same overall logical behavior. Assuming that the

function to be decomposed is f, the idea is to find two functions f1 and f2 such that f1

29

would be mapped on the first logic cell of the ALM with its output placed on the carry-

chain through the carry-out. f2 is placed on the second logic cell, taking f1 as an

additional input through the carry-in while its output is placed on the carry-chain,

through the carry-out of the second logic cell. Choosing f1 and f2 should abide to the

following conditions:

• f1 should be independent of one of the function’s 6 inputs.

• f1 should be mappable on a logic cell with a 3-3-2 configuration.

• f2 should be independent of two inputs:

 The input that f1 is using as carry-in

 One of the function’s 6 inputs, as long as it is not the same input f1 is

independent of.

• f2 should be mappable on one 3-3-2 structured logic cell with f1 being the input

placed on the carry-chain.

Assuming that the 6-input function is ݂ ൌ ,ݑሺܨ ,ݒ ,ݓ ,ݔ ,ݕ ሻ then one possible set ofݖ

ሼ݂1, ݂2ሽ could be:

൜݂1 ൌ ,ݑሺܨ ,ݒ ,ݓ ,ݔ ሻݕ
݂2 ൌ ,ݑሺܨ ,ݒ ,ݓ ,ݖ ݂1ሻ

The decomposition of the 6-input functions and the process of finding f1 and f2 is

represented in details in the diagram of Figure 10. Note that f_ind_i and f_ind_j are

functions derived from f and independent of the inputs i and j respectively. Since these

independent functions are derived from a 6-input function, they depend on a maximum

30

of 5 inputs. Before ORing the two functions, common minterms between functions f1

and f2 are set as Don’t Cares in function f2 since these minterms exist in both functions

which will be later on ORed. So changing these minterms to DC introduces more

flexibility to function f2 and, as such, increases its probability of being mapped.

Figure 10: 6-input function decomposition process

31

Now, adding the conditions of having f1 and f2 mappable on the 3-3-2 structure, the

decomposition and mapping process can be represented as shown in Figure 11. If one

possible decomposition (i.e. one set of {f1, f2}) turned out to be unmappable, new

decompositions are tried through exploration of more {f1, f2} sets by changing the

inputs from which the independent functions are derived. Figure 11 explains this process

in details.

32

Figure 11: 6-input function decomposition and mapping process

33

3.4.2 - Decomposition of 5-and-less-input functions

Several possible configurations have up to 5 inputs (such as 3-3-2, 4-4-4 and 4-2-2

configurations) and as such can implement a large set of 5-and-less input functions.

However, some functions still cannot be mapped on any of these structures. So a

decomposition technique was developed as a way to map such unmappable functions.

In this section, all encounters of the term ‘function’ would be a reference to the 5-and-

less-input functions since this decomposition technique is only used on such functions.

So this decomposition approach divides any function f into two functions f1 and f2, in

such a way that:

• f1 is a 5-or-less-input function.

• f2 is also a 5-or-less-input function.

• If the initial function f is an X-input function, then f2 should have up to X-1

inputs out of the X-inputs, where the omitted input should be the one placed on

the carry-in in f1. One additional input of f2 should be f1.

Assuming that the function to be decomposed is ݂ ൌ ,ݒሺܨ ,ݓ ,ݔ ,ݕ ሻ and that z was theݖ

input placed on the carry-in of the function f1, then one possible set of ሼ݂1, ݂2ሽ could

be:

൜݂1 ൌ ,ݒሺܨ ,ݓ ,ݔ ,ݕ ሻݖ
݂2 ൌ ,ݓ,ݒሺܨ ,ݔ ,ݕ ݂1ሻ

34

Now this function f needs to be mapped on the ALM in arithmetic mode. So, each of f1

and f2 should be mapped on one logic cell; while the output of f1 is passed onto f2

through the carry-out carry-in connection. To be able to successfully decompose f and

map both f1 and f2, four additional conditions need to be satisfied:

• f1 should be mappable on the logic cell with the 3-3-2 configuration.

• f2 should also be mappable on the logic cell with the 3-3-2 configuration.

• f2 should be mappable with f1 being the input read from the carry-in.

• f2 should be independent of the input that f1 uses as carry-in.

Adding some intelligence to the decomposition, this technique starts from an initially

known-to-be-mappable function f1. Using this f1, it tries to derive f2 while insuring the

overall logical behavior of the function f. To do so, f2 has to be a function of f1and up to

four other inputs of f. Figure 12 lists in details the steps to be followed in order to

successfully decompose and map such functions.

35

Figure 12: 5-and-less-input functions decomposition and mapping process

36

Furthermore, the complexity and performance of this decomposition technique can be

enhanced using some previous knowledge of the library used to perform Boolean

matching. Instead of decomposing the function and then checking whether the newly

generated functions can be mapped or not, Boolean matching is somehow embedded

inside the decomposition technique so that it would only decompose if that ensures

mappability.

Starting from an initially known function f1, the technique should exhaustively try all

possible mappable functions as f1. That is a complex and time consuming procedure. So

the adopted alternative is the improved approach of Figure 13. In this approach, the

function is first partitioned into segments as if it is being subjected to the Boolean

matching technique. Then for each partition/segment, decomposition is applied using the

library’s subsequences as the first sub-functions on which decomposition is based. This

approach can be further explained as follows:

• The function f can be divided into four partitions similar to the process used

during the Boolean Matching technique. Each partition or sequence of f shall be

called P_f.

• For every P_f the library is searched:

 Every sequence in the matrix is considered as a partition of f1 (known as

P_f1) and the process tries to derive a partition of f2 (P_f2) using P_f1.

 P_f2 is derived as a partial function that has the same logical behavior as

the partial function P_f. The inputs of P_f2 can be all the inputs of f

except the one used as carry-in in f1. P_f2 also uses P_f1 as an additional

37

input. The derivation of P_f2 might not always be feasible since it might

depend on unused inputs (such as f1’s input which was used as carry-in).

 If P_f2 was successfully derived, the technique will then verify its

mappability on the the 3-3-2 configuration by performing the normal

Boolean Matching technique over one partition. In other words, the

library is searched for the existence of P_f2 since finding it in the library

signals its mappability.

 If one P_f2 was successfully derived and mapped, the technique would

have found, for this partition, at least one set of {P_f1, P_f2} that

generates P_f. As such, it starts applying the same process on the

remaining partitions.

• If for one P_f the technique was not able to find any set of {P_f1, P_f2} that

would generate P_f, then the entire function f cannot be mapped. This is due to

the fact that even if the entire f1 and f2 are derived, the Boolean Matching

technique will not be able to map it on the 3-3-2 structure since, for at least one

partition, their respective sequences were found to be unmappable.

• If, for each partition, the technique was able to find at least one set of {P_f1,

P_f2} that would generate P_f, then the function f can be successfully mapped on

two logic cells with 3-3-2 structures. So now f is mapped through its

decompositions {f1, f2} where f1 is mapped on the first logic cell with its output

generated through the carry-out, while f2 is mapped on the second logic cell

using f1 as an input through the carry-in.

38

 In order to generate f2, a reverse process must be performed, where the

successfully derived sequences of P_f2, for all partitions, are joined to

form the required f2. As similar process is applied to derive f1.

Figure 13: Improved decomposition of 5-and-less-input functions

39

Chapter Four

Enhanced Mapping Technique using the

Generic Boolean Matching

This chapter proposes an enhanced mapping approach for the Altera Stratix Field

Programmable Gate Arrays (FPGAs), using the so-called Generic Boolean Matching

technique which performs mapping on flexible structure configurations while using the

decomposition processes.

This technique aims on mapping logic non-arithmetic functions on FPGAs while using

the Adaptive Logic Modules (ALMs) in arithmetic mode instead of the typical normal

mode. This approach tries to propagate non-arithmetic outputs and connect logic cells

using the hard-wired carry-chain which is already implemented in the ALM but only

used while performing arithmetic operations,. Mapping non-arithmetic operations on the

carry-chains routes functions without using the external routing resources, which

reduces the congestion on the programmable interconnects, power dissipation, etc.

Altera uses the Quartus II tool to perform synthesis, mapping, placement and routing of

any design, before implementing it on the FPGA. However, since only the mapping

40

process of synthesized functions is of interest and a comparison between the proposed

approach and the currently used mapping technique is needed, Quartus will be used to

perform the synthesis, placement and routing only, as shown in the diagram of Figure

14.

Figure 14: Modified flow of compilation phases

However, the proposed mapping technique does not directly map synthesized functions

but relies on Quartus’ mapping instead. In other words, this technique requires Quartus

to perform synthesis and mapping, after which it parses the mapped cells and tries to

remap it using the new approach. So the previous diagram can somehow be updated as

shown in Figure 15.

Routing (Quartus)

Placement (Quartus)

Our Enhanced Mapping Technique

Synthesis (Quartus)

41

Figure 15: Updated tool flow

So this approach starts by parsing Quartus’ mapping netlist and locating the

benchmark’s functions. Then for each function, the technique tries to map it on the one

half-ALM in arithmetic mode. It might even try to map the selected function on several

configurations of the logic cell depending on the function’s nature and number of used

inputs. Once decisions have been reached for all available functions in the design, a new

mapping netlist is generated and returned back to Quartus to perform placement and

routing.

The detailed flow diagram can be found in Figure 16.

Routing (Quartus)

Placement (Quartus)

Our Enhanced Mapping Technique

Mapping (Quartus)

Synthesis (Quartus)

42

Figure 16: Detailed flow diagram

4.1 Netlist Parser (VQM Parser)

Once Quartus performs synthesis and mapping, an option called Verilog Quartus

Mapping (VQM) Writer can be used to generate an atom-based netlist of logic functions,

in Verilog.

The approach starts by parsing the vqm file generated through Quartus after synthesis

and mapping. This parser creates a list of extracted functions along with their respective

inputs and truth table. Each extracted function can have between two inputs and seven

inputs. Once the functions are listed, a Data Flow Graph (DFG) is created, keeping track

Routing (Quartus)

Placement (Quartus)

Netlist Regeneration

Mapping decisions using the new approach

Functions Identification using the netlist parser

Mapping (Quartus)

Synthesis (Quartus)

43

of the function’s successors and predecessors. Successors to a current operation are

simply functions using the current output as an input. As such, the current operation

becomes a predecessor to those functions.

4.2 The Enhanced Mapping Process

Traversing the DFG, every function is extracted separately and subjected to the mapping

process. The Flexible-Structure Boolean matching technique that was presented in

Chapter 3 tries to map each function on various structures depending on the function’s

number of inputs and truth table. If the function cannot be mapped on some selected

structures, decomposition is performed.

In order to study this mapping technique in details, it must be divided into three sections,

each presenting one approach depending on the function’s number of inputs. These

sections were selected knowing that the number of inputs of the DFG’s functions range

between 2 and 7 inputs.

4.2.1 - 7-input functions approach

These 7-input functions are rather rare to encounter and are usually mapped using the

‘Extended-LUT’ mode. As such, the impact of these functions on the generated statistics

44

and overall improvement is rather negligible. So at this stage, the proposed mapping

technique will not map such functions on the ALM’s arithmetic mode but instead, it will

simply keep it as is and map it eventually on the ALM in extended-LUT mode.

4.2.2 - 6-input functions approach

Since the flexible-structure mapping technique is used, functions can be mapped on any

of the realistic configurations of the logic cells of the ALM in arithmetic mode, as listed

in Chapter 3. However, the only configuration that supports 6-input functions is the 4-4-

3 structure of Figure 3.

So the approach tries to map a selected 6-input function f on the 4-4-3 configuration

using the flexible-structure mapping technique. If f is not mappable, then the 6-input

function decomposition technique is used to decompose it into two 5-or-less-input

functions. If both techniques fail to map the selected function, then the approach

renounces on trying to map it on the ALM in arithmetic mode and thus the typical

normal mode is used.

However, in the case where f is mappable on the 4-4-3 configuration then the approach

explores its successors trying to find one that can be successfully mapped on a 2-2-1

configuration while using f through the carry-in pin. If such a successor is found, the

ALM will be used in a 4-4-3_2-2-1 configuration reducing the number of logic cells

needed to map these two functions. That is due to the fact that, whenever in normal

45

mode, mapping a 6-input function uses 2 logic cells (an entire ALM), while now only

one logic cell (half-ALM) is needed for mapping that same function. On the other hand,

even if no successor is successfully mapped on the 2-2-1 configuration, the function f

will still be mapped on the 4-4-3 structure. However, in this case, the ALM is underused

and its second logic cell will be only passing the carry value without performing any

useful operation.

The diagram in Figure 17 illustrates the steps to be followed when applying this

approach.

46

Figure 17: 6-input functions mapping process

47

4.2.3 - 5-and-less-input functions approach

This approach covers all functions having a number of inputs between 2 and 5. It tries to

map the function f on configurations supporting five independent inputs. Several

structures are tried during the mapping process of each function, depending on the

configuration’s priority. These priorities are pre-specified depending on the cost each

configuration introduces, in such a way that a configurations’ priority decreases as its

cost increases.

Two structure configurations, as well as the decomposition technique, will be tried

depending on the following priorities:

I. The 3-3-2 structure: This structure has the highest priority since it allows

mapping two up-to-5-input functions, each on one logic cell without any

overhead or loss. If a function can be mapped using this configuration, no other

trials are necessary.

II. The 4-4-4 structure: Experiments proved that this configuration can map a much

higher percentage of functions than any other structure. However, such

mappability comes at the cost of having the second logic cell forced to a 2-2-1

structure which can map a rather small subset of up-to-4-input functions. When

no functions are found to be mapped on the 2-2-1 structure, the 4-4-4

configuration consumes the entire ALM, introducing a loss of one half-ALM or

logic cell.

48

III. Decomposition: The decomposition technique is the final option that is only used

when mapping on the two previous configurations fails. This method has the

least priority since it always introduces an overhead of an increase in the used

logic cells since for every decomposed function, and entire ALM is needed (two

logic cells, one for each of f1 and f2).

Therefore, initially, the technique tries to map the selected function f on a 3-3-2

structure. If it is not successfully mapped, the 4-4-4 structure is tried next. If f can be

mapped on this 4-4-4 configuration, then successors are searched for one that can be

mapped on a 2-2-1 with f being the input on its carry-in, in order to form a 4-4-4_2-2-1

ALM configuration.

However, if the selected function f cannot be mapped on any of the previous

configurations, decomposition is performed using the 5-or-less-input function

decomposition technique.

When all these steps fail, the approach stops trying to map f using the arithmetic mode,

and as such it remains mapped using the normal mode.

The diagram of Figure 18 properly visualizes the steps followed in this approach.

49

Figure 18: 5-or-less-input functions mapping process

50

4.3 Regeneration of the mapping netlist

Once mapping decisions have been reached for all functions of the DFG, a new mapping

netlist is generated in order to reflect the new changes and mapping preferences of every

function.

The generation of the new mapping netlist (or vqm file) must respect the following

guidelines:

• The general interface should remain identical to the initial vqm file, such as

entity declaration, inputs, outputs, wires, etc.

• All 7-input functions and functions that were not successfully mapped must be

declared using the normal mode, as in the initial vqm.

• The declaration of the functions successfully mapped using the arithmetic mode

must be changed so that:

o The selected input is placed on the carry-in.

o The output is generated on the carry-out.

o The mask is changed to properly represent the function at hand.

o The ALM pins used to convey the inputs must be precised depending on

the configuration used to map the function.

• If decomposition is used, the following modifications should be performed:

o Update the function’s declaration so that it becomes the declaration of

the first sub-function (f1), by changing the mask and the used inputs.

51

o A new cell declaration must be added to represent the second sub-

function (f2).

 The carry-in is the output of f1.

 The carry-out is a new wire added to the file.

 The mask reflects the logical behavior of f2.

 The inputs are the ones used for f2.

o All successors of the decomposed function f must be updated so that they

use the output of f2 instead of f.

It might be relevant to mention that in this mapping technique, all available functions are

tested for potential mappability using the arithmetic mode of the ALMs. Whenever such

mappability is achieved, the function is mapped onto the carry-chain. This process is

done opportunistically so that every chance of mappability is seized. However, that

might not be the optimal way of mapping onto carry-chains if the overall objective is to

maximize the reduction of used routing resources while maintaining the area overhead

under control. In such cases, it might be more efficient to use some algorithmic

intelligence to choose the functions that will be placed onto the chains, since, as the

experimental results proved, routing and placement might add some more area overhead

to the original overhead resulting from the mapping process.

52

Chapter Five

A Generic Software Platform

Combining all the previously proposed techniques and approaches one final tool

was generated exploiting the flexibility of the structures on which these techniques are

applied. This generic software platform can analyze, test various basic-unit structures

and compare their performances on particular logic circuits depending on criteria

specified by the user. Such structures may vary from currently available FPGA

architectures to customized theoretical structures well-suited for a specific design(s).

This tool can also propose particular cell structures to map logic circuits while

respecting the user's constraints and insuring the optimization of specific parameters.

5.1 The need for such platform

It is previewed that this tool will be useful for two main parties:

I. Current FPGA companies’ designers, especially Altera’s since the main idea was

proposed as an enhancement on its Stratix FPGAs. This tool will allow these

designers to explore either minor or major modifications onto the current logic

cells architectures and compare these new architectures to the already

53

implemented ones looking for improvements in mappability, area, routing or any

other preferred parameters.

II. Designers searching for logic cells’ architectures that would best implement their

designs or applications while optimizing some personally defined parameters.

The search for such architectures does not have to be limited to the logic cells of

devices currently available in the market but can also be extended to hypothetical

logic cells with user-specified architectures.

5.2 The tool’s capabilities

This tool is based on one main structure shown in Figure 19, to which all flexibility

measures were added allowing it to cover a wide range of possible configurations and

modified/new architectures.

Figure 19: Tool's base configuration

54

The added flexibility to this base configuration can be performed at different levels

where users can either select one flexibility level, multiple or even all levels during a

single use. These levels can be quantified as follows:

1. The LUTs can have a variable and unlimited number of inputs as illustrated in

Figure 20.

k-LUT

k-LUT

3-input
function

i1
i2

ik

j1
j2

jk

Figure 20: Configuration with k-input LUTs

2. The sizes of the LUT can be totally uncorrelated, where each LUT can have a

different size (or number of inputs) independently of the second LUT, as shown

in Figure 21.

Figure 21: Configuration with variable-input LUTs (k1, k2)

55

3. The two LUTs can share inputs. The number of shared inputs can vary

depending on the configuration, as long as it does not exceed the logical

maximum, which is the minimum number of inputs the LUTs are using. This

flexibility level is represented using Figure 22.

Figure 22: Configuration with k-input LUTs and n shared inputs

4. The 3-input function can perform any 3-input logical operation. The user is

allowed to specify the behavior of this component by simply providing its truth

table.

So if all flexibility levels are combined together, one would end up with a configuration

of unbounded variable-input LUTs, with the possibility of having ‘n’ shared inputs, and

any three input combinational function taking as inputs the outputs of the LUTs and an

additional external input. This configuration is illustrated in Figure 23.

56

Figure 23: Fully flexible configuration

5.3 User’s options

This tool allows to the user to perform a wide range of operations depending on his/her

goals and objectives. However, the user is required to specify the configuration(s) on

which the designs need to be tested, through a set of parameters.

5.3.1 - User-specified Parameters

Depending on the purpose of the conducted experiments, the user has to specify some

parameters that would identify the objective and/or configuration(s) required. These

parameters are:

• The first LUT’s number of inputs ‘k1’.

57

• The second LUT’s number of inputs ‘k2’.

• The number of shared inputs ‘n’.

• The logical behavior of the three input function used (by providing its truth

table).

• The objective(s) of the conducted experiment (one or more can be chosen):

 Verifying mappability of functions on the chosen basic-unit structure.

 Measuring the amount of used routing resources and its related

congestion.

 Quantifying the area needed to map a particular design on a particular

structure.

5.3.2 - Modes of operation

Once the parameters have been chosen, users have to choose a mode of operation

depending on their objectives. The chosen mode of operation will reflect the designer’s

end goal, as well as the analysis/conclusions that need to be derived from the

experiment. The available modes of operation can be listed as follows:

 Mode 1: In this mode, the used structure has fixed overall configuration. In other

terms, the LUTs’ characteristics k1, k2 and n are chosen by the user as well as

the 3-input function’s behavior. This mode can be selected whenever the

designer wishes to map a specific circuit on a particular architecture. Statistics

can be generated, as always, for the chosen objectives, such as percent

58

mappability, area used by the circuit, etc. This mode can help designers assess

the efficiency and performance of newly designed basic-unit structures.

 Mode 2: In this mode, the structure used is partially fixed in a way that the

LUTs’ characteristics k1, k2 and n must be predetermined and specified by the

user. However, the tool tries all 256 possible 3-input functions (2ଶయ ൌ 2଼ ൌ 256ሻ

and then reports statistics depending on the user selected objectives. This mode is

useful when designers wish to perform some modifications on the currently

available structures, trying to improve their performance.

 Mode 3: The structure, on which functions are mapped in this mode, has full

LUTs flexibility while the 3-input function is predetermined by the user. So for a

specific logical behavior at the output of the LUTs, the tool will try all possible

LUT configurations by varying k1, k2 and n. Then it will report the configuration

that best suits the designer’s preferences. However, trying to reduce the runtime

of the experiments, it is preferred to set a range from which k1, k2 and n can take

their values. This mode was mainly used when exploring various configurations

of the Stratix FPGAs logic cells, such as the 3-3-2, 4-4-3 and 2-2-1 structures

while applying the enhanced mapping technique.

 Mode 4: This is a combination of modes 2 and 3, where the structure preserves it

full flexibility. All 256 possible 3-input functions are tried at the outputs of the

LUTs, while for every 3-input function selected, all possible LUT configurations

59

are explored by varying the values of k1, k2 and n (again with a specified range

of possible values). It is important to note that this mode is very exhaustive and

has a rather high runtime. However, this mode would reveal most useful when

designers desire to widen the scope of their research and explore various possible

modifications to available structures in FPGAs or even new out of the scope

configurations.

 Mode 5: This mode takes two specific structures with particular configurations

and compares these configurations according to some user-specified parameters.

This mode can even map particular designs on both structures and then choose

which structure is optimal for the user’s application depending again on the

user’s priority and preferred optimality parameters. This particular mode enables

designers to compare either two FPGA available structures trying to choose the

one that better suits the application at hand, or to compare a totally theoretical

structure with one that already exists for possible improvement in the current

FPGA’s architecture; or even, to compare two totally new hypothetical

configurations, trying to choose which one maps the desired circuit with the most

optimized designer-specific parameters.

Going back to the importance of such a tool to the potential users, the modes can be

distributed in terms of the respective interest of each of the two main parties listed

earlier, as follows:

I. Current FPGA companies’ designers would be mainly interested in modes 1, 2, 3

and 5 where the tool allows them, through these modes, to explore minor

60

modifications on the logic cells used in their current respective FPGAs. It also

helps them collect data and analyze statistics of high priorities, such as the

routing resources congestion, total area used, etc. The tool also enables them to

compare the performance of their currently used structures and the newly

modified ones, helping them assess the importance of any modification.

II. Designers searching for logic cells’ architectures that would best implement their

circuits would probably be interested in all modes but mainly in modes 4 and 5.

On one hand, mode 4 allows such designers to search a wide configuration space

for a basic-unit structure that suits their preferences and specific applications

with a minimized cost. Such a wide exploration might cover available FPGA’s

logic cells as well as hypothetical and purely theoretical structures. On the other

hand, mode 5 allows those users to specifically choose two architectures and

compare them according to some personally defined parameters. The two

comparable architectures can be of two currently available FPGA cells, or two

hypothetical basic-unit structures or even a combination of both.

All of these options provide the users with a high flexibility software platform that

directly answers to their individual needs and preferences.

61

Chapter Six

Experimental Results

Several sets of experiments were conducted to properly reflect the benefits and

improvement achieved through the various techniques and approaches proposed in this

work. First, an overview of the benchmarks used will the presented highlighting each

benchmark’s characteristics. Then results of the mapping techniques applied will be

listed along with data collected and analysis performed using the software platform.

6.1 Used Benchmarks

Experiments were conducted using the MCNC benchmarks, and more precisely, the Big

20 benchmarks. These benchmarks are known as the most used for conducting research

experiments on new FPGA architectures and technologies.

As it is called, this set of benchmarks consists of 20 circuits distributed between

combinational and sequential logic files. However since the proposed enhanced mapping

technique and software platform support only combinational functions, experiments will

be conducted using only combinational benchmarks.

62

Table 4 lists the used combinational benchmarks out of the big 20 and provides, for

every benchmark the total number of used Adaptive Logic Modules (ALMs) after

compiling it using the Altera Quartus II tool on a Stratix II FPGA. It also provides, for

each benchmark the total number of interconnects used after Quartus’ synthesis,

mapping, placement and routing process.

Benchmark Number of used
ALMs

Number of used
Interconnects

ex5p 197 3173

alu4 311 2978

apex4 362 4872

apex2 401 4042

seq 428 4713

ex1010 479 5084

spla 938 11303

pdc 968 11194

Table 4: Benchmarks' characteristics

The benchmarks in all statistics and experimental results will be listed in ascending

order of the number of used ALMs after Quartus’ compilation, as shown in Table 4.

Once the benchmark has been compiled using Quartus, the mapping netlist files can be

parsed looking for synthesized logic function that would be mapped on logic cells. Such

functions can have variable inputs ranging between two and seven. Table 5 provides the

distribution of such functions for every benchmark. This means that, again for every

63

benchmark used, Table 5 lists the number of X-input functions available where X varies

between two and seven.

Benchmark Total
functions

7-input
functions

6-input
functions

5-input
functions

4-input
functions

3-input
functions

2-input
functions

ex5p 344 1 44 128 68 59 44

alu4 542 5 74 229 76 91 67

apex4 606 1 120 237 101 101 46

apex2 668 2 128 251 111 103 73

seq 718 1 128 289 125 108 67

ex1010 733 5 208 288 122 67 43

spla 1524 6 285 561 253 196 223

pdc 1535 16 319 593 263 180 164

TOTAL 6670 37 1306 2576 1119 905 727

Table 5: Distribution of functions in every benchmark

64

6.2 Conducted Experiments

Several experiments have been conducted to simulate various cell configurations and

test the enhanced mapping technique that was proposed. Some experiments were also

conducted, using the proposed tool, for the sake of exploring wide ranges of cell

configurations, new and previously available, where a comparison has been developed

depending on some comparable parameters.

6.2.1 - Enhanced Mapping Technique’s experimental results

In order to measure the performance of the new enhanced mapping technique and

properly compare it to the currently used mapping process, the following experiments

were preformed in order to generate respective data and statistics. These experiments

were conducted using the previously specified MCNC benchmarks.

For each experiment and each benchmark, Quartus performs synthesis and mapping then

the logic cell functions are extracted from the mapping netlist using the vqm parser.

After that, the mapping technique is applied; a new netlist file is generated and fed back

to quartus to perform placement and routing. Statistical data are extracted from both the

mapping technique and Quartus.

65

Under this section, two different experiments were conducted following the same

procedure; however differing in the specifications of the enhanced mapping technique.

I. The enhanced mapping technique is used with all its options as stated in Chapter

4; however, the decomposition of 5-or-less-input functions is not performed. In

other words, if a 5-or-less-input function cannot be mapped on the 3-3-2

structure or on the 4-4-4 structure, then the function will not be mapped on the

logic cell in arithmetic mode, but instead it will be mapped using the normal

mode.

II. The enhanced mapping technique is used with all its options including the

decomposition of 5-or-less-input functions.

Results of the enhanced mapping technique-experiment I (EMT-I) are presented in Table

6 and Table 7. Its respective comparative charts are illustrated in Figure 24 and Figure

25.

66

Benchmark
-Normal Mode-
Number of used

interconnects

-Arithmetic mode-
Number of used

interconnects

Percent
improvement

(decrease in used
interconnects)

ex5p 3173 1989 37.31%

alu4 2978 2604 12.56%

apex4 4872 3677 24.53%

apex2 4042 3921 2.99%

seq 4713 4254 9.74%

ex1010 5084 4628 8.97%

spla 11303 10576 6.43%

pdc 11194 10531 5.92%

Maximum percent improvement 37.31%

Average percent improvement 13.56%

Minimum percent improvement 2.99%

Table 6: Experimental results of used interconnects after applying EMT-I

Figure 24: Representation of the improvement in used interconnects for EMTI

0

2000

4000

6000

8000

10000

12000

ex5p alu4 apex4 apex2 seq ex1010 spla pdc

Normal Mode

Arithmetic Mode

67

Benchmark
-Normal Mode-
Number of used

ALMs

-Arithmetic mode-
Number of used

ALMs

Percent overhead
(increase in used

ALMs)

ex5p 197 320 62.44%

alu4 311 378 21.54%

apex4 362 424 17.13%

apex2 401 540 34.66%

seq 428 523 22.2%

ex1010 479 550 14.82%

spla 938 1446 54.16%

pdc 968 1496 54.55%

Maximum percent overhead 62.44%

Average percent overhead 35.19%

Minimum percent overhead 14.82%

Table 7: Experimental results of used ALMs after applying EMT-I

Figure 25: Representation of the overhead in used ALMs for EMTI

0

100

200

300

400

500

600

ex5p alu4 apex4 apex2

Normal Mode

Arithmetic Mode

68

Since the enhanced mapping technique aims on reducing the number of used routing

resources and the overall routing congestion by mapping using the arithmetic mode, the

experiment measures the total number of used interconnects and compares it with the

interconnects used while mapping using the normal mode.

This enhanced mapping technique (experiment I) achieves a reduction in the used

interconnects with an average of 13.56% and a maximum of 37.31%, by mapping mom-

arithmetic functions on the arithmetic mode instead of the normal mode.

However, and as expected, this reduction in the used routing resources is achieved at the

expense of an increase in the number of used ALMs. Such an increase is acceptable

since the area dedicated for routing resources is much larger than the one dedicated for

logic components, so a decrease in overall used routing resources means a large area

reduction. Nevertheless, one should keep in mind that the reported number of used

ALMs is not highly accurate since these ALMs might be only partially used.

Results of the enhanced mapping technique-experiment II (EMT-II) are presented in

Table 8 and Table 9. Their respective comparative charts are illustrated in Figure 26 and

Figure 27.

69

Benchmark
-Normal Mode-
Number of used

interconnects

-Arithmetic mode-
Number of used

interconnects

Percent
improvement

(decrease in used
interconnects)

ex5p 3173 2502 21.15%

alu4 2978 3161 - 6.15%

apex4 4872 3785 22.31%

apex2 4042 4297 -6.31%

seq 4713 4734 -0.45%

ex1010 5084 5359 -5.41%

spla 11303 6111 45.93%

pdc 11194 5435 51.45%

Maximum percent improvement 54.45%

Average percent improvement 15.32%

Minimum percent improvement -6.31%

Maximum percent improvement over benchmarks with
improvement 54.45%

Average percent improvement over benchmarks with
improvement 31.25%

Minimum percent improvement over benchmarks with
improvement 21.15%

Table 8: Experimental results of used interconnects after applying EMT-II

70

Figure 26: Representation of the improvement in used interconnects for EMTII

The results of this experiment are rather different that the ones of experiment I.

As shown in Table 8, the effect of decomposition on the overall used routing resources

was not systematic or predictable. For some benchmarks the percent reduction in the

used interconnects was the highest seen so far; however, for other benchmarks, the

number of used interconnects increased after decomposition. This un-expected increase

is to a certain extend the result of doubling the number of used logic cells per function

during decomposition. Delivering inputs on all logic cells can be one contributor to the

increase in the used external routing resources. Another reason for such an increase is

due to Quartus’ added logic cells to pass on the carry-out (onto the carry-chain)

whenever a chain of functions has been interrupted.

Studying the reasons for these increases and understanding it might help as a future

work in improving the performance of decomposition.

0

2000

4000

6000

8000

10000

12000

ex5p apex4 spla pdc

Normal Mode

Arithmetic Mode

71

When only improvement cases are considered, the decrease of used routing resources is

rather high and one major observation is that the improvement was mainly achieve on

large benchmarks.

Such improvement, as before, introduces an overhead in the number of (partially or

fully) used ALMs as shown in Table 8.

Benchmark
-Normal Mode-
Number of used

ALMs

-Arithmetic mode-
Number of used

ALMs

Percent overhead
(increase in used

ALMs)

ex5p 197 574 191.37%

alu4 311 646 107.72%

apex4 362 774 113.81%

apex2 401 816 103.49%

seq 428 939 119.39%

ex1010 479 959 100.21%

spla 938 1571 67.48%

pdc 968 1385 43.08%

Maximum percent overhead 191.37%

Average percent overhead 105.82%

Minimum percent overhead 43.08%

Maximum percent overhead over benchmarks with
improvement 54.45%

Average percent overhead over benchmarks with
improvement 103.94%

Minimum percent overhead over benchmarks with
improvement 21.15%

Table 9: Experimental results of used ALMs after applying EMT-II

72

Figure 27: Representation of the overhead in used ALMs for EMTII

The number of used ALMs is almost doubled in this experiment, which is mainly due to

the decomposition of 5-or-less-input functions. Instead of mapping such a function on

one logic cell, decomposition is mapping it on two which, along with some Quartus’

added overhead, results in such an increase in used ALMs.

Even with a high overhead, such technique would reveal useful when area is not a

critical issue as opposed to power consumption, for example, which might be reduced

through a minimization of the used routing resources.

0

100

200

300

400

500

600

ex5p alu4 apex4 apex2

Normal Mode

Arithmetic Mode

73

6.2.2 - Statistics of mapping on specific configurations

The software platform proposed in Chapter 5 is used in this section, to test the

mappability of logic functions on particular configurations and to generate related

statistics. Two experiments were conducted under this scope, where each experiment

goes through the benchmarks, parsing the logic functions and trying to map those

functions onto a specific structure. The structures of interest are the 3-3-2 structure and

the 4-4-4 structure; however any other structure can be chosen. The reported statistics

highlight the percentage of directly mappable functions on the structure (i.e. without the

use of decomposition) and then it provides the overall percentage of mappable functions

after performing decomposition. It also reports the efficiency of the decomposition

technique when applied on the set of unmappable functions.

For both experiments, statistics are divided in terms of the number of inputs of the

functions to be mapped, which ensures clearer comparisons and a better understanding

of the results.

Table 10 generates percentages over all benchmarks on the 3-3-2 structure, while the

remaining Tables 11-18 report detailed statistics for every benchmark used.

74

Statistics for all benchmarks

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100% 77.00% 37.5% 63.19%

2-input
functions 10.89% 100% 100% 0.0%

3-input
functions 13.56% 100% 66.29% 100%

4-input
functions 16.77% 100% 66.66% 100%

5-input
functions 38.62% 80.12% 4.19% 79.25%

6-input
functions 19.58% 24.57% 24.57% 0.0%

7-input
functions 0.55% - - -

Table 10: Mapping statistics over all benchmarks on a 3-3-2 structure

75

Statistics for alu4

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 78.96% 40.4% 64.7%

2-input
functions 12.36% 100.0% 100.0% 0.0%

3-input
functions 16.78% 100.0% 76.92% 100.0%

4-input
functions 14.02% 100.0% 73.68% 100.0%

5-input
functions 42.25% 79.91% 6.55% 78.5%

6-input
functions 13.65% 14.86% 14.86% 0.0%

7-input
functions 0.92% - - -

Table 11: Mapping statistics over the alu4 benchmark on a 3-3-2 structure

76

Statistics for apex2

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100% 80.68% 46.55% 63.86%

2-input
functions 10.92% 100.0% 100.0% 0.0%

3-input
functions 15.41% 100.0% 96.11% 100.0%

4-input
functions 16.61% 100.0% 87.38% 100.0%

5-input
functions 37.57% 85.25% 1.59% 85.02%

6-input
functions 19.16% 29.68% 29.68% 0.0%

7-input
functions 0.29% - - -

Table 12: Mapping statistics over the apex2 benchmark on a 3-3-2 structure

77

Statistics for apex4

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 75.08% 30.03% 64.38%

2-input
functions 7.59% 100.0% 100.0% 0.0%

3-input
functions 16.66% 100.0% 53.46% 100.0%

4-input
functions 16.66% 100.0% 41.58% 100.0%

5-input
functions 39.1% 70.88% 0.42% 70.76%

6-input
functions 19.8% 32.5% 32.5% 0.0%

7-input
functions 0.16% - - -

Table 13: Mapping statistics over the apex4 benchmark on a 3-3-2 structure

78

Statistics for ex5p

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 83.72% 38.95% 73.33%

2-input
functions 12.79% 100.0% 100.0% 0.0%

3-input
functions 16.15% 100.0% 61.01% 100.0%

4-input
functions 19.76% 100.0% 64.7% 100.0%

5-input
functions 37.2% 84.37% 0.78% 84.25%

6-input
functions 12.79% 20.45% 20.45% 0.0%

7-input
functions 0.29% - - -

Table 14: Mapping statistics over all benchmarks on a 3-3-2 structure

79

Statistics for ex1010

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 65.48% 31.65% 49.5%

2-input
functions 5.86% 100.0% 100.0% 0.0%

3-input
functions 9.14% 100.0% 64.17% 100.0%

4-input
functions 16.64% 100.0% 55.73% 100.0%

5-input
functions 39.29% 65.27% 6.25% 62.96%

6-input
functions 28.37% 28.84% 28.84% 0.0%

7-input
functions 0.68% - - -

Table 15: Mapping statistics over the ex1010 benchmark on a 3-3-2 structure

80

Statistics for pdc

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100% 77.39% 36.09% 64.62%

2-input
functions 10.68% 100.0% 100.0% 0.0%

3-input
functions 11.72% 100.0% 55.55% 100.0%

4-input
functions 17.13% 100.0% 69.96% 100.0%

5-input
functions 38.63% 86.84% 6.74% 85.89%

6-input
functions 20.78% 20.68% 20.68% 0.0%

7-input
functions 1.04% - - -

Table 16 Mapping statistics over the pdc benchmark on a 3-3-2 structure

81

Statistics for seq

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 78.69% 37.18% 66.07%

2-input
functions 9.33% 100.0% 100.0% 0.0%

3-input
functions 15.04% 100.0% 73.14% 100.0%

4-input
functions 17.4% 100.0% 64.8% 100.0%

5-input
functions 40.25% 80.96% 3.11% 80.35%

6-input
functions 17.82% 24.21% 24.21% 0.0%

7-input
functions 0.13% - - -

Table 17: Mapping statistics over the seq benchmark on a 3-3-2 structure

82

Statistics for spla

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 78.28% 39.56% 64.06%

2-input
functions 14.63% 100.0% 100.0% 0.0%

3-input
functions 12.86% 100.0% 60.71% 100.0%

4-input
functions 16.6% 100.0% 68.77% 100.0%

5-input
functions 36.81% 80.92% 3.56% 80.22%

6-input
functions 18.7% 23.5% 23.5% 0.0%

7-input
functions 0.39% - - -

Table 18: Mapping statistics over the spla benchmark on a 3-3-2 structure

83

The main observations derived from this set of results can be summarized as follows:

• All two input functions can be mapped on the structure without the need for any

decomposition.

• With decomposition, all three and four-input functions were successfully mapped

onto the structure.

• Without decomposition, an extremely low percentage of five-input functions were

mappable on the structure.

• Decomposition maps a high percentage of five-input functions

• The percentage of overall mappable functions is highly boosted using the

decomposition technique.

This experiment highlights the importance of the decomposition technique and the

improvement it provides in terms of mappability. That is not only reflected from the

increase in mapping percentages before and after decomposition, but also in the fact that

the probability of a function’s mappability increases as the number of inputs of the

function decreases. Following this reasoning, decomposing into less-input functions

increases the chances of mapping the function in question.

84

The second experiment was conducted using the same procedures as in the first

experiment however now mapping is performed on a 4-4-4 structure. Table 19 provides

statistics for all input functions and all benchmarks while Tables 20-27 report statistics

for every benchmark.

Statistics for all benchmarks

Contribution
to the total
number of

inputs

% mapped
functions

% mapped
without <6-

input
decomposition

% mapped through
<6-decomposition

(out of the total
initially

unmappable
functions

All
functions 100.0% 72.89% 72.89% 0.0%

2-input
functions 10.89% 100.0% 100.0% 0.0%

3-input
functions 13.56% 100.0% 100.0% 0.0%

4-input
functions 16.77% 100.0% 100.0% 0.0%

5-input
functions 38.62% 80.27% 80.27% 0.0%

6-input
functions 19.58% 3.29% 3.29% 0.0%

7-input
functions 0.55% - - -

Table 19: Mapping statistics over all benchmarks on a 4-4-4 structure

85

Statistics for alu4

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 77.85% 77.85% 0.0%

2-input
functions 12.36% 100.0% 100.0% 0.0%

3-input
functions 16.78% 100.0% 100.0% 0.0%

4-input
functions 14.02% 100.0% 100.0% 0.0%

5-input
functions 42.25% 79.91% 79.91% 0.0%

6-input
functions 13.65% 6.75% 6.75% 0.0%

7-input
functions 0.92% - - -

Table 20: Mapping statistics over the alu4 benchmark on a 4-4-4 structure

86

Statistics for apex2

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 76.04% 76.04% 0.0%

2-input
functions 10.92% 100.0% 100.0% 0.0%

3-input
functions 15.41% 100.0% 100.0% 0.0%

4-input
functions 16.61% 100.0% 100.0% 0.0%

5-input
functions 37.57% 85.65% 85.65% 0.0%

6-input
functions 19.16% 4.68% 4.68% 0.0%

7-input
functions 0.29% - - -

Table 21: Mapping statistics over the apex2 benchmark on a 4-4-4 structure

87

Statistics for apex4

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 69.14% 69.14% 0.0%

2-input
functions 7.59% 100.0% 100.0% 0.0%

3-input
functions 16.66% 100.0% 100.0% 0.0%

4-input
functions 16.66% 100.0% 100.0% 0.0%

5-input
functions 39.1% 70.88% 70.88% 0.0%

6-input
functions 19.9% 2.5% 2.5% 0.0%

7-input
functions 0.16% - - -

Table 22: Mapping statistics over the apex4 benchmark on a 4-4-4 structure

88

Statistics for ex5p

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 81.1% 81.1% 0.0%

2-input
functions 12.79% 100.0% 100.0% 0.0%

3-input
functions 17.15% 100.0% 100.0% 0.0%

4-input
functions 19.76% 100.0% 100.0% 0.0%

5-input
functions 37.2% 84.37% 84.37% 0.0%

6-input
functions 12.79% 0.0% 0.0% 0.0%

7-input
functions 0.29% - - -

Table 23: Mapping statistics over the ex5p benchmark on a 4-4-4 structure

89

Statistics for ex1010

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 57.7% 57.7% 0.0%

2-input
functions 5.86% 100.0% 100.0% 0.0%

3-input
functions 9.14% 100.0% 100.0% 0.0%

4-input
functions 16.64% 100.0% 100.0% 0.0%

5-input
functions 39.29% 65.27% 65.37% 0.0%

6-input
functions 28.37% 1.44% 1.44% 0.0%

7-input
functions 0.68% - - -

Table 24: Mapping statistics over the ex1010 benchmark on a 4-4-4 structure

90

Statistics for pdc

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 73.94% 73.94% 0.0%

2-input
functions 10.68% 100.0% 100.0% 0.0%

3-input
functions 11.72% 100.0% 100.0% 0.0%

4-input
functions 17.13% 100.0% 100.0% 0.0%

5-input
functions 38.63% 86.84% 86.84% 0.0%

6-input
functions 20.78% 4.07% 4.07% 0.0%

7-input
functions 1.04% - - -

Table 25: Mapping statistics over the pdc benchmark on a 4-4-4 structure

91

Statistics for seq

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 74.79% 74.79% 0.0%

2-input
functions 9.33% 100.0% 100.0% 0.0%

3-input
functions 15.04% 100.0% 100.0% 0.0%

4-input
functions 17.4% 100.0% 100.0% 0.0%

5-input
functions 40.25% 81.31% 81.31% 0.0%

6-input
functions 17.82% 1.56% 1.56% 0.0%

7-input
functions 0.13% - - -

Table 26: Mapping statistics over the seq benchmark on a 4-4-4 structure

92

Statistics for spla

Contribution to
the total

number of
inputs

% mapped
functions

% mapped
without <6-input
decomposition

% mapped through
<6-decomposition

(out of the total
initially unmappable

functions

All
functions 100.0% 74.73% 74.73% 0.0%

2-input
functions 14.63% 100.0% 100.0% 0.0%

3-input
functions 12.86% 100.0% 100.0% 0.0%

4-input
functions 16.6% 100.0% 100.0% 0.0%

5-input
functions 36.81% 81.28% 81.28% 0.0%

6-input
functions 18.7% 3.85% 3.85% 0.0%

7-input
functions 0.39% - - -

Table 27: Mapping statistics over the spla benchmark on a 4-4-4 structure

The main observations on the statistics obtained from this experiment can be:

• Decomposition is useless if this structure is chosen. No functions require the use of

the decomposition technique in order to me mapped.

93

• All two-input, three-input and four-input functions are fully mappable on the

structure (without the need for decomposition).

• The structure itself has rather high mappability percentages (again without the use of

the decomposition technique).

These experiments performed using the proposed generic software platform allow the

designers to compare structures such as the 3-3-2 and the 4-4-4 and choose the one that

better fits their preferences. Even though the 3-3-2 structure has higher overall

mappability percentages, designers might prefer the 4-4-4 structure since it maps

functions without the use of decomposition and as such without any theoretical increase

in area and used basic-unit structures.

94

Chapter Seven

Conclusions

This work proposes some generic approaches that would enhance mapping on current

FPGAs’ cells as well as user-specified basic-unit structures. These approaches vary

between variable cell configuration, Boolean Matching and decomposition techniques.

Experimental results show that the enhanced mapping technique manages to reduce the

congestion of the routing resources since it can decrease the used interconnects by about

13.5%, on average. Moreover, this achievement can be even improved if a

decomposition technique is embedded inside the enhanced mapping approach in order to

increase the percentage of mappable functions and as such decrease the used

interconnects. On large benchmarks, this newly-enhanced approach manages to decrease

the used routing resource by up to half the amount that would usually be needed. Such a

decrease in the congestion of the routing connections might stimulate a decrease in area

and power consumption.

Furthermore, the proposed generic unit-based software platform provides the designer

with high flexibility in the search for a structure that optimizes specific user-defined

parameters while implementing particular applications. This tool, through its numerous

modes and options, allows the designers to search the currently available architectures as

well as a wide search-space of hypothetical structures in order to choose the structure

95

that fully implements the required circuit while abiding by the designer’s predefined

conditions and preferences. Not to forget that this tool also enables current FPGA

companies’ designers to perform minor modifications on their current cell structures,

simulate and compare the performance of these modified cells to the performance of the

current state-of-the-art FPGAs. Doing so might allow these companies to locate a minor

modification to their logic cells that might substantially improve the performance of

their FPGAs.

Future work can tackle various aspects of the proposed approaches. On one side, some

intelligence needs to be added to the enhanced mapping technique whenever functions

are mapped on ALMs in arithmetic mode. This intelligence might be in form of an

algorithm that heuristically chooses the functions to be chained as opposed to the

random approach that is currently used. Such a chain-selection algorithm would further

reduce the congestion of the routing resources while minimizing the overhead in area

and used ALMs. On a different angle, the proposed mapping technique is performed

after going through synthesis using tools such as Quartus. These tools are not aware of

the mode of operation of the proposed mapping technique and as such synthesis is

performed as a general step and is not optimized for this specific mapping technique. So

a possible future work would be in embedding both synthesis and mapping into one tool

that performs both operations with some knowledge and intelligence so that synthesis

generates functions in a way that ensures their mappability depending on the

configuration of the used structure.

96

Bibliography

[1] P. Jamieson, W. Luk and S. Wilton, “An energy and power consumption analysis

of FPGA routing architectures,” in Int. Conf. Field-Programmable Tech.,

Sydney, 2009, pp.324-327.

[2] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for power-efficient

FPGAs,” in ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, New

York, 2003, pp. 175-184.

[3] Altera Inc. Stratix II device handbook. [Online]. Available:

http://www.altera.com.

[4] Altera Inc. Stratix III device handbook. [Online]. Available:

http://www.altera.com.

[5] Altera Inc. Stratix IV device handbook. [Online]. Available:

http://www.altera.com.

[6] S. Hauck, T. Fry, and M. Hosler, “High-performance carry chains for FPGA's,”

in Proc. 1998 ACM/SIGDA 6th Int. Symp. Field Programmable Gate Arrays,

New York, 1998, pp. 223-233.

[7] Altera Inc. Altera QuartusII handbook. [Online]. Available:

http://www.altera.com.

[8] A. Ling, D.Singh, and S. Brown, “FPGA technology mapping: A study of

optimality,” in Proc. 42nd Annu. Design Automation Conf., New York, 2005, pp.

427-432.

97

[9] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to technology

mapping for LUT-based FPGAs,” in Proc. 2006 ACM/SIGDA 14th Int. Symp.

Field Programmable Gate Arrays, New York, 2006, pp. 41-49.

[10] A. H. Farrahi and M. Sarrafzadeh, “FPGA technology mapping for power

minimization,” in 4th Int. Workshop Field-Programmable Logic and

Applications, London, 1994, pp. 66-67.

[11] D. Chen, J. Cong, F. Li, and L. He, “Low-power technology mapping for

FPGA architectures with dual supply voltages,” in Proc. 2004 ACM/SIGDA 12th

Int. Symp. Field Programmable Gate Arrays, New York, pp. 109-117.

[12] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algorithm

for delay optimization in lookup-table based FPGA designs,” IEEE Trans.

Comput.-Aided Des. Integr. Syst., vol. 13, pp. 1-12, Jan. 1994.

[13] A. H. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-tale

minimization problem for FPGA technology mapping,” IEEE Trans. Comput.-

Aided Des. Integr. Syst., vol. 13, pp. 1319-1332, Nov. 1994.

[14] J. Lin, A. Jagannathan, and J. Cong, “Placement-driven technology mapping

for LUT-based FPGAs,” in Proc. 2003 ACM/SIGDA 11th Int. Symp. Field

Programmable Gate Arrays, New York, pp. 121-126.

[15] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan, “Efficient SAT-based

Boolean matching for FPGA technology mapping,” in Proc. 43rd Annu. Design

Automation Conf., New York, 2006, pp. 466-471.

[16] Y. Hu, V. Shih, R. Majumdar, and L. He, “Exploiting symmetry in SAT-based

Boolean matching for heterogeneous FPGA technology mapping,” in Proc. 2007

IEEE/ACM Int. Conf. Comput-Aided Design, New Jersey, pp. 350-353.

98

[17] Z. Wei, D. Chai, A. Newton, and A. Kuehlmann, “Fast boolean matching with

don't cares,” in Proc. 7th Int. Symp. Quality Electronic Design, Washington DC,

2006, pp. 346-351.

[18] G. Chen and J. Cong, “Simultaneous logic decomposition with technology

mapping in FPGA designs,” in Int. Symp. Field-Programmable Gate Arrays

(FPGA), New York, 2001, pp. 48-55.

[19] T. S. Czajkowski and S. D. Brown, “Functionally linear decomposition and

synthesis of logic circuits for FPGAs,” in Proc. 45th Annu. Design Automation

Conf., New York, 2008, pp. 18-23.

[20] M. T. Frederick and A. K. Somani, “Beyond the arithmetic constraint: Depth-

optimal mapping of logic chains in LUT-based FPGAs,” in Int. Symp. Field-

Programmable Gate Arrays (FPGA), New York, 2008, pp. 37-46.

[21] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Exploiting fast carry-chains of

FPGAs for designing compressor trees,” in Proc. 19th Int. Conf. Field-

Programmable Logic and Applications, Prague, 2009, pp. 242-249.

[22] H. Parandeh-Afshar, G. Zgheib, P. Brisk and P. Ienne, “Routing wire

optimization through generic synthesis on FPGA carry chains,” presented at the

Design Automation Conf., San Diego, CA, June 2011.

[23] H. Parandeh-Afshar, G. Zgheib, P. Brisk and P. Ienne, “Reducing the pressure

on routing resources of FPGAs with generic logic chains,” in Proc. 19th

ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, New York, 2011, pp.

237-246.

