RY

OOMMT

Object Oriented Maintenance Management Tool

by

BASSAM HADDAD

Submitted in partial fulfilment of the requirements

For the degree of Master of Science

Project Advisor : Dr. NASHAT MANSOUR

Department of Computer Science
LEBANESE AMERICAN UNIVERSITY
March 2000

LEBANESE AMERICAN UNIVERSITY

GRADUATE STUDIES

We hereby approve the project of

Bassam Haddad

Candidate for the Master of Science degree.

Dr. Nashat Mansour (Advisor)

. May Abboud

i

I grant to the LEBANESE AMERICAN UNIVERSITY the right to use this
work, irrespective of any copyright, for the University’s own purpose
without cost to the University or to its students, agents and employees. I
further agree that the University may reproduce and provide single copies of
the work, in any format other than in or from microforms, to the public for

the cost of reproduction.

iii

Table of Contents

List of tables %
List of figures vi
Acknowledgement vii
Abstract Vviii

Chapter 1. Introduction 1
1.1 What is CASE Software? 1

1.2 Where can CASE help? 4

5

7

1.3 The Evolution of Software Tools
1.4 The Benefits of CASE Tools

1.5 Scope of this Project 11
Chapter 2. Review of OO CASE Tools 12
2.1 A Taxonomy of CASE Tools 12
2.2 Characteristics of Good CASE Tools 17
2.3 Emerging CASE Tools 20
2.4 OO0 CASE Tools 21
2.5 CASE Practices 30
2.6 Survey of important OO tools 38
OODesigner, 38
ObjectiF; 40
Wizdom Application Generator; 45
2.7 A Software Maintenance process model : GUMP 50
2.8 Software Maintenance CASE Tool 55
2.9 Example of a Change Request and Problem Reporting Process -------------------- 61
Chapter 3. Tool’s Specifications 63
Chapter 4. Tool’s Design 65
Chapter 5. Tool’s Implementation 71
Chapter 6. Example application 76
Chapter 7. Conclusion 79
References 80

Appendix: Implementation Details 82

iv

List of tables

Table 1 - Organisation using CASE tools

Table 2 - Development using CASE tools

Table 3 - Software maintained using CASE tools

Table 4 - Activities for which CASE tools are used

Table 5 - Benefits realized with use of CASE tools
Table 6 - Entry-task-exit description of the ‘unit test’ cell

Table 7 - List of data tables

Table 8 - TL_Trans H data table

Table 9 - TL._Trans D data table

Table 10 - TL_Trans_Class data table

Table 11 - TL_Product H data table
Table 12 - TL_Product_D data table

Table 13 - TL User data table

Table 14 - TL._Tab_ModType data table

32
32
32
32
34
54
71
72
73
73
74
74
74
75

List of figures

Figure 1. Overall structure of the maintenance process

Figure 2. OOMM design model

vi

52
66

Acknowledgements

It is a great pleasure for me to acknowledge the assistance and help of few
persons to this effort. My supervisor, Dr. Nashat Mansour, continuously encouraged,
suggested various improvements and supported me to complete my project. I would
like to acknowledge Dr. May Abboud who reviewed my work and provided me with
valuable advises.

Finally, I gratefully acknowledge and thank all my family and friends for their

patience, encouragement and contributions.

B.H.

vii

Abstract

OOMMT (Object Oriented Maintenance Management Tool) is a CASE tool
that provides guidelines and procedures for carrying out a variety of activities
performed during the maintenance process. This tool keeps track of change requests
and reported problems specifically for object oriented systems. It helps the maintainer
in controlling and managing the maintenance process through out its different stages.
This tool is based on a 5 stages model that begins with the change request stage,
passes through the change evaluation, maintenance specification, and maintenance
design stages till it ends with the system release stage. At the end of each stage a form
is generated. The model design corresponds to the traditional waterfall life-cycle
model of software development. The tool’s implementation is done in Visual Basic
5.0 as a front-end interface while all data are stored in Access 97 as a back-end
database. Additionally a set of queries and reports brings ease and simplicity to the

tool.

viii

Chapter 1 — Introduction

1.1 What is CASE Software ?

Computer-aided software engineering tools substantially reduce or eliminate
many of the design and development problems inherent in medium to large software

projects.

The ultimate goal of CASE technology is to separate design from
implementation. Generally, the more detached the design process is from the actual
code generation, the better. Many have recognised this basic software planning and
structuring principle, and over the course of the last fifteen years, several structured
methodologies have been developed and introduced to large numbers of programmers.
These structured methodologies provided a design framework as well as a set of
formalisms and practices, which have become the basis for software development.
Although not perfect and largely relying on the thoroughness of the individual
practitioner, these methodologies have allowed software developers to build more
complex systems. Usually, these methodologies encourage the decomposition of
large software systems into sets of small modules. The interfaces between these
modules are well-designed by the software architect, allowing individual
programmers to independently construct and test their respective assigned modules.
Then during the final stages of the software development process, all of the modules

are integrated to form the final program.

In many respects, CASE tools are a direct evolution of these early paper-based
structured methodologies. Now many of those same structured methodologies and
organisational techniques are being implemented as software programs themselves,
instead of relying on the individual and engineers to religiously practice the

methodologies (Fisher 1991).

One definition of computer-aided software engineering is the use of fools that
provide leverage at any point in the software development cycle. This definition
would include most tools that software developers are acquainted with today,
including compilers, debuggers, performance profilers, and source code control

systems.

A more restrictive but operationally better definition for CASE is the use of
tools that provide leverage in the software requirements analysis and design
specification phases, as well as those tools which generate code automatically from
the software design specification. This more restrictive definition will be used in
order to focus on the higher leverage design and code generation tools now being

offered by CASE tool vendors.

CASE tools provide leverage by exploiting the design and development
process, generally in the early stages, to yield implementation benefits later in the
project. Requirements analysis and design specification packages are examples of
CASE tools that allow the software designer to display and graphically edit a software
schematic. Interactive graphics editing is certainly less time intensive, not to mention

more enjoyable, than regenerating paper-based designs. Furthermore, these design

specification tools provide consistency-checking features, verifying that all software
modules interface properly and all data structures are fully specified.

Other CASE tools are more tightly focused in objective than the design specification
tools. An example of a focused tool is a user interface generator. Such tools include
interactive form design and generation packages, which allow the software designer to
develop and specify a form-based user interface for an application program. These

tools usually operate in a what-you-see-is-what-you-get fashion.

1.2 Where can CASE help?

If the cause of most implementation shortfalls and reliability problems stem
from improper or insufficient requirements analysis and design specification, what is
the remedy? During the 1960s and 1970s, several structured methodologies were
developed to impose rigid structures on the requirements analysis and design
specification phases of the software development cycle. These methodologies
presented a straightforward, disciplined approach to software development which, by
following the methodologies, would greatly reduce the risks caused by requirements
and design error.

Several of these methodologies (Fisher 1991) are Yourdon/DeMarco
Structured Analysis (data flow diagrams) for requirements analysis, Hierarchical plus
Input and Output (HIPO) charts for software module structuring, and Warnier-Orr
and entity-relationship diagrams for data modeling. These methodologies all address
different parts of the requirements analysis and design specification process. Newer
methodologies include object-oriented design and reengineering (code refurbishment)
(Fisher 1991). The knowledgeable software manager maintains these methodologies
in his technological arsenal and knows when and how to employ them. He realises
that several different methodologies will frequently be used on the same software
project, each for its own speciality.

These formal, structured methodologies are the backbone of computer-aided
software engineering. They provide the rigorous framework necessary to thoroughly

specify and design software applications.

1.3 The Evolution of Software Tools

Software development tools are currently undergoing another revolution as
CASE tools are forged to fortify the requirements analysis and design specification
phases of the software development cycle. Today, all software developers are
familiar with, and use, programming language compilers, symbolic debuggers, and
commercially available subroutine packages. A large percentage of these
professionals are acquainted with source code control systems for managing and
organising large bodies of source code. And today, many are being introduced to
computer-aided software engineering tools, that is, tools that help software developers

specify the application's requirements and design.

Nowadays, the software industry is migrating from legions of programmers
proficient in one programming language (usually COBOL, Ada, or C) and who
participate in all phases of software development. The industry is favouring smaller
groups of software designers and programmers, each highly skilled in one particular
phase of the software development cycle.

This division of responsibility is common in large system application
development, which has traditionally distinguished between analysts, systems
programmers, and application programmers. Analysts are responsible for writing the
requirements and design specification documents. Specialised database analysts
develop database schema designs for new information management applications.
Application programmers write the actual code based on the design specifications and

database designs. Finally, test engineers integrate the modules and provide quality

assurance. This trend is one of specialisation. Other industries such as the
construction industry, have undergone this process as they mature.

The advent of the personal computer elevated the need for better, more visual
user interfaces as more and more white collar professionals began using computers.
So now the software industry has a need for user interface specialists with the
cognitive psychology skills necessary to design understandable man-machine
interfaces.

Requirements analysis, also known as systems engineering, is becoming a
profession in its own right. In the design phase, designers specialising in data
modelling and structured design methodologies are responsible for transforming the
requirements specification into a buildable software architecture. The structured
analysis methodology models the underlying business function being implemented in

software.

1.4 The Benefits of CASE Tools

For many software development organizations, the qualitative benefits of
CASE tools outweigh the quantitative benefits. CASE tools employed in the early
phases of software design and development yield lower costs and better results in the
implementation and maintenance phases. This reduces the entire life-cycle cost.
Design and development times will almost always be reduced by using CASE tools
(Fisher 1991).

But perhaps their most satisfying benefit comes in the form of insurance, or
peace of mind, that the job is being done properly, on schedule, and to the end-user's
specification.

CASE tools yield a tremendous benefit in revealing many requirements (and
surprises) before the implementation begins. (CASE tools are definitely not for
adventure seekers!) However, much of the actual value received from computer-aided
software engineering largely depends on how well it is integrated into the software

development organisation.

Complete Requirements Specifications. Most software developers have
witnessed the failure or rejection of a software application out in the field because
what they built was not what the end-users wanted. Encouraging the software
designer to completely specify the system's requirements in conjunction with end-
users is the goal of requirements analysis and specification CASE tools. Most
specification methodologies enforce end-user involvement because it is impossible to
complete the specification without developing a model of the end-user's process or

business function. Although the risk of creating an Edsel still exists (despite the best

efforts of all involved), the probability of doing so is greatly diminished with

complete, detailed, and accurate requirements specifications.

Accurate Design Specifications. Design specifications are an integral
component of many CASE tools. They encourage developers to specify thorough and
complete architectures. There is nothing more frightening for a novice software
engineer than facing the task of maintaining a large software system with incomplete,
inaccurate, or non-existent design documentation.

In-line software documentation is rarely sufficient to communicate the
system's architectural design without embroiling the reader in unnecessary detail.
Often development teams say "we'll write the design specifications after the code has
stabilised." Somehow, the documentation never gets written. A home purchaser
contracting to build a custom new home would never let a contractor build the house
first and then draw up the blueprint.

Furthermore, we have all seen designs that violate sound design practices: designs
that expose unnecessary detail, encourage "spaghetti code,’ and ignore the separation
of concerns doctrine. (Separation of concerns is a software design principal that
advocates organising software programs into groups of modules, each with well-
defined inputs and outputs. Each module is treated as a black box whose intemal
structure is not publicly known. Only the input and output parameters are visible to

the other modules).

Current Design Specifications. Inaccurate design specifications not kept up-
to-date relative to modifications made to the source code base can be an even bigger

problem than incomplete design specifications. Many futile hours can be wasted

trying to understand a system's architecture from pouring over the design specification
but not being able to reconcile it against the actual implementation.

CASE design tools can help maintain synchronization with the code implementation.
Many tools actually attach the code to the specification, so that as the specification
changes, so does the underlying code. Other CASE tools, most notably user interface
design tools, automatically generate code. There is no need to maintain
synchronization because you never touch the underlying code; only the design is

edited.

Reduced Development Time. Completely specifying the software
architecture substantially reduces, if not eliminates, waste from unnecessary or
thrown-away code. Reducing such waste translates directly into reduced
implementation time. Many software professionals feel most productive when they
are sitting in front of a screen actually writing code. The constant gratification of a
compile and run cycle is tremendously appealing to most of us.

Software developers must feel they are being as productive in the requirements

analysis and design specification phases as they feel when writing code during the
implementation phase. Because of the highly interactive, graphical orientation of
most CASE tools, software developers derive an inherent satisfaction in designing

elegant software architectures, similar to the thrill of actually writing code.

Highly Extensible/Maintainable Code. Any successful software project will
never really be finished. End-users will either demand functional improvements or
they will identify bugs in the software's operation, mandating some form of

continuing development or maintenance work on the software. This becomes

10

particularly acute when the software application is an actual product for sale to end-
users. It is easy to develop a design specification when embarking on a new software
project or a major rewrite of an existing system; it is much more difficult to keep the
design specification synchronized with evolutionary maintenance and enhancement
work.

Although each minor enhancement or bug fix may not warrant an update to the design
specification, the aggregation of several modifications will. It is difficult to enforce
the discipline of periodic design specification updates under these conditions,
especially when the maintenance has been left to a skeleton crew of one or two
people.

It's difficult, even for CASE tools, to provide assistance in maintaining design
specifications if the software built from those specifications is hand-written. But
those CASE tools that automatically generate software from design specifications are
not encumbered by this problem. In fact, this trend predominates in areas where
software can be automatically generated, such as user interface design and database

access design.

To summarise, CASE tools:

e Are more compelling to use than writing code.

e Help design rather than document.

e Maintain synchronization with the source code base.
e Reduce the risk of failure and surprise.

e Reduce total development time.

11

1.5 Scope of this project

This project is about developing a CASE tool that will guide, control and
automate the maintenance management process of Object Oriented applications.
As for all software, OO programs also need to be update and modified. Change
Requests of any kind of software maintenance activities may be submitted. This
Object Oriented Maintenance Management Tool (OOMMT) will help keep track of
these CRs throughout the different stages of the maintenance process. Starting at the
Change Request stage, stepping next into the Change Evaluation stage, the
maintenance management spread out through many stages — where a form is
generated as the output of each one — till it reach the System Release final stage.
In addition, this tool will provide a set of queries and reports that will support the user
in having a quick, efficient and easy access to various kind of information. This tool
accommodates also different level of access permissions to users handling the

process.

Chapter 2 — Review of OO CASE Tools

2.1 A Taxonomy of CASE Tools

In this section we turn our attention away from software engineering practices
and focus on computer-aided software engineering tools themselves. The
technological underpinnings of computer-aided software engineering are nothing new.
Most CASE tools implement pencil and paper structured design technologies
developed during the 1960s and 1970s. These methodologies were popularized in
many commercial data processing shops as a way to manage their application
backlogs by reducing technical development risk.

During the 1980s, these analysis and design methodologies migrated into
CASE tools as graphical workstations and personal computers became widely
available. This migration is accelerating as the complexity of the design task grows
beyond what can reasonably be accomplished using pencil and paper. Therefore,
computer-aided software engineering technologies are evolutionary rather than
revolutionary.

No single CASE tool or methodology can perform the entire specification and
design job. Certainly several complementary methodologies are required to handle all
facets of the software development job, from data structure design through user
interface specification. Although there is a trend toward combining complementary
methodologies into integrated tool environments, the universal tool still lives in the

future (Fisher 1991).

12

13

Database Fourth Generation Languages. Fourth generation languages are
high-level languages, which provide database access facilities. They are much easier
to use than languages traditionally used for programmatic database access, such as
COBOL and C. The goal is to remove the burden of tedious database access code by
replacing it with a much smaller amount of code written in a higher-level 4GL
specifically designed for database access or even with object oriented methodology.
Many 4GLs provide form layout and design capabilities using common text editors
and were the first technologies demonstrating the leverage of focused tools on coding
from scratch.

With a 4GL, the application programmer can declare the input/ output screen forms
presented to application program end-users. These forms are declared as sets of fields
with well-defined properties, such as data input checking (e.g., integer range
validation and legal data verification) and protected field display. The application
programmer also specifies database access queries in the 4GL, allowing retrieved data
to be displayed on the form and information input via the form to be added to the

database.

Data Modelling Tools. In database applications, a single database is
frequently shared by many different applications, each of which adds or extracts
information. Before establishing a database for multiple applications and populating
it with data, careful thought must be given to its content and architecture. Because
database applications constitute a large proportion of commercial software
applications, data modelling techniques were developed to help database designers

architect a database to be both versatile and as efficient as possible.

14

Data modelling CASE tools help the database designer model this information flow
throughout the firm and construct appropriate viewpoints for the various organizations
requiring access. Data modelling tools help with the shallow semantics of databases.
They make the semantics explicit so that everyone interprets the relationships among
data items the same way. A well-designed, efficient database saves countless hours of

application programming time as new applications are written to access the database.

Analysis and Design Specification Tools. Design specification tools
generally use the structured analysis and structured design methodologies pioneered
by Tom DeMarco and Edward Yourdon. These general-purpose specification and
design tools can be used to specify and design almost any piece of software. Analysis
and design tools usually implement data flow diagramming and structure charting
techniques, and they are excellent for graphically depicting information flow between
computational processes.

Many design specification tools have extensions for specifying temporal
interactions prevalent in real-time control systems. Many tools also assist in
composing documents required on defence-related mission critical software projects.
Design specification tools are an excellent fit for the portions of an application where
a focused tool doesn't make sense, such as internal calculation or kernel routines. The
software designer must, of course, judge when a more focused tool, such as a user
interface design tool, is called for and when a general-purpose design specification

tool is appropriate.

User Interface Prototyping Tools. For many commercial applications, the

user interface is the largest single component of the application program. User

15

interfaces vary greatly in style and content. Some, such as automated teller machines,
are designed for ease-of-use by unsophisticated users, while other interfaces, like
those in word processors, are built for high-volume processing.

Whatever the application, the user interface deserves special attention. We have all
seen examples of user interfaces that have fallen short of their goal. Often, they differ
only slightly from an interface regarded as highly successful. What differentiates a
winning interface from a losing interface? Frequently, it is the time spent prototyping
the interface and incorporating feedback from the end-user community that
distinguishes the high-quality interface.

Prototyping can be a long and laborious process, and there is always the strong
temptation to use the prototype as the final implementation, rather than redesigning
based on end-user feedback. Fortunately, CASE tools for user interface design and
generation are available in the commercial marketplace.

This type of rapid prototyping offers the leverage needed for highly productive
and successful software projects. Often, just being able to display screen mock-up
sequences is enough to open the communication channel between end-user and
software designer. If the software designer has the capability to mock up interfaces
rapidly (including non-functional ones), he has a vehicle for valuable feedback from
the end-user community.

User interface CASE tools add value to the software development process during the
requirements analysis and design specification stages. These tools leverage the

designer by reducing implementation risk and greatly enhancing end-user acceptance.

Code Generation Tools. Automatic code generation is the ultimate goal of

most CASE tool vendors and certainly of all CASE tool users. Code generation is the

16

ability to automatically generate compilable software directly from a design
specification. Ultimately, the software designer's time is much better invested
specifying and designing rather than coding and debugging. Unfortunately, true code
generation is not available in any of today's general-purpose tools or so-called
application generator products. But code generation is available in a variety of
focused tools, especially in user interface design tools.

In the past, CASE technology focused on general-purpose requirements
analysis and design specification. New developments in CASE technology now
emphasize specialized development tools. Special development tools focus on one
particular type of software, such as database access and user interface development.
For example, there are a growing number of forms generation packages in the
marketplace, ranging in sophistication, price, and delivery environment (PC to
mainframe).

Future tools will attack the more general problem of automatic code
generation. Automatic programming is a difficult problem and is still largely
considered a research topic. Still, each new tool makes small innovations in this area,

and eventually, code generation will be commonplace.

17

2.2 Characteristics of Good CASE Tools

A simple taxonomy of CASE tools might pigeonhole tools by the software
development phase where they add leverage, such as requirements analysis, design
specification, or implementation. However, most of the general-purpose tools span
several development phases, usually the requirements analysis and design
specification phases. These tools typically implement the structured analysis
(Yourdon/DeMarco) methodology, and are able to transform data flow diagrams and
mini-specifications into structured designs including data structure definitions and
module hierarchies.

As with all developing technologies, certain aspects of CASE are more
advanced than others. This makes it difficult to summarise today's state of the art.
However, there is a general trend emerging of tools being built to cover the entire
software development cycle, including automatic code generation and maintenance
‘control systems.

Many of today's vendors are recognizing that their tools cannot focus on just
one or two facets of the development process, such as analysis and design
specification or user interface layout. Rather, tomorrow's successful tools must deal
with all phases of the development cycle and tackle the fundamentally difficult
problem of automatically generating error-free software directly from design
specifications. This code generation barrier is beginning to crumble with innovations
being made in many of today's CASE tools and will further diminish during the next
decade as they advance CASE technology, expand the scope of their tools, and

develop standards.

18

Fundamentally, CASE tools must meet several criteria in order to be
successfully adopted as part of a software developer's tool kit. Meeting these criteria
is essential to the tool's acceptance into the development organization's standard

practices (Fisher 1991).

CASE tools must:
e Simplify. A major goal of CASE technology is to decompose requirements
and designs into manageable components. Their function is to simplify,

explain, and reduce.

o Serve several audiences. CASE tools for the requirements and design phases
of the software cycle serve several masters. Their output must be
understandable by the end-users and the organization sponsoring the software
development. In addition, the tool must provide real design value to the

developers themselves.

e Save time and money. Using a CASE tool should be cheaper and more
efficient in the long run than building the software system using traditional
methods. CASE tools should substantially reduce implementation and

maintenance efforts by yielding higher-quality specifications and designs.

e Produce quantitative and verifiable designs. The specifications and designs
generated by CASE tools must accurately and concisely articulate the software
features and components to be built. Each requirement in the software

implementation must be verifiable and traceable back to the requirements

19

document. Performance criteria, boundaries, and error conditions must be

incorporated as part of the design.

Support change. Specifications and designs produced using a CASE tool
must be adaptable as the requirements and design goals of the project change.
A design document that falls out of synchronization with the underlying code
becomes useless and may cause developers to waste time in future

enhancements to the software.

Show, not say. Good CASE tools present specification and design
information visually. CASE tools are to software engineering what CAD
(computer-aided design) programs are to schematic design and layout. For
end-users and developers alike, it is much easier to comprehend a graphic

illustration than to read several pages of text description.

20

2.3 Emerging CASE Tools

Object-oriented design is an emerging CASE methodology designed to
support the newly prominent object-oriented languages, particularly C++. C++isa
strong successor to the C language popular in microcomputer and minicomputer
applications, and is rapidly being adopted in many minicomputer and microcomputer
application development projects. Other languages, like Ada, also are suited to
object-oriented design.

Object-oriented languages are unique because they inherently modularise data
structures and compartmentalise code. Object-oriented languages attempt to make
good structure inherent in the language rather than relying on the completeness of the
designer. This provides a built-in mechanism for achieving modularity, reusability,
and generality; goals that more traditional programming languages achieve only

through careful analysis and design before implementation begins.

21

2.4 Object-Oriented CASE Tools

Sometimes, people have been seduced into thinking they are going to get more
out of a CASE tool than is possible. In attempting the impossible, they produce
disastrous results. The original idea behind CASE tools was to spare systems analysts
and software designers from spending their valuable time in drafting activities by
providing them with software that automates the production of graphically oriented
analysis and design methodology deliverables. If solving that critical problem is kept
in sight, and the continuing need to have highly skilled, well-trained analysts and
designers is recognized, use of CASE tools can produce significant productivity

improvements.

2.4.1 The Role Of Case Tools In Object-Oriented Rapid Prototyping

Any software that supports the software engineering process in any way can
technically be considered a CASE tool. This can include debuggers, test support,
language-sensitive editors, and many other programming-oriented tools. These are
often referred to as "lower CASE" tools because they are used toward the end of the
lifecycle, and the tools that support analysis and design are sometimes called “upper
CASE”. For rapid prototyping, we are primarily interested in the upper CASE tools.

For upper CASE tools, one of the big selling points is the ability to check the
developer's specifications against the rules of the methodology in use. This is called

consistency checking. Object Oriented analysis and design methods have fewer rules

22

than structured analysis and design (SA/SD). Simplification is primarily due to the
absence of elaborate functional and data hierarchies and decomposition, and to the
absence of format switching between analysis (data flow diagrams) and design
(structure charts). Using SA/SD, one moves from data flow diagrams, control flow
diagrams, and entity relationship diagrams into architecture diagrams and finally to
structure charts through transformation and transaction analysis. Hierarchical
decomposition causes many problems with partitioning, balancing, leveling, and
conservation; there are complicated structured rules for these elements of a structured
specification. Without hierarchical decomposition, there is much less need for
consistency checking.

Object-oriented CASE tools need to do less and should therefore cost less than
structured CASE tools. The object-oriented products are primarily drawing tools,
explaining much of the decrease in price. Drawing tools that are just drawing tools
with no built-in object-oriented constructs cost even less. Drawing is at least 80
percent of what most users do with a CASE tool. For some CASE tools, however,
drawing is their weakest feature. This leads to the conclusion that selection of simple
drawing software instead of a CASE tool to support OOA and OOD is often the right
decision! (Connell and Shafer 1995)

In the area of prototyping, some high-end CASE products have the ability to
generate a software "prototype.” In some instances, the prototype generated is of
fairly impressive quality. When this happens, there is a positive and strong coupling
between the software and the specification. Warning to the reader: Don't be seduced!
A well-constructed drawing can appear to be a good design when, in fact, it may bear
little relationship to the real user requirements and may actually represent a poor

design. The "if it was produced on a computer, it must be right" syndrome applies

23

also to CASE tools. Attractive drawings make impressive presentation materials, but
may or may not be adequate as an application design.

A prototype that is easy to iterate cannot be generated by a CASE tool unless
there is a means of debugging at the drawing stage. To put it another way, when the
requirements commissioners see the prototype and want changes, what will be
changed-the software or the drawing? If the software is changed, it will quickly lose
all coupling with the drawing. Is the prototype generated in a language that is easy to
modify (many products generate C or C++)? If changes will always occur in the
drawing, there should be consideration given to whether or not the drawing tools
provide an environment suitable for debugging thorny software problems. At present,
we know of no CASE tool vendors who recognize this problem, much less provide a
good solution. They are often too busy selling code generators.

When requirements commissioners’ request changes to the prototype, the
temptation is to skip the object-oriented CASE tool and go directly to the prototype
software, which is easy to access and change. Developers find instant gratification in
viewing the results.

It often appears that placing the CASE models between the requested changes and the
prototype is time-consuming and unnecessary. This is a dangerous situation because
it will tempt prototypers to skimp on the models and only change the prototype after
obtaining feedback from requirements commissioners. Iterations that skip updates to
the models and go directly to the prototype can appear to be quicker at first, but the
short-term productivity gains cannot last, since complex changes will be much more
difficult without a good overall system roadmap. When the prototype gets too far
ahead of the models, trying to reverse-engineer the specs out of the prototype

becomes an arduous and sometimes impossible task.

24

A good OOA/OOD CASE tool has enough intelligence about the methodology
being used (that does much of the work for the specifier) and supports changes in a
methodology-smart way. Graphic objects that should be connected stay connected.
References to attributes in service specs might be automatically updated when the
attributes are modified. The service specs, attribute definitions, and graphic models
are all easy to transfer to a word processing document when it is time to create a
deliverable specification. Features like these will make even the most senior
developer appreciate the value of using such a tool concurrently while prototyping -as
long as it doesn't cost too much and is a good drawing tool as well (Connell and

Shafer 1995).

2.4.2 Case Tool Shortcomings

An understanding of common weaknesses found in many CASE products will
perhaps be helpful for comparing products prior to an acquisition. The most
important weakness to understand is the drawing deficiencies. Often thereis a
significant delay (several seconds) between the time the user commands a change to
the drawing and the time the change appears on the screen. This is most often due to
the fact that a multi-user repository is being updated. The changes are being written
to a complex data management system. This excuse, although understandable, is not
acceptable. A computer-aided drawing tool must be at least as fast to use as pencil
and paper.

Another factor at work in the selling (or overselling) of object oriented CASE is

market economics. The market for personal computer drawing tools is vastly larger

25

than the market for CASE tools. Thus, comparatively large efforts have gone into
understanding what users want, in terms of the look, feel, and operation of the PC
based drawing tools. If CASE vendors were smart, they would extend this look and
feel into their products, but they often don't.

A common weakness of CASE products is their lack of adequate report-
generation capability (Connell and Shafer 1995). Again, the CASE vendors could
benefit greatly by studying how related PC-based products, such as database
management systems and many project management systems, provide this
functionality. Virtually every popular PC database product has an easy-to-use,
flexible report writer that allows the user to create reports selected and formatted in
any manner desired without having to do any programming. Since a CASE tool is
essentially a specialized type of data repository, why aren't there better CASE report-
writer modules that would allow analysts and designers to create customized
requirements and design specifications according to whatever tailored version of
whatever documentation format they are using on their project? Instead, we get
inflexible templates for standard formats and graphics that are, for some strange
inexplicable reason, difficult to transform into figures in the specification. It seems
that the primary objective of analysis and design - to produce a specification
document — is forgotten.

Another common weakness of CASE tools is their inability to keep up with
changes in the methodology they support (Connell and Shafer 1995). Developers of
methodologies are continually making refinements to the guidelines and notation.
This requires the vendor of a CASE tool that supports the modified methodology to
make changes to their software. Many of the more popular methodologies are

modified every six to twelve months and most software developers have difficulty

26

coming up with new versions of their products that frequently on a sustained basis.
This is why we saw tools that mainly supported flow charts when dataflow diagrams
were becoming the most prevalent approach to analysis. When the industry had
mostly accepted the DeMarco approach to structured analysis, the CASE tools were
mostly supporting Gane and Sarsen structured analysis. By the time vendors had
switched to DeMarco, analysts wanted to do Ward/ Mellor real-time structured
analysis. Many of the leading Case tool products were becoming old by software
standards (over five years) by the time they offered good support for Ward/Mellor.
This meant that they were probably becoming extremely difficult to modified (most
were probably written using a hierarchical, procedural approach with a third-
generation language). Therefore, when analysis changed again, first to information
engineering and then to object oriented, the old software, in most instances, failed to
keep up. This made room for a whole new crop of products that had never been
anything but object-oriented. But, as soon as those products became available, the
rules and notational conventions for object-oriented analysis changed. This cycle
seems to be immutable and one of the tragic flaws of CASE tools.

One final word about keeping up with the methodology. A relatively recent
strategy that attempts to solve this problem is the development of CASE tools by the
methodologist for the methodology they support. The idea is that the methodologist
will have the next version of the CASE tool ready to ship concurrently with the next
version of the tool. Also, good methodologists are not necessarily the best software
developers. In the case of one methodologist, the drawing features of his company's
CASE tool suffer a bit in comparison to his fine approach to object-oriented analysis

and design (Connell and Shafer 1995).

27

The best bet is to keep the decisions of which methodology to use separate
from which CASE tool to use. Let applications (systems under construction) drive
decisions about what methods and techniques to select for the job, and in turn, let the
methods and techniques drive decisions about what tools to purchase. So often, that
important order of events is reversed. Selecting a tool first and then deciding what
applications can be built with it is limiting (when you have a hammer, every problem
looks like a nail). Always pick a methodology that is described in a book that can be
obtained in any good technical library. Then pick the best CASE tool that supports
that methodology.

Another weakness of CASE tools is the consistency-checking that justifies their
use over computer-aided drawing tools. There seem to be tools of just two types with
respect to consistency checking. The first type does almost nothing in terms of
consistency checking and is, therefore, little more than an expensive drawing tool.
The other type does an overwhelming abundance of consistency checking. The
smallest set of models will cause the latter type of tool to generate many boring pages
of consistency checks, mostly trivial and sometimes even erroneous. Of course, most
tools allow consistency-checking to be optional. The problem is that searching
through the trivial and wrong errors for the important errors can be so tedious that it
often makes the whole feature of automated consistency checking virtually worthless.
It is usually more efficient to subject models to peer review, providing at least some
element of reasonableness. CASE software with overblown consistency checking is
little more than an expensive drawing tool.

Finally, there is the universal absence of strong coupling between the models and the
software application developed from the models. With all this automation and the

high price tags, doesn't it seem like there should be some way of guaranteeing, or at

28

least checking, that the application does what the models claim it does? Actually,
tools may be too difficult for vendors to create in the form of an affordable product.
Vendors have been taking the approach of code generation, but we have already
pointed out the fallacy of this approach, It may be a nice feature to use once in a
while, but it will not guarantee consistency between code and model. We know of
one vendor who has a product that can digest C++ and Smalltalk and produce
Coad/Yourdon diagrams, but it is strictly a reverse engineering tool and has little in
the way of support for analysis and design. Perhaps a tool such as this could be used
in combination with an OOA/OQD CASE tool, but that could be awkward. Would
convergence of the two models ever be achieved? No tool that we know of simply
looks at the source code and produces a listing of consistency errors in comparison
with the models. What would be wrong with that approach, if it was accurate,

reasonable, and not overblown?

We often advocate the use of CASE tools to our clients while countional
conventions to represent the components (objects, processes, data stores, dataflows,
messages, instance connections, etc.) of the methodology. Internal to vendor software
is a mapping between the shape the user draws and the methodology component the
shape represents. Capability should be provided that allows this mapping to be
modified by the user. If, for instance, an object is represented by a box with rounded
corners, the user should be able to command that henceforth, objects are represented
by square boxes or circles or clouds or whatever shape is desired. Then the tool
would know to generate the new shape whenever the user wants a new object. This

modifiable shape-mapping feature would go a long way toward allowing users to

29

customize the tool in order to help it keep up with methodology changes (Connell and
Shafer 1995).

The problem with generating custom reports could easily be fixed with the
standard data export features found in most good personal computer packages.
Drawings, data dictionaries, method, module, or service specifications should all be
exportable in formats usable by other desktop software. Then the user could pick up
the data with a favourite database, word processor, spreadsheet, or desktop publishing
package, format the document, and print out whatever type of document is required.
This type of export feature would be effort much better spent than trying to develop
the most excellent report writer or the most wonderful set of standard specification
templates. There is no such thing as standard specification formats, because software
developers always tailor the standard format they are using for each new project.

An expert system for allowing power users to add their own consistency-
checking rules and to specify which rules are to be checked against which models
would be extremely valuable.

Tools to generate code that is tightly coupled to analysis/design models will be
expensive to develop. What is needed is an executable, interpreted, high-level
scripting language that the analyst can use to write service specifications from within
the CASE tool coupled somehow with an object-oriented GUI builder, such as XVT.
There would also have to be good debugging tools for the scripting language. Then
when prototype and model are approved, at the end of prototype iteration, an
automatic translator should be available to translate the service specification scripts
into C++ or Smalltalk, automatically encapsulated with their specified attributes in

their specified objects.

30

2.5 CASE practices

Hypothesis 1. There are common problems faced by organisations in using
CASE tools.
Hypothesis 2. Organisations have realised benefits with the use of CASE

tools.

Operational systems which support day-to-day running of the organisation
formed the bulk of software systems developed by the organisations, followed next by
decision support systems which facilitate management decision making, then inter-
organisational systems which provide links to business partners and finally, other
types of systems. Developing new applications was the main activity of the
IS(Information Systems) departments, followed by maintenance of applications as the
second most common activity while end user computing support together with
technical operations support tied for third place in the ranking of activities carried out.

The majority (53.7%) of IS departments functions as independent units
reporting directly to the Chief Executive Officer of the organisation while 33.3% of
the IS departments were subsumed under another functional unit in the organisation

(Poo and Chung, 1998).

2.5.1 Current practices on the use of CASE tools

Table 1 shows that only 29.6% of organisations which responded used CASE
tools although 68.5% of these organisations used a formal software development

methodology.

31

The majority (43.8%) of organisations, which had CASE tools, used them in a quarter
or less of their software systems under development (see Table 2). 31.3% of them
used the CASE tool for between a quarter to half of their systems under development.
Only 18.8% of them used their CASE tool for more than 75% of their applications
under development.

According to Table 3, the usage of CASE tools for maintenance of software systems
was even lower. 62.5% of organisations with CASE tool used it to maintain up to only
a quarter of their systems under maintenance. Only 12.5% of those with CASE tools

used it to maintain more than 75% of their systems under maintenance.

In a case study conducted by Mary Sumner of Southern Illinois University
(Bergin 1993) on 13 project managers who used CASE tools, it was found that
approximately 40% of new applications were developed with CASE tool support
while only 21% of maintenance projects had CASE tool support. Hence, the observed
trend is that CASE tools are used more for software development than software
maintenance.

Table 4 shows that the four most common activities for which CASE tools were used.
- Documentation (62.5%).

- System design (56.3%).

- Requirements analysis (50%).

- Drawing diagrams (50%).

The other more common activities which involve the use of CASE tools were
information systems planning (37.5%), coding or code generation (37.5%),

prototyping (31.3%), project management (25%) and change management (25%).

Table 1 - Organisation using CASE tools (Poo and Chung, 1998)

Response Freq. Percent(%)
Yes 16 29.6

No 36 66.7
(Missing) 2 3.7

Total 54 100.0

Table 2 - Development using CASE tools (Poo and Chung, 1998)

Response (%) Freq. Percent(%)
0-25 7 43.8

26-50 5 31.3

51-75 1 6.3

76-100 3 18.8

Total 16 100.0

Table 3 - Software maintained using CASE tools (Poo and Chung, 1998)

Response(%) Freq. Percent(%)
0-25 10 62.5

26-50 3 18.8

51-75 1 6.3

76-100 2 12.5

Total 16 100.0

Table 4 - Activities for which CASE tools are used (Poo and Chung, 1998)

Rank Response Freq. Percent(%)
1 Documentation 10 62.5
2 System Design 9 56.3
3 Requirements Analysis 8 50.0
3 Drawing Diagrams 8 50.0
4 Information Systems Planning 6 37.5
4 Coding 6 37.5
5 Prototyping 5 313
6 Project Management 4 25.0
6 Change Management 4 25.0
7 Testing 3 18.9
8 Configuration Management 2 12.5
9 Others 1 6.3

32

33
The remaining activities which involved the use of CASE tools were testing
(18.9%), configuration management (12.5%) and others (6.3%).
In Sumner's study the three activities for which CASE tools were most
frequently used were system analysis, system design and documentation. It was also
observed that CASE tools were used to support isolated activities within the system

development life cycle, rather than being integrated throughout the life cycle.

2.5.2 Perceptions of benefits and barriers on the use of CASE tools

Many claims have been made about the benefits of CASE. One of the major
benefits of CASE is the introduction of engineering-like discipline into the software
process. Using CASE tools, a software engineer can take advantage of diagramming

tools, design checking tools and a disciplined methodology (Poo and Chung, 1998).

As shown in Table 5, the four most significant benefits realized with the use of CASE
tools were as follows.

- Facilitates drawing of diagrams (62.5%).

- Improves software maintenance (56.3%).

- Creates a repository for system documentation (56.3%).

- Provides checks on analysis and design errors (56.3%).

34
The other more significant benefits perceived, each with a response of 37.5%, were as
follows.
- Increases user involvement in system design.
- Creates an enterprise-wide data dictionary.

- Aids in project management and control.

The less significant benefits from using CASE tools are perceived to be:
- Support for software engineering methods (31.3%).
- Ensures conformance to system development and maintenance standards
(31.3%).
- Supports prototyping (25%).

- Others (6.3%).

Table 5 - Benefits realized with use of CASE tools (Poo and Chung, 1998)

Rank Response Freq. Perc.(%)
1 Facilitates drawing of diagrams 10 62.5
2 Improves software maintenance 9 56.3
2 Creates repository for system documentation 9 56.3
2 Provides checks on analysis and design errors 9 56.3
3 Increases user involvement in system design 6 37.5
3 Creates enterprise-wide data dictionary 6 37.5
3 Aids project management and control 6 37.5
4 Support for software engineering methods 5 31.3
4 Ensures conformance to system

development and maintenance standards 5 31.3
5 Supports prototyping 4 25.0
6 Others 1 6.3

35

In the study conducted by Sumner, the five most significant benefits of using
CASE tools, were as follows.

- Vehicle for using structured design.

- Prevents re-drawing of diagrams.

- Provides improved maintenance.

- Increases user involvement in system design.

- Creates a repository for design documentation.

This shows that CASE tools are perceived to be quite useful as a diagramming
tool, a repository for system documentation and a means to improve software

maintenance.

The following factors were considered as barriers to the use of CASE tools:
- High cost of implementing CASE tools.

- Long learning curve to use CASE tools effectively.

- Limited capability of CASE tools.

- Lack of fit between system development methodology and CASE tools.

- Using CASE tools without knowledge of underlying software engineering
methods and techniques.

- Uncertainty over the benefits of CASE tools.

In the study conducted by Sumner, both CASE and non-CASE users felt that
the limited capability of CASE tools was the most significant barrier to the use of
CASE tools. For CASE users, other significant barriers were the long learning curve
and lack of fit with current methodology. For non-CASE users, the other very

significant barrier was the high cost, which, not surprisingly, was the least of the

36

CASE users' concerns. Resistance by system developers was ranked last and second

last by non-CASE and CASE users, respectively.

A series of tests were conducted to find out whether there were significant
differences in the practices between organisations with different demographic

characteristics (Poo and Chung, 1998).

Number of IT professionals in organisation: It was found that organisations
with 20 or more IT professionals had a higher tendency to adopt a formal system
development methodology and use CASE tools than organisations with less than 20
IT professionals. This supports the assumption that larger IT departments would take
the lead in adopting software engineering methods and tools since a larger IT
department is an indication of the size and complexity of projects undertaken and the

importance of the IT function to the organisation.

Number of employees in organisation and industry type: Intuitively, the size
and nature (industry type) of the organisation would influence the number of IT
employees in the organisation and its software engineering practices. However, a
higher percentage of smaller organisations (i.e. those with less than 500 employees)
made use of a formal system development methodology and CASE tools compared
with larger organisations(31.0% vs. 28.0%). In addition, there is no significant
difference between the various types of industry in terms of number of IT
professionals employed, the use of a formal system development methodology and the

use of CASE tools.

37

Industry sector: Interestingly, the results from the survey show that although
the public sector led in the usage of formal system development methodology (78.6%
vs. 65.0%), the private sector led in the usage of CASE tools (30.0% vs. 28.6%).
With regards to the use of CASE tools, the public sector may be lagging slightly
behind the private sector, because public sector organisations usually need to justify
the purchase of CASE tools with concrete benefits. In the private sector, the purchase
of CASE tools may not be governed so strictly by the results of a cost-benefit

analysis, thus leading to more wide-spread use of CASE tools.

Provision of formal training in software engineering methods: It was found
that organisations, which provided formal training in software engineering methods,
were more likely to use CASE tools than organisations which did not provide formal
training in software engineering. In addition, organisations which provided formal
software engineering training were more likely to have engaged external consultants
to assist in the implementation of software engineering methods and tools. These
findings support the observation made in Sumner's paper (Bergin 1993) that “CASE
tools do nothing unless you understand and apply the underlying principles of

software engineering”.

38

2.6 Survey of important OO tools :

OODesigner

OODesigner is a CASE tool for Object Modeling Technique (OMT) (Taegyun 1998).
This product has two types of goals, product goals and process goals. The product

goals are the functional requirements of OODesigner. The requirements included the

following;:

e Support for three models of OMT

¢ Documentation for class resources

e Checking consistency between objects within diagram
e Maintaining information repository for object model

e Code Generation for C++

e Reverse engineering for C++

e Storing/retrieving class definitions for reuse

e Collecting metrics data for C++ program

The qualitative process goals are:

e Improve the ability to conduct object-oriented (OO) design and
implementation activity.

e Practice seamless and iterative characteristics of the OO development process.

e Apply OODesigner as a CASE tool for developing itself.

e Ensure maintainability for further enhancement and platform migration.

39

In 1996, the version 1.x of OODesigner satisfied most of the product goals. This
version was implemented with 60 thousands of delivered source instructions (KDSI)
of C++ code. But the version did not satisfy the process goals, especially with respect
to maintenance issues. In other words, the old version worked correctly for the given
requirements, but it had bad class structure for enhancing functionality. Thus

OODesigner has been restructured since mid 1996.

Several lessons were deduced from this project:

o It is inevitable for beginners of OO paradigm to fail in the first OO project even if
they are experts of structured technique. They might implement operational
software, but their system become harder to maintain as time passed.

e An OO project could be successfully conducted just in the case of applying OO
methodology, OO language and OO CASE tool synergistically. Using, OO
language alone without methodology to build OO software should bring fake OO
software.

e If you feel the need of restructuring an OO legacy system, do not hesitate to
restructure it. To defer restructuring will cause a critical maintenance problem
that can not be avoidable sometime in the future.

e Ill-designed OO software makes maintenance activity terrible, but well-designed
OO software makes it enjoyable. This fact says the importance of OO modelling

and design.

40

ObjectiF from MicroTOOL
(http://www.meridian-marketing.com/OBJECTIF/op_oop.htm)

ObjectiF from MicroTOOL of Berlin, Germany, is an integrated software
development environment that supports all development steps from analysis to
implementation in C++. ObectiF has been conceived for project work over LAN's. It

has its own object base that guarantees reliable usage in a multi-user environment.

OOA and OOD Practical Methods

ObjectiF is based on the object-oriented analysis and design methods (OOA
and OOD) of Coad/Yourdon because they are simple and practical. They offer an
intelligible and easily understood graphic notation for classes, their properties, and the
relations between them. ObjectiF has contributed three basic OOA/OOD method
additions: an expressive tool for the description of message flow; object state
transition diagrams for specifying the life cycle of objects; and the new concept of a
subject that forms the basis for the reuse of class definitions beyond the confines of a

given project.

Mastering the Multitude of Classes with ObjectiF

The object-oriented approach is automatically associated with reusability -
with respect to ObjectiF, correctly so. But you can only reuse those classes that you
can find again. That's why ObjectiF groups class models together in larger model
units - we call them subjects. A subject will usually contain 20 to 30 classes that all
deal with the same problem-domain or technical topic, and partake in an extensive
exchange of messages. You can specify each class in a subject with the public

characteristic, making it possible to reuse that class in another subject, or you can

41

specify it as private, prohibiting its use elsewhere. The public classes make up a
subject's interface. That makes it possible to tell with a glance which classes of a
subject are available for reuse.

Consequently, ObjectiF enables the practical reuse of classes even, or
especially, beyond project borders.

ObjectiF is equipped with a ready-made subject designed as an efficient link to
the Microsoft Foundation Class Library (MFC). It contains the MFC classes
together with their public methods. You will immediately be able to use them in the
subjects of your application. Use means here, for example, developing your own user
interface by creating a subclass of CDialog, or incorporating Cstring and CTime, as

atomic types, in your attribute definitions.

ObjectiF : the OOP Specialist for C++

OOP in C++ means supplying a class declaration for every specified class,
and coding function definitions for every specified method. What does ObjectiF do
in all this? A whole lot. This is where OOA and OOD really pay off with regard to
productivity and the quality of the end result.

Let's start with the class declarations: ObjectiF can represent every
graphically specified class, with its attributes, methods, and method parameters, in
the syntax of a class declaration with member list. You will only have to extend the
member list with those C++ declarations that were not taken into account during OOA
and OOD. Ifnecessary, for example, a data member canbe completed with a
pointer operation, or the member list can be extended with declarations for

enumeration and friends.

42

ObjectiF can view the relations in a class model from a C++ perspective too. It
generates two things for a structural relation between classes. For one, it generates
attributes for the assignment of those instances' object identifiers with which the class
objects are associated over the relation. For another, ObjectiF generates methods that

automatically safeguard the integrity of the relation expressed in the object identifiers.

ObjectiF Stands for Accurate Specification Implementation

The graphic specification and the class declarations are simply two different
views of the same modelling objects. When you modify, add, or delete a method or
attribute in a class model as an after-thought, you will find that the
corresponding modifications are immediately made in the class declarations. The
same thing is true at the relation level: If a structural relation is modified, added, or

deleted in a class model, the data and function members are modified accordingly.

0OO0A/OOD with ObjectiF-the Pleasure of interactive Modelling

A smooth transition from analysis to design is a characteristic of object-
oriented procedures. The two steps differ only in the objects being modeled.
OOA refers to the modelling of problem-domain classes. OOD is concerned with the
development of base technology classes, from which - put simply - the problem-
domain classes can inherit technical behaviour. The modelling tool common to both is
the class model; it graphically presents all of the central aspects of an object-oriented
design: the classes, their static properties, the attributes, their behaviour, the
methods, inheritance hierarchies, message connections, and structural relations at

the instance level.

43

A class model contains those classes necessary for realizing a common problem-
domain, or technical task. Because a class can contribute to the realization of several
tasks, class models will often be redundant. Still, as an ObjectiF user, you can
always rest assured that you are dealing with the current state of a class - this is, of
course, even true in a multi-user environment.

What conditions can cause a class instance to display its behaviour?
ObjectiF offers a special modelling tool for the specification of this aspect: the object
state transition diagram it illustrates the connection between the following: the
different instance states; the events that affect them, in the form of messages; the

methods that are thus invoked, and the successive states that are then reached.

A Maintenance Plus: Readable, Expressive C++ Code, ...

...and that's guaranteed to be the end result of OOP with ObjectiF.
During OOA/OOD, names are given to the class instances from the
different perspectives, and each one represents a role from the problem domain.
During the naming process, ObjectiF displays all the names used thus far for the class
instances. Thus, you can be sure that instances in the same role are named the same
- even when you later change a name - because ObjectiF ensures consistent use.

The meaningful given names are used by ObjectiF in the function definitions
as names for variables - wherever necessary, they will be slightly modified to
conform to C-++ syntax. Through the use of these names in the definitions for
formal parameters, local variables, and method parameters, each and every

statement in the function definitions is easily understood without having to explore

44

the code to find the hidden meaning. That's why the code remains a readable

representation of the problem-domain specification.

Getting the Code to the Compiler

The result of your work with ObjectiF will be compilable source code. When
you define, for each subject, which class declarations are assigned to a header file,
and which function definitions to an implementation file, then, ObjectiF will
generate from that compilable .h files .cpp files, together with the include and
forward declarations. When you test and debug outside ObjectiF, you can
immediately make the necessary corrections. You tell ObjectiF to reunite the

corrected code with its specification with the press of a button.

45

The Wizdom Application Generator
(http://www.meridian-marketing.com/WIZDOM/index.htm)

Very few user-friendly visual tools for the development of user applications
complying with the Object-Oriented Model (OOM) presently exist. Although most
of today's Fourth Generation Languages claim to have various Object-Oriented
capabilities, as far as is known, at this time, none of these products has facilities
required to define an end-user application as object-oriented in terms of the OOM, as
does Wizdom Application Generator. Currently available 4™ Generation Languages
are visual, user-friendly extensions of conventional programming design and
implementation concepts.

To date, true object-oriented user applications have been written in
specialized lower-level Third Generation Languages such as C++. The use of
these languages can be time-consuming, require specialized and costly
programming personnel, and is often cumbersome.

The Wizdom Application Generator is a vehicle through which object-
oriented user applications can be developed with ease and simplicity of a Fourth
Generation Language. For a 4th Generation Language to build true object oriented
end user applications, it must have the facilities required to define the application in
terms of the object-oriented model. It must be a visual, user-friendly extension of

object oriented programming design and implementation concepts.

Wizdom Application Generator Facilities
As the Class Manager defines Classes and Subclasses, it automatically

generates the application's object-oriented database structure. The Form Generator

46

and Report Generator subsequently generate the database access plan. Database
services are requested using the DBL (Dialog Box Language), where all requests are
automatically planned and implemented. Linking data items between Classes, the

MDI manager creates automatic access relationships between Class data.

Class Manager

The Class Manager (CM) provides the mechanism for definition of a
complete end-user application in terms of object-oriented methodology. The entire
structure of an application is defined, viewed, and subsequently modified, via the
Class Manager.

On the left hand side of the CM screen appear the classes and subclasses
representing an application; on the right hand side appear the members (procedural
methods, forms, menus, reports, etc.) related to (encapsulated in) each class and
subclass. One specifies object-oriented relationships between classes such as
inheritance, and can zoom in on a class-related member to view or modify its

definition.

Form Generator
Via the Form Generator, a form is associated with a specific class/subclass
defined in the Class Manager. The data elements of the class/subclass are placed
(dragged and dropped) directly onto the screen. One can simply point and click to
specify element properties such as fonts and colours. Using the form, one can browse
and edit the user data related to the class. The form is a window to the user data
belonging to the class.

The Wizdom Form Generator enables one to build comprehensive GUI

47

windows with the entire range of functionality provided by Microsoft Windows and
more. The specification of forms is accomplished by visual toolbox, point-and-click
functionality.

Forms can be automatically initiated by predefined system events (i.e.,
pushing a button, database activity, etc.). Also, one can imitate a user-written

procedure (or a system function) on system-predefined screen events.

In addition, the menu-generator option allows one to easily create menus for the
form and/or the application desktop. The menus created operate in pop up/pull down
mode, and menu items can specify automatic initiation of a user procedure, activate

or produce a report, or perform a system function.

Report Generator

With the Wisdom Report Generator, reports are associated with a specific
class/subclass defined in the Class Manager. Furthermore, reports can present data
belonging to multiple associated classes.
Creating complex reports is facilitated by Wizdom’s visual toolbox, point-and-click
functionality. The Report Generator has object-oriented capabilities up to now rarely
available. For example, the structure and format of a report can dynamically change
with the class/subclass of data being displayed. For example, in a report of all
employees displaying basic employee information such as employee number, and
name, additional fields can dynamically appear on the report page, based on the type
of employee (i.e., subclass) being processed.

So that, if the employee is a manager, his/her report data and format will

automatically display manager-specific information, which will differ from the

48

report data and formats displayed on the printout for secretaries, programmers, etc.

This is a classic example of a "polymorphic" report.

Dialog Box Language

For writing methods which easily incorporate simple or complex business
logic into an application, Wizdom provides a Pascal-like Dialog Box Language
(DBL), based on easy fill-in-the-blanks technology: one simply points and clicks the
desired operations which appear in the dialog box window.

Using DBL, methods (application procedures) are developed which are
associated with (encapsulated in) a specific class/subclass defined by the Class
Manager.

Wizdom also provides a free-form format for Pascal-like procedures with
the Wizdom Pascal Editor. Here free-form code is aided by visual tool-bar, point-

and-click functionality.

Multiple Document Interface (MDI) Manager

The MDI Manager provides the capability to design application desktops
containing multiple open forms; application end-users can work concurrently with
different application-related forms on the same desktop. Forms presented on the
application desktop can belong to the same class or different classes.

Also, as described below, one can utilize unique MDI Manager options to
create automatic processing relationships between forms presented on application
desktops.

By using the automatic scrolling option, one can specify that one or more

forms on the desktop, belonging to the same class, automatically display the same

49

occurrence within the class. For example, a desktop can contain three forms, which
display varying views of employee data. Whenever a user scrolls to a different -
employee using any one of these forms, the other two forms will automatically scroll
to display information relating to the same employee.

One can create links between data items belonging to different classes. With
data links, displayed forms, belonging to different classes will, automatically scroll to

display data items linked together.

For example, if employee and project assignment data have been linked together, as
one scrolls through the employee form, the project form will automatically display
the project assignments which the employee is currently working on.

Using the polymorphic form option allows the structure and format of a form to be
dynamically changed based on the class/subclass of data currently being displayed.
For example, a form which displays all employees presents basic employee
information. Additional fields can then dynamically appear on the form, based on the
type of employee (i.e. subclass) being processed. Therefore, if the employee is a
manager, his form data and format will automatically display manager-specific

information, differing from data/formats displayed for secretaries and programmers.

50

2.7 A Software Maintenance process Model:

GUMP (Generic University of West Florida Maintenance Process)

It is now generally accepted that the first requisite for improving the timeliness
and quality of an organization's software products is a mature software process. The
establishment of a defined software process is, in some markets, becoming a
requirement of doing business.

The new emphasis on process creates challenges for both software engineering
educators and for software development organizations, and unfortunately there is still
little published information to guide them. 'Process' is a very difficult subject to
discuss in the abstract. Educators teaching about process need to have a range of
processes to which they can point. Managers establishing a process in their
organizations likewise need example processes as starting or reference points.

But examples of successful, fully elaborated processes are hard to come by.
Most companies that have expended the effort to define and validate their own
software process regard the results as proprietary, and well elaborated processes for

use in the classroom are still very scarce .

51

The overall structure of the GUMP process architecture (Wilde and Brown,
1996) is shown in Figure 1. The process is driven by Change Requests submitted by
either customers or team members suggesting improvements or bug fixes in the
software system. Change Requests are given a brief sanity check and, if they pass,
filed as Deficiencies (cell 100). When resources are available, the Project Co-
ordinator selects one or more related Deficiencies for analysis, thus initiating a #isk, as
a complete cycle of software change is called (cell 200).'

A tisk starts with an analysis step (cell 300) which defines requirements and high-
level design for the software change, along with a risk analysis and an estimate of the
resources needed for implementation and testing. The final product of this cell is an
Analysis Report which is subjected to an inspection supervised by the Software
Quality Assurance team.

The approved Analysis Report then goes to the Change Control Board (CCB),
composed of the Client, the Project Co-ordinator, and one member each from
Independent Verification and Validation, Software Quality Assurance, Software
Configuration Management and Software Engineering (cell 400). Here the basic
decision to commit resources to the change is made. If the decision is positive,
Software Configuration Management allows the Software Engineers to cheek out any
code and needed documents from the configuration management system (cell 500).

Change implementation (cell 600) consists of making the changes to code and
documents, unit testing, and a final inspection again supervised by Software Quality
Assurance. The work then goes to Independent Verification and Validation, which
consists mainly of integration and system level testing (cell 700). If testing is

successful, the revised software is checked back in to the configuration management

system (cell 800).

Change Request

100

Receive Change Request

& Generate Deficiency

Deficiency
—_—>

400
Decision to Proceed
(CCB)

Analysis
Report

500

Check Out Code & |«

Docs

CM
Baseline

Deficiency
Pool

52

200

Select Deficiencies
for Analuyses

Integration &
System Test
Suites

800
Check In & Distribute

Code & Documents

Analysis
Report

<IV&V Form for accept, Neww Code & Doc’s

Deferred Set of Deferred Set of Set of
Deficiencies Deficiencies Defic.
) 300
Analysis Report Analyse & Fst.
SQA Inspection Report Resources
Analysis Report 600

Implement Change

A
New/Mod.
V&V Code &
Form for Docs, Diff
Reject File, Impl.
Form
h 4
700
Independent V&V

!

New Version

New Test Cases

Figure 1. Overall structure of the maintenance process

53

Most of the high-level process cells shown in Figure 1 have been further broken down
into more detailed cells.

At the lowest level, each cell is described using an 'Entry-Task-Exit (ETX)' format
adapted from that suggested by Watts Humphrey (Humphrey, 1989). As an example,
Table 6 shows the description of cell 601, 'Unit Testing’. The tasks for the cell are
briefly listed and the group responsible (Software Engineers, SQA, etc.) is identified.
Cell task descriptions may reference GUMP standards documents that provide
detailed guidance on how a task is to he carried out. The unit testing standard, for
example, states that the 'Automatic Test Analysis for C (ATAC)' coverage tool
(Horgan, London and Lyu, 1994) should be used to check that every testable block
and decision is covered, and that non-testable decisions, such as tests for operating
system errors, should be explicitly hand checked. GUMP also includes standard
forms to be used in most of the main tasks.

Additionally, certain cells have associated metrics that are collected, along with
weekly timecard data, and kept in a central database, available to all team members.
The data are intended to be used to make better and more accurate time estimations
and schedules for tisk milestones. Finally, some cells have required training that must

be completed in order to accomplish the subcell tasks.

54

Table 6 - Entry-task-exit description of the “unit test’ cell

Cell 602 - Unit test
Entry (from cell) -(601) New/modified code and does
Exit (to cell and group) -(603) New/modified code and does

-(603) New tests (as required)
-(603) Diff file
-(603) Implementation form

Feedback in -(603) Testing rework
Feedback out -(601) Implementation rework
Tasks (responsible group) - Conduct unit testing IAW testing std. (SE)

- Generate diff file and implementation fm. (SE)

- Attach diff file and detailed design to

implementation fm. (SE)

- Inform PC ready for inspection (SE) Measures
Training required - Project orientation, ATAC

55

2.8 Software Maintenance CASE Tools

The software maintenance support tools provide support for program
understanding. These tools assist the programmer/analyst in discovering the physical
and logical designs of the system at hand. The discovery of impacts of proposed
changes on “distant” programs, i.e., programs linked by common data elements, is an
important part of this phase, and is assisted by these software tools. These tools may
also contain functionality that facilitates the coordination of programmers on a large
project. Such functionality is provided by a variety of schedule and project
management programs and communications programs such as email, audio and video
conferencing. We study software maintenance tools and their usage because
maintenance is a critical MIS task and thus, tools that adequately support this task
potentially could provide significant value to organizations. To add value, information
technology (IT), e.g., software maintenance tools, must meet the needs of the
organizations, groups, and individuals who use it. This truism is as old as IT and the
MIS field. It is embedded in the systems analysis process, especially in the

requirements determination and analysis step (Dishaw and Strong, 1998).

Task-Technology Fit

A fundamental argument is that software will be used if the functions available
to the user support the activities of the user. A software function supports an activity
if it facilitates that activity. Alternatively, the software must serve to lower the cost to

the user of performing the activity. Rational, experienced, users will choose those

56

tools and methods, which enable them to complete their activities with the greatest net

benefit. Software which does not over sufficient advantage will not be used.

Maintenance task activities

Vessey, during protocol analysis sessions (Vessey, 1986), developed a
description of the actual types of actions engaged in by all maintainers. She identified
Planning, Knowledge Building, Diagnosis, and Modification Activities in the
maintenance process. These are the set of actions performed by maintainers to change
existing software. The first three cover understanding, while the last one is the actual
program transformation activity.

In addition to understanding and modification activities, which are the core activities
of the maintenance task, coordination activities are necessary (Vessey and
Sravanapudi, 1995). In most MIS organizations the programmer initiates a production
release process which may include documentation updates and testing for standards
adherence.

Although coordination activities are normally a small part of the maintenance task,
such activities ultimately have a significant impact on the success of the maintenance
project. These coordination activities were not found in Vessey's protocol analysis

because her experimental task ended at production release.

Maintenance tool functionality

Henderson and Cooprider (1990) provide a description of the basic functions

present in design support software (CASE). They identified two major dimensions of

57

tool functionality: Production and Coordination functionality. Production
functionality is functionality that supports an individual programmer developing or
changing software. It includes representation, analysis, and transformation
technology. Representation functionality helps the programmer in representing the
problem and thus aids in understanding the problem. Analysis functionality supports
exploration and evaluation of representations, and thus aids in building further
knowledge and understanding about the problem, diagnosing problems, and planning
solutions. Transformation functionality supports the actual changes or additions to
software.

Coordination functionality is functionality that supports the coordination
activities necessary when an individual performer is working in an organization. It
includes control functionality to ensure that programmers are following standard

procedures and cooperation functionality to support interactions with others.

The support of the software maintenance process, especially the program
understanding and modification portion, can be viewed as a problem of supporting
representation development, manipulation, and testing. At the heart of the process of
understanding a program is building a representation of the problem, that is, a
mental model or conception of the problem to be solved. Problem representation is an
important part of the problem-solving process. Thus, the development of a program

representation is an essential part of the software understanding process.

Program understanding may be viewed as the process of recognizing plans or
intentions of the code and is essential to the completion of a maintenance task. The

understanding process depends upon the programmer developing representations of

58

program elements, manipulating and integrating these elements, and testing the result
for correctness. This process is iterated as necessary. This process is more difficult
when the plans are delocalized or spread over the module, or even between modules,
or when a program interacts with other programs in non-obvious ways. Software
maintenance support tools may assist the programmer, in part, by mitigating the

problems associated with delocalized plans.

Some success has been achieved in the creation of tools that support program
understanding. These tools support the
development, manipulation, and testing of representations of the application software,
and are able to produce higher level abstractions from code in the form of a
variety of structure and flow charts. In addition, dependency analysis is possible using
these tools. These tools support the programmer in the development of an
understanding of a program through the generation of a representation of a program's
functions and data structures. With these tools, the programmer can test his or her
mental representation through analysis of a program by “single stepping” and
displaying the contents of

variables.

Program understanding, however, is not the entire story of software
maintenance production support. The programmer must be able to actually change
software and document the effects of that change. Program modification is intermixed
with the understanding process. Typically, the programmer arrives at a point where he
or she is about to test an assumption (representation) about the software to be

changed. The task being performed in this process is diagnosis. In diagnosis activities,

59

a hypothesis is tested and confirmed or rejected. A change can be made to test the
behavior of a program.

The actual change process is fairly simple. It includes making a change in a source
module, compiling the module, and testing the changed program. The software

that supports it consists of an ordinary text editor and library management software.

The compiler program also falls into this category.

Coordination fit includes support for cooperation and coordination among
programmers as they plan and release modified software as well as controls to ensure
conformance to software standards. Case tools are important in the support of the
coordination efforts of systems professionals. Current CASE tools are generally
designed for individual use but provide some support for coordination among
programmers (Vessey and Sravanapudi, 1995). Programmers also typically have
access to a number of other software technologies that support their work.

These tools include project management software, groupware, and a wide variety of

software engineering tools that are not specifically labeled “CASE” tools.

In the area of control (compliance with standards and practices), software tools
vary in the support they provide for enforcing methodology standards and processes.
The development and adoption of more modern maintenance tools is addressing this
problem. Project management software facilitates management control over software
development and maintenance projects. The newest project management packages
integrate with CASE tools and facilitate both tracking and reporting activities.
Software which supports coordination activities includes testing and version (release)

management software. Software which supports programming standards aids the

60

coordination task as well. Project management software that also facilitates
coordination of maintenance activities that involve dependencies with other activities
is also included in this category.

An increasingly common trend in the management of maintenance is the distribution
of maintenance activities to outsourcing organizations, some of which may be
“offshore” (Kumar et al., 1996). Wide area networks such as the Internet can be used
to communicate with these vendors. The software used in these situations may include
e-mail, file transfer (FTP), and conferencing, including chat. Recently, the internet has
come to support video conferencing. Software for this application

typically supports, in real time, exchange of video, audio, and graphics (whiteboard).
Even when offshore outsourcing is not employed, the increased use of distributed
teams as well as the increased incidence of telecommuting have driven the adoption
and utilization of these technologies. Software facilitation of coordination activities
has thus become much more common, although coordination tool functionality has
not yet reached the levels of sophistication or integration found in production

functionality.

61

2.9 Example of a Change Request and Problem Reporting Process

A change request represents a documented request for a change and an
associated process model for change. LIFESPAN, an MCS tool, models the change
request via a series of "forms" and the process of change via a series of states, tasks
and roles (Brown, A., Dart, S., 1991). A customer may submit an on-line Software
Performance Report (SPR) which identifies a fault or a request for an enhancement
for versions of components. This allows the report to be investigated by circulating it
to the original designers and implementers who can diagnose the problem. In
response to the SPR and change impact analysis, an on-line Design Change (DC) is
proposed. This details exactly what components are to be changed and how.
LIFESPAN analyses who would be affected by the change. Those people are then
automatically chosen to be the Change Control Board. They are notified by electronic
mail about the DC and must vote within a certain time frame on whether to approve
the change. Once the DC is agreed to, a new development version of the code to be
changed is made, the DC's state becomes "active" and the code to be changed is
locked. Upon completion of the changes, the new version is frozen and submitted for
checking and approval to a person with QA privilege. Upon approval, the code
changes acquire an "approved" status, the status of the DC becomes "approved" and
affected users are notified by electronic mail that the new version is available. The
users are notified via a Software Status Report (SSR) which closes off the original
SPR. Thus, the SPR, DC and SSR not only provide a means for users and maintainers
to communicate, but they also represent a history of changes related to a particular
change request; status reports for changes in progress; audit trails of changes

completed; a supporting mechanism for change impact analysis and ensuring that the

62

appropriate people carry out their tasks at the right time. In effect, change requests

assist in driving the process of change.

Chapter 3 - Tool's Specifications

The objectives of this tool are to provide guidelines and procedures for
carrying out a variety of maintenance activities on Object Oriented Softwares.
A change control framework, around which software configuration management
disciplines are applied, aims to systematise the software maintenance process. This is
done, by specifying the chain of events and the order of stages that a proposed change
has to go through. The outcome of each stage is represented by forms, which allow a
methodical approach to the establishment and control of traceability throughout the
maintenance process.
These forms could be also the source of documentation of maintenance history and
system redocumentation to improve the future maintainability of the software systems

being maintained and the ease with which changes can be accommodated.

The outcome of each phase in the maintenance framework, is a form, which offer
objective visualisation of the evolution of the maintenance process. Each form,

consist essentially of three sections: identification, status and information.

The software maintenance framework stages are:
1. Change request

2. Change evaluation

3. Maintenance specification

4. Maintenance design

5. System release

63

64

Moreover a set of attributes for communicating the meaning of the problems and
defects found are also necessary for maintaining OO software systems. Some of these
attributes are :

1. identification and description of a problem

2. uniqueness of a problem

3. date and time of a problem occurrence

4. criticality and urgency of a problem

5. classification of problem causes(defects)

For representing problems, problem reports can be issued where they are uniquely
identified and described. The points of information relevant for describing problems
are :

- description of observations made during a problem occurrence

- effect and consequence of a problem

- temporary actions taken to circumvent

- suggestions for improvement

- connections to other problems

As for the Criticality and Urgency attributes, the former defines the seriousness of the
disruption caused by a problem. The later communicates the significance of an

immediate corrective measure. High criticality often implies high urgency.

Chapter 4 - Tool’s Design

The Object Oriented Maintenance Management (OOMM) model aims at
improving activities by providing guidance throughout the maintenance process, and
determining the organisation and content of the information needed to support these
activities.

The model is based on the traditional waterfall life-cycle model of software
development. This is a convenient approach, because it allows the process to be
represented in a graphical and logical form providing a framework around which
quality assurance activities can be built in a purposeful and disciplined manner.

Each OOMM phase is defined in terms of the output produced during the
phase. The outcome of each OOMM phase is a form which expresses a point in the
maintenance process. These completed forms are, therefore, the natural milestones,
i.e. the baselines of the software maintenance process, and offer objective
visualisation of the evolution of that OOMM model.

Figure 2 represents the OOMM model. The rectangles in the figure represent
OOMM phases and the ovals represent the baselines formed from the output of the
phases.

Because it is a software maintenance model, it is essential that the influence of
the existing software system on the process should be represented. It is for this reason
that the change evaluation phase has been introduced in which modifications are
considered in relation to the existing software system.

As with models of software development, OOMM phases may overlap. Also,

it may be necessary to repeat one or more steps before a change is completed.

65

However, the products which represent the output of the phases must

constitute a baseline and cycling must be controlled.

Stage

T~

Change Request

Form

Change Evaluation

Maintenance Specification

Maintenance Design

@Design

System Release

Configuration Release

Figure 2

67

The following subsections discuss each of the OOMM phases in greater detail.

e Change Request

All requests for software maintenance will be presented in a standardised
manner. The Change Proposal form is the form associated with this OOMM phase.
The completion of a change proposal form triggers the process of maintenance. The
form contains the basic information necessary for the evaluation of the proposed
change. If the proposed change is for the corrective maintenance, then a complete
description of the circumstances leading to that error must be included. For other

types of maintenance, an abbreviated requirements specification must be submitted.

e Change Evaluation

In the change evaluation phase, the maintainer is primarily concerned with
understanding the change, and its effect within the software system. An accurate
change diagnosis is performed to assess the feasibility of the proposed change in
terms of cost and schedule resulting in approval or rejection. A rejected proposed
change is then abandoned. If the proposed change is approved then a corresponding
Change Approval form is created. The Change Approval form is one of the
documents used as the basis for planing the system release. It is a vehicle for
recording information about a system defect, a requested enhancement or quality
improvements. The change approval form along with its corresponding Change
Proposal form, is the basic tool of a change management systems. By documenting

new software requirements or requirements that are not being met these forms become

68

the contract between the person requesting the change and the maintainers who work
on the change.

In this phase, the work required by the proposed change is classified as
perfective, adaptive, corrective or preventive maintenance. In addition, every software
component involved in the proposed change must be known. The inadequacies, or
unfulfilled requirements described in the Change Proposal form are identified in the
existing software system. This identification involves different aspects of software

which depend on the type of the change required.

e Maintenance Specification

This phase is characterised by the structure of the modification, which is in the
form of a complete, consistent and comprehensible common specification of all the
changes proposed and approved for a planned scheduled release. In addition, how the
software classes have to be modified needs to be clarified. The resultant form for this
phase is the Maintenance specification form which is generated after having selected
the approved changes for the next system release. The design of a modification
requires an examination of the side-effects of changes. The maintainer must consider
the software classes affected and ensure that component properties are kept consistent.
Additionally, if the changes require a new logic or new features to be added to the
system, then these have to be specified and incorporated. In the specification of the
proposed change, different aspects of the system should be considered which depend

on the type of maintenance required.

69

e Maintenance Design

This phase facilitates system comprehension by incremental redocumentation
of the existing software system, as proposed by the method. The form will be filled in
when the corresponding software classes have to be modified. During this phase the
algorithms and the behaviour of procedures for both normal and exceptional cases are
explained. In addition, the tests for each of the changed or implemented software
classes and/or methods are planned. The form associated with this phase is the class

design form.

¢ System Release

System Release is the last phase of the OOMM before a new configuration
containing the approved changes is released to the user. Validation of the overall
system is achieved by performing the integration and system tests on the system.
Once modification on the system have been performed under the configuration
control function, the task at this stage is to certify that all baselines have been
established. The Configuration Release form contains details of the new
configuration. A configuration Release form is the software system release planning
document , which aims to keep the information pertaining to the history of a

maintenance phase.

All of the above mentioned OOMM phases are closely controlled by a user
profile scheme The user profile concept is designed to control access permissions not
only to OOMM activities and phases but also to any task related to products,
parameters tables, queries and reports within the entire application. Update and delete

permissions are allocated to user profiles for the different available functions. User

70

profiles are given user ids” and passwords to restrict and control access to the

application in the first place and from then to various existing screens.

Moreover, products notion is essential to give OOMM model its practical
implementation ease. A predefined product (application, software) is developed in at
least one platform and eventually has at least one release. Many platforms could be
associated to one product and each product/platform combination might have different

releases.

Chapter 5 - Tool’s Implementation

The OOMM tool is implemented in Visual Basic 5.0 under Windows 95. VB
offers a friendly and intuitive interface through its extensive event-driven language,
its object-based structure and its support for OLE. VB provides a fast dabase engine
(Jet) and a wealth of new features and methods of controlling and accessing the data.
The Jet engine can create and manage information in a wide variety of database
formats. Jet can deal with Access, Foxpro, DBase, Paradox, Oracle, SQL Server and
Btrieve databases. OOMM tool uses Access 97 as back-end database (oommt.mdb)
where all transactions and operations are stored along with predefined queries. The
VB front-end presents these information for the user in different set of views and in a
very simple way.

All information related to all OOMM phases are stored in tables within the
end-back database. These tables along with other codes tables, user tables and product

tables listed in the following table (Table 7) are discussed later in greater detail.

Table Name Description
TL Trans H Transactions Table Header
TL Trans D Transactions Table Details

TL Trans Class

Transactions Table of involved classes and methods

TL Product H Products Table Header

TL Product D Products Table Details

TL User Users Table

TL User Func Permissions/Functions Table allocated for users
TL Test Tests Table conducted on involved classes + methods
TL Function Functions Table

TL Tab Class Class Codes Table

TL Tab Method Method Codes Table

TL Tab ModType | Modification Type Codes Table

TL Tab Platform Platform Codes Table

TL Tab Priority Priority Codes Table

TL Tab Status Status Codes Table

TL Tab TestStatus | Test Status Codes Table

TL Tab TestType Test Type Codes Table

71

72

The follwing tables (Table 8, 9 amd 10) present respectively all the fields name, type,

and description of TL_Trans_H, TL_Trans D, and TL_Trans_Class data tables.

Table 8§ - TL Trans H
Field Name | DataType Description

TH Id AutoNumber | Transacrtion Id (Unique Number Automatically Generated)

TH Trans Type | Text Transaction Type (It's a code indicationg whether it's a
Proposal, an Evaluation or a ...)

TH Trans_Date | Date/Time Transaction Date (The date at which the transaction is
entered)

TH Proposal Id | Number Transaction Related Proposal Id

TH User_Id Number Transaction User Id (who is responsible of this transaction
entry)

TH_Status Number Transaction Status (the current status of this specific
transaction)

TH Prod_Id Number Transaction Product 1d (The Software/Product code being
modified or updated)

TH Platform Number Transaction Product Platform Code (On which platform the
concerned product is developed)

TH Release Text Transaction Product Release (at which Release the
concerned product is)

TH_Chg_Type Number Transaction Change Type Code (whether it's a corrective or
adaptice or perfective or ...)

TH_Desc Text Transaction Description (What the modification or the
transaction is about)

TH_Reason Memo Transaction Detailed Description (the detailed reason of the
update)

TH_Priority Number Transaction Priority of Implementation (the urgency level of
the modification)

TH_Conseq Memo Transaction Consequence (in case the update/modification
hasn't been done)

TH Chg_Spec Memo Transaction Change Specification (a +/- Detailed description
of the technical modification)

TH Int Test Yes/No Transaction Integreation Test Flag (indicates whether an int.
test is conducted or not)

TH_Sys Test Yes/No Transaction System Test Flag (indicates whether a sys. test is
conducted or not)

The TL_Trans_D table keeps the status history of transactions.

73

Table 9- TL Trans D

Field Name | DataType Description
TD Seq AutoNumber | Sequence Number To make it unique
TD_ Id Number Transacrtion Id
TD_Status Date | Date/Time Date at which the transaction status changed from ... to ...
TD From Status | Number The Status Code from which the trans. changed
TD to_Status Number The Status Code to which the trans. changed
TD_User Id Text The user id who changed the status

The TL_Trans_Class table stores data about involved classes and methods in the

modification.
Table 10 - TL Trans Class
Field Name | DataType Description

TC Seq AutoNumber | Sequence Number To make it unique

TC Id Number Transacrtion Id

TC Class Number The Class code involved in the update/modification process

TC Method Number The Method code involved in the update/modification
process

TC Description | Text The Description of the modification that should be done on
this class or method

TC_Status Number The Modification Status Code (whether the mod is in
progress, finished or not yet started)

TL Product D and TL_Product H data tables (Table 11 & 12) are related to

products.
Table 11 - TL Product H
Field Name | DataType Description
PH ID AutoNumber | The Product Identification Code
PH Name Text The Name of the product
PH Desc Memo The Product Description (what it is about , what it does , ...)
Table 12 - TL Product D
Field Name | DataType Description
PD ID Number The Product Identification Code
PD_Release Text The Latest Version of this Product (VxRxMx)
PD _Date Date/Time The Date at which the latest release is done
PD_Platform Co | Number The Product Platform Code
de
PD Class Number The Class Code (each product has many classes ; each class
has many Methods)
PD_ Method Number The Method Code

The TL_User data table (Table 13) groups all necessary information related to users

Table 13 - TL User

Field Name | DataType Description
TU Id AutoNumber | The User Identification Code
TU Name Text The User full Name
TU Login Text The User Login Name
TU_Password Text The User Password
TU User Text The User who Created this New User or modiy it
TU_Dtm Date/Time The Date and Time this User is created or modified

The following data table (Table 14) is a code table for the modification types. It is

called TL_Tab_ModType. All code tables have the exactly same design.

75

Table 14 - TL Tab_ModType

Field Name DataType Description
TC Entry Code | Number The Entry Code within a Table
TC_Abrev Text Abreviation or Alphabatecal Code (Up to 5 charac)
TC Desc Text The Description
TC Flag Text System or User Defined

OOMM tool offers a set of queries and reports that brings essential and

interesting features to users. Predefied queries select not only general information but

also particular ones on various issues. For advanced users that have knowledge in

SQL statement they can even formulate their own queries.

Reports that can be previewed on screen, printed, sent to Word file or to Excel

sheet add valuable feature. For example Users may easaly investigate about any kind

of transaction that has any status between two dates.

Chapter 6 — Example Application

In what follows some snapshots of the application:

The User Maintenace Screen:

Maintenance Specificati

Change E valuation Transacl

76

77

This is the change evaluation screen:

mk
02/02/2000 11:25.15

78

This is the queries screen:

All

hangs L

List Of All xx Change Bequests Type With Priority yyy
List of Products for a specfic Platform

Modification Type List

Priority List

Queryl

SELEE&T‘ Tl;_Trans_H.fH_Id AS Trans_Id, TL_Trans_H.TH_Desc AS Descriﬁllon
FROM TL_Trans_H INNER JOIN TL_Tab_Status ON TL_Trans_H.TH_Status = TL_Tab_Status. TC_Entiy_Code
\WHERE (((TL_Trans_H.TH_Trans_Type)="CR') AND ({TL_Tab_Status.TC_Desc) Like StatusDescription & "))

Chapter 7 — Conclusion

In this report a model for software maintenance management for object
oriented systems has been presented. The maintenance management process was
formally structured into a sequence of phases that conceived the backbone of the
work. By defining this model, the steps, which a change should follow during
maintenance, are clearly defined. The forms, which are the outcome of each phase,
represent the maintenance history and an abstraction of the operational product
necessary to improve the documentation of a poorly documented existing software
system. This approach presents an increased flexibility and greater facility to apply
the OOMM tool due to:

The following of OOMM phases institutes a change control procedure to monitor

changes.

- The completeness checks are assured through the use of forms since no essential
details are omitted.

- The consistency checks are ensured through the use of forms since the information
required by forms is provided by other forms in the configuration.

- The traceability between phases is facilitated by establishing in the forms the
relationships between software components of different phases.

- The uniformity of information is guaranteed since forms are pre-defined thus

avoiding inconsistency and unnecessary differences.

79

Reference List

Bergin, T.J. (1993), Computer Aided Software Engineering Issues and Trends for the
1990s and Beyond, Idea Group Publishing.

Boehm, H. (1981), Software Engineering Economics, New York: McGraw-Hill

Brooks, F. (1985), The Mythical Man-Month, Reading, Mass.: Addison-Wesley.

Brown, A., Dart, S., Feiler, P., Wallnau, K. (1991), The State of Automated

Configuration Management, Annual Technical Review, SEI

Connell, J., Shafer, L. (1995), Object-Oriented Rapid Prototyping, Englewood Cliffs:

Yourdon Press.

Dishaw, M., Strong, D. (1998), Supporting software maintenance with software
engineering tools: A Computed task-technology fit analysis, The Journal of Systems
and Software, 44, 107-20.

Fisher, A.S. (1991), CASE Using Software Development Tools, New York: John
Wiley & Sons.

Henderson, J.C. Cooprider, J.G. (1990), Dimensions of I/S planning and design aids:
A functional model of CASE technology, Information Systems Research, 1,227-54.

Horgan, J., London, S. and Lyu, M. (1994), Achieving software quality with testing
coverage measures, [EEE Computer, 27, 60-9.

Humphrey, W. (1998), Managing the Software Process, Reading, Mass.: Addison-
Wesley.

80

81

Joiner, J., Tsai, W., Chen, X., Subramanian, S., Sun, J., & Gandameneni, H. (1994),
Data-centered program understanding, Proceedings of the International Conference

on Software Maintenance, 192-98.

Kumar, M.P., Das, V.S.R., Netaji, N. (1996), Offshore software maintenance
methodology, Journal of Software Maintenance, 8, 179-97.

Poo, D., Chung, M.K. (1998), CASE and software maintenance practices in
Singapore, The Journal of Systems and Software, 44, 97-103.

Taegyun, K., Gyusang, S. (1998), Restructuring OODesigner: A CASE Tool for

OMT, International Conference on Sofiware Engineering, 449-51.

Vessey, L. (1986), Expertise in debugging computer programs: An analysis of the
content of verbal protocols, I[EEE Transaction Systems, 621-37.

Vessey, L., Sravanapudi, A.P. (1995), CASE tools as collaborative support
technologies, Commun. ACM, 38, 83-95.

Wilde, N., Brown, S. (1996), The GUMP Process for Software Maintenance and
Maintenance Education, Journal of Software Maintenance: Research and Practice, 8,
229-39.

http://www.meridian-marketing.com/OBJECTIF/op_oop.htm

http://www.meridian-marketing.com/WIZDOM/index.htm

Appendix : Implementation Details

The following example is a code for the Login Screen:

Option Explicit
Public LoginSucceeded As Boolean

Private Sub cmdCancel_Click()
'set the global var to false
'to denote a failed login
LoginSucceeded = False
Me.Hide
End

End Sub

Private Sub cmdOK_Click()
datUser.Recordset.FindFirst "tU_login ="' & txtUserName.Text & ""
If Not datUser.Recordset. NoMatch Then
'check for correct password
If txtPassword = datUser.Recordset.Fields("TU_password") Then
CurCode = datUser.Recordset.Fields("TU_id")
sys = datUser.Recordset.Fields("TU_id")
curuser = Me.txtUserName
LoginSucceeded = True
Set mywork = Workspaces(0)
Set mydb = mywork.OpenDatabase("oommt.mdb", False, False)
Set myuser = mydb.OpenRecordset("tl_user_func")
OomMen011.Show
Me.Hide
Else
MsgBox "Invalid Password, try again!", , "Login"
txtPassword.SetFocus
SendKeys "{Home}+{End}"
End If
Else
MsgBox "Invalid User Name, try again!", , "Login"
txtUserName.SetFocus
SendKeys "{Home}+{End}"
End If
End Sub

Private Sub txtPassword KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then cmdOK.SetFocus

End Sub
Private Sub txtUserName KeyPress(KeyAscii As Integer)

If KeyAscii = 13 Then txtPassword.SetFocus
End Sub

82

83

The following example is a code for the Maintenance Design screen

Dim TmpProdld As Integer
Dim TmpPlatform As Integer

Private Sub Refresh MethodTest()
vsql=""
vsql = "SELECT TL_Test.TS_Method, TL_Tab_Method. TC_Desc, TL_Tab_TestType.TC_Desc,
TL_Tab_TestStatus. TC_Desc FROM TL_Test, TL_Tab_Method, TL_Tab_TestType,
TL Tab_TestStatus WHERE TL_Test.TS_Method = TL_Tab_Method. TC_Entry Code and
TL Test.TS_Type = TL_Tab_TestType. TC_Entry_Code and TL_Test. TS_Status =
TL_Tab_TestStatus.TC_Entry_Code and TS_Trans_ID =" & Val(CbRequest. BoundText)
Me.DatMethodTest.RecordSource = vsql
DatMethodTest.Refresh

End Sub

Private Sub Refresh ClassTest()
Vsql = un
vsql = "SELECT TL_Test.TS_Class, TL_Tab_Class.TC_Desc, TL_Tab_TestType.TC_Desc,
TL _Tab_TestStatus. TC_Desc FROM TL_Test, TL_Tab_Class, TL_Tab_TestType,
TL_Tab_TestStatus WHERE TL_Test.TS_Class = TL_Tab_Class.TC_Entry_Code and
TL Test.TS_Method = 0 and TL_Test.TS_Type = TL_Tab_TestType. TC_Entry_Code and
TL_Test.TS_Status = TL_Tab_TestStatus. TC_Entry_Code and TS Trans ID =" &
Val(CbRequest.BoundText)
Me.DatClassTest.RecordSource = vsql
DatClassTest.Refresh
End Sub

Private Sub Refresh InvMethod()
Vsql — "
vsql = "SELECT TC_Method, TC_Desc From TL_Trans_Class, TL, Tab_Method Where TC_ID ="
& Val(CbRequest.BoundText) & " and TC_Method = TC_Entry_Code"
Me.DatInvMethod.RecordSource = vsql
DatInvMethod.Refresh
End Sub

Private Sub Refresh InvClass()
vsql = "SELECT TC_Class, TC_Desc From TL_Trans_Class, TL_Tab_Class Where TC_ID =" &
Val(CbRequest.BoundText) & " and TC_Class = TC_Entry_Code and TC_Method = 0"
Me.DatInvClass.RecordSource = vsql
DatInvClass.Refresh
End Sub

Public Sub cmdAdd Click()
Set mycode = mydb.OpenRecordset("select max(TH_ID) from TL_Trans H")
VARMOD ="A"
If IsNull(mycode.Fields(0)) Then
VARCD =1
Else
VARCD = mycode.Fields(0) + 1
End If
datPrimaryRS.Recordset. AddNew
editmod Me
txtfields(0).Text = VARCD
txtfields(9).Text = Date + Time
txtfields(12).Text = curuser
txtfields(2).Text =""
txtfields(3). Text=""
txtfields(4).Text =""
End Sub

84

Public Sub cmdDelete_Click()
respvar = MsgBox("Are You Sure ?", vbYesNo + vbQuestion, "Delete Information")
If respvar = vbYes Then
With datPrimaryRS.Recordset
mydb.Execute "delete from TL_Trans_D where TD_Id =" & txtfields(0). Text
mydb.Execute "delete from TL_Test where TS_Trans_Id =" & Val(CbRequest.BoundText)
'mydb.Execute "delete from TL Trans_Class where TC_Id =" & Val(CbRequest.BoundText)
.Delete
.MoveNext
If .EOF And .RecordCount >0 Then
.MoveLast
Else
DatSecondaryRS.Refresh
End If
browsemod Me, datPrimaryRS
MsgBox "Record Deleted"

End With

End If

End Sub

Public Sub cmdfirst_Click()
VARMOD = "B"
datPrimaryRS.Recordset. MoveFirst
VARMOD ="E"

End Sub

Private Sub CbRequest_Click{Area As Integer)
If Trim(Me.CbRequest.BoundText) <> "" Then
tmpreq = Val(CbRequest.BoundText)
vsql = "select TH_ID, TH_Prod_Id, PH_Name, TH_Platform, TC_Desc, TH_Release from
TL Trans H, TL Product H, TL_Tab_Platform where TH_ID =" & Val(CbRequest.BoundText) & "
and TH Prod _Id = PH_Id and TH_Platform = TC_Entry_Code"
Set mycode = mydb.OpenRecordset(vsql)
TmpProdld = mycode.Fields(1)
TmpPlatform = mycode.Fields(3)
If IsNull(mycode.Fields(2)) Then
txtfields(2). Text =""
Else ‘
txtfields(2). Text = mycode.Fields(2)
End If
If IsNull(mycode.Fields(4)) Then
txtflelds(3). Text=""
Else
txtfields(3).Text = mycode.Fields(4)
End If
If IsNull(mycode.Fields(5)) Then
txtfields(4). Text =""
Else
txtfields(4). Text = mycode.Fields(5)
End If
Refresh InvClass
Refresh InvMethod
Refresh ClassTest
Refresh MethodTest

End If
End Sub

Private Sub CbStatus_Click(Area As Integer)

If VARMOD <> "B" Then editmod Me
End Sub

Public Sub cmdlast_Click()

VARMOD ="B"
datPrimaryRS.Recordset.MoveLast
VARMOD ="E"

End Sub

Public Sub cmdlook Click()
curlook = "OomFTMaintDesign"
OomLK01.Show 1
If Trim(curlook) <> "OomFTMaintDesign" Then

VARMOD ="B"
datPrimaryRS.Recordset. FindFirst curlook
VARMOD ="E"
End If
End Sub

Public Sub cmdnext Click() .
VARMOD ="B"
datPrimaryRS.Recordset. MoveNext
If datPrimaryRS.Recordset. EOF Then datPrimaryRS Recordset. MoveLast
VARMOD ="E"
End Sub

Public Sub cmdprevious_Click()
VARMOD ="B"
datPrimaryRS.Recordset. MovePrevious
If datPrimaryRS.Recordset. BOF Then datPrimaryRS.Recordset. MoveFirst
VARMOD ="E"
End Sub

Public Sub cmdRefresh_Click()
datPrimaryRS.UpdateControls
If VARMOD = "A" Then

datPrimaryRS Refresh
End If
Datstatus.Refresh
VARMOD ="E"
browsemod Me, datPrimaryRS
End Sub

Public Sub cmdUpdate_Click()
Dim VarOldStatus As Long
'On Error GoTo err_upd

If Trim(Me.CbRequest.BoundText) = "" Or IsNull(CbRequest.BoundText) Then
MsgBox " Empty Input..."
CbRequest.SetFocus
Exit Sub

End If

txtfields(12).Text = curuser
txtfields(9). Text = Date + Time

VarOldStatus = IIf(IsNull(datPrimaryRS.Recordset("th_status")), 0,
datPrimaryRS.Recordset("th_status"))
'‘mywork.BeginTrans

85

86

If VARMOD = "A" Then
Me.datPrimaryRS.Recordset.Fields("TH_Trans_Type") = "MD"
Me.datPrimaryRS Recordset.Fields("TH_User_Id") = CurCode
Me.datPrimaryRS.Recordset.Fields("TH_Proposal_1d") = Val(CbRequest.BoundText)
Me.datPrimaryRS Recordset.Fields("TH_Prod_Id") = TmpProdId
Me.datPrimaryRS Recordset.Fields("TH_Platform") = TmpPlatform
Me.datPrimaryRS.Recordset.Fields("TH_Release") = txtfields(4). Text
"Me.datPrimaryRS.Recordset.Fields("TH_Int_Test") = IIf{ ChkIntegrity. Value = 1, "X", ")
'Me.datPrimaryRS.Recordset.Fields("TH_Sys_Test") = IIf(ChkSystem. Value = 1, "X", "M

End If

VARMOD ="U"

datPrimaryRS.UpdateRecord

mywork.CommitTrans

datPrimaryRS.Recordset. Bookmark = datPrimaryRS.Recordset.LastModified

If VarOldStatus <> Val(Me.cbstatus.BoundText) Then
Set mytempcode = mydb.OpenRecordset("select max(TD_seq) from TL_Trans_D")
If IsNull(mytempcode.Fields(0)) Then
TEMPVARCD =1
Else
TEMPVARCD = mytempcode.Fields(0) + 1
End If

vsql = "insert into TL_Trans D
(TD_seq,TD_Id,TD_Status_Date,TD_From_Status,TD_to_Status,TD_User_Id) values(" &
TEMPVARCD & "," & txtfields(0).Text & "," & txtfields(9).Text & "," & VarOldStatus & "," &
cbstatus. BoundText & ", & curuser & ")"

mydb.Execute vsql

End If

MsgBox "Record Committed"
VARMOD ="B"
datPrimaryRS.Recordset. MoveLast

Exit Sub

err_upd:

MsgBox Error

MsgBox "All The Transaction will be removed du to an internal error"

VARMOD ="B"

'‘mywork.Rollback

If datPrimaryRS.Recordset. AbsolutePosition <> -1 And VARMOD <> "U" Then

" mydb.Execute "delete rom tmp_skills"

' mydb.Execute "insert into tmp_skills select fop_skills.tal_code
,fop_skills.[Ski_Code],fop_skills.[Ski_Cost],fop_skills.[Ski_curcd] Jfop_skills.[Ski_user],fop_skills.[Sk
i Dtm] , fop_tab_skill.[cod_desc] from [Fop_Skills],[fop_tab_Skill] where fop_skills.[Tal_Code]=" &
datPrimaryRS.Recordset.Fields("tal_code") & " and fop_skills.[ski_code] = [cod_code]"

End If

Exit Sub
End Sub

Public Sub cmdClose_Click()
Screen.MousePointer = vbDefault
Unload Me

End Sub

Private Sub CmdInsMethod_Click()
If Trim(Me.CbInvMethod.BoundText) = "" Or IsNull(CbInvMethod.BoundText) Then

MsgBox " Empty Input..."

87

CbInvMethod.SetFocus
Exit Sub
End If

Refresh TransMethod
varcriteria = "TC_Method = " & Val(CbInvMethod. BoundText)
DatTransMethod.Recordset. FindFirst (varcriteria)

Set mycode = mydb.OpenRecordset("select max(TC_Seq) from TL_Trans_Class")
If IsNull(mycode.Fields(0)) Then

VARCD =1
Else

VARCD = mycode.Fields(0) + 1
End If

If DatTransMethod.Recordset. NoMatch Then
"DatSecondaryRS.Recordset. AddNew
'DatSecondaryRS.Recordset.Fields("TC_ID") = Val(CbRequest.BoundText)
DatSecondaryRS.Recordset.Fields("TC_Class") = DatTransClass.Recordset.Fields("TC_Class")
"DatSecondaryRS.Recordset. Update
vsql = "insert into TL_Trans_Class (TC_seq,TC_Id,TC Class,TC_Method) values(" & VARCD &
" " & Val(CbRequest.BoundText) & "," & DatTransClass.Recordset.Fields("TC_class") & "," &
Val(CbInvMethod.BoundText) & ")"
mydb.Execute vsql
DatSecondaryRS.Refresh
Else
MsgBox "Method already added" + vbCritical
Exit Sub
End If

If CmdRmvMethod.Enabled = False Then CmdRmvMethod. Enabled = True
CbInvMethod. Text =""
CbInvMethod.SetFocus
Refresh TransMethod
End Sub

Private Sub cmdPrint_Click()
Rep.ReportFileName = "RptChgEva.rpt"
Rep.SelectionFormula = "{TL_Trans_H.TH_Id} =" & txtfields(0)
Rep.Destination = 0 '(0 preciew 1 printer)
Rep.Action=1

End Sub

Private Sub datPrimaryRS_Error(DataErr As Integer, Response As Integer)
"This is where you would put error handling code
'If you want to ignore errors, comment out the next line
'"If you want to trap them, add code here to handle them
MsgBox "Data error event hit err:" & Error$(DataErr)
Response =0 'Throw away the error
End Sub

Private Sub datPrimaryRS_Reposition()
Screen.MousePointer = vbDefault

' On Error Resume Next
"This will synch the grid with the Master recordset

"This will display the current record position for dynasets and snapshots
'datPrimaryRS.Caption = "Record: " & (datPrimaryRS.Recordset. AbsolutePosition + 9]

If VARMOD = "U" Then Exit Sub
enabbutton Me, "cmddelete”
OomMen011.Toolbarl.Buttons(12).Enabled = True

Select Case datPrimaryRS.Recordset. AbsolutePosition
Case -1
OomMen011.Toolbarl.Buttons(4).Enabled = False
OomMen011.Toolbarl.Buttons(3).Enabled = False
OomMen011.Toolbarl.Buttons(1).Enabled = False
OomMen011.Toolbarl.Buttons(2).Enabled = False
OomMen011.Toolbarl.Buttons(7).Enabled = False
OomMen011.Toolbarl.Buttons(12).Enabled = False

'cmdlast.Enabled = False
'‘cmdnext.Enabled = False
'cmdfirst.Enabled = False
'emdprevious.Enabled = False
'‘cmdDelete. Enabled = False
'cmdlook.Enabled = False

Case datPrimaryRS.Recordset.RecordCount - 1
OomMen011.Toolbarl.Buitons(4). Enabled = False
OomMen011.Toolbarl.Buttons(3).Enabled = False
OomMen011.Toolbarl.Buttons(2).Enabled = True
OomMen011.Toolbar1.Buttons(1).Enabled = True

‘cmdlast.Enabled = False
'emdnext.Enabled = False
‘cmdfirst. Enabled = True
‘cmdprevious.Enabled = True

Case 0
OomMen011.Toolbarl.Buttons(4).Enabled = True
OomMen011.Toolbarl.Buttons(3).Enabled = True
OomMen011.Toolbar1.Buttons(1).Enabled = False
OomMen011.Toolbarl.Buttons(2).Enabled = False

‘tmdlast.Enabled = True
‘cmdnext.Enabled = True
'‘cmdfirst.Enabled = False
'emdprevious.Enabled = False
Case Else

‘cmdlast.Enabled = True
‘cmdnext.Enabled = True
'cmdfirst.Enabled = True
‘cmdprevious.Enabled = True

OomMen011.Toolbarl.Buttons(4).Enabled = True

OomMen011.Toolbarl.Buttons(3).Enabled = True

OomMen011.Toolbarl.Buttons(2).Enabled = True

OomMen011.Toolbarl.Buttons(1).Enabled = True
End Select

vsql = "SELECT * FROM TL_Trans_H where TH_Trans_Type = 'MD"
Me.datPrimaryRS.RecordSource = vsql
'datPrimaryRS.Refresh

If datPrimaryRS.Recordset. AbsolutePosition <> -1 And VARMOD <> "U" Then
Vs ql — tn
txtfields(0) = datPrimaryRS.Recordset("tH_ID")

89

vsql = "SELECT TL_Trans_D.TD_Status_Date, TL_Tab_Status.TC_Desc,
TL_Tab_Status 1.TC_Desc, TL_Trans_D.TD_User_Id FROM TL_Trans D, TL Tab Status AS
tl_tab_status TL_Tab_Status AS tl_tab_status_1 WHERE TD_ID =" &
datPrimaryRS.Recordset("TH_ID") & " and TL_Trans_D.TD_From_Status =
TL_Tab_Status.TC_Entry_Code and TL_Trans D.TD_to_Status =
TL Tab_Status 1.TC Entry Code"

Me.Datstatus.RecordSource = vsql

Else

Me.Datstatus.RecordSource = "SELECT TL Trans D.TD_Status_Date, TL_Tab_Status. TC Desc,
TL_Tab_Status 1.TC Desc, TL_Trans D.TD_User_Id FROM TL Trans D, TL_Tab_Status AS
tl tab_status, TL Tab_Status AS tl_ tab status_1 WHERE TL_Trans D.TD_From_Status =
TL_Tab_Status.TC_Entry Code and tL,_Trans_D.TD_to_Status =TL Tab_Status_1.TC_Entry_Code
ANDTD ID=0"

txtfields(0) =""

End If

Datstatus Refresh

End Sub

Private Sub datPrimaryRS_Validate(Action As Integer, Save As Integer)
'This is where you put validation code
'This event gets called when the following actions occur
Select Case Action
Case vbDataActionMoveFirst
Case vbDataActionMovePrevious
Case vbDataActionMoveNext
Case vbDataActionMoveLast
Case vbDataActionAddNew
Case vbDataActionUpdate
browsemod Me, datPrimaryRS
Case vbDataActionDelete
Case vbDataActionFind
Case vbDataActionBookmark
"browsemod Me, datPrimaryRS
Case vbDataActionClose
Screen.MousePointer = vbDefault
End Select
Screen.MousePointer = vbHourglass
End Sub

Private Sub datSecondaryRS_Reposition()

If datSecondaryRS.Recordset. AbsolutePosition <> -1 Then

' CbSkills.BoundText = datSecondaryRS.Recordset.Fields("ski_code")
' txtfields(11).Text = datSecondaryRS.Recordset.Fields("ski_cost")
'End If

End Sub

Private Sub Form_Activate()
If curlook <> "First" Then Exit Sub
If Not datPrimaryRS.Recordset. EOF Then datPrimaryRS.Recordset.MoveLast
txtfields(12).Text = curuser
curlook =""
VARMOD ="E"
End Sub

Private Sub Form_Load()
'Create the grid's recordset
'datPrimaryRS.Refresh

curlook = "First"
VARMOD = "B"
End Sub

Private Sub Form_Unload(Cancel As Integer)
Screen.MousePointer = vbDefault
End Sub

Private Sub RichTextBox1 KeyPress(KeyAscii As Integer)
editmod Me
End Sub

Private Sub RichTextBox2 KeyPress(KeyAscii As Integer)
editmod Me
End Sub

Private Sub RichTextBox3 KeyPress(KeyAscii As Integer)
editmod Me
End Sub

Private Sub Text! Change()
‘editmod Me
End Sub

Private Sub Textl_GotFocus()
editmod Me
End Sub

Private Sub txtfields_KeyPress(Index As Integer, KeyAscii As Integer)

If KeyAscii =13 Then

If Index = 11 Then
Index =0
SSTabl.Tab=1
RichTextBox1.SetFocus

Else

If Index = 3 Then
CbCountry.SetFocus
ElseIf Index <= 6 Then

txtfields(Index + 1).SetFocus
Else
CbFields.SetFocus
End If
End If
Else
editmod Me
End If

End Sub

90

