&)
A Fault-Tolerant Approach for the Shortest Path

Algorithm in Large Spectrum Graphs
Rt
o0S{
By Sy 1
Joseph Fares

M.S., Computer Science, Lebanese American University, 2007

Thesis submitted in partial fulfilment of the requirements for the Degree of Master of
Science in Computer Science

Division of Computer Science and Mathematics
LEBANESE AMERICAN UNIVERSITY

June 2007

Student Name

Thesis Title:

Program:
Division /Dept:
School:
Approved by:

Thesis Advisor:

Member
Member

Member

Date:

LEBANESE AMERICAN UNIVERSITY

School of Arts and Sciences

Thesis Approval

JoserPH FARES

A FAULT-TOLERANT APPROACH FOR THE SHORTEST PATH ALGORITHM IN LARGE

SPECTRUM FILES

Computer Science

Computer Science and Mathematics

School of Arts and Sciences, Byblos

Harpar M. HARMANANT

JEAN TAKCHE

MounIED MousSALLAM ¢

June 29, 2007

198731470

Plagiarism Policy Compliance Statement

[certify that I have read and understood LAU’s Plagiarism Policy. I understand that
failure to comply with this Policy can lead to academic and disciplinary actions against

me.

This work is substantially my own, and to the extent that any part of this work is not my

own I have indicated that by acknowledging its sources.

Name: Joseph Fares

Signature: Date:

June 29, 2007

I grant to the LEBANESE AMERCIAN UNIVERSITY the right to use this work,
irrespective of any copyright, for the University’s own purpose without cost to the
University or its students and employees. I further agree that the University may

reproduce and provide single copies of the work to the public for the cost of reproduction.

Acknowledgment

I would like to thank my advisor Dr, Haidar Harmanani for his guidance throughout my
Thesis work. A thank is also to Mr. Mounjid Mousallem and Dr. Jean Takchi for being

on my thesis committee.

I would like to express my sincere gratitude to the Lebanese American University whose

financial support during my graduate studies made it all possible.

Finally, I would like to thank my friends and family for their long support.

Abstract

This work proposes a solution for the shortest path algorithm for large spectrum graphs.
The problem is of particular interest for applications in computer networks as well as in
road networks, We tackle this problem in two stages. In the first stage an evolutionary
algorithm for networks-based applications is formulated with a special interest emphasis
on fault-tolerance, an important issue due to dynamic changes in routing configuration.
In the second phase, we tackle large spectrum graphs where the evolutionary algorithm is
applied using database constructs. Thus, the graph is stored in a database and the
evolutionary algorithm is formulated using SQL queries. The operators as well as the
selection operators are all database-based. The algorithm is attempted on the DIMACS

challenge for the USA routes and favourable results are reported.

Contents

1. Shortest path problems]

L1 INrodUEHION ..ot ne e |
1.2 Shortest path pmb]ﬂm .. 2
1.5 Heuristic shortest path:...c.iiiiiuissimeismisiiimmmi 3
1.3.1 A* algorithm... U
1.3.2 Branch pruning ﬂlgﬂrlthm .. -
1 A4 Genetic-algorithm o csimiuibadaimmaiismmi 5
1.5 Problem description and Thesis outline........cccooveveeiiiiiiiincnnnnns 6
2 BElAE WOTK oo cnvmismmimsnimsssinnes i s SR R 8
2.1 Dijkstra algonthm . cantae s iiiiuiiiiiviiimsssi 9
2.2 Bellman-Ford algorithm......cuv e e 10
2.3 Knowledge based Dijkstra algorithm.........ccoevevviinnnnnniinnnns 10
20 GOt C ALEOTIIII & i s R T i G 11
2.4.1 Knowledge based genetic algorithm.........ccccveveenie 111
2.2 Munernoto BIEOTTENTIN oo msiosseisssiisssinmsssnssisasim s 12
243 Inagald algormthm . s uuiiGaniEGaseme 13
2.4.4 Gen algorithmooccevivieiiiieeeesiiescs s seseiesieneens 1 3
2:4:5. Other genetic al@orithm ... 14
3. Heuristic shortest path for networks ... iiuinmnnni 15
3.1 Chromosome repreSentationooooovirerensviereesssees e sessseans 15
3.2 CHIOMDSOME CIERMONE .ocisunsinsssimsmpssossanmssnsosissb et sa s 15
S Frineee ealURtIOn:. .. cocvsnsni s R R 17
3.4 Selection tECANIQUEoiiviieeceecee s e et eeesesesessees 18
3.4.1 Fitness proportionate Selectionccecevuivesrsseesessanns 19
ot RN SRl OO v R 20
3.4.3 Tournament SeleCtioN.vvvveeeerermreerereeeieseeseec s 21
L LT 21
S VDA i o e s e s s 25
3.7 Repair funclion........ceissiiinsnssesese s ssesseseresssssssssssesens 27
3.8 Proposed genetic algorithm & Flowehartoooovviivieinnns 28
3.9 Pseudo code for the proposed Genetic algorithm 31
3.10 Experiments and resullsococoveiiiiiniininiins s 32
3.10.1 Small spectrum Sraphs ... oismmsimssimmsisiini 32
3.10.2 Medium spectrum graphs........ccccovriieveiierennncissssnninns 34
4. Shortest path for large spectrum graphs........c.cooocvveeveverciiesceereeeecenenn. 360
4.1 Creating the table and 15 index..........cccim i i, 36
4.2 creating the chromosomes via QUETIESocoeceviiiiiiinieiiisiisseenns 37
4.3 Loading the chromosomes into memory..........ccccovvveeeensnieenennn 39
4.4 Experiments anid VeSS ..o o
D ACONCINBION o voauiin ma s R R R s 42
B T O o i i i iea s o s ek o By A TE TS e AR B A YA S R KBRS Rt -
PNPPBRENRIIL ... v vrvoeriosssmmevsnisss rawsminssns s R Ry BRSPS e 5 Ee 53 47
APPEIIIN B ..o e e R R 48

i

List of Figures

iii

Figure 1.1: General greedy shortest path algorithms...........ccvveeeeecevverecenee. 2

Frgured. 1 DHikstes al ORIt o mmmmuassassssnsmsinimmsiimsidisinad

Figure 3.1: Chromosome representation.............cuvumiinivnsissiviesesssessareris 15
Figure 3.2: Chromosome Creation...........veeerersesescsesssesescssss s ssssessssens 16
Figure 3.3: Heuristic chromosome creation pseudo-code.........ccccoccrrncreennen 17
Figure 3.4 Fitniess equation ...t mis immibmaiis s 18
Figure 3.5: Chromosome fitness pseudo-code...........covvevecevenoreeecnensersnnnns 18
Figure 3.6: Fitness proportionate selection pseudo-code.........co.cvereecieiinnnn 20
Figure 3.7: One point Crossover eXampleccccovmmmnensimmmnissioinessns. 23
Figure 3.8: Crossover pseudo-code.ccooovviimiiooee oo ssesssens 24
Figure 3.9: Cut off Mutation eXample ..o oo 26
Figure 3.10: Mutation pseudo-Code .o iaana 26
Figure 3.11: Repair function eXamplecccc.ovvvireeeseseseseesessensssessssnenns 27
Figure 3.12: Repair function pseudo-code.... —_— S G
Figure 3.13: Flowchart of the proposed genetl-:: algol |lhm PR P 30
Figure 3.14: Proposed genetic algorithmcoooovoveeeceeeeeeeeeeee, 31
Figure 3.15: Small spectrum graph......coveueceeeceiecieninssinssseses oo 33

List of Tables

Table 3.1: Computation time Dijkstra versus GA ..ooooooveevevieereeron, 34
Table 3.2: Results of proposed GA versus Dijkstra cnenn 3
Table 3.3: Comparison between Dijkstra and GA RSNV, 1
Table 4.1: Results on large spectrum graphsccocooeveivoirseerieinsn 1

Chapter 1
Shortest Path Problems

1.1 Introduction

The shortest path problem is based on detecting the minimal route from source to
destination in terms of distance, time or cost. As for multihop networks or road
networks, finding the shortest path or the best route is quite vital. Several search
algorithms for the shortest path problems have been reported such as: breadth first search,
Bellman Ford, Dijkstra, and the A* algorithm [1]. These algorithms are very effective on
static networks, But as the graph that represents the network increases in size, the
problem’s complexity increase such that the problem becomes intractable and the
computation time intolerable [2]. Another important issue is the rapid change of a link's
weight as a function of time. For example, suppose an accident occurred at rush time
hour in a congested street of the city. This accident will not only increase the weight of
that link but also will affect the whole network. These changing networks are known as
dynamic networks and these unexpected modifications on this kind of networks are
known as rerouting [31]. Only algorithms based on random techniques methods, such as
genetic algorithm, simulating annealing or tabu search are able to solve the nuisance of
increasing dimensions as well as its capabilities to adjust with the new network

alterations [3, 4].

1.2 Shortest Path problem

More than 40 years were spent on studying the shortest path problems in different fields
of interest such as computer science and transportation networks. All computer
scientists focusing on this field came out with amazing results through very powerful
algorithms. Most of these algorithms are based on the principle of triangular inequality
for finding the shortest path route in a graph. This shortest path is found by relaxing the
edges stemming from the current node to all its neighbors. Approximately all greedy
shortest path algorithms follow the same standard procedure, here follows a description

of a general greedy shortest path algorithm:

Stepl: Initialize single source {V.5) where V' = set of vertices and 5 = source
For each v € V do
divje o= ‘ull degrees or [abels are set 1o infinity
plv]= nil *all parents are nil
d[s]= 0 " degree of source is 0
teration = 0

Step2: number of iterations (according to: V-1 or a non empty queue)
#iterations <= V-1
Q= V]G] * queue = vertices in the graph G

Stepd:
U= extract{Q} ‘remove node from the quese Q
iteration = iteration + |

Stepd: Relaxation of edges
For each edge (u v} € E
ITd[v] > diu] + wiwvd then * wiuv) is the edge weight fromu fo v
dv]= dfu] + wiu,y)
plv]= u
end il

Steps: stop when either O is empty or when steration = Siterations
IT (eration < #ierations) OR G ##o then Go to stepd

Figure 1.1 General greedy shortest path algorithm

Two variations for this kind of algorithms exist, the label setting algorithm and the label
correcting algorithm [5]. The difference between both algorithms depends on the kind of
data structure used (i.e. Queue, heap or list). In the case of label setting, the node with
the smallest degree is extracted from the queue. When it comes to find the shortest path
between a single source and a single destination, the algorithm will stop execution as
soon as the label of the destination node has been changed. This is known as one to one
search mode. On the other hand, the label correcting algorithm does not give the shortest
path between a source and a destination unless the shortest path for each vertex in the
graph is calculated. This is known as one to all search mode. The label correcting is

useful when more than one shortest path emanating from the source vertex is needed.

1.3 Heuristic Shortest Path

Heuristic shortest path is based on knowing in advance the locations of the source and the
destination nodes. This helps in minimizing the search area, partitioning the graph, and
traversing the specified edges of the graph [6]. The two algorithms mentioned in the
previous section are inefficient with medium to large spectrum graphs since the search is
done in a forward way without having a prior knowledge of the destination node position.
Furthermore, all nodes falling from source to destination are visited even though they
might not be elements of the shortest path. The goal was to build efficient algorithms
that could shrink the search area based on some based knowledge.

These studies led to two important algorithms that operate by limiting the search area

namely branch pruning and A* algorithm.

1.3.1 A* Algorithm

A* stores the nodes that have a low probability of being visited in the same scan set. On
the other hand, A* is based on a heuristic function “f(i) = d(o,i) + h(i,d)". d(o,i) stands
for the cost of the best path from the source to the actual node.

While h(i,d) is the heuristic estimation distance from node ‘i’ to destination ‘d’, The
lower the value of (i) for this node is, the higher the chance for it to be a member of the
current shortest path. The algorithm sorts in ascending order nodes of the scan set
according to their corresponding heuristic function f{i). Next the first node in the set is
selected for expansion using the best first search where all edges related to this node are
examined and added to the scan set with respect to their heuristic function values “f(i)”
[8]. This procedure is repeated until the destination node is selected for examination.
The A™ is efficient as long as the heuristic estimation is acceptable i.e.
“0 =h(i,d) =h*(i,d)" and does not overestimate the optimal cost from the same node to the

target node h*(i,d) [7].

1.3.2 Branch Pruning Algorithm

The spirit of the branch pruning algorithm stem from iterative-deepening A* algorithm
used in Artificial Intelligence [6]. It is based on pruning the nodes that have no chance of
being visited during the shortest path formation. The nodes that are close to the source
and destination have a higher chance of being members of the shortest path. Conversely,

those nodes that are remote from the source and the destination are discarded and will

have a low probability of being part of the shortest path. When selecting a node from the
queue it undergoes a simple test in step3 of the algorithm shown in Figure 1.1:

if d{o,i) + e(i,d) = E(o,d) then go to step4
Where ‘0" is the source, ‘d’ is the destination and ‘1" is the current node. Then if the
current minimal cost from the source to a designated node “d(o,i)” plus the estimated cost
from the same node to the destination node “e(i.d)” is greater than the estimated upper
bound “E(o,d)”, this node is skipped. This upper bound E(o,d) known as minimal cost

from source to destination is referred in some references as a cutoff [7].

1.4 Genetic Algorithm

Evolutionary algorithms simulate the biological evolutionary mechanism found in human
beings, in order to solve combinatorial optimization problems [9]. Evolutionary
algorithms operate on a population that undergoes selection and recombination in order to
create a new population with better individuals. Genetic algorithms are based on the
principle of randomness during the genes’ creation of the chromosome. This allows
building up a pool of chromosomes. Each chromosome is a sequence of random genes
that simulates a path from the source to the destination. A chromosome corresponds to
the domain knowledge and it is represented by a vector of length “In"™ such as Ch = g;

(where by 0 =i <In) and *g;" is the gene at position ‘i’ in the chromosome ‘Ch’. Once
the size of the population is determined, an initial population is generated.
The genetic operators are next applied by selecting individuals from the population. This

15 followed by a selection process where individuals with higher fitness scores have a

higher probability of survival. These generated offspring will be stored in a new

population and ready for the next generation. The process is repeated ‘generation «
generation +1" until the number of generations specified by the user has been reached
‘generation > max generation’.

Crossover is used as the main genetic operator since it permits to explore the design
space while mutation is used to avoid the convergence to a local optimum by inserting
new chromosomes. The mutation rate should be low in order to give priority for the
crossover operator and from time to time to add new individuals to the pool for exploring

new sections.

1.5 Problem Description and Thesis Outline

Holland [10] first introduced genetic algorithms to solve combinatorial problems. This
thesis proposes to solve the shortest path problems in medium to large spectrum graphs
using genetic algorithm. We tackle road networks that contain hundred thousands of
nodes and edges that cannot be solved by Dijkstra due to memory limitations.
Consequently, finding an efficient feasible shortest path with Dijkstra will be impossible
as the number of nodes and links increases in size. Another problem with Dijkstra is that
it has to run all over again in case of network failure trying to find a new substitute in a
very short time i.e. matter of milliseconds for the network to survive [1]. The proposed
algorithm works by creating an initial population of feasible chromosomes that relate the
source to the destination exempted from any redundant individuals.

Genetic operators are applied to the population to produce a new fit population. After

executing the genetic algorithm for a specified number of generations, a sub-optimal

answer is obtained in most of the cases. In the worst case scenario this algorithm yields
to a group of suboptimal solutions to avoid fiasco.

Chapter 2 surveys the previous related work regarding the shortest path problem such as
Dijkstra algorithm, Bellman-Ford algorithm, knowledge based Dijkstra algorithm, and
other genetic algorithms. Chapter 3 presents our proposed genetic algorithm to solve
medium size spectrum graphs while Chapter 4 focuses on large spectrum graphs. We

conclude in chapter 5.

Chapter 2
Related Work

The problem of finding the shortest path between two nodes is a well known problem.
Many algorithms have been used to solve the problem. One to mention is Dijkstra which
is a very powerful algorithm for small to medium spectrum networks that always returns
the optimal shortest path from a single source to a single destination [11]. As the number
of nodes increases the memory storage used by Dijkstra becomes prohibitive. Another
one 1o mention is Bellman-Ford algorithm, which is similar to Dijkstra but allows for
negative weight edges.

Knowledge based Dijkstra algorithm is based on the idea of shrinking the search area by
using a knowledge based route finder. Then, Dijkstra is used to find the shortest path if
the minimized area is small enough to be covered. Otherwise, it will fail due to the same
reason mentioned previously. Knowledge based genetic algorithm was able to overcome
the problem facing knowledge based Dijkstra algorithm. After reducing the area instead
of running Dijkstra, genetic algorithms accomplish the mission to avoid failure. Finally,
different types of genetic algorithms were used to solve the shortest path problem. Each
one of them is based on the same evolutionary process but uses different variations of
selection techniques such as (roulette wheel selection, pair wise tournament selection).
These genetic algorithms uses also different types of crossover such as (one point
crossover, two point crossover, position based crossover, partially mapped crossover) as

well as utilizes different deviations of mutation such as (one point mutation, local search-

based mutation, swap mutation). In addition, different rates for crossover and mutation

are used. The number of generations also varies from one algorithm to the other.

2.1 Dijkstra Algorithm

Dijkstra's algorithm was proposed in 1972 in order to find the shortest path between a
single source node and all other vertices in a given graph G=(V,E) where V are the
vertices of the graph and E are the edges connecting those vertices. Dikjstra algorithm
is a greedy one which functions by selecting in the neighborhood the most important

alternative and it has an order O(n®). Its algorithm is shown in Figure 2.1

DijkstrafCrow 5} where G is the graph, w weights of nodes and 5 = source

Initialize-single-source(WV 5) all label nodes = o parent = nil for each node, degree s = 0

= |} emply set no vertices checked wet
Q= V|G] where 0 is priorily queus or heap containing all vertices
While 21} do loop while heap is not empty
u = extract-min{(}) extract from Q) a vertex with the minimum shomest path
5= 8+ u) S will hold examined vertices so far

for each vertex v © Adjluldo check each neighbor to node u

Relax{u,v.w) using triangulir ineguality

Fig. 2.1 DNijkstra Algorithm

2.2 Bellman-Ford Algorithm

Bellman-Ford algorithm is based on the principle of dynamic programming for finding
the shortest path route in a graph. This shortest path is found through the use of recursive
call from source to destination. The algorithm traverses all edges |V-1| times performing
a relaxation technique on each edge. It allows for negative weight edges and has a
running time of order O(VE).

Both Dijkstra and Bellman-Ford are based on the triangle inequality for relaxing the
edges of the graph. Since both will not work with medium to large spectrum graphs, new
clforts where made by computer scientists to overcome this problem by using new

techniques such as genetic algorithms.

2.3 Liu’s Knowledge Based Dijkstra Algorithm

Liw’s Knowledge based Dijkstra algorithm covers geographical graphs [12]. This
algorithm has two main integrating techniques the case based route finder and the
knowledge based route finder. First, a case based route finder attempts to match the route
with some previous stored shortest paths. If the match occurs an optimal route is
automatically thrown from the database. Otherwise, the case based reasoner will give the
closest partial route and leave the remaining part to Dijkstra. In the worst case scenario
when the reasoner fails even to return a partial route, the graph is passed to a knowledge
based route finder. The knowledge based route finder will prune unnecessary nodes via

heuristic knowledge.

As a result, the search area is now limited to a grid which is used by Dijkstra to find the
optimal shortest path [1]. For example, to look for a path from the central part of a city to
a destination in its southern area, there is no need to check its northern part. Therefore
the search is now confined to a particular area of the graph. This algorithm contains a
case based controller that will add, modify or remove a route through the process of
continuous learning by experience. The use of Dijkstra over a grid will restrict the
system’s results, since as much as the grid stretches in size the answer may or may not be

the shortest path [12].

2.4 Genetic algorithms

2.4.1 Kanoh’s Knowledge Based Genetic Algorithm

Kanoh's Knowledge based genetic algorithm was introduced to overcome the weakness
of the knowledge based Dijkstra algorithm [14]. A set of partial routes, known as
viruses, constitute the domain based knowledge. Viruses do include neither the source
node nor the destination node. Conversely, individuals must contain both source and
destination nodes. Two populations are generated one for the viruses and the other for
the individuals. The population of viruses contains national roads and local roads of the
city. The population of individuals is first based on randomly selecting one virus.
Second, the partial route from the source node to the virus and the partial route from the
virus to the destination node are produced by using a real time heuristic search

algorithm [13].

11

Finally, the path that concatenates these two former partial routes with the injected virus
forms a new individual. For example suppose we have the path Py =“Sabcd D" and
the injected virus Vy ="e b d f". The infected path will be P, ="S a b d D". Where by
'S is the source, ‘D’ is the destination, and *b,d’ are common intersections. The new
path P> will substitute the old path P, in the population of individuals. Crossover takes

place at common genes in both parents [14].

2.4.2 Munemoto’s Algorithm

Munemoto's algorithm [15] data structure is based on variable length vectors to present
chromosomes. However, this algorithm has two major weak points. The first one is its
potential failure during the crossover operator. This is because the crossover does not
operate unless it takes place on two identical genes in both parents at the same position.
Crossover failure leads to a suboptimal solution by omitting many candidates that are
necessary to explore new regions of the graph. In order to solve this dilemma they
increased the size of the population at the expense of a longer computation time.

The second inconvenience of Munemoto’s algorithm is that it might fail during the
mutation process since it works as follows: first, it chooses randomly one gene of the
chromosome as a mutation point. Second, it applies Dijkstra algorithm from the source
to the mutation point in order to get the first part of the chromosome.

Third, it randomly selects one of the neighbors of the mutation point and applies to it
Dijkstra until it gets the second part of the chromosome. Finally, concatenate both parts

to get the final path from source to destination. The weakness ol mutation is that it relies

12

on Dijkstra which could fail while traversing the nodes of the entire large spectrum

graph.

2.4.3 Inagaki’s Algorithm

In Inagaki’s algorithm fixed length chromosomes are used [16]. Each gene of the
chromosome holds a node label that is chosen randomly from the set of nodes that are
neighbors to the corresponding gene index. This process is repeated until reaching the
destination. During crossover, one of the parents’ genes that exist at the index
representing the source node is selected and stored at the same index in the offspring,
The next gene is selected according to the index of the previous stored node. This
process is repeated until reaching the destination. Due to this weak crossover the
algorithm needs a large population to converge to an optimal answer. Therefore, the

computation time turns to be slow during the evolution process.

2.4.4 Gen’s Algorithm

Gen’s algorithm utilizes the priority based encoding technique. First, a chromosome is
generated randomly by finding those nodes that are connected to the source node and
assigning to it random priorities.

Next, select the neighbor with the highest priority and add it as a new gene. The
algorithm repeats this method until the destination node has been reached [9]. In

addition, the position based crossover used by Gen’s is described as follows:

Some genes at random positions from one of the parents are transferred to the same
genes’ positions of the offspring. The remaining genes that will contribute in forming the
offspring are taken from the other parent by a left to right scan.

During the scan, redundancy is avoided by skipping those genes already taken from the
first parent. This works well for the TSP problem since il we shuffle the genes we still

get a feasible path.

2.4.5 Other Genetic Algorithm

Many other important genetic algorithms exists that cover multicast routing problem in
communication networks. For example, in multiparty multimedia teleconference systems
and distance learning the video and voice at each point communicate with all other points
available in the network [17]. This is why the QoS (quality of service) is important to
guarantee a soft audio-video exchange [18]. This exchange of multimedia in formation
should be in a very concise time matter of micro seconds. These algorithms are built by
using a multicast tree or Steiner heuristic minimal tree [19] and are beyond the scope of

this thesis,

Chapter 3
Heuristic Shortest Path for Networks

3.1 Chromosome Representation

A chromosome is a sequence of genes used to represent a path from a given source to a
given destination. The genes stand for the visited nodes in a given graph. Two
consecutive genes represent a link between two nodes or simply a weighted edge. For
example, the chromosome represented in fig.3.1 indicates that there is an edge from
‘nodel ‘to *node2’ and another edge from ‘node2’ to ‘noded’. A chromosome is said to
be feasible if its genes contributes in building a connected route from the given source to

the given destination.

1 |2 |3

Fig. 3.1 Chromosome Representation

3.2 Chromosome Creation

The chromosome creation passes through the following steps:

I, Define a variable length array that will hold the genes of the chromosome.
2. Assign the source node index to the first gene, i.e. ¢[1]=1.
3. Test all the links from the current node in the adjacency matrix, and assign those

links which are different from infinity to a new variable length array named v.

4. Generate a random number between index (and the last index of the array v
that holds all possible links from the current node to all possible neighbor nodes.

5. According to the random generated index, select the corresponding value that
exists within that index of the array created in step 3 (new gene = g = v[{]) where i

is the random generated index.

e[1] of2] ef3] e ¢[n-1] ¢[n]

Fig. 3.2 Chromaosome Creatlon

6. Add the new gene to the end of the variable length array representing the
chromosome. That is, ¢[j] =g. where2 =j =n-1|

7. Repeat steps 3 to 6 until the destination is reached [28].

8. Eliminate the loop that exits within the genes of the chromosome by calling the
repair function. This will lead to an initial feasible population from which

crossover and mutation can lead to a new elite population.

The algorithm in Figure 3.3 shows the steps of creating a [easible pool of chromosomes
with no duplicate. For example, applying crossover on two duplicate parents from the
population will yield to the same output. Too many redundancies will minimize the
search area. The number of chromosomes constituting the population should be quite
enough to start applying the next two genetic operator crossover and mutation to create a

new population.

16

P = size of the populition

Pop = array of chromosomes

Ch = o chromosome of the population

Matrix = matrix holding benchmark of the graph

Msize = matrix size

Meighbors = array containing rodes that are neighbaors o the current node

& & & & & @

IniializePopulation_algorithm () {f pop s an amray of individuals
begzin
fori=110Pdo
begin
v=|
gene = |
chiv] = gene i store 1 in the 1" gene of the chromosome as being the source node
destreached = false # Boolean varfable 1o detect if destination has been reached
while {not destReached} do
begin
k=1
for j = 1 to Msize do Jlind all neighbors of gene and reserve it in armay neighbors
begin
i (Matrix[gene][j] < infinity) then & value < infinity means there is an edge between the 2 nodes
begin
neighborsfk] = j
k=k+1
end il
end for
index = random * neighbors length H generate a random number
gene = neighbors] index) i retwrm a random ebement rom array
v=y+]
chv] = allele M add this new are as a gene o chromasome
if {gene == Msize) then
begin
Pop{i] =ch #f store the ereated chromosoms in pogulation
destReached = true
end il
end while
sameChromosome = false
j=1
while {() = i-1) and (not samechromosome)) deo feliminate the creation of same chromosome
begin
if (Popli] = Pop[i]} then
begin
sameChromosome = true
i=i-1 {decrement i 1o drop the duplicate chromosome and create a new one for the population
end il
end while
end for

emd

Fig. 3.3 Heawristic chromosome creation pseudo code

3.3 Fitness Evaluation

Each chromosome has its own main fitness calculated by summing up the weights of the
edges connecting its genes from source node to target node. The weights are reserved in

a cost matrix W [20].

17

The main fitness is represented by the following equation in Figure 3.4:

Fitness = — -
. L R RO |

i=1

Fig. 3.4 Fitness equation

Where ‘n’ is the length of the chromosome and Wi is the weight or the distance

connecting gene ‘i’ to gene ‘i+1" in the corresponding chromosome.

Pseudo code for fitness calculation is shown in Figure 3.5

Caleulmelumness (Ch)
begin
mainFitness =0
I = chromosome length
fori=11on -1 do
begin
mainFitness = mainPFiness + Matrix[Ch[i] , Chii+1])
end for
mainFitness = 1/minlFiness

end

Fig.3.5 Chromosome finess pseudo code

3.4 Selection Technique

Once the population of individuals with its corresponding assigned main fitness values
has been created, the next step is to select the appropriate chromosomes that will pass
their genes to the next population through genetic operators.

The purpose of selection is to give fitter individuals a higher probability of being selected

during the evolution process. This is known as “survival of the fittest”.

If the selection procedure is inappropriate, it will lead to suboptimal individuals
overwhelming the population before a good solution is reached. A variety of selection

methods exist.

3.4.1 Fitness-Proportionate Selection

In fitness-proportionate selection, the chance for an individual to replicate is equal to the
individual's fitness divided by the average fitness of the population. Roulette wheel
selection is a well known procedure based on fitness proportionate selection [26]. Our
proposed GA uses the roulette wheel selection method. First, it calculates the scaled
fitness which represents the difference between the main fitness of the current
chromosome and the chromosome with the minimum fitness in the population.
(scaledfitness = mainfitness — minimumfitness). Second, all scaled fitness are added
together to form (sumfitness). Third, the selection of an individual for a crossover or
mutation is simply done by generating a random number between O and sumfitness.
Next, the population is sorted in decreasing order by the quicksort algorithm (O(nlgn)).
Finally, the scaled fitness of the visited chromosomes are added until it becomes greater
or equal to the generated random number. Once this occurs, the proposed algorithm
selects the current chromosome as being a good candidate for multiplying. This is shown

in Figure 3.6

19

ScaledFitness (Pop)
begin
minFitness = 1000

sumFitness =)

minFitneess = Pop{i].fitness

cnd
Selectindividual (Pop)
begin
sumofFitness = 0
index =0
limit = mndom * sumFithess

scaledFitness

begin

index = index +1
end while
Ch = pop[index-1]

end

fori=110P do # where P iz population size
begin
iF{ Pop{i].fithess < minFitness) then M where Popli] s a chromosome in popu lstion

emd il
end for
fori=1lwP do i subaract the min finess from the finess of individual
Fop [1] scaledFitness =Pop|i] fitness — minFitness If assign difference to scabed
fori= 1o P do

sumPFitness = sumbPFiness + Popli] scaledFitness A surm wp all scaled Ninesses

while {{index < P) and (sumofFitness < limit)) do H P is the population size

sumolFitness = sumolFitness + Poplindex] scaledFitness

A start with a big number for minimum (itness

loop o find individual with smallest fitness

Rescale fitness of all individuals m the population

A gum the fitness of all individuals in the pogulation

H0 =limit < sumFitness where sumFitness is the sum of all

Fig. 3.6 Fitness Proportionate Selection Pseudo code

3.4.2 Rank Selection

In rank based selection, the individuals are also sorted according to their fitness values.

But this time a rank is assigned for the individuals from top to bottom with *n-1" given to

the highest fitness and *1° to the lowest fitness. A probability is then assigned to each

chromosome according to its rank value.

20

The idea is that even when the fitness variance among the chromosomes is too small, it
can still offer an appropriate selection emphasis [26]. In this method there is no need for
fitness scaling since the selection pressure will be based upon the individual’s rank. Its
disadvantage is when the selection pressure is not well tuned; it will lead to a premature

convergence [20]. One variation is the “linear ranking™ [26].

3.4.3 Tournament Selection

Another well known method is the tournament selection based on a continuous selection
of N individual from the population. Next, the individual with the higher fitness will be
assigned to a temporary population. This process continues until the temporary
population has enough number of individuals. As much as the tournament size increases
so will the selection pressure. Whenever the selection pressure increases, a percentage of
genetic features will be lost due to an early convergence. One variation, known as “pair
wise tournament selection”, has a tournament size (s=2) to control the selection pressure.
Therefore, the tournament set will hold two chromosomes from which the one with the

highest fitness is selected as a parent.

3.5 Crossover

The crossover operator works on two different selected parents from the pool of
individuals by interchanging parts of each individual’s genes. This exchange is based on

randomly choosing one or multiple common crossing sites known as crossover points,

21

Many variations exist, such as:

One point crossover technique is based on one common position upon which we perform
the swap between the genes of two parents. As for the multi point crossover, it uses two
common intersection points at the same positions in both parents. This method swaps
the genes of both parents falling between the two crossing sites [26]. While the partially
mapped crossover (PMX) is similar to the multi point crossover, where some of the genes
falling outside the two crossing sites may have duplicate genes within the common
intersections. Duplicate genes in offspringl to the right and left of the common crossing
sites will be swapped with non redundant genes falling outside the common intersections

in offspring2. The same thing will take place between offspring2 and offspring [27].

One point crossover is used in the proposed genetic algorithm and it works as follows:

First, select two different chromosomes even if they do not have the same length
according to a fitness function (Roulette wheel selection). These two chromosomes
should have at least one common gene. The common genes could occupy different
locations in parent chromosomes excluding the source and destination genes which are
equal by default. Second, we compare the two chromosomes with one another, and
reserve the common genes’ positions as pairs into a variable length array. For example,
the array may hold the following pairs (4, 4) and (8, 7). Third, we select randomly one of
these pairs such as (8, 7) and use it as a crossing point. Genes are now swapped upon

node position ‘8" in parent]l and node position *7" in parent2.

22

Each offspring produced by crossover is a concatenation of two partial routes. Genes
from the source node up to the crossover point in parent! are used to build the first part of
offspringl.

On the other hand, genes after the crossing point up to the destination node in parent2 are

added to offspring] to form a complete path. Same thing will take place with offspring2.

Here follows an example of one point crossover: l

1/5|8(13|15|19]22|23|25(26]28 |29

Parent 1:

1141113 [17|21|23 |24 |27 |29

|

Fig, 3.7 One point erossover example

Parent 2;:

Crossing point is at gene position ‘8' in parentl and at gene

position ‘7' in parent2 since they hold the same value *23°.

The resulting offspring will look like this:

Offspring 1: |1 |5|8(13|15|19(22]23|24 |27 |29

offspring 2: 1[4 [11[13[17[21]23]25] 262829

We can observe that during the process of evolution, crossover contributes in visiting
other parts of the graph through its offspring. Therefore, crossover should be the

dominant genetic operator during the whole process.

23

Figure 3.8 shows the pseudo code for the crossover implemented in the proposed GA.

i swap segments of two selected parent individual chromosomes.
at least one common node should exist between the parents; except for source and destination
i finel all possible common poims and choose one randomly
Crossover (parent], parcm2}
begin
In = length {parenid)
Im = length{parent])

k=1

fori=2toin- 1 do fstart with "2" and end with "size()-1" 1o climinate
forj=21w Im- 1 do f source and destination as crossing points.
begzin

il (parent1]i] = pareni2[j]) then
Position[k) = “3" + ", "+ "]" i coneatenate the 2 positions of the commaon genes
k=lk+1
end if
end for
enid for
if {position] | | = 0) then
print * no common intersection for crossover, select new parents™

clse
cul = random * size of position i get a random index from the armay position
point = positionfcut] i et an element from array position using random index
%= getX (point) & et % from the stored string in point
¥ = getY (point) M get y from the stored string in point

fori=]toxdo
child [[i] = parent1[i]
for i =y +1 to Im do
chibd1.[i] = parent2[i]
fori=1toydo
child2.[i] = parent2[i]
for i=x+ 1 to ko do
chibd2 [i] = parent1[i]
endifl
end

Fig.3.8 Crossover Pseudo code

24

3.6 Mutation

Mutation is the process where one of the chromosome’s genes is chosen randomly and
changed either by flipping it or swapping it with another value. Mutation is very
important since it will insert from time to time new individuals in the newly created
population to redirect the evolution process which is converging towards local maxima.
These newly inserted individuals are referred in some papers as strangers [30]. Several
mutation techniques are available such as:

The Swap mutation where by two genes are selected randomly from the chromosome and
swapped [30]. Another variation is the Flip mutation where one gene is selected

randomly from the individual and flipped to its inverse value [26].

The mutation used in the proposed GA plays the role of a cut off where by part of the
chromosome is truncated and replaced by a newly created partial route. This is done
according to the following steps:

First, we choose a random gene as a mutation point. Second, we copy the genes from the
source node up to the mutation node included into a new variable array. Third, we treat
the mutation point as a new source node, and we choose randomly one of the nodes
connected to this new source. Fourth, we add this selected node to the new created
variable array. Fifth, we pick a new random neighbor with respect to the actual new
source. Finally, we repeat the last two steps until the destination node is reached.

The mutation rate used is too small in order to give priority for crossover operator to take
place since a higher rate would damage good solutions; therefore, an individual is

mutated in order to insert a foreigner in the population which allows for a new solution

space to be visited [30]. After several runs with different rates we came out with a
mutation rate = (.008 being the most suitable one during the evolution process.
Here follows an example of mutation taking place in the genetic algorithm at a very low

rate.

Individual before mutation: [1]s5]12]1a [21]23 27 [29]

Mutation point at position 6 '

New individual after mutation: ||1]15[12114]|21123|25]|26| 28] 29

Fig. 3.9 cut off mutation example

As we can see from the above example the nodes that fall after the mutation pivot 23" in
the selected individual are dropped and substituted by a newly heuristic partial path in the
new individual. The chromosome creation used in section 3.2 will be implemented with

the gene at the mutation pivot “23" being the source node.

Pseudo code for mutation is shown in Figure 3.10:

Mutate(Chy)
bezgrin
In = length{Ch) # 1n 15 the length of the chromosome
£ = (random * (n - 23) + 2 i use =-2" 1o eliminate the use of destination
gene= Chlg) i choose a randem gene as mutation point
fori=g+ |0 i<=Ihdo
begin
remnove. last Element{Ch i remove all genes that exist afler muttion point
end for
generatepath gene, destination) H used to ereate a new random path from mutation point o dest

caleulateFitness{Ch)
enil

Fig. 3.10 Mutation pseudo code

26

3.7 Repair Function

This function is used to eliminate a loop within a chromosome in an undirected graph.
Suppose one of the genes indicates node 2 and another forward gene in the same
chromosome indicates again node 2.

Therefore, node 2 is kept in the first occurring gene and all the nodes from this gene until
the second occurrence of the same gene included are removed from the chromosome.
This function is repeated as much as necessary in order to obtain a final chromosome
without any loop in its genes. This function is called during the process of chromosomes
creation, after crossover and mutation. This is an example where by the genes of
chromosome hold a loop. The genes representing the loop are indicated by a pair of

AlTOWS.

12451]2148]8208222528}

I IFEg. A1 Repair function example

Gene 2 is found at positions 2 and 6 of the chromosome. We fix this problem by

removing all genes after the first occurrence until the second occurrence included. We
repeat the same process for other repeated genes. The result will be a chromosome free

from any loops.

After removing value 2 the chromosome becomes:

j |

[1]2]14[8]18]20[8]22]25]28

Now after removing value 8 the chromosome will be in its final shape:

1(2]|14(8]22|25|28

27

Pseudo code for the Repair function is shown in Figure 3.12:

Repair {Ch)
hegin
diff'= 10
In = chromosome length
fori=1wh-1 do M <1t take out the destination node
begin
=1
fovundd = false
while { (i < In-1) and (ne found)) do

while (dilT =) do
begin

diff=dift- 1
end while
I = chromosome length
found = trug
else
i=i+l
end if
end while
end for

emd

begin
iF{Ch[i] =Ch[ln - j]) then
begin
diff={ln-3)- i I counts how many elements to remove from chromosome to climinate loop

removel lement At Chii+0] # remove elements after position | according to diff value

Fig-3.12 Repair Function

3.8 Proposed Genetic Algorithm

The algorithm starts at generation = 0 by generating n random non-redundant

chromosomes. Each chromosome is a sequence of non repeated genes simulating a path

in the graph from a source node to a destination node. Once the number of chromosomes

is equal to the population size (n = 100), we compute their fitness.

28

The algorithm proceeds next and find the fitness by using the following arithmetical

equation | ; where “totalweights™ i i es’ weights
] A:rmfu-'mgh.rs ¢ alweights” is the sum of the of edges’ weight

connecting the chromosome’s genes. The algorithm next sorts the population in
descending order according to its fitness and uses the roulette wheel selection to pick up
the best two parents for reproduction. The algorithm next applies one point crossover on
the two chosen parents to produce two offspring that will be added to a new population.
The genes of the first offspring are the concatenation of two paths. The first path holds
the genes of parent] from the source to the crossover point included. The second path
holds the genes of parent2 after the crossover point up to the destination node included.
The genes of the second offspring are constructed in an opposite way to the one applied
onto the first offspring. Next, a random number is generated and compared to a low
mutation rate. If it is lower than this rate, we apply mutation to a selected individual by
cutting off part of its genes that fall after a random mutation point and replacing it with a
new generated sequence of genes. Finally, we replace the old population with the new
population and increment generation by one. We repeat this process until the number of
generations has exceeded a given constant "Max generation”.

The flowchart for the proposed genetic algorithm is shown in Figure 3.13

29

Initialize Population with
feasible chromosomes that
represent routes from
source to destination

Ewvaluate Fitness of
individuals

— ==
— e
Roulette wheel selection o]
choose 2 parentis for
reproduction according 1o

fitness I

¥ -

= |
Combine parent genotypes

thru one point ¢rossover o

t produce offspring I

o x -
Generate a random number
If randnum == (LO08 then
apply mutation to a
selected chromosome

— e
Add offspring to a m.-w_I
population. Replace old
population with new
population

.

5 G
Terminate YES

NO

—

|
. Output msullsi

Fig. 3.13 Genetic Algorithm Flowehart

30

3.9 Pseudo Code for the Proposed GA

Stepl:
Initialize (population) using a matrix O¢kn’) where & is population size
And n is the chromosome length,
Cieneration = {)
Step2:
while {generation <= maxGeneration)

Calculatefitness(population) Ofkn)

Quicksort(population) Ofklgk)
Scaledfitness{population) k)
Select{parent 0) k)
Select(parent 1) k)

crossover(parent O, parent 1) Ofn) + Ofm) n, mr are parenis length

new population < child 0 o)

new population < child | ol
generale random number o)
if {random number <= mutationrate)
mutate(individual) of’)
new population < individual @1)
end if

population < new population Gk}

generation < generation + |

end while

Stepd:

Print{population) k)

Fig. 3.14 Proposed Genetle Algorithm

The expected running time for the proposed algorithm at the worst case scenario is

O(kn’) where k is the population size and n is the chromosome length. Figure 3.14

3.10 Experiments & Results

The proposed genetic algorithm works fine with networks ranging from small to medium
spectrum based on information being reserved in a matrix (graphs up to 3500 nodes). As
for larger spectrum graphs, the computer memory fails to hold its corresponding huge
matrix. The solution for this new challenge is by using a database. This new concept
will be discussed in the next chapter. The results using the proposed genetic algorithm

for small to medium spectrum graphs are discussed next.

3.10.1 Small Spectrum Graphs

For small spectrum graphs, all simulations using the genetic algorithm were performed
on a Pentium 111, 1 GHz CPU, 256 MB RAM using one point crossover, a low mutation
rate = 0.008 and a roulette wheel selection with bottom replacement. The GA gave
competitive results to those given by Dijkstra. In addition of finding the shortest path (as
Dijkstra algorithm), it also found other chromosomes that offer the next shortest paths in
case of any type of failure. The population size assigned to (pep size = 40) and the
number of generations is taken as (generations = 10). The quality of solution is slightly
affected by the population size since a larger population will not give better performance.
As we increase the crossover rate, this will decrease monotonically the number of
generations [21]. The proposed genetic algorithm has 100% route optimality for small
networks. Therefore, the route ratio failure coincides with that of Dijkstra algorithm (i.e.

0% failure). Executing the proposed genetic algorithm over a benchmark of 20 nodes

32

shown in Figure 3.15 [20] gave the following numerical results with the detection of the

optimal route. The optimal path is represented by a bold line in the below graph.

Last population after generation 10

13 8 14 20 chromosome fitness is: 0.0070422534
127814 20 chromosome fitness is: 0.00662251060
14493814 20 chromosome fitness is: 0.005952381
13814 18 20 chromosome fitness is: 0.0048076925
The time needed is: 0,033 second

Fig. 3.15 Small Spectrum Graph

Another example that we attempted has 30 nodes [29] where the optimal path has also
been found by running the proposed genetic algorithm with the same number of
generation. As for timing, this algorithm found the solution along with other useful
solutions in an average computation time of 0.033s, as for Dijkstra the average
computation time was 745 on the same platform Pentium III mentioned above. The
computation time using Dijkstra algorithm increases relatively with the network size, but
when using the proposed genetic algorithm the computation time will slightly increase,

{Table 3.1).

33

MNo answer for

Dijkstra at 3353
_—
Average time proposed GA versus Dijkstra
20 ~ S i
15
Time in seconds 10 // —:— E;‘:’;ilslad GA
o ra
] "

30 50 70 200 1000 1500 3353
Mumber of nodes

Table 3.1 Computation time

3.10.2 Medium Spectrum Graphs

As for medium spectrum graphs from 1000 up to 3353 nodes (graphs of 1000 and 1500
nodes are chuncks taken from the Romee99 Dimacs benchmark with some
modifications), the proposed GA algorithm was attempted using a matrix on “a centrino
1.6 Ghz CPU, 512 Mb RAM" PC and found good solutions for a population of 100
chromosomes and 20 generations. The algorithm found the optimal shortest paths in 90%
of the cases. On the other hand, Dijkstra has failed to give the shortest path in graphs
where the number of nodes has been extended to cover all the roads in the city of

Rome [12].

Average route failure proposed GA versus Dijkstra

0.12 4

0.1 —# * ,
0.08 /.- | |=—#—Prposed GA
Route failure 0.06 = | |—®— Dijkstra

0.04
0.02 <
0 g S L .
200 1000 1500 3353
Number of nodes

No Answer [or
Dijkstra at 3353

Table 3.2 Route Failure

34

As we can see from table 3.2 the curve has been truncated to indicate that Dijkstra
algorithm was unable to find the shortest path because the computer’s heap space was
exhausted by the tremendous increasing number of nodes.

Table 3.3 shows the output of different graphs in terms of time consumption and the cost
of reaching the destination for both Dijkstra and the proposed genetic algorithm. Thus,
every instance was run for 40 times and the difference between both algorithms over
most of the graphs is less than 6% as shown in Table 3.3, This indicates that the
proposed GA has found an optimal route as Dijkstra’s algorithm did or in the worst cases
a too close suboptimal path. We have noticed through experiments that as much as the
crossover rate increases the number of generations needed to reach optimal answer

decreases [21]. This will eventually reduce the computation time.

Ciraphs Dijkstra Proposed Genetic Algorithm
Nodes | Edges| Cost| CPU | Cost | CPU [# gen | Average | STD | difference
time/sec time/sec 40 runs
20 94 142 0.1 142 0.02 10 142 U (%%
30 53 63 J0.14 63 0.033 (U (CX] 0 (1%
50 136]1430 J0.35 1430 j0.06 10 1430 0 0%
70 204 522 J0.4 522 (0.1 10 522] (0%
200 J535 355 | 355 jo.2 10 J359.85 12.88 1%
1000|2844 J591 |7 591 3 15 624.8 26.67 6%
1500 J3728 589 |15 389 |5 15 613,10 J22.69 4%
3353|8864 NA 30305 |7 20 J30541.90]223.01 JNA

Table 3.3 Comparison between [Njkstra & proposed GA

Chapter 4
Shortest Path for Large Spectrum Graphs

Many spatial graph databases including those used in different domains such as water and
gas distribution, phone networks have been using databases for storing the huge amount
ol data [22]. The proposed genetic algorithm works perfectly with small to medium
spectrum graphs since the links connecting the nodes among each other can fit properly
into memory through an adjacency matrix. But when working on large spectrum graphs
such as road networks, these latter have a very large number of nodes connected together
through a tremendous number of edges. Since we are talking about enormous data that
will not be able to fit in memory we need other kind of storage device such as a database.
We will transform these benchmarks representing the graphs into an MS-Access table on
which we will perform a series of queries. These queries will be used to create the pool
of chromosomes. Once the population has been created we can launch on it the proposed

genetic algorithm to detect the shortest path between the given node pair.

4.1 Creating the Table and its Index

A table is a set of records where each record is divided into fields. In our case the table
will hold a tremendous number of records due to the large data being transferred. The
corresponding records are divided into three main fields: ‘src’ for source, ‘dest’ for
destination and *weight’ for the edge cost.

These three fields have ‘long integer’ data type. Each record stands for a link between

two nodes of the graph. To select specific records according to a given criteria the table

36

should be indexed. The index used in our study is a concatenation of the two fields ‘sr¢’
and ‘dest’. It means the records of the table will be sorted in ascending order first by
*src’ next by ‘dest’ respectively. During the search for those nodes that are connected to
the current node, a filter is performed on the consulted table using the created index. The
result of this filter will be a set of records that are neighbors of the actual node.
Therefore, this index is vital since it will speed up the search among the enormous

number of records.

4.2 Creating the Chromosomes via Queries

As we have discussed in chapter 3, to build a chromosome as a sequence of related genes
from source to destination, we need to know the neighbors of the current gene. The same
concept has to be applied here but with a slight difference; the neighbors of the actual
node are not stored in memory but in a table via a query. This query is known as a
“Select query” that returns a set of records indicated by the conditional “where” clause
[23]. The resulting record set will hold the current’s node neighbors. This *Select query’

has the following syntax:
SQL = "Select * from table where table.src = value"
Where value is the current node id and table.src is the field “sr¢” source from the table.

Next, we select randomly one of the records stored in the record set and add it as a new

record, which stands for a new gene, at the end of another temporary table “temp”.

37

This is done by using a second query known as “insert into™ [24, 25]. This query takes

the following form:

SQL = "INSERT INTO temp (src, dest, weight)” &

"WVALUES ("& so&"" &de&"," & we & ")"

‘so", ‘de’ and *we’ are the inserted values of the random selected record into table
“temp". The table “temp” will represent the current chromosome. It should have neither
an index nor a primary key. Since these records should remain in its corresponding
positions as to maintain a feasible path from source to destination. Any attempt to use an
index on the table “temp” will damage the sequence of records resulting in a non feasible
chromosome.

The process of using these two main queries continues until reaching the destination
node, These links or records from source to destination represent a feasible chromosome.
Once the destination has been reached, the current chromosome will be added to the pool
of chromosomes by means of a third query. This is known as an “append query” that will
just append the records, representing the chromosome, reserved in table “temp™ into the
population represented by the new table “final” [24, 25]. The syntax for the “Append

query” is written as follows:

SQL ="INSERT INTO final (src, dest, weight)” & _

"SELECT temp.src, temp.dest, temp.weight " & _

"FROM temp"

38

Finally, we have to empty the table “temp” to make it ready for accepting the genes of a
new chromosome. This is done by calling a “delete query”. This query has the

following syntax [24, 25]:
SQL = "DELETE temp.src, temp.dest, temp.weight FROM temp"

This entire process covering the four main queries will be repeated until the number of

individuals constituting the initial population is met.

4.3 Loading the Chromosomes into Memory

Once the initial population has been created, we have to move those chromosomes from
fixed storage devices into memory. This is done through the use of “JDBC" java
database connectivity, which permits a smooth connection to the database engine where
the chromosomes resides in a table and are ready to be transferred into the computer’s
memory. This connectivity will permit for the ‘Java’ program to open the table ‘final’
and read it sequentially from top to bottom. Each time the file pointer is advanced by one
position and its corresponding record is added as a new cell at the end of a variable length
array. Once the record containing the destination node has been reached a new
chromosome is added to memory and a new variable length array is ready to hold the
next individual. This process is repeated until the file pointer reads ‘EOF’. As a result,
the initial population exists now in memory. Finally, the genetic algorithm proposed in

chapter 3 will execute normally on the pool of chromosomes.

39

4.4 Experiments and Results:

During the process of building the initial population, some of the chromosomes are
truncated after a given number of iterations. The reason is to minimize the computation
time and to use these chromosomes as intruders in the population. Therefore, allowing
for the proposed GA to explore new regions of the graph. Adopting this technique will
not only speed up the execution but will also dump the mutation operator, Therefore, the
crossover operator will have full dominance. The files with 6000, 10016 and 25804
vertices are chunks taken from the New York City benchmark. An append query is used
to select and insert specific records, that have the ‘src’ field =a given user destination,
into a new table. The append query used to build the file with 6000 nodes has the

following syntax:

INSERT INTO dest6000 (arc, src, dest, weight)
SELECT USAroad.arc, USAroad.sre, USAroad.dest, USAroad.weight
FROM USAroad

WHERE (((USAroad.src) =6000));

The same query has been used to build the other two files with 10016 and 25804 nodes
but the “WHERE" clause has to be changed in order to indicate the user defined
destination. Some of the records in the new table (destb000) will have their destination
beyond the scope (*dest” = 6000); therefore, a select query has been used to find these

records. This query has the following syntax:

40

SELECT dest6000.are, dest6000.sre, dest6000.dest, dest6000.weight
FROM destG000

WHERE (((dest6000.dest)>6000));

Next, a manual replacement is done in the destination field ‘dest’ with random integers <
6000 in order to transform the file into a well connected graph. As for the Dimacs
benchmark with 264346 nodes and 733848 edges that covers the roads in New York City.
Some of the links in this benchmark are truncated. Therefore, these links were manually
corrected in order to overcome the problem.

Table 4.1 shows the favorable results of every instance, that was ran for 40 times, using
the proposed genetic algorithm via queries under the same platform “Centrino 1.6 GHz

CPU and 512 MB RAM” PC.

Ciraph Dijlstra Proposed Genetic Algorithm
Modes | Edges | Cost | CPU] Cost | CPU | # gen |40 runs] STD | difference
time time/mn
6000 14892 5099 |3 20 5737 1497 NA
10016 19104 /l/. 6350 |4 206761 [a1a NA
25804 69166 v‘? 9486 |6 20 9642 320 MNA
264346 |733848 42691 |13 20 43494 |44 MNA

Tahle 4.1 Results on Large spectrum graphs

41

5 Conclusion

In this thesis, we have implemented a genetic algorithm to detect the shortest path in road
networks. Variable length arrays are used to simulate feasible chromosomes with non-
repeated random genes connecting a given source node to a given destination node. The
genctic operator crossover and mutation have been successfully tuned to deal with the
pool of chromosomes. With the possibi lity of the crossover pivot to occupy different
genes' positions in the selected parents, has added an asset by permitting crossover to
occur frequently. As a result, the crossover rate iIs too high to give more chances for
optimal solutions and to minimize the number of generations. On the contrary, the
mulation rate was too low approximately “0.008’ just to allow for mutation to insert new
individuals in the population. Since by injecting new chromosomes in the pool will give
more diversity by checking unexplored portion of the graph and will avoid falling soon
into a local maximum. The offspring may contain redundant genes; a repair function
will take care of it. The results of the presented GA over small to medium spectrum
graphs are promising and competitive with those of Dijkstra algorithm in terms of
computation time and route failure ratio. For small spectrum graphs the results of the
proposed GA coincides with those of Dijkstra in terms of route optimality as for the
computation time it is smaller than that of Dijkstra. As for medium spectrum graphs the
proposed GA has found amazing results with approximately a 95% probability of getting
the optimal path. Finally, storing the large spectrum graphs in a database and applying
queries on it to build random feasible paths has allowed for the same genetic algorithm to

come out with favorahle results.

42

However, and due to the relative increasing size of the nodes Dijkstra’s algorithm didn’t
succeed in returning the optimal shortest path in term of memory and time constraint.
On the other hand, the proposed GA has been able to cope with computer dynamic
networks or dynamic road networks in terms of computation time and route failure. In
case of any route failure it will extract from the pool the next shortest path to substitute
the actual damaged one within a very short time. We have attempted various benchmark
examples whose size varied between 30 and 260,000 vertices. The algorithm was able to

find sub-optimal shortest paths in all cases.

References

[1] Jagadeesh, G. R., Srikanthan T. & Queck, K. H. (2002, December). Heuristic
techniques for accelerating hierarchical routing on road networks. /EEE

Transactions on Intelligent Transportation Systems, 3 (4).

[2] Zhan, F.B & Noon, C. E. (1998). Shortest path algorithms: An evaluation using real

road networks. Transportation Science, 32 (1), 65-73.

[3] Chiang, H.D. & Rene, 1.J. (1997). Optimal network reconfigurations in distribution
Systems: Solution algorithms & numerical results. IEEE on Transactions
Power Delivery, 5 (3), 169-174.

[4] Duan, G. & Yu, Y. (2003). Power distribution system optimization by an algorithm
for capacitated Steiner tree problems with complex flows and arbitrary cost

functions. Elsevier on Electrical Power and Energy Systems, 25, 515-523.

[5] Fu, L., Sun, D. & Rillet L.R. (2006). Heuristic shortest path algorithms for
transportation Application: State of the art. Computers & Research, 33, 3324-
3343,

[6] Reinefeld, A. & Marsland, T. A. (1994, July). Enhanced iterative deepening search.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (7).

[7] Norving, R. & Norving P. (2003). Artificial intelligence: A modern approach (2™
ed.). [n.p]: Prentice hall.

[8] Lark ,J. & Syverson, K. (1995, July). A best first search algorithm guided by a set-
valued heuristic. J[EEE Transactions Systems Man and Cybernetics, 25 (7).

[9] Gen, M. & Cheng, R. (1997). Genetic algorithm and engineering design. New York:
Wiley.

[10] Holland, J. H. (1992). Adaptation in natural and artificial systems. Cambridge, MA:
MIT Press.

44

[11] Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction to algorithms
(2" ed.). Cambridge, MA: MIT Press.

[12] Liu, B. (1996). Intelligent route finding: combining knowledge, cases and an
efficient search algorithm. Proceedings of the 12" International Conference on

Artificial Intelligence, 380-384.

[13] Korf, R.E. (1990). Real-time heuristic search: Artificial intelligence, 42 (2), 189-
211.

[14] Kanoh, H. & Nakamura, T. (2000, September). Knowledge based genetic algorithm
for dynamic route selection. IEEE 4" International Conference on Knowledge-

Based Intelligent Engineering Systems & Allied Technologies, Brighton, UK.

[15] Munemoto, M., Takai, Y. & Sato, Y. (1998). A migration scheme for the genetic
adaptive routing algorithm. Proceedings IEEE International Conference

Systems Man and Cybernetics, 2774-2779.

[16] Inagaki, J., Haseyama, M. & Kitajima, H. (1999). A genetic algorithm for
determining multiple routes and its application. Proceedings of the IEEE

International Symposium on Circuits and Systems, 137-140,

[17] Zhang, Q., & Leung, Y. (1999). An orthogonal genetic algorithm for multimedia

multicast routing. [EEE Transactions On Evolutionary Computation, 3 (1).

[18] Wu, 1., Hwang, R., & Lu, H. (2000). Multicast routing with multiple QoS constraints
in ATM networks. Information Science, 124, 29-57.

[19] Zahrani, M. & Albrecht, A. (2006). Landscape analysis for multicast routing

Computer Communications, 30, 101-116.

[20] Ahn, C. & Ramakrishna, R. (2002, December). A genetic algorithm for shortest
path routing problem and the sizing of populations. [EEE Transactions on

Evolutionary Computation, 6 (6).

45

[21] Liangsheng, Q., Guanhua, X. & Guanhua, W. (1998). Optimization of the
measuring path on a coordinate measuring machine using genetic algorithms.

Measwrement, 23, 159-170.

[22] Shekhar, S., Fetterer, A. & Goyal, B. Materialization trade-offs in hierarchical
shortest path algorithms. Retrieved April, 2007 from University of Minnesota,
department of computer science website:

hittp://www1.umn.edu/twincities/02 academics.ph

[23] Jones, E., & Jones, J. (1997). Access 97 Answers certified technical support. [n.p):
Osborne/McGraw-Hill.

[24] Williams, C. (2001). Professional visual basic 6 databases. [n.p): Wrox Press.
[25] Cornell, G. (1998). Visual basic 6 from the ground up. [n.p]: Osborne/McGraw-Hill.

[26] Ghanea-Hercock, R. (2003). Applied evolutionary algorithms in java. [n.p]:
Springer.

[27] Zahrani, M. & Albrecht, A. (2006). Landscape analysis for multicast routing.
Computer Communications, 30, 101-116.

[28] Ji, X., Iwamura, K. & Shao, Z. (2007). New models for shortest path problem with
fuzzy arc lengths. Applied Mathematical Modeling, 31, 259-269.

[29] Kim, K., Gen, M., & Yamazaki, G. (2003). Hybrid genetic algorithm with fuzzy
logic for resource-constrained project scheduling. Applied Sofi Computing,
174-188.

[30] Borra, S., Muthukaruppan, A., Suresh, S., & Kamakoti, V. (2007). A novel approach
to the placement and routing problems for field programmable gate arrays.

Applied Soft Computing, 7, 455-470.

[31] Davies, C. & Lingras, P. (2003). Genetic algorithms for rerouting shortest paths in
dynamic and stochastic networks. Ewropean Journal of Operational Research,

144, 27-38.

46

Appendix A

First, create an adjacency matrix with size equal to the number of nodes in the graph and
initialize it to “infinity”. Infinity means that the edge doesn’t exist so far, Third, read the
Dimacs benchmark format, transform it into a readable and accessible format by filling
the corresponding matrix cells, which stand for arcs, with its respective weights from the
latter. The Dimacs benchmark header contains lines starting with ¢ to indicate a comment
line, the line staring with p “p sp 6 8" indicates that we have a graph of 6 nodes and 8§
edges and the line starting with an a “a 1 2 17" indicates that we have an edge from node
I to node 2 with weight 17. It means the matrix cell M[1,2] = 17. The final result will be
a matrix with some cells equal to a very large number indicating no path exists between
them and other cells with integer values “weights” indicating path exits between them.
Fig.13 shows how the corresponding below small “Dimacs” benchmark is represented by
an adjacency matrix.
A sample for a Dimacs benchmark:

¢ 9th DIMACS Implementation Challenge: Shortest Paths

¢ Sample graph file

psp68 1 (2 |3 1% |5 |6
¢ graph contains 6 nodes and 8 arcs | (oo |17 10| 0| oo oo
¢ node ids are numbers in 1.6 _2_ co|co|co |2 |oo| e
al2l7 } || |co|oo|0 | oo
¢ arc from node 1 to node 2 of weight 17 4 |om|oo |0 |||l
a520 S |ee |0 || oo |20
a24?2 Adjacency matrix representing the graph
al3lo

a430

as620

47

Appendix B

The benchmarks used are text files. First, we make use of the Microsoft Access wizard
“Get external data”. Second, we use “import” to get the corresponding text file. Third,
select the option “Delimited” to specify “space” as being the delimiter in use. Finally, we
choose the option “as new table”; we name the corresponding fields and we specify its
data type. Once the table is in Ms-Access format we identify an index by opening the
table in design view. Next, click on menu “View” and choose the option “Indexes”.
Finally, specify the index as a concatenation of the two fields *sr¢” and “dest’ and name it

‘sredest’.

48

