Heuristics: Encoding for Parsimony Phylogenetic Trees
& Generic Implementations

By
Chadi KALLAB

Submitted in partial fulfillments of the requirements
For the degree of Masters of Science

Thesis Advisor:
Dr. Danielle AZAR

Department of Computer Science & Mathematics
Lebanese American University — Byblos
June 2006

Student Name

Thesis Title:

Frogram:

Division /Dept:

Schoaol:

Approved by:

Thesis Advisor:

Member
Member

Member

Date:

LEBANESE AMERICAN UNIVERSITY

School of Arts and Sciences

Thesis Approval

CHADI KALLAB

HEURISTICS: ENCODING FOR PARSIMONY PHYLOGENETIC TREES GENERIC

IMPLEMENTATIONS

Computer Science

Computer Science and Mathematics

School of Arts and Sciences, Byblos

DANIELLE AZAR

HAIDAR M. HARMANANI
JEAN TAKCHE

JOSEPH KHALIFE

JUMNE 164, 2006

I.D.#: 199730860

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Plagiarism Policy Compliance Statement

| certify that | have read and understood the Lebanese American University's plagiarism
policy. I understand that failure to comply with this can lead to academic and disciplinary actions

against me.

This work is substantially my own, and to the extent that any part of this work is not my

own | have that by acknowledging its sources.

Name: Chadi KALLAB

Signature Date: June 19, 2006

Chadi KALLAB iti

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

[grant the LEBANESE AMERICAN UNIVERSITY the right to use this work, irrespective of
any copyright, for the University’s own purpose without cost to the University or its students and
employees. | further agree that the University may reproduce and provide single copies of the

work to the public for the cost of reproduction.

Chadi KALLAB iv

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

To my instructors and advisor who bore me
To my family and friends who supported me

And finally the world of Bioinformatics
& Artificial Intelligence

Chadi KALLAB v

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Acknowledgments

I would like to express my profound gratitude and appreciation to my thesis committee
chairman Dr. Danielle AzAr for her guidance, patience, and sincere advices throughout this
thesis, and thank her for giving me an important amount of valuable time, constructive criticism,
and stimulating discussions; but, also my thesis committee members: Dr Haidar HARMANANI, Mr
Joe KHALIFE and Dr Jean TakcH1 for their support, comments and critical review of the thesis.

Also 1 would like to thank the LEBANESE AMERICAN UNIVERSITY, especially the
Computer Science and Mathematics department, who made possible to excel in this
accomplishment, by providing me with financial and technical resources and support throughout
my graduate studies.

Special thanks to my family, especially my father (neurologist), who were a constant
source of motivation and support. Their love, care and knowledge did help me a lot throughout
the stages of this thesis.

Last but not least, I would like to thank my friends who supported and cheered me up,
and my colleagues who shared with me their knowledge, during the elaboration of the different

components of the thesis.

Chadi KALLAB vi

Masters in Computer Science
Heuristics: Enmding for Pm'saimun:.r Phylogenetic Trees & Generie lmph:mcnratiums

Abstract

This thesis focuses on (he NP-Harg problem of finding an optimal (ree topology where
leaves represent biological Sequences, The problem consjsis of mfnimizing the number of
changes between given and/or derived Sequences, As the number of stquences o he Compared
increases, the size of the search space grows EXponentially, Tequesting the yse of optimization
methods, to come up with an dcceptable optimg] lopology, Even though, research is relating g
large number of species ang gene families 1o cach others, the Computation intensive Jog of many
Popular methads for cv:ﬂuuting trees (ex: Parsimony and maximum Iikcfiimnd] establish the
quasi-inexistence of 4N exact solution for more than aboyt 20 sequences,

The alignmen; of two Sequences (pairwise alignment), or multiple Sequences (Multiple
Sequence Alignmeny - MSA), and the alignmen; of short or long Sequences such g an entire
genome may require differen; | Ypes of algorithms, The algorithms used in all of these four cises

(=]

are dynamic Programming, linear Programming bageq or hcun’ﬂljc-bztscd Or a combination of
them. For large numbers of sequences (g be aligned, heuristic methods may give a resyly similar
0 the exact solution offereq by the dynamic Programming o linear Programming bhaseq
algorithms, by In much shorer lime. Heuristics used in Phylogenetic inference include greedy
algorithms, hijj climbing, simulated dannealing, angd genetic algorithms,

Thus, this research aims 1o SUggest a genery| Way to encode the problem into instances of
different heyristic algorithms, Another focys of the documen would be (g suggest that the
heuristics used, be implemented in a most Optimal Way, trying 1o ger 4 compromise between
Speedup, flexibiliy ¥ and detailed Irm:ingfr:iu'mm!ugy of each rup of the algorithms,

Chadi KA LLAR vii

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Table of Contents

Abstract LR LR LR LR L R R R L R L L R R R LR R L R L L R R L R R L e L) ‘Fi
Chapter 1 I]]trﬂduﬂiﬂ“ BRI RN RN R IR R RN RN RN R IR RN R RN R R 4
(—fhapter 2 Prﬂh[em Statementiilii"’i“i"' ".""i"""F.I"l'i...‘i"...""ll.s

Lol DVETORETONE isa vsiiusissovvisonsssnsnavoinusseresvosonss soessnsonnin ossisnavssbmuiinsvasivenisuor s inss 5
2.2 Statement & MOUVATION.......cvvivieniinsinsisssssisssissssssssnsssnsssnsssasssasssasss 6
Chﬂpter 3 Backgrﬂundl'.i""’l‘."""i'.i"'l'll‘.il'lll..'ll'..IIill..iIllliiiliiliiilliiiig
3.1 BIOIOEY EIVEIVIEW svvivicivwiviisvisisisisisiviviiesiisivivisssisiisisioioiinsoss 9
3. 2 RGN IS RES O VBTN urrmmyrss cums susmsmnss st oo n s s AR AT SRS 11
FvZyl Cenebic AIgoritRME e e wa v e o e e e e e T 12
J.2.2 Simulated Annealing :..eeeiiwinanesmaiesasaia. 13
FoZe3 Simulated BvolvEfonm o sieieivs bl v s s 14

¥. 2.4 Stochastic EvOlULion .:::ceossmen e mes e vessnss 15

Foid. B TEDW BEETER .o mesem mncmos o m somim o o m e i o i e e 16
Chapter 4 Attempted Non-Heuristic Approach.......ccccereevenenen. 17
4.1 Standard Fitch ALGOVIIRmG ...ccuiiivoviviviinsinionisivioisiisismanisiiing 17
4.1.1 Main Standard Fitch ProcedUI'®ecvviivsivesss 20
4.1.2 ArrangelnternalNodes Procedureuooesres24 21

4.2 Werghited Nitel Alporillim.....qaaiviviiiinaniiammimimaimnimminmivion 22
4.2.1 Main Weighted Fitch Procedureeeonesssss 25

4.3 Advantages and Disadvantages of these Approaches 27
4.3:1 MPAY Branch-=and=Botmd . i s wimls e siiamis 28
Chapter 5 Suggested Improvement to Fitch:ccouneririnne e 30
Chapter 6 Suggested Common Heuristic Encoding31
B0 L PR R EVBTR v ivs s ssmnnsnammmsi s ank s RS AN SRR AR N N5 31
6.2 Encoding Schema BYeSIEN ..ciiiiiinrmimiiisasmaivmb s 35
6.2.1 Suggested DALa—SErUETUre ... e e srmrs trramsss e 35

6. 2.2 Evaluation FUNCEION e amimeiss s s v sisie v fmis 37
6.2.2-a: Example 1: . A e e o LI B o i PR |
6.2.2-b: Example 2: . s A o e i M B E S Tt Tl
6.2.3 Propagate Chaﬂges Up 41
B.2.d: CHeate Random SOLULIomM . v o mismsmsas s s 45

B, 200 Perburly SolubIohl i m e s s s w h s o e s o e 45
6.2.6 Recombine Parent Solutionseciiveecvssssens 48

Chadi KALLAB

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 7 Generic Heuristic Implementationscccecesnrasnnes 50

Tl Greneltc AIPorBRmS ..cuiuuiniiiimsmsmamiiinsivi it 50
Todyd Maln ProCeadidie i am e e m e e e e e rs & e s a6 e s 50
7.1.2 Object-Oriented Designc.uuiiiicraneennnnenns 51

72 Simulated ARREAlIRE ..civiiviviiivaiiiniiiniinsiias it 53
7.2.1 Standard Simulated Anneaiing 53

7.2.1-a: Main Procedure... - - o OROONNRRUD . &
7.2.1-b: MuanHPmuﬂuﬂ — PSSR . |
7.2.2 Tuning Initial Temperatuze PrDLEdUIF 55
7.2.3 Customized Simulated Annealing 56
7.2.3-a: Main Procedure... O U . |,
7.2.3-h: CoolingSchedule Pruu:dm B RN RRRRNSRSRPERIEUSURIURURON . ,'
7.2.4 Object Oriented DESIgn 60

£ SURLITLER EVOIRBION iisisvinviiieissrsimmas st ssasssssssprinsssosasnsnt 61
7.3.1 Simulated Evolution ProcedUleveveaeenoennsns 61
7.3.2 Object Oriented DeSigm .« .iuweovmms vvrmivemsssisess 62

7% Sochustie EVOIIBON iicviniraimisinsismmsitiosiiotsissstansiiopionsinssssssssassnsa 63
7.4.1 Stochastic Evolution ProcedUre:veuossnenees 63
Lol Ghdect Orientech DeSTan: s ietevimias @i wmsmin 64

T T uba Seartlicanicimiasiniiin e s e 65
7.5.1 Tabu 5earch Procedlle .. .vcevereeressssenssssnss 66
7-8.2 Objact Oriented DESIGN v ivswv v viv s vmwivnimssneis 67

Chapter 8 Conclusion.....eceieeieissiinesnimessemessssesssssssssssass 08
Chapter 9 Future Work Ideas......ccceeerereesnnessreesserarssassesasesssassnes 09
Chapter 10 RefeteriCes ..ouuserersiresrssmersssseressessnsersnrsenssnessssscssasssessn 1)

Chadi KALLAB

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Table of Figures
Table 1: Number of Sequences vs. Size of Search Space [3] ..., 7y
D T R O o S e R0 s A P A A TR Wi 10
Figure 3: Genetic Algorithms General Flow DIagram ... 12
Figure 4: Simulated Annealing General Flow Diagram ... 13
Figure 5: Simulated Evolution General Flow Diagram ... 14
Figure 6: Stochastic Evolution General Flow Diagram..........ccimmmmmmemi 15
Figure 7: Tabu Search General Flow DIagmam ... iimiimiaiimmbin s e i s 16
Figure 8:; Sample Run of Fitch's Standard Algorithm ... 17
Figure 9: Standard Fitch Maximum Parsimony Trees for 6 Sequencesooccveccnicinssnicnns 19
Figure 10: Sample Run of Weighted Fitch Algorithm ... 43
Figure 11: Weighted Fitch Maximum Parsimony Trees for 6 Sequences...........c.ocoeeinisnnnninnns 24
Figure 12: Sample Run of Branch-And-Bound for 5 ‘iequcn-;es .. 28
Figure 13: Brief Overview of GA Classes Interaction... e . |
Table 14: Some Cooling Schedule for Simulated Ann:.‘iim;__, ... 37
Figure 15: Brief Overview of SA Classes INEractionccciiiieiimosmsiomms s 60
Figure 16: Overview of SimE Objects INTEraction w... .ot 62
Figure 17; Brief Overview of 5tocE Classes INteraction.......cuumeeiiisimisinssmsmsmmisssssssnns 64

Figure 18: Advanced Tabu Search General Flow Diagram........cccoiiinniicnimininnnnen. 03
Figure 19: Brief Overview of TS Classes Interaction..........ccccmniiinmemsmamsssisssmsses 07

Chadi KALLAB 3

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 1 Introduction

This thesis focuses on the NP-Hard problem of finding an optimal tree topology where
leaves represent biological sequences. (2, 3] The problem consists of minimizing the number of
changes between given and/or derived sequences. As the number of sequences to be compared
increases. the size of the search space grows exponentially. This fast growth induces the
necessity of using optimization methods in order to come up with an acceptable optimal
topology.

The average size of phylogenetic analyses is increasing. Research is being performed on
relationships among large numbers of species and large gene families. However, many of the
popular methods for evaluating trees, including parsimony [7] and maximum likelihood [6], are
so computationally intensive that an exact solution is not possible for more than about 20
sSequences.

The alignment of two sequences (pair wise alignment), or multiple sequences (Multiple
Sequence Alignment - MSA), and the alignment of short or long sequences such as an entire
genome may require different types of algorithms. The algorithms used in all of these four cases
are dynamic programming, linear programming based or heuristic-based or a combination of
them. For larger numbers of sequences, heuristic methods may give a result similar to the exact
solution, but in much shorter time. Heuristics used in phylogenetic inference include ereedy
algorithms (stepwise addition - Swofford 1993), hill climbing (Croes 1958), simulated annealing
(Kirkpatrick et al. 1983, Lundy 1985, Salter and Pearl 2001), and genetic algorithms (Holland
1975, Lewis 1998).

Thus, this research aims to suggest a general way to encode the problem into instances of
different heuristic algorithms. Another focus of the document would be to suggest that the
heuristics used, be implemented in a most optimal way, trying to get a compromise between
speedup, flexibility and detailed tracing/chronology of each run of the algorithms.

Chadi KALLAB 4

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 2 Problem Statement

“All biological disciplines are united by the idea that species share a common history.
The genealogical history of life - also called an "evolutionary tree" - is usually represented by a
bifurcating, leaf-labeled tree.” [1] Many problems in biology can be solved through the use of
evolutionary trees as a fundamental step. Such problems touch the fields of MSA, prediction of
protein structure and function, or drug design. Over the last decade or so, computer scientists
started to design and analyze the performance of phylogenetic methods under statistical models
that approaches the process stochastically. [1] Since it is widely thought that all species did
successively mutate from common ancestors, biology, mathematics and computing science have
researched methods to model this evolutionary process trying to find the optimal arrangement of
these species and their ancestors.

“An evolutionary tree (also called a phylogenetic tree) models the evolution of a set of
taxa (species, bio-molecular sequences, ete) from a common origin. Thus, an evolutionary tree is
rooted at the most recent common ancestor of the taxa, and the internal nodes of the tree are each
labeled by a hypothesized or known ancestor. The common practice today is to use bio-
molecular sequences as representatives of the species set, s0 that the leaves of the tree are labeled
by bio-molecular (DNA, RNA, or amino acid) sequences.” [1] In a phylogenetic tree, leaves are
labeled by the species in the set. The objective then of a phylogenetic reconstruction algorithm is
to find a tree, which arranges the most optimally the leaf sequences. Parsimony is one of the
most popular methods for phylogenetic tree inference. In order to explain the parsimony method,
we begin with some definitions.

2.1 Definitions

A base can be defined as the most basic element of a sequence. It is generally represented
by one single character, and has a complex chemical structure that may or may not interact with
that of other bases. The set of all possible character representations is called the base alphabet.

The Hamming distance between two sequences X and Y of the same length is the number

of different bases between x and y, and is denoted H(X: Y), i.e. H{X.Y)= mum[%(4 Y]

For instance, assuming that the alphabet is (A, T, C, G| and sequences X and Y are respectively:
AACTCGGATG and AATCCGGGAT, the hamming distance will be:

Seq. X: AlA|CH
Seq. Y: AlAED

Therefore, H (X, Y) =35

Chadi KALLAB 5

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

The parsimony length of a tree, in which each node v is labeled by a sequence s, is the
sum of the Hamming distances of sequences labeling endpoints of edges in the tree, i.e.

Zq.-u:};r H {“I) 8)
For instance, let us consider a tree of 3 nodes, where the sequences are s"' = AACTCGGATG,
s = AACTCGGATG, and s = AACTCCGATT, thus the parsimony length of the tree is
computed as follow:

An operational taxonomic unit (OTU) represents a sequence in the set of given sequences
to be compared. The number of OTUs is the number of leaf nodes in a tree illustrating this set.
Hence, in the above tree, the OTU is 2.

Given a set S of sequences, a Meost Parsimonious tree for S is a tree, ol minimum
parsimony length, in which each leaf node is labeled by a sequence in S, and each internal node
assigned a sequence derived by some phylogenetic reconstruction method (ex: Fitch algorithms
that will be discussed in a later chapter). Thus, the parsimony criterion is to find a tree of
minimum parsimony length or in other terms the tree of maximum parsimony.

2.2 Statement & Motivation

The motivation for the parsimony criterion is the observation that if evolution is assumed
to operate only through point mutations (for example, substitutions of one nucleotide with
another) then the parsimony length of a tree is the minimum possible number of evolutionary
events needed to obtain the set of sequences observed at the leaves through point mutations.

“The Parsimony Phylogenetic Tree Problem is an NP-hard problem, even when the
sequences are binary (i.e. the alphabet size is two, and characters allowed are only 1 and 0).” [1]
The most typical maximum parsimony approach (MPA) tries to come up with as many possible
topologies, generating the best internal node labeling for each topology. Then this approach
figures out the most optimal one among them, by comparing their parsimony scores. [1]

The phylogenetic tree handled during an iteration of the “Maximum Parsimony”
approach has the minimum number and/or cost of steps in the evolution of a given set of data (set
of DNA/RNA bases or proteins — in general called sequences or set of characters). Usually, the
step is defined as the substitution of one character to another character of the same alphabet.
There are two main approaches used when computing the parsimony score of a phylogenetic tree
of proteins, One of these approaches, treats each character location is handled independently of
other locations.,

Chadi KALLAB 6

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

“Maximum parsimony approach searches all possible tree topologies for the optimal
(minimal) tree. However, the number of un-rooted trees that have to be analyzed rapidly
increases with the number of OTU™ [3]

Equations 1 and 2 show the number of rooted and un-rooted trees for n OTU. Table 1 shows the
number of trees versus the number of OTU.

The number of rooted trees (Ng) for n OTU is given by:
F m‘f{_ﬂu -3)

Fact(n —~2}* e

N, =1*3*5%_*(2n-3)= [3]

The number of un-rooted trees (Ny) for n OTU is given by:
Fact(2n-5)

N, :]$3$5*”'*{2”_5}=Facfl:n—_?:l*ﬁ"" [3]
n N{.‘ NR
Number of OTUs Number of un-rooted trees Number of rooted trees
2 1 |
3 | 3
4 3 15
5 15 15
4] 105 045
7 945 10,395
8 10,395 135,135
] 135,135 34,459,425
10 34,459,425 2.13E15
15 2.13E15 8.E21

Table 1: Number of Sequences vs. Size of Search Space [3]

Chadi KALLAB

Masters in Computer Science
Heuristics: Encading for Parsimony Phylogenetic Trees & Generic Implementations

Since the number of trees to analyze grows exponentially with the number of OTUs,
using the above mentioned parsimony method becomes inefficient. In other terms, the
computation, involved in figuring out the most parsimonious tree, will grow exponentially as the
number of leaf sequences increase.

Indeed, Fitch shows, in his standard and weighted algorithms, that: for a given leal-
labeled tree topology, the exact minimum number of nucleotide replacements can be
systematically computed. In addition, all possible ancestral node sequences can be systematically
generated, for this computed number. Fitch also suggests that the standard algorithm can be
improved by considering some weights on the changes between nucleotides. [7, 10]

For this reason, Heuristic search techniques are one good approach to the problem.
Among the heuristic search methods, there are the ones that apply local search (e.g., hill
climbing) and the ones that use a non-convex optimization approach, in which cost-deteriorating
neighbors are accepted also. The most popular methods which go beyond simple local search are
Genetic Algorithms (GA) (and other evolutionary techniques, like evolutionary programming,
evolutionary strategies, ete.), Simulated Annealing (SA), and Tabu Search (TS).

Many papers found in the literature, concerning Phylogenetic trees using Heuristics, have
discussed the use of an exact method (Fitch) or only one or at most two Heuristics (Genetic
Algorithms, Simulated Annealing, Tabu Search, Simulated Evolution and Stochastic Evolution)
in ¢ach one. Few of them have some pscudo-code. Others have some C/C++ code. Some
techniques were not implemented at all.

Since most papers only describe one or two Heuristics, I suggest an encoding schema that
can be applied to any or set of the above-mentioned algorithms. In the same time, [am proposing
different pseudo-code alternatives for these algorithms.

Chadi KALLAB 8

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 3 Background

3.1 Biology Overview

“While the period from the early 1900s to World War II has been considered the "golden
age" of genetics, scientists still had not determined that DNA, not protein, was the hereditary
material of living species. However, during this time great many genetic discoveries were made
and the link between genetics and evolution was made.” [5]

Since DNA came from nuclei, core element of any part of living cells, Meischer named
this new chemical: nuclein. Subsequently the name was changed to nucleic acid and lastly to
cleoxyribonucleic acid (DNA). In 1914, Robert Feulgen found the DNA in the nucleus of all
cells, with a distinet membrane nucleus, called eukaryotic cells.

“During the 1920s, biochemist P.A. Levene analyzed the components of the DNA
molecule. He found out that it contained four nitrogenous bases: cytosine, thiamine, adenine, and
guanine; deoxyribose sugar, and a phosphate group. He concluded that the basic unit (nucleotide)
was composed of a base attached to a sugar and that the phosphate was attached to the sugar.”
[5] Thus, the nucleotide is considered as the fundamental unit of DNA.

After the hereditary material was settled to be DNA, and Watson et al. had decoded the
DNA structure, research was tailored towards the understanding of the process by which DNA
expresses its information in the phenotype, the expression of the genetic constitution in the form
of traits that can be seen and measured, such as hair or eye color., Three models of DNA
replication were considered, by Matthew Meselson and Franklin W. Stahl: conservative, semi-
conservative and dispersive replication. Conservative replication would create a copy of the
entire DNA strand. Semi-conservative replication will result in having two DNA molecules,
each composed of one new and one old strand of DNA. As for dispersive replication, each strand
of the resulting DNA would be a mixture of fragments of both parental strands. [5]

Chadi KALLAB 9

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

DNA is transcribed into a complementary RNA (ribonucleic acid) strands. The process
involves a powerful enzymatic complex called “RNA Polymerase™. This enzyme splits the DNA
helix. and adds the RNA nucleotide corresponding to the currently examined DNA gene
sequence.

Once the transcription process is finished, the resulting RNA undertakes translation into a
protein, which is a major constituent of cells. Every three RNA nucleotides (A, C, G or U) gather
to form a triplet, also called codon. Therefore, we have 4* = 64 possible triplets. This set of
possible codons is defined as the Genetic Code. Three of those triplets are considered as stop
codons, also called termination codons, which stop the translation process. The rest encode 20
amino acids. Since one or more triplet may translate to the same amino acid, the Genetic Code is
redundant or degenerated. [5]

The _Genetic Code

u C A
i ucu Al U
l Ehenyl Tyrosne teine [V
uc| alanine | UCC) C Wi c (
u 0| . U A A Stop I Stop A
wual 224 fucc AL U] Tryptophan((.
U] [Cco cAb ol u
| Histiding || |
N[= cCC o CAC I .‘:.}'ﬁ -
eucine t | | Arainine
Cllcua ccal = [CAA ccal
| | Glutaming |
CyG CCG A
Al ACY| AAU _ ALY)
Asparagg Serine
A AUC so ucine|ACC - AALC LALC ;
AUA ACA|Eae En’ﬁ A e P
Lysi | Arginine
Al hioning AC G| AG) [AL [F
[Cuu Leu| [GAU| pgpartic |00V u
[Guci GCC |-_£-£J acki GGE _ C
|| | Yaline Alaring § cine
| IMI cﬁ. .'-n.l.'l- '1.3'1'“': ':A II,
o el la acid
Figure 2: Genetic Code

Chadi KALLAB 10

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Molecular biologists are currently engaged in impressive data collection projects. Recent
genome-sequencing projects are generaling an enormous amount of data related to the function
and the structure of biological molecules and sequences.

Artificial Intelligence (AI) and heuristic techniques can provide key solutions for the new
challenges posed by the progressive transformation of biology into a data-massive science. Al
problems, that are particularly promising, include the prediction of protein structure and
function, semi-automatic drug design, the interpretation of nucleotide sequences, and knowledge
acquisition from genetic data. Thus, such Al and heuristic techniques and methods are extremely
important for the present and future developments of bioinformatics, a very recent and strategic
discipline having the potential for a revolutionary impact on biotechnology, pharmacology, and
medicine. While computation has already transformed our industrial society, a comparable
biotechnological transformation is on the horizon. In the last few years, it has become clear that
these two exponentially growing areas are actually converging in some points.

Even though heuristics do not guarantee optimality, they are commonly used to
compensate the exponential growth of computation, which is due to the use of classical methods
of Operations Research (OR). Indeed, over the last 30 years, some heuristic algorithms were
born from trials to mimic natural processes. These methods have produced interesting results in
reasonable short runs. Even with their flexibility regarding modification in the problem
description, bionic heuristics turn out to give better results than those of classical problem
specific heuristics. [9] We give a brief overview of Heuristics in the next section.

3.2 Heuristics Overview

Basic Heuristic search methods utilize different mechanisms in order to explore the state
space. These mechanisms are based on three basic features:
— The use of memory-less search (ex: standard Simulated Annealing — SA, and Genetic
Algorithms — GA) or adaptive memory (Tabu Search — TS);
— The kind of neighborhood exploration used, i.e., random (e.g., SA and GAs) or systematic
{e.g., TS}, and
— The number of current solutions taken from one iteration to the next (GAs, as opposed to SA
and TS, take multiple solutions to the next iteration).

The combination of these mechanisms for exploring the search space determines the
search diversification (global exploration) and intensification {local exploitation) capabilities.
Next, we give an overview of each of the most popular heuristics.

Chadi KALLAB 11

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

3.2.1 Genetic Algorithms

As shown in Figure 3, most Evolutionary Computing algorithms, including Genetic
Algorithms, work iteratively on a subset of the solution space. We refer to this subset as a
“population”. After the Initialization of the solution space, a Selection is made to choose two or
more chromosomes (solutions, ex: phylogenetic trees) of the current PopuLATION. These
chromosomes, denoted as PARENTS, are subjected to a Crossover /| Recombination operation,
which consists of combining bits and pieces taken from 2 or more solutions to create as many
solutions, called “offspring”. In their turn, the resulting OFFSPRING may be subjected to a
Mutation process, which consists of slightly changing the solution. Both Crossover and Mutation
operators are applied given certain respective probabilities. An individual Fimess Evaluation
function is tested on each of the last operator’s results, which will be added to an INTERMEDIARY
POPULATION refreshed per iteration. An Overall Evaluation goes through this new population,
evaluating the whole population, by computing the fitness of the entire group. The intermediary
population replaces the current one and the whole process is repeated until a termination criterion
is met (for example: a certain number of iterations have elapsed).

Crossover
Selection Parents Mutation
A Lo
Population Offspring
F 3
. Overall Intermediary Population |, Fitness)
Termination Evaluation Evaluation

Figure 3: Genetic Algorithms General Flow Diagram

Chadi KALLAB 12

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

3.2.2 Simulated Annealing

Simulated Annealing (SA) was initially designed to simulate the cooling of metals into
crystalline structure (annealing process). Since the natural annealing process aims to minimize
energy in resulting crystals, SA tackles problems from the point of view of minimizing
cost/energy.

SA was intended in 1983 to be used with non-linear problems. “SA approaches the global
maximization problem similarly to using a bouncing ball that can bounce over mountains from
valley to valley.” [12] Initially, the temperature is set high enough so that this ball is given
enough time to bounce, between and within valleys. The generic annealing algorithm/process
suggests that, as time passes, the ball tends to get closer to its optimal location. Therefore, as the
temperature cools down, the frequency of the large bounces (between valleys) tends to lower,
while that of local bounces (within valleys) increases. However, to avoid falling in a local
optimum valley, a probabilistic formula is applied, related to the current temperature gain and
cost of bounce from the current location to a new one. In SA, the bounce (change in location)
implies to perturb the current solution S into a new one S'. In the SA algorithm, the temperature
parameter is denoted as T, and the number of moves (perturbations / bounces) is denoted by M.
“It has been proved that by carefully controlling the rate of cooling of the temperature, SA can
find the global optimum™. [12]

[Initialize Parameters & Initial Solution S

Y

S'is either better than S, or less good
given a certain probability depending on
the temperature and cost difference

Mext Solution
S' = Perturb (S)

Replace 5 with §'

[Decrement M (number of moves)]4—[]

T F Terminate
Return Best Solution

Figure 4: Simulated Annealing General Flow Diagram

Chadi KALLAB 13

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

3.2.3 Simulated Eveoluticon

“Simulated evolution (SimE) is a general search strategy for solving a variety of
combinatorial optimization problems. The SimE algorithm starts from an initial assignment of
status to elements of the entire initial solution, and then, following an evolution-based approach,
it seeks to reach better assignments at each generation. A cost function called goodness measure
is used by SimE algorithm in order guide the algorithm in the search space.” [14]

The data, being handled during a Simulated Evolution run, flows iteratively according to
the following sequence of steps: Evaluation, Selection, and Allocation. “SimE operates on a
single solution Sy. This solution is termed as population. Each population consists of elements,
which represent the assignment of a state to a sub-part of the initial set of data. In the
EVALUATION step, the goodness of each element is measured. The goodness of an element is a
single real number between '0" and 'l", which is a measure of how near is the element to its
optimal state. Higher value of goodness means that the element is near its optimal state.” [16]
The result of this step is a goodness set G = [i, g} where g; is the goodness value of element i,

The SELECTION process chooses those elements, which have a low goodness in the
current solution, by comparing this value with a random real number between '0' and 'l", acting
as a probability. If the element was not selected, it is assigned to an empty location. The number
of selected elements can be further reduced by applying a selection bias B, with value typically
between —0.2 and 0.2, which may also compensate for errors made in the estimation of goodness.
The process outputs two complementary sets: P, (selected) and P, (remaining).

The aLLOCATION operator refreshes the states of each element that was selected in P,
Since setting this process randomly gears the algorithm towards random search, greedy strategies
would improve the algorithm in general, and particularly the measurement of the elements.
Therefore, it reduces the overall cost of the solution. This operator takes as inputs the Ps and Py

sets, and outputs a new overall state. [16]

Evaluation Selection } [Allocation

[Initialize Parameters & Initial State]

@

Replace Current State E T Terminate
by Next State Return Best State

W

Figure 5: Simulated Evelution General Flow Diagram

Chadi KALLAB 14

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

3.2.4 Stochastic Evolution

To escape the random search of SA, and random selection of SimE, research in Al has
recently designed a new heuristic, called Stochastic Evolution (StocE). This algorithm takes as
inputs: an initial state Sg, an initial control parameter pg, and a stopping criteria R. This
parameter “represents the expected number of iterations the StocE algorithm needs until an
improvement in the cost with respect to the best solution seen so far takes place. It is suggested
in that the best results are obtained with 10 < R < 20. Upon termination, the algorithm returns the
best solution found so far by the heuristic™ [15]. During any iteration, the algorithm moves the
current state to a new one that will be checked for consistency. All violations have to be un-done,
before final validation. If the cost of the current state is the same as that of the state in the
previous iteration, the bounds of the control parameter are enlarged; otherwise, this parameter is
reset to its initial value. If a better state is found, the number of iterations is decreased by R to
allow potential better states to be found.

[Initialize Parameters & Initial State J

Perturbation

2 Update Update
we ; . ; .
Move Validate Control Solutions
4 Parameters & counter

Undo Last

Counter > R

Terminate
Return Best State

Figure 6: Stochastic Evolution General Flow Diagram

Chadi KALLAB 15

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

3.2.5 Tabu Search

Tabu Search (TS) is a heuristic procedure proposed by Fred Glover to solve discrete
combinatorial optimization problems, The basic idea is to avoid that the search for best solutions
stops when a local optimum is found, by maintaining a list of non-acceptable or forbidden
{taboo) solutions/costs, called Tabu list or Short-Term Memory (STM). Advanced TS algorithms
suggest that some of the best solutions found so far be saved, for search diversification, in a list
called Long-Term Memory (LTM). An additional list, called Medium-Term Memory (MTM)
may be used to intensify locally the search, by keeping track of solutions, with estimate close
enough to that of the best solutions in the LTM.

The use of these memory lists bring to light the fact that the updating process of the
current and best solution does ignore those that were marked in the lists, which grow and shrink
per iteration. Occasionally, moving the current solution to a “forbidden™ one is allowed given a
certain “aspiration” criteria, usually involving an improvement in cost from the current one.

As opposed to other algorithms, the current solution of the inner loop next iteration is
selected from a set of N neighbor solutions, deduced from the actual current one by perturbing it
N times. This solution will be overwritten if, at the beginning of the next iteration, a better
solution was previously acknowledged in memory. [13]

[Initialize Parameters & Initial Solution]

=

Neighbors (S) =
{81, S2... Sn}

~

Select 5; such that;
S 1s better than S
& NDT in tabu

1 !
]\{ Put §; in Mcnmry

Terminate }

A

[Replace 5 with S;.

Return Best Solution

Figure 7: Tabu Search General Flow Diagram

Chadi KALLAB 16

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 4 Attempted Non-Heuristic Approach

Maximum Parsimony Analysis can be solved using Fitch’s algorithm. This algorithm
helps evaluate parsimony, by assigning all sequences to be compared to the leave nodes of a
given topology, and labeling internal nodes according to its children and parent. This procedure
is done per location of each base within the sequence. The sequence could be a DNA or RNA or
protein sequences. If the data length (number of characters within each sequence) is more than
one, the algorithm is run in parallel: one run for each location of the sequences.

4.1 Standard Fitch Algorithm

The standard Fitch algorithm consists of 3 steps:

1. Bottom-Up Traversal: during which the algorithm assigns a set of possible values for each
ancestral node. This is the union/intersection of the possible values for its left and right
children nodes

2. Top-Down Traversal: during which the algorithm assigns a value for each ancestral node,
cither its parent’s value if the latter is found in its set of states, or randomly from this set

3. Compute Parsimony: during which the algorithm accumulates the number of changes
between each parent and its children nodes.

| ere

! GFLI

C T G A C

Initial Tree Topology

Ic

4 G
l G G_
C T G A G A C T G A G A
Step 2 Parsimony =4

Figure 8: Sample Run of Fitch’s Standard Algorithm

Chadi KALLAB 17

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

As illustrated in Figure 8, step 1 (bluc) of the standard Fitch algorithm traverses the
Initial Tree Topology (bold and italic) in a bottom-up fashion, assigning to each parent the union
of the children states if no common sub-states were found. Then, in step 2 (dark red), the
algorithm assigns randomly a value for the root chosen from the set computed in step 1, and for
each ancestral node either its parent value, if found within its state, or randomly one of the values
in its state. Step 3 (zreen) computes the parsimony score, and illustrates it by showing in thick
oreen lines the edges connected to two nodes with different values.

The standard Fitch algorithm treats the same way all character changes between each
internal node and each of its children nodes, thus ignoring the probable divergence in the
outcome of such mutations (for ex: the mutation from G to A is considered equally valuable as a
mutation from C to A). On the other hand, and due to the randomness of the choice of each node
label, when the parent’s label is not found in its states for the current location, different runs of
the standard Fitch algorithm for the same tree topology may result in different trees, with the
same parsimony cost. Figure 9 illustrate this drawback for 6 sequences, where the root node can
randomly be assigned one of its 4 state values. For each of the many solutions give the same total
parsimony score, each shows a different set of node value assignments and thus a different set of
edges (thick red lines) connected to two nodes with different values.

Chadi KALLAB 18

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

C T G A G A C T G A G A
Parsimony =4 Parsimony =4

| |

C T G A G A C T G
Parsimony =4 ' L Parsimony =4
L .
C (7 i
_I S : |1|
C T G A G A C T G A G
L Parsimony =4 Parsimony = 4
L L
A A
_l FL_I . _‘ 0
C T G A C T G A
Parsimony =4 Parsimony =4

Figure 9: Standard Fitch Maximum Parsimony Trees for 6 Sequences

Chadi KALLAB

19

Masters in Computer Science

Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

4,1.1 Main Standard Fitch Procedure

{npuit: Binary tree topology “7T'"
Pre-condition: Leal nodes are labeled according to the sequences in concern

COutpur: Parsimony value: * Cost ™ & Binary fully labeled tree “7,"
Post-condition: ** Cost ™ corresponds to the number of changes in “7,"
Steps:

Backup Tree T into T,
(Step 1: Bottom-Up Traversall
Arrange the internal nodes of T, with respect to their access to leafs (BOTTOM-UP)
For cach node n, of these nodes do
Get left and right child of node n,
For each character location [, in value of node n, do
Get state values SV, of left child for location /|
Giet state values SV, of right child for location [,
Ifsv, N Sv, = {}then
Sel state Values of n, as the union of 5V, and 5V,
Else Set state Values of n, as the intersection of SV, with SV,
(Step 2: Top-Down Traversal)
Arrange the internal nodes of T, with respect to their access to leals (TOP-DOWN)
For each node n, of these nodes do
Get parent node p, of node n,

For each character location [, in value of node n, do

Get state values S5V ol node n, for location /[,
If n, is root node of T, OR character of p, is NOT found in SV then
Assign random state value from SV to character of n, at location [,
Else Assign character of p, at location /; to character of n, at location [,
(Final Step: Computing Total Score
Reset Cost
For cach node n, of these nodes do

Get parent node p, of node n,
If n, is NOT root of T, then
For each character location /, in value of node n, do

If character of n; at location [, is NOT character of p, at location /, then

Increment Cost by |
Return {Cost | T,}

Chadi KALLAB

20

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

4.1.2 ArrangelnternalNodes Procedure

Input: Binary tree topology: “T'" & Boolean flag * TopDown ™

Pre-conditions:
» Leaf nodes are labeled according to the sequences in concern

FALSE for Siep _1

TRUE for Step_2

Ourput: Vector of nodes * Nodes ™

Post-condition: " Nodes " contains all internal nodes in the desired order, with a priority for
nodes with both children having the same tree level,

7 TopDown = {

L‘;.n'h’p.ﬁ'.'
Get all internal nodes into a dynamic circular list Internal.
Create an empty dynamic list Nodes.

While list Internal is NOT empty yet do
Let i be the first available internal node in list Internal.
Get left and right children nodes of n into Left and Right.

Set flag T1 iff Nodes does not already have node n, AND both Left and Right are leafs.
Set flag 72 iff node Right is leaf, but Left is an already selected internal node.

Set flag 73 iff node Left is leaf, but Righr is an already selected internal node.

Set flag T4 iff both nodes Left and Right are already selected internal nodes.

If cither T/ or T2 OrR T3 OR T4 is/are set then
Add node n to list Nodes.
Remove node n from circular list Internal.,
Else
Leave node n in list Internal, but jump to next available node index.

If TopDown then
Reverse list Nodes so that the first one entered is the last to deal with.

Return Nodes

Chadi KALLAB 21

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

4.2 Weighted Fitch Algorithm

The weighted Fitch algorithm consists of 3 steps:

1. Bottom-Up Traversal: during which the algorithm assigns a set of possible values for
each ancestral node, which is the unionfintersection of those for its left and right
children nodes. It also propagates up, in the tree, min costs for each character in
alphabet, initializing each leaf node to have a cost of *0” for its character, and *=” for
the other characters.

2. Top-Down Traversal: during which the algorithm assigns a value for each ancestral node,
one of the characters that have the minimum cost. The parent’s value is chosen if
found in its set of states, otherwise a value is randomly chosen from the set of
characters in state with minimum cost.

3. Compute Parsimony: during which the algorithm accumulates the weight of all changes
between each parent and its children nodes.

The score/weights of each character-to-character change are filled into a matrix that will
be used during the run of the algorithm, when computing for each node sequence the minimum
weights of changing from each alphabet character to that of the left and right children sequences
at each location. The algorithm fills these minimum scores in another scoring matrix.

Chadi KALLAB 22

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

A T C G
A 0 05 | 05 | 09
T |05 | 0 |06 03 T s ol e e
C |05]06]| 0 |03 S 0
G |09] 03] 03| 0 | ey = i
Scoring Matrix 52 = g = @
| S’ o o m ﬂ
Pi S& G o =] o
0
P} P‘ SS w o3 o
S‘ﬂ ﬂ o (=] o
P; P; Py I | 06 | 0.6 | 0.6
i P, 0.9 0.8 0.8 0.9
Y| S, 5; S IS5 S F- 0.9
C T G A G % 1 : 0.8 0.8 0.9
= Py 18| 16| 16| 18
Initial Tree Topology o 28 122 122) 24
Min Scores Matrix
CT (A

¢cC T G A G

Step 1 ‘ C TG AG A
Step 2

Parsimony = 0.3 + 0.9+ 0.9+ 0.6 = 2.7

Figure 10: Sample Run of Weighted Fitch Algorithm

As illustrated in Figure 10, the leaf sequences of the Initial Tree Topology are
respectively {Si. Sz ... Se) and the ancestral/internal nodes {Py, P2 ... Ps}. Step 1 of the
algorithm, is show in bluc. The tree topology is traversed in a bottom-up fashion, and each parent
is assigned the union of the children states, in the case where no common sub-states were found.
The “Min Scores Matrix” illustrates the propagation up of min costs for each character in
alphabet, according to the given “Seoring Matrix”, with leaf nodes being initialized to have a
cost of 0 for a character in its set and o for the other characters. Then, step 2 (dark red) assigns
randomly a value for the root, and for each ancestral node either its parent value or one chosen
randomly from the set of characters in its state with minimum score. Step 3 (green) computes the
parsimony score by adding all scores between parent and children nodes.

Chadi KALLAB 23

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

o T =
A 0 | 05] 05 | 09
T 0.5 0 0.6 0.3 |
C | 05|06 | 0 [03]
[G [09]o03]03] O
Scoring Matrix
lo lo
C (5 2 A
_l mUm —l A Py
C TG A G C TG A G A
I Parsimony = 2.7 I Parsimony = 2.7
A T c G
5 o o 0 i
S o0 0]]
S5y ” - - 0
S'l n o o L
Sb u =1 L4 o
Py 1 0.6 0.6 0.6
P, 0.9 0.8 0.8 0.9
P, | 09 | 08 | 08 | 09
Py 1.8 1.6 1.6 1.8
P 28 22 2.2 24
, |:
T G T: A
s 1
C T G A G A C T G A G A

Parsimony = 2.7

Parsimony = 2.7

Figure 11: Weighted Fitch Maximum Parsimony Trees for 6 Sequences

Chadi KALLAB

24

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

4.2.1 Main Weighted Fitch Procedure
Input: Binary tree topology: “T'" & Scoring Matrix * Mar "
Pre-condition: Leaf nodes are labeled according to the sequences in concern
For each leaf node, and each character location, the weight of character in
location is initialized to O and the rest are initialized to =,
Rows(Mat) = Columns(Mat) = Length(Letters)

Mu.r[f. J I =5 {f.‘.l'mmr_'ma; .character,)

Output: Parsimony value: * Cost ™ & Binary fully labeled tree: *7,"
Post-condition: * Cost " corresponds to the weight of all changes in “T,"
Steps:

Backup Tree T into T,
(Step 1: Bottom-Up Traversal
Arrange the internal nodes of 7', with respect to their access to leafs (BOTTOM-UP)
For each node n, of these nodes do
Get left and right child of node n,
For each character location [, in value of node n, do
Get state values SV, of left child for location /|
Get state values SV, of right child for location [,
IfSv, N sV, = {}then
Set state Values of n, as the union of SV, and SV,
Else
Set state Values of n, as the intersection of SV, with SV,

Get scores of all characters in left children at location /,
Get scores of all characters in left children at location [,
For each alphabet character chl do
Initialize to = both min scores of character chl for left and for right
For each alphabet character ch2 do
Update min left score of chl after weighting change of chl to ¢h2 in left
Update min right score of chl after weighting change of chl to ¢h2 in right
Set score of chl as the sum of both min scores of chl

Chadi KALLAB 25

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

(Step 2: Top-Down Traversal]
Arrange the internal nodes of T, with respect to their access to leals (TOP-DOWN)
For cach node n, of these nodes do
Get parent node p, of node n,
For each character location /; in value of node n, do
Get state values SV of node n, for location /,
If 5, is root node of T, OR character of p, is NOT found in SV then
Assign randomly a state value, with minimal score, from SV to character of n,
Else
If character of p, is found in SV then
Assign character of p, at location [, to character of n,

{Final Step: Computing Total Score
Reset Cost
For each node n, of these nodes do

Get parent node p, of node n,
If n, is NOT root of T, then
For each character location /; in value of node n, do
If character of n, at location { is NOT character of p, at location /, then

Increase Cost by weight of change between these two characters
Return {Cost , T.}

Chadi KALLAB

26

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

4.3 Advantages and Disadvantages of these Approaches

Maximum parsimony searches for the optimal (minimal) tree. In this process, more than
one minimal tree may be found. In order to guarantee to find the best possible tree an exhaustive
evaluation of all possible tree topologies has to be carried out. This fact renders the Maximum
Parsimony Phylogenetic Tree NP-hard. In other words, the process becomes impossible to solve
in polynomial time, when there are more than 12 OTUs in a datasel.

The main weakness of the standard Fitch algorithm is that it treats all kind of mutations
and changes equally, meaning that it applies the same score to a character that varies,
irrespective of the new character into which it becomes, This is a weakness because most of the
time, scientists are not interested in just a score that reflects the amount of mutation generally,
but want to give different weights to the score depending on how relevant a particular mutation is
with respect to the goal of one’s research.

To prove and improve this weakness, the weighted Fitch algorithm offers to apply,
instead of a fixed score to all possible state changes, a complex scoring technique that takes into
consideration the relevance of any particular change to the studies performed and applies the
score accordingly.

Despite the obvious improvements with respect to the standard version, the algorithm still
has a flaw in the scoring technique. This flaw lies in the fact that it treats the sequences analyzed
in a parallel way; i.e. it compares characters in a sequence separately, which makes it lose some
information related to the way the characters interact together. Therefore, the final score we
obtain may not be as accurate as we would expect it to be, as it reflects the results of comparing
the characters, grouped by locations in sequences, in parallel and independently. One might think
that even if the comparison is done in parallel, still the total score should be as meaningful as
possible since we are anyway comparing all characters in all sequences and applying meaningful
scoring, but this is not the case. Cases whereby two character mutations should result differently,
according to the context (group of characters) they are in, are omitted when comparing
characters in parallel, using a valid scoring matrix for all possible cases, giving them the same
score. For instance, having the mutation (ACT — ACC) and (GCT — GCC) will give us the
same score: S (T, C). Treating characters in a word, independently from each others, might
mislead the analysis, since these mutations could influence differently the evolution process

Some already proposed alternatives to Fitch's Algorithm, for finding the optimal
parsimony phylogenetic tree, are the famous Branch-and-Bound algorithm and a combination of
one or more Heuristic Search algorithms. The first is the Branch and Bound algorithm, which is a
variation on maximum parsimony that helps finding the minimal tree by reducing the number of
possible trees to evaluate. Thus, a larger number of taxa can be evaluated, but it is still limited.
Heuristic search is an approach with systematic addition and rearrangement (branch swapping)
of OTUs, not guaranteed Lo find the best tree.

Chadi KALLAB 27

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

4.3.1 MPA: Branch-and-Bound

The optimal set of solutions has at least the score of the bounding solution. If during the
construction of a solution the score is higher/lower than the bounding score, then all complete
solutions containing this sub-solution have a higher/lower score than the bounding solution.

“Therefore. the sub-solutions having higher score are worse than the bounding solution
and we can stop the construction of these solutions, this means cutting the sub-tree under sub-
solutions with a worse score.” [8]

Figure 12 illustrates the Branch-And-Bound process for a set of 5 sequences. We start by
building a tree with 3 of these sequences, and evaluate it and record that value as the “Min Cost™.
Then, when adding a new sequence, we branch only from the candidate topologies that have a
score < last “Min Cost” value recorded, and update the latter if needed.

3
S > Min Cost / '\ S > Min Cost
:' 5 : 10 - HE 2

Figure 12: Sample Run of Branch-And-Bound for 5 Sequences

Min Cost = 10

A

3

Min Cost =4

The worst-case time complexity of the Branch-And-Bound algorithm is the same as the
complexity of exhaustive search, which is worse than exponential. Nevertheless, with a wisely
chosen bound, many sub-trees will be cut and therefore the running time will decrease.
Sometimes, a special traversal order finds better solutions faster.

Chadi KALLAB 28

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Input: Tree Topology: “T Set of Sequences * Species ™
Scoring Matrix: * ScoreMat ™ Set of characters: * Letters "
Optimal Result found so far: Parsimony “ MinCost "
Set of trees “ MinTrees™
Pre-condition: NumberOfLeafs(T)+ Length(Species)= N
Rows(ScoreMat) = Columns(ScoreMat) = Len gth(Letters)
Smrt’Mm[i, _;] =8 {dmrﬂ:‘!crl.,t'hm'fwferrf]
First call of method: T has 3-leafs,
MinCost =, MinTrees is emply
Curpue: Optimal Parsimony: * Cost ™ & Set of optimal trees: “ Trees ™
Post-condition: Value * Cost " corresponds to the minimal number of changes
Set “Trees " contains all trees, which evaluation leads to * Cost "
Steps:
Compute the weighted parsimony score § of input topology T
If § > MinCost then
Return {M:'nCa.w MinTrees}
If there are no more sequences to consider then
I § < MinCost then
Update the value of MinCest
Empty the search space list
It § < MinCost then
Add topology T to search space list MinTrees
Return {MinCost MinTrees)
Extract set of all branches of topology T
Extract first available specie to handle Specie & Remove it from given set of species
For each branch B, of topology T do
Add a new branch connected at one endpoint to B, and the other labeled by Specie
Update MinCost and MinTrees with those of recursive call on updated topology T
Remove newly added branch to B, labeled by Specie

Return {MinCost MinTrees}

Chadi KALLAB

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 5 Suggested Improvement to Fitch:

As already discussed, Fitch algorithms treats all changes quasi-identically, by working in
parallel per character location. The Weighted Fitch algorithm deals with this matter, by assigning
a cost to each character-to-character change.

However, neither standard nor weighted Fitch algorithms handle the fact that one change
in a certain word might affect differently the outcome of the word. There is no character, within
any DNA/RNA/protein sequence, that is totally independent of at least the direct neighbor
characters in the sequence. This group of characters, called a word, is supposed to decode a
specific functionality in the final result.

For instance:
Standard Fitch —» S(ATG,ATT)= S(CTG,CTT) = S(ATG, ATC)
Weighted Fitch — S(ATG,ATT)= S(CTG,CTT) # S(ATG, ATC)

Assuming that the mutation of the word CTG to CTT is less/more harmful than
transforming ATG to ATT , the computed score should also include a weight for that factor, This
introduces the idea of having a “word scoring matrix”. This matrix adds to the cost of each
character-to-character mutation a score that reflects how it affects the whole word. Therefore, for
example: S(ATG,ATT)+ S(CTG,CTT)# S(ATG,ATC)

Another disadvantage of Fitch algorithms is the non-inclusion of the environmental
and/or time factor of each mutation. In reality, gene mutations are very often affected directly by
its entourage. This fact, research subject by itself, can be handled by allowing the input tree
topology to include edge weights that estimate the effect of external factors on the mutation.

Therefore, given the two suggested enhancements discussed above, the score of a certain
character-to-character mutation will be treated differently depending on its context and location
within the sequences in concern. However, even though no 2 mutations will be treated the same
way, this whole improvement does not resolve the load of computations required by Fitch
algorithms, enough to put aside the need for Heuristics to try to solve the phylogenetic problem.

For this, to solve the problem of phylogenetic trees using heuristics, the first step is to
establish an encoding schema, to represent the trees into data-structures, and map real-life
process on elements of these trees into functional operators to be used by the heuristics. In the
next chapter, we describe the suggested general way to encode the problem into instances of
different heuristic algorithms. A suggested use or inclusion of the environmental and/or time
factors, during the evaluation process of different phylogenetic trees, will be discussed in the
chapter concerning the suggested encoding schema.

Chadi KALLAB 30

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 6 Suggested Common Heuristic Encoding
6.1 Analysis

Let SL be the set of sequences to compare, shown as leave nodes in a phylogenetic tree (colored
below in bluc). Let N be the number of sequences in the set SL.

Let R be the number of rooted trees, exponentially related to N:

_ Fact(2N -3) (3]

Fact(N -2)*2"7
The root nodes of those trees are highlighted below in dark red. For visibility purposes, we show
only few trees (colored entirely in blue or orange or violet).

A “parent sequence” can be defined as the sequence from which two sequences arc derived by
mutation or perturbation. These sequences are called “children sequences”. Let SP be the set of
all possible parent sequences, colored below in sca green. Let M =|SP].

A level-1 parent, denoted by L1-Parent, is a parent sequence having both children sequences
belonging to the set of sequences SL. Let P be the number of those parent sequences.

In our phylogenetic context, for a given tree topology, the level of a sequence is defined as the
height of the corresponding node in the tree.

i.e.:

M M=1

=1
R=1

Chadi KALLAB 3l

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

If each tree has N -1 parent nodes (holding parent sequences), then the total number of parent
sequences M, including L1-Parents, satisfies M < (N -1)*R.

In order to find the value of P, number of L1-Parents, we can suggest the following numbering
of internal nodes:

If §, and §, both have SP, as a parent, then k is computed as a function of both indices i and
Jj.Inother terms: k= F(i,j) with (i, j)e[LN] and ke[l P]

The following tables explicit the mathematical generalization process that leads to the formula
for that function: k = F(i, j)

N=J3 N=6

i | K Jj-i K-i i|J K j=i K-i

l 2 | | 0 | 2] | 0

1 | 3 3 2 2 113 f 2 5

213 2 1 0 1 | 4 10 3 g

115 13 4 12

s N——=4. ; 0 L T 14

I g K J=1 K-i 2 3 7] 1 0

| 2 1 | 0 9 4 7 2 5

1] 3 4 2 3 2|51 11 3 9

Ll4) 6) 3) 3 26| 14 4 12

71 5 I 5 T : :
2141 5 2 3 35| 8 2 5

314 3 1 0 316 12 3 Q

4 |5 4 1 0

c T Me2 5, . 4 |0 9 2 3
k] F K f-i | K-i 506 5 1 0

1| 2 |] 0

: 3 g 2 2 By generalization, for each couple (i, j), we

: can see that we have:

1| 5 10 4 Y] L P
% i I 3 If j—i=1 then k=i

>lal 6 ? 4 Else k=i+[N—-1]+..+[N-(j-i-1)]

2:].5 g 3 7

314 3 1 0 T
,‘5 . ? 2 ______ 4 Therefore: k = F{!J}" i E{N—s]

415 4] 0

F=r=1
When applying the formula F(i, j)=i+ > (N =s) on any set of couple (i, j) the suggested
=]

numbering was recovered, i.e.: the numbering starts at i =1 and j =2, and increments by one
whenever(j—i)=1, then when(j—i)=2, and so on until (j —i)= N —1

Chadi KALLAB 32

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Since the couples (i, j) are sorted such that i < j, the value of P is found for the couple (/, V).
Thus:
N=2

P=F(LN)=1+ 3 (N-s)=1+ Z(mm’fn}: 1+ (N -ZJ*I:N]-—-E{.T]

3=l

P= 1+{N—2]*{N}—w =1 4-{N-2}*[N-[§-%H

Therefore:
N-=2)*(N+1
o, (V=2 (N +1)
2
This formula could help speeding up the algorithms, when traversing trees in a Bottom-Up
fashion.

The following algorithm, useful when creating initial individual or group of solutions or states, 1o
be used by the different algorithms, computes the exact number of parent sequences M:

Inpur: Number of Sequences to compare: N
Pre-condition: N= |S =2

Cutput: Exact Number of Parent Sequences M
Post-condition: 1=M = |S J.,| < (N —1)* OddFactorial(2N - 3)
Steps:
Create an empty dynamic list to store the parent sequences
Create an empty dynamic list to store the sets of these parents’ children sequences
Create an empty dynamic list to store the sets of these parents’ descendent leaf sequences
{Initialize all 3 Lists of Sequences|
For each leaf sequence 5, do
Add §, to the list of parent sequences
Add an empty dynamic set to the list of children sequences
Add an empty dynamic set to the list of descendent leaf sequences
Initialize total number of handled sequences T to N
Initialize effective number of parent sequences M to 0
For each handled sequence Seg, do
For each sequence Seg, previously handled do
If Sequences Seq, and Segq, DO NOT have same children then
If Seq, and Seq, have same direct parent then
Increment M & add P, to list of parent sequences
Create an empty set of children sequences
Create an empty set of descendent leafl sequences
Uniquely add Seq, and Seq, to set of children sequences

Chadi KALLAB 33

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

If Seq, is a leaf sequence then

Uniquely add Seq, to the set of descendent leaf sequences
Else

Extract all leaf children of Segq,

Uniquely add these leaf sequences to the set of descendent leafl sequences

If Seq, is a leaf sequence then
Uniquely add Seq, to the set of descendent leaf sequences

Else
Extract all leaf children of Seq

Uniquely add these leaf sequences to the set of descendent leaf sequences

Add set of children sequences to list of children sequences sets
Add set of descendent leaf sequences to list of descendent leal sequences sets
Increment T

Return M

To retrieve the connections for all parent sequences, instead of just returning the number
of parent sequences, the above algorithm should remove the initial leaf sequences (sequences
that we are initially comparing) from the global lists: list of parent sequences, list of children
sets, and list of descendent leaf sequences sets.

For each handled sequence Seg, do
If Seq, is a leaf sequence then
Remove Seq, from list of parent sequences

Remove its children set from list of children sequences sets
Remove its descendent leaf sequences set from list of descendent leaf sequences sets
Return list of children sets

Chadi KALLAB 34

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

6.2 Encoding Schema Design

Establishing any encoding schema starts with designing/suggesting a data-structure to be
used during the run of the algorithms, then accordingly implement some general functions,
concerned mainly with the EVALUATION of an instance of the problem, the CREATION of new
instances and the PERTURBATION of an instance into another. Some algorithms, as for instance
Genetic Algorithm, may require a function to handle the RECOMBINATION of a set of instances
into another.

6.2.1 Suggested Data-Structure

Since the primary focus of our problem spins around binary trees, and handles a fixed set
of nodes for a given number of sequences, one suggestion would be to use two array data-
structures. One of them is fixed and handles all sequences, to compare and parent sequences. The
second one is composed of integers representing the selected edges connecting two nodes, and
might be changed when applying the operators, mainly the perturbation ones.

Let N be the number of Sequences to compare, R the number of rooted trees, M the
number of internal sequence nodes, and P the number of L 1-Parents.

For convenience, the first location of the arrays, left as garbage, can be used to refer to
the root of the corresponding phylogenetic tree. Then, the length of the two data-structures would
be L=N+M +1

In an instance S of the suggested integer data-structure, if 2 nodes i and j, are connected
to node k, such that .S'aq[;'] and Seqr[j] have the same parent node Sch[k] then:
slil=sli]l=k+N

Initially all values in the two data-structures are either 0 or NULL. During the evaluation
of the instance, the parent sequences are generated if previously set to NULL. In some cases, an
instance might be intentionally ignored, thus erasing all generated parent sequences.

In this way, some of the parent sequences, ignored or never used, would not be generated,
leaving the space for other more critical sequences.

Chadi KALLAB 35

Masters in Computer Science

Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

For N=3=M=6=L=10

Root| Sequences Parent Sequences The data-structures Si. Sz, 83 are
Seq S1]S2|S3|P1|P2[P3P4 [P5] P6 respectively related to the trees drawn
in the above figure. For instance:
0 1 2 3 4 5 6 7 8 9 S1[0]=4 _
S1 a 1] 1] 4] 4]0 foJo]o0]oO < Root of current tree is Pa.

S1[1]1=81[21=1
= Parent of §; and S; is Py.

s2[5] 2] 5] 2] 06|

8 7 8 8
0 0] 010 S1[3]=81[4]=4

=» Parent of S3 and Py is Py.
IR & " S1[i]=0 for any index in [5, 9]
80! 0] 0 <> NO Parent in tree for Pi_s.

For N=4=>M=33=L=38

Root Sequences

Parent Sequences

Seq S1]52 | 5354

i P2iP3|P4a|P5 P6|P7]|Pal]|P33

0 1 2 3 4

5 6 T 8 9 10 11 ..4+a.. 37

S al| 111171 a

7707 0] 0] 0 [0]a[lO0][0

In other terms, we have the following decoded tree:

Chadi KALLAB

36

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

6.2.2 Evaluation Function

Start with the leaf sequences, and generate the parent sequence for each pair. This
generation process can be done in many ways (enhanced Weighted Fitch, another heuristic ...).
What ever way is chosen, the sequences are compared one pair at a time (not the entire set of
sequences), One suggestion for generating parent sequences, according to a given scoring matrix,
would be to assign, for each location of the parent sequence, a base that will eventually lead to
the lowest cost of change with the base that is in that location of the child sequence.

Since we are dealing with maximum parsimony or minimum change between two
sequences (a parent and one of its children), the evaluation function spots the changes in each
pair (parent — child) and adds the corresponding weight to the total score. The weight is looked
up in a given scoring matrix, depending on the alphabet used in the sequences (DNA / RNA /
protein), and some other environmental parameters. The scores at each leaf node, representing an
initial sequence, is ZERO.

Since the evaluation function tends to minimize the weights/scores of changes between
all parent and children sequences, maximization problems will have to negate the result. Indeed,
in mathematical terms, minimizing a function is identical to maximizing the negation of all the
values of this function.

Consider the example of comparing three DNA sequences of one base each, and assume the
following:
—+ The scoring matrix is as follows:

TN [e d (T

0| 05 | 0.9 0475

05 | 0 | 03 | 06_

09 | 03 | 0 | 025
0475 | 0.6 0.25 {

=lcHo| =

— The environmental parameters are plugged in the evaluation equation through the use of the
children sequences levels when generating the parent. All initial sequences are at level ZERO.

[1 + Level(Child,)| * [ScoreOfChange(Parent, Child,)+ Score(Child,)]

Score(Parent) = 2 ,
+ [I + Level(Child :]] * [S coreOfChange(Parent, Child :)+ Score(Child 2 }]

— 8 =Seql]="A" S, =Seq[2]="T" 8, = Seq[3]="A"

Hoot| Seguences Parent Sequences
0 1 E' 3 _4 5 B Fi 8 9
Seq A T|A|[PI[P2][P3][P4]|P5]P6

Chadi KALLAB 37

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

6.2.2-a: Example 1:
_» Assume the tree being evaluated is the following:

el 2
v -l
| —— (] i
1 1
i ~— :
oo ;
o v i
el 1) =
Level 1 @
Py ’
= S T et e el T i
- —— T — Ty . T —
- _ e -

Level O :
. A @T

The corresponding encoded solution will be as follows:

Root| Sequences Parent Sequences
0 1 2 3 4 5 B T B 9
Seq Al T]A|P1 P2]P3]P4[P5]|P6
0 1 2 3 4 § B 7 8 8
S 4111 4|4;0[0j0i{0]0
level 2 0 0o 0 1
SeorelP)= [1+ Level(S,)+ [Scnre()ﬁ.‘hange(f", .S,)+ Score(S,)]

+[1+ Level(S,)]* [ScoreOfChange(P,.S,)+ Score (s,)]

Seore(P,) [1+ Level(P,)]* [ScoreOfChange(P,, P,)+ Score(P,)|
wlore =
Wi [l + Level(S, }]" [Smre Qﬂhang,re{f‘, 8,)+ Score(S,]]
Since S; ="A" and S; = "T", P, could be either "A" or "T", forcing P4 to be "A" in the first case,
and "A" or "T" in the second, given that S3 = "A". Thus computing the score for each case will

give different scores for the corresponding values of P.

P Score(P,) P, Score(P,)

w g | i+0]#[0+ 0]+ {1 +0]*[0.475 + O]} = 0.475 | " 4" fi+1]*[0+0.475]+ {1 +0]*[0+ 0]} = 0.95

o | i+1]#[0.475+0.475]+ {1 + 0]*[0+ 0]} =1.9

wpn | fi+0]#[0.475 + 0]} + {1+ 0]* [0+ 0]t = 0.475 | i '{[1 +ll*[ﬂ+ﬂ_4ﬁ]}+{11+ﬂ]*t6.4?5+ﬂ]}=1.425_

Chadi KALLAB 38

Masters in Computer Science

Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Since we ought to have the tree with values giving the lowest cost, we will have the following set

of values at the end of the evaluation: Py = Py ="A", with a total score of 0.95
Root| Sequences Parent Sequences
o 1 2 3 4 5] T a8 8
Seq AJTIALA B A TPs]
0 1 2 3 4 5 6 7 8 90 Score = 0.95
s [177114 af0]0{0f0}0

6.2.2-b: Example 2:
s Assume the solution being evaluated is the following:

Root| Sequences Parent Sequences

] 1 2 3 4 5 B 7 B 1
S 52 65]2|0!5]0[0{0]0
level 2 0 0 0 1

The corresponding decoded tree is as follows:

&

[l + Level(S,)]* [Sfcare{ }jﬂi‘hange{f’z .S,)+ Score(S,)]

l.? 'P =
core(P;) +[1+ Level(s, }]*[Smreﬂjt?hange{}’l‘33]+.5'¢;*nre{5_,]]

[t + Level(P,)]* [ScoreOfChange(Py. P,)+ Score(P,)]

:.; % =
cor E{P 5} i [} " Levef{sq)]* [Scarﬁf?fc'haﬂgﬂ(fjs ,31)4' Scor: E(Sz)1

Chadi KALLAB

e
®

39

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Since §; = S3="A", P, can only be "A", forcing Ps to be "A" or "T", given that S ="T". Thus
computing the score for each case will give different scores for the corresponding values of Ps.

P, Score(P,) P Score(P,)

o | Bsoleloroh+ fivolforop-o | Ralicial e i, i

wpn | fi+1]*#[0.475+ 0]} + {1+ 0]* [0 + 0]} = 0.95

Since we ought to have the tree with values giving the lowest cost, we will have the following set
of values at the end of the evaluation: P, = Ps ="A", with a total score of 0.475

Root| Seguences Parent Sequences

0 1 2 3 4 5 6 7 8]
Seq Al TIA|PITA]PIIPI] A |
S 5| 2] 5] 2| 0f5]0i0§0]0

As a summary, the solutions extracted from this example affirm that the lowest cost (optimal
cost) was found when combining S, = “A” with 83 = “A”, then their parent = “A” with S =“T"
into a root = “A”, giving a score of 0.475 (lowest among the 3 scores 0.95, 0.475 and 0.95)

Lowest N

Cost ~ L\\,
o 0.475 @ \.
// ”_,,.r" xk"*—-._‘ \\
O @ @ @O ®

Chadi KALLAB 40

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

6.2.3 Propagate Changes [p

Unfortunately the importance of this function is not obvious at first sight. Indeed, it is
embedded in many of the main functions used in the different heuristics, such as the CREATION,
local and global PERTURBATION, RECOMBINATION functions, which will be discussed later,

In each solution, we should have at least 1 and at most N/2 pairs of leaf sequences. The
algorithm starts by choosing one ore more pairs of leaf nodes, joining them and propagate
changes up. The propagation process may be affected by another solution (usually when
perturbing the latter solution). If this second solution is valid, at least one pair of the new
solution does not correspond to a pair of that solution. For the solution to be completed, one or
more of the leaf sequences slots are set to NULL. For internal node sequences, random
combination of pairs is no longer a choice, but a requirement.

Inpuit; A Solution § Number of Leaf Sequences N [nitial Solution §
Pre-condition: Nz2 S
Output: -
Post-condition: S is completed / modified to represent a valid tree topology
{{f one leaf sequence location is left NULL, fill randomly the entire solution §)
Seg — 1,
Randomly «— FALSE ;
While Seq < N and NOT(Randomly)
Randomly « (S[Seq|= NULL):
Seq « Seq +1;
{If perturbing solution 8, check if at least one pair of leaf sequences should be changed)
ChkChangedPairs «— FALSE ;

If S, # NULL then
Seq «1;
While Seq < N and NOT(ChkChangedPairs)
ChkChangedPairs « (S [Seq] # NULL);
Seq « Seq +1;
(1f solution § is not randomly filled, extract all pairs of leaf sequences already bounded]
Pairs| |« NULL;
NumPairs « ()
If NOT(Randomly) then
Pairs| |« getLeafSeqPairs(S):
NumPairs « dim(Pairs):

[T

represents a valid tree topology

(el

drmir

Chadi KALLAB 4]

Masters in Computer Science
Heuristics; Enceding for Parsimony Phylogenetic Trees & Generic Implementations

(The number of leaf pairs “NumPairs" is at most half that of the leaf sequences “"N")
[If solution § is randomly filled, Or has leaf sequence pairs more than needed)
[Handle a random number of pairs at each tree level]

; N
RandomPairs «— Randomly OR (Num!’air:‘.'{l] (R (MunFmr.r;:--é—];

(Initialize set of sequences, to be combined, as set of indices of all leaf sequences/
{Srart from leaves and loop until entive tree is built and validated|
Leaves «— TRUE ;
L.",s'n‘)'cq[] « createlndexList(N) ;
Loop

NumSeq « dim(ListSeq);

It NumSeq <2 then

Exit Loop

{Set Number of pairs at current tree level "C")

(Either 1o “NumPairs" or randomly between | and “NumSeq"/2)

C — NumPuairs;

It RandomPairs then

C « random(l , NumSeq/2);
{Create a list of indices, from 1 to NumSeq, to enforce unigueness of each pair seq/
L « ereatelndexList(NumSeq);
(If dealing with parent (not leaf) sequences, pairs are combined randomiy/
RandomChoice < RandomPairs OR NOT(Leaves);
(Initialize current set of parenis 1o be of size CJ
Lf',&'IPnrem.'-'[] « ereateList(C);
For i from | to C
It RandomCheice then
{Select first seq “Seq;" in current pair, randomly AND uniguely)
IndexSeq, « randoml niguelndex(L);
If IndexSeq, <1 then
Exit Loop
Seq, «— Lr',','ISeq[fm.’c,t.'j'ffq,]:
If NOT(Leaves) then
Seq, «— N + Seq,;
Else [“RandomChoice" is FALSE]
{Select first seq “Seq;" in current pair, as first seq of a previous leaf pair/
Seq, «— Pm'r.v[i,l];
IndexSeq, « indexOf (L, Seq,): removel L, Seq,);

Chadi KALLAB

42

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

(Get index of seq combined with Seq,, in either solution § . or solution §)
Seq,,, & getPairindex(S, Seq,)

Irs = NULL then

amif
Seq i gcfPﬂfrfmfe,\:[Sm,.Seq,);
CheckPair « [.S'Eqwr = I} aned {Seq S NmnS:sq];
Index — indexOf {LfﬂSﬂq. Seq ., }:
(If perturbing § ;,;, and at least one pair should be changed, AND selected seq)
(Already combined, enforce that its pair seq is not selected as second seq)
If ChkChangedPairs and CheckPair then
remove(L, index);
If RandomChoice then
{Select second seq “Seq:" in current pair, randomly AND uniguely]
IndexSeq, — randomUnigquelndex(L);
It IndexSeq, <1 then
Exit Loop
Seq, « Lt'.i'-'.’S'eq[!mhrxﬁeq: '
If NOT(Leaves) then
Seq, & N + Seq, .
Else [RandomChoice " is FALSE]
{Select second seq “Seq:” in current pair, as that of a previous leaf pair}
Seq, Fm'rs[f.E]:
IndexSeq, « indexOf (L, Seq,):
remove(L, Seq,);
{If perturbing § . and at least one pair should be changed, AND selected seq)

(Already combined, enforce that its pair seq is could be selected in next pairs]
It ChkChangedPairs and CheckPair then
m’d{L, ."nde*.a:} i
[Get parent of sequences Seq; and Seqr and set it in solution § and in ListParenis |
Seq,, « getPa ren.rl[.':.’eq. \Seq,);
If Seq,, <] then
Exit For
Li.-.'.'Parﬁ.-:r.s'[t'] « Seq,,.:
A [Seq,] «— Seq o

S[S{"q 2] b Sﬂq e :

Chadi KALLAB

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

(After all C pairs have been formed, combine remaining sequences in ListSeg)
{One-by-aone te a parent of these pairs, chosen randomly AND uniguely/
P « createlndexList(C);
While dim(L)> 0
IndexSeq « randomUni quelndex(L);
If IndexSeq, <1 then
Exit Loop
Seq, Li'.s':Sc‘q[htca’c’,rSeq,];
If NOT(Leaves) then
Seq, — N+ Seq,;
IndexSeq , « randomUniquelndex(P);
If IndexSeq, <1 then
Seq. — Segp,
Else
Seq, « N + ListPar|IndexSeq, |;
removeAt(ListPar, IndexSeq,);
Seq & getParent(Seq, ,Seq,);
If Seq, <1 then
Exit While
h) [S' eq,] — 8el .

S[S:‘.'.'(_f:]f— Seq ¢

parr ¥

{Once all sequences in ListSeq have been combined in a pair)

{Swap sets o pass to next tree level]

If IndexSeq, <1 then

Exit Loop

Li'.ﬂSmf[]{— L;'.-fer'eraF.\-{];

Leaves «— FALSE ;
Until TRUE
[The final step is to discover and set the root of the tree)
{In addition, make the values in solution 5 consistent in their format)
S|ROOT _INDEX]« findRoot(S):
S « makeValuesConsistent(S) ;
evaluate(S):
Return §

Chadi KALLAB

44

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenctic Trees & Generic Implementations

6.2.4 Create Random Solution

Those heuristics, which start from a random initial state or solution, generate it by first
allocating enough space in memory, Then it combines randomly pairs of sequences, starting
from the leal sequences, and propagating up the combinations to reach the root node of the
phylogenetic tree decoded from the data-structure,

Input: A Number of Leaf Sequences N

Pre-condition: Nz2

Output: A Solution §

Post-condition: § represents a valid random tree topology
L < 1+ N + numberOfParentNodes(N);
S « createSolution(L);

propagateUp(S,N,NULL);
evaluate(S);

6.2.5 Perturb Solution

Some heuristics may need to perturb a given solution globally, by modifying randomly
one or more pairs. Others may perturb the solution locally, by selecting a given leaf sequence
and re-coupling it with another sequence chosen randomly. Broken pairs are re-coupled either
together or with the parent sequence of the newly formed pair.

The global perturbation algorithm starts by creating an "empty" solution (with NULL
value), and then propagate the change up by randomly combining pairs of leaf and parent
sequences.

lnpui: A Number of Leal Sequences N Given Solution §

Pre-condition: Nz2 5 represents a valid tree topology

given

Bivenw

Output: A Solution §
Post-condition: § represents a valid random tree topology, but based on §

Steps:
Lo« c[im{Su,L_,.,,]:
S « createSolution(L);
propagdate Up{S P] :

Biven

evaluate(S);
Return §

Chadi KALLAB 45

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

The local perturbation algorithm is a bit more complex, as it only perturbs the given solution at a
certain index, by breaking-up pairs and gluing others if needed.

Inpur: A Number of Leaf Sequences N Given Solution §,
Sequence Index fndex
Pre-condition: N=z22 S . Tepresent a valid topology

Ouiput: A Solution §
Post-condition: § randomly represent a valid tree topology, but based on §
L «dim(s .,);
(If sequence index is valid then set it as first seq “Seq,", otherwise select “Seq,” randomly}
Seq, « Index;
If Seq, <1 and Seq, > N then
Seq, « random(1,N);
5« m_u_'r[."? - }; {Copy solution S gy to solution S}

Bivear

List « createlndexList(N): [Create a list of indices, from 1 to N, to enforce unigueness)
remove(List, Seq,): (Remove “Seq;" from the list not to be re-selected]
(Retrieve index of pair sequence of “Seq;"” and remove it from list if leaf sequence]
SeqPair, « getPairlndex(S, Seq,) ;
IsSeq, « (SeqPair, 21) AND (SegPair, < N);
If Is5eq, then
remove(List, SeqPair,)
(Select second seq “Seqx" randomly AND uniguely}
Seq, « randomUniguelndex(List);
{Get parent of “Seq; " and “Seqg:™]
SeqPar «— getPa rmrr{Seq, ,Seq, };
If isPareniSeq(SeqPar) then
(Retrieve index of pair sequence of "Seq:" and test if leaf sequence}
SeqPair, < getPairindex(S, Seq,);
IsSeq, « (SeqPair, 21) AND (SeqPair, < N);
{Set parent of “Seq;" and “Seq:" in solution 5
A [Se’qr, I = SeqPar ;
5 ISEE_,J':]: SeqPar

Chadi KALLAB 46

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

(Glue broken pairs caused by the combination of “Seq; " with “Seqg>"]
I Is5eq, or IsSeq, then
{If pair of “Seq, " was broken, consider the other index of that pair as “Seq;"}
{Otherwise, consider the parent of “Seq;" and “Seq." as “Segi™)/
Seq, « SegPar ;
If Is5eq, then
Seq, « SegPair, ;
[If pair of “Seq:" was broken, consider the other index of that pair as “Seq:”)
[Otherwise, consider the parent of “Seq;" and “Seq:" as “Seq:” |
Seq, « SeqPar ,
If Is8eq, then
Seq, « SeqPair,;
(Get parent of "Seq:" and “"Seqy” and combine them if valid parent sequence
SeqPar, « ge.r.f’m'em‘{:'x'eq_, Seq,);
If isParentSeq(SeqPar,) then
5|Seq, | = SeqPar, ;
S[.'f:,‘q,] = SeqPar,;
propagate L"p{b' NS }'.
evaluate(S);
Return §

Chadi KALLAB

47

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

6.2.6 Recombine Parent Scolutions

Since one focus of this paper is the flexibility of the algorithms, solutions have to be
recombined in a general way. The general recombination schema of heuristics implies that a
given set of solutions are recombined to form a set of offspring solutions, by applying a given
number of cuts in the parent solutions. The length of the children set must be greater or equal to
that of the parents set (at least one child for each parent). There must be at least two parents
involved in the recombination process, generating at least two offspring.

For each parent instance, and each pair of sequences, if both sequences involved are
within the same cut, they are copied to the corresponding child; otherwise, they are recombined
according to their common parent sequence. The choice of the child is determined by both the
index of the parent in the set, and the number of cut the pair sequences are in,

Input: A set of Solutions * Pﬂrr:ma'[]" Mumber of Leaf Sequences “N "
Number of Cuts * Curs Parent-Children Ratio * Ratio ™
Pre-condition: dim(Parents) = 2 1=Cuts < N Ratio = |

Cutput: A sel of Solutions "Dﬂ&pr{'ng[]"
Post-condition: § randomly represent a valid tree topology, but basedon §

Steps:
L « dim(Parents|1]); (Length of each solution}
P « dim(Parents); {Number of solutions to recombine (parenis))
) « Ratio* P, {Number of offspring to generate from given parents/
MeeN-1; (Maximum number of cuts in parents = Number leaf seqs -1

C mﬂx{l, min{M i CHM}}; (Effective number of cuts possible|
l’jﬁ.’w:rf’ng[]-t— createList(0); [Initialize set of O offspring to be empty]
For i from | to O
imp < mod(i -1, p); [index of parent to start current offspring with/
(If all parents have been recombined, set " numCuts " randomly between 1 and M}
numCuts — C:
If i = F then
numCuts « random(1,M);
Slice [L-‘ :
NumCuts + 1
For j from | to N
(Retrieve index “k” of sequence “j" in “Parents [imp]"]
{If “k” is below “j” or not a leaf sequence, set it to “j"]
k « getPairlndex(Parentslimp), j);
If k< jor k>N then
ke j;

Chadi KALLAB 48

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

(Cut X includes all sequences in interval: IX *Slice, (X +1)* .S'Hf‘f] /
{First sequence is included in first interval)
Jf & |_{ i=0.5)/ LS'.‘t'r.‘:.*J: kil e L{k =05],u"'SFf{:frJ:
(Check if sequence “j" and “k” fall within the same interval “jj" |
If jj =kk then
[Copy the interval values from “Parents [imp+jj % P]"]
(Recall: “imp™ is the index of the parent to start the current offspring with/
parindex « mod(imp + jj, P):
Offspring l:', j]i— Fm'en.':.'[pm'fudﬂl‘, j]:
Offspring [f ! k] — Farﬂ;r.*:f[parindex, k] "
Else
(Get parent of both sequences *j" and “k” and set it in current offspring}
SeqPar < getParent(j,k);
Ufﬁ'p.-'ing[i. j] — SeqPar;
Offspring [!'. k|« SeqPar;
(After setting the leaf sequences slots in the current offspring, validate and evaluare it]
propagate Up(()_{f.’mre’n 2 [r'] N,NULL);
evaluate(Offspring [r' H :
Return Offspring

The next chapter discusses, for each algorithm, the suggested generic implementations
for each algorithm (GA, SA, SimE, StocE, TS) in more details, showing the implementation of
the flexibility and detailed tracing/chronology.

Chadi KALLAB 49

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 7 Generic Heuristic Implementations

7.1 Genetic Algorithms

Since Genetic Algorithms deal, in concept, with maximization, and since the suggested
evaluation approach retrieves its values from a scoring (cost) matrix, the fitness function should
be the negative of the evaluation function.

7.1.1 Main Procedure
The steps of the algorithm implemented are as follows:

Initialize the population randomly,
Initialize to zero the number of generations 1o deal with
Select and backup the fittest individual (group of chromosomes).
Record in history the initial population & initialization time
While NOT Terminate Process
Create a new empty population,
Do
Select two or more individuals to apply operators on.
Apply crossover to get the offspring, given a certain probability
Apply mutation to each individual of the offspring, given a certain probability
Save the newly generated individuals in the new population
Wihile (new population is not full)
Get fittest individual of the new population.
Compare it to the previous fittest individual,
If (its fitness value is greater) Then
Update fittest chromosome variable.
Set the new population as the current population
Increment number of generations
Record in history: new population & time needed to generate this new population
End While
Return the fittest individual found so far

Even though crossover and mutation operators are applied given certain probabilities, it is
very rare to find a parent individual (group of chromosomes) selected and passed to the new
population without modification. The initial population is filled with a fixed number of
individuals, whose chromosomes and genes are randomly generated. The fitness function of an
individual is proportional evaluation of each of the chromosomes that individual includes. The
algorithm supports elitism, to keep track of the best-fit individual found in previously handled
and in the current population. It keeps on iterating and handling populations until the process
termination criterion. In most problems, the termination criterion is satisfied when the algorithm
reaches a certain number of generations.

Chadi KALLAB 50

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

For our Parsimony Phylogenetic Trees problem encoding, recombining (crossover for 2
or more instances) a set of individuals, also called parents, is done by applying the
RECOMBINATION function. [Section 6.2.6 — p 48] As for the mutation operator, the algorithm will
need to involve the general PERTURB function(s) [Section 6.2.5 — p 45] with the individual in
concern,

7.1.2 Object-Oriented Design

Figure 13 shows an overview of the interaction between the different classes instantiated
during the runtime of the algorithm, discussed below. An allele can be found in at least one gene,
which in turn may be part of one or more chromosomes. An individual can be described as a
non-empty pool of chromosomes, which may or may not be related to each other. A population
includes a fixed non-negative number of chromosomes, called the population size S.

‘ - Chromosome - Gene | Allele
| 1..* ..*

Individual | ‘

]-...

Population |5

| JI
1—-‘ GeneticAlgorithm i 3 — 1 | Nature ‘ I

: :

Figure 13: Brief Overview of GA Classes Interaction

As shown in Figure 13, the suggested flexible Genetic Algorithm tries to mimic as close
as possible the genome as known in Biology. In other terms, each instance of an NP-problem,
encoded to be used in this algorithm as an Individual, would be composed of one or more
chromosomes. Fach chromosome is constituted of a set of genes, which is defined as a
combination of different alleles. In our parsimony phylogenetic problem, when dealing with
DNA, we are consequently encoding each of the four {A, T, C, G} nucleotides into an allele.
Therefore, a gene will encode a fixed group of DNA nucleotides.

Chadi KALLAB 51

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

This design makes the algorithm flexible, in a way that it allows changing the encoding
schema by just modifying the design and implementation of alleles and genes according to the
problem being handled. For instance, when dealing with binary encoding, an allele would have a
value of "0)" or "1". For decimal encoding an allele value could be one of {"0", "1, "2", "3", "4",
5NN, T, "N, "9}, Moreover, a non-standard decimal encoding could give, for example,
allele values between "00" and "79".

Since the encoding can consider different alternatives of values for alleles, some methods
that are problem-specific methods have to be implemented, among them: creating random genes,
creating random chromosomes/individuals/ populations and their fitness functions), and handled
by a sub-class of class “Nature”™. The algorithm-dependent procedures (selection, crossover,
mutation, termination) are handled by a sub-class of the “GeneticAlgorithm” class.

Chadi KALLAB 52

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.2 Simulated Annealing

The main idea behind Simulated Annealing was to simulate the annealing of metals,
where the metal is mapped into an initial solution, and the atom moves mapped into moves to
neighbor solutions, each of which is accepted, with a certain probability, if the cost of the
neighbor solution is better than the current and best one found so far. The probability of
accepting a solution is less or equal to a threshold value, directly proportional to the current
temperature, and inversely to the difference in cost between the neighbor and current solutions.
As the temperature cools down according to a given schedule, the algorithm is getting us closer
to the optimal solution. Therefore, it allows the current solution to perturb more often. This
process is repeatedly done for a given maximum number of moves, by applying the cooling rate
i to the temperature, and motion rate 3.

7.2.1 Standard Simulated Annealing
7.2.1-a: Main Procedure

Inputs: Initial Solution S, Initial Temperatre T, Cooling Rate &

Motion Rate S Initial number of moves M

Maximum Annealing time MaxTime
Precondition: o<1 and ﬁ >1
Ouwtputs: Optimal Solution BestS
Algorithm:
{Initialization of CurS, BestS, T, M and Time)
Cur§ « §,; T T, MeM,;
BestS «— Cur§
CurCost < Cost(CurS);
BestCost « Cost(BestS);
Time 0 ;
Repeat
updateHistory|CurS, BestS, T, M, Ti'mc']' ;
{Update CurS and BestS, by moving M times, at temperature T}
Metropolis\CurS, CurCost, BestS, BestCost,T,M);
updateHistory(MetropolisHistory);
{Time = total number of moves at the end of each iteration)
Time & Time+ M
{Cooling down the temperature by 100%a %)
Te-x*T;
{Increasing the number of moves by 100%(5-1) %)
M« [*M ;
Until Time = MaxTime
Return Bests

Chadi KALLAB 53

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.2.1-b: Metropolis Procedure
Inputs: Current Solution Cur§
Best Solution so far BestS
Current Temperature T
Ouitputs: #N/A
Algorithm:
Moves «— M ;

Repeat
{Get a neighbor solution into NewS)

NewS «— neighbor(CurS);

NewCost « cost{NewS):
UpdatelterationHistory(CurS, NewS, BestS)
{Check out the cost gainflost)

DeltaCost « NewCost — CurCost ;

If DeltaCost <0 then
{NewS has a cost lower than that of CurS}
Cury «— New§ ; CurCost «— NewCost;
If NewCost < BestCost then
{New§ has a cost even lower than that of BestS]
BestS — New§ BestCost «— NewCosr ;

Current Cost CurCost
Best Cost so far BestCast
Current Number of Moves M

Else
(NewS§ has a cost higher than CurCost; however, accept it with a probability]

{The probability decreases with the decrease of T and increase of DeltaCost}

D firCarst

If random{ J<e T then
CurS « New§ ; CurCost — NewCost;

Moves «— Moves—1;
Until Moves =0

Per simulation iteration, the Metropolis procedure computes M neighbor solutions. Like
the *Cost” method, the “Neighbor™ function is problem specific. Every problem that needs to run
Simulated Annealing needs to implement both “Cost™ and “Neighbor” functions.

Below is an algorithm that helps tuning the initial temperature parameter of the Simulated
Annealing, according to the standard and simple cooling schedule.

Chadi KALLAB

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.£2.2 Tuning Initial Temperature Procedure

Inpurs: Current Solution CurS§
Starting Temperature T
Result tolerance Threshold
Cherpuis: Initial Temperature 1,
Algarithm:
I«T;
Ratio « (1= Threshold);
While Ratio = (1 - Threshold) do
Antempted — M ;
Accepted 0
Moves — M
Repeat
NewS§ « neighbor{CurS):

NewCost « cost(NewS):

DeltaCost «— NewCosi — CurCost :

IT DeltaCost <0 then
CurS « NewS§ ;
CurCost « NewCost:
Accepted « Accepted+1;
Else
= DeltaCass
If random{)<e T then
Cur§ «— New§ ;
CurCost «+— NewCost;
Accepted «— Accepted+1;
Moves — Moves—1:
Until Moves=10
B, Accepred :
Antempied

Return 7,

Chadi KALLAB

Current Cost CurCost
Number of Moves Attempted M

55

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.2.3 Customized Simulated Annealing

Various cooling schedules, mentioned later, can be used with a Simulated Annealing
optimization. Let T} be the temperature for iteration i, where { increases from | to N. The number
of iterations is indirectly determined by the user through: MaxTime

This customized SA algorithm computes the number of cooling down iterations, before
hand, and tries to make each one as independent of the others as possible. Thus, the temperature,
number of moves and time should be as unrelated as possible to the respective values computed
in previous iterations.

Let 1, be the time elapsed up to iteration 7, and M, the number of moves for this iteration.
:r--I+M|-I 't.T I{ESN MI| J':,f']‘:EEN
M, if =1 M, if i=I

Il =

L

Where: M, = ﬁ*{

M, =M, for i=12...N

h=M,

L=th+M =tL=M,+M, = 31:{1"";3}*‘”“
Lh=t,+M, = 6L,=(1+8)*M,+M, = ;_1=(|+ﬁ+ﬂ3}*M‘,
f::"n""'wn:>f4={l+13+132}*Mu+M.1 — !-|={I+ﬂ+ﬁz+ﬂj)*Mu
Similarly:

k-l ﬁl_l
=M,*Y g = :1:[*M, for k=12...N

B-1

At the end of the simulation — 1, = MaxTime

" i A * v 3
MaxTime :[i) 1I]* M, = Lb,,q B]] e (5-1) MMﬁ.rTmu_

— * =TF o & o
Then: g% =1+ B-1) MMMT”"E = N = .fnmgfr[lug p {1 o \B=1)* MaxTime }]

J=t

i [

Therefore:

|
In(5)

M

4]

N = IntegerPa rfl

"]n[l y MaxTime * (5 - I]J‘

Chadi KALLAB 56

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

The different schedules, implemented in the cooling schedule described below, are
illustrated in Table 14. These schedules are used in the customized algorithm by referring to the
corresponding code, which is an integer value between | and 9. For flexibility reasons, code 10
is left to allow the algorithm to handle any externally defined schedule.

Code | Name Graph i |
' N Taneilek P TNr-raw
| _. o7 | H |) .uﬂn,(%)]
f i y . I l"“-.\ T
1 | Linear | ‘ 6 Cos i)
o | ; '
Mg .
. | ! g
W TN TR
\ 5 Vit
T =T,f "
"‘._ {Tu) ‘ 'IIII.H. “'!'J'r
\ | I:" +Tn
2 Scalar \ T Tanh I !
\.\\\ IIIIII
g | \
A ! T
Tt ap Vo 1A
i * | |I i 104 N
(- THN+1) i \ (“j
{ ; | g N I'.II
3 Hyperbolic Eol —_— 8 Cosh
i |l'\ : :E !
| TTee— -
i -
‘ e T =T-i" i T=The
NG () (%)
| \\H Infi) | \ . A N L T
. 2 A i Sguared \
4 Exponential N, 9 | q LY
N { Scalar \
\ ,
\ |
N, | -
!

5 | Sigmoid

i e —
i]

Table 14: Some Cooling Schedule for Simulated Annealing

Chadi KALLAB 37

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.2.3-a; Main Procedure

Inputs: Initial Solution S, Cooling Schedule code
Initial Temperature T, Total cooling Rate R
Motion Rate 4 Initial number of moves M,
Maximum Annealing time MaxTime
Precondition: B>
Schedule = | Linear | Scalar | Hyperbolic Exponential Sigmoid
e IR I e p— ;
code = = _
_ 6 7 8 9 10
"}c!;rm’u!e= Cos Tanh Cosh SquaredScalar | Customized
COutputs: Optimal Solution BestS
Algorithm:
CurS « S,; CurCost ¢ Cost(CurS);
Besty « Cur§ BestCost « CurCost,
N t—mwge.--Parr[I *In[1+ an"m*{ﬁ _1}]];
In(53) M,
T «T,;
MM,

For i from | to N do
updateHistory(CurS, BestS,T,M ,Time);
Metropolis\CurS, CurCost, BestS, BestCost,T,M);
updateHistorv(MetropolisHistory);
T « CoolingSchedule(code,i, N,R,T,);

M e ﬁi *M.;
Return BestS

In comparison with the standard S.A algorithm, this algorithm allows the simulation to
occur with a non-scalar cooling schedule, by specifying the code of the cooling schedule. One
difference is the absence of the time variable replaced by a loop-iteration index. Another
difference is the fact that the temperature and the number of moves are computed independently
of previous iterations, but according to the iteration index and some other parameters. Since the
global initialization phase was replaced by an iteration initialization, we have /—1 instead of i.
This algorithm uses the Metropolis procedure defined above by the Standard Simulated
Annealing procedure.

Chadi KALLAB 58

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.2.3-b: CoolingSchedule Procedure

Inputs: Cooling Schedule code Current iteration index {
Number of cooling steps N Total cooling Rate R
Initial Temperature T,

Precondition:

Schedule = | Linear | Scalar | Hyperbolic I Exponential Sigmoid
] 2 3| 4 5
code = :
{5 7 [) 10
Schedule=| Cos Tanh Cosh SquaredScalar | Customized

COutpurs: Current Temperature T
Algorithm:
Case code is

I Then Return T, —[

i*(l HR}}
N
Then A — #; Return 7, * R"

=2

3 Then Return T, *[{IHRHN+I}+ R{N‘H]_‘l}
J N(i+1) N

In(T “(1-R))

4 Then : Return 7, —i"
In(N)
i
5 Then Ae03 :'—E-]'. Return T, * “ R} J
(2 +e”

6 Then Return r%] {I+R+{{1—R}mr_’}“[;fJ}J

7 Then Return % {H‘R {“—R]*Tmﬂ{%—‘i]H

8 Then Return [{I ~ R)* Sec h I;I]:|

9 Then A e [NJ : Return 7, * k"
1} Then T c‘u.'.'{rmrfsz.iir:!wa’ufz{f. N.B.T:)4
If T <7, then Return T

Return c.‘r;rr;h'ngSc!mfur’c{l i,N,R,T, }

Chadi KALLAB 59

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Since the Simulated Annealing algorithm deals, in concept, with minimization, the COST
of a solution should be the result of the evaluation function, mentioned in a previous chapter. The
result of the NEIGHBOR function for a given solution is, in other words, that of the perturbation
for this solution.

7.2.4 Object Oriented Design

Figure 15 shows an overview of the interaction between the different classes instantiated
during the runtime of the algorithm, discussed below. The algorithm creates only one neighbor
for the current solution per iteration from its current solution, where some of them may be
compared to it and some to the best solution found so far. Therefore, the algorithm handles only
3 solutions per iteration.

1.* 1 [
[SAProblem

SASolution

SimulatedAnnealing

Figure 15: Brief Overview of SA Classes Interaction

The problem-specific methods (create solution, neighbor(s), cost) are handled by the
class “SAProblem”. The class “SimulatedAnnealing” handles the algorithmic-dependent
procedures; for instance, getting the temperature at the next iteration, for the given cooling
schedule.

Chadi KALLAB 60

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.3 Simulated Evolution

The Simulated Evolution algorithm was first designed to simulate the evolution of
components of a process in real-life. Each element is associated a value, called goodness, that
measures the distance between its current location and its optimal one, in the entire evolution
process. Given a certain probability, some of these components are considered as eligible to be
added to the more evolved state. This probability is controlled by the goodness of the component
along with a pre-defined bias parameter B < I, usually set to be within the range [-0.2, 0.2]. The
last step of this evolution iteration is to re-allocate these selected components to their positions in
the set (also called state). When the whole set has been validated, it is compared to the optimal
one found so far. Therefore, given a finite set M of distinct moveable elements, and a finite set L.
of locations, a state is defined as an assignment function 5: M — L satisfying certain constraints
mentioned above.

7.3.1 Simulated Eveolution Procedure
Inputs: Initial State: §, Probability Bias: B
Acceptance Value for Optimal Value: Threshold
Precondirion: |Hi <1
Outpirs: Optimal State: BestS
Algorithm:
L« t.ﬁm[S“)
Cur§ « §;, CurGoodness « stateGoodness(CurS) ;
Best§ « Cur§ ; BestGoodness < CurGoodness ;
G[I — f‘rmrw'..i'm}'[.{.];
Repeat
updateHistory(Curs);
{Evaluation)
For i from 1 to L do
G[r’] &« goodness(CurS,i);
[Selection]
P, « ereateDynamicList();
For i from | to L do
If Random()< (1-Gli]- B) Then
Add(P, i);
sortAscending {R.- O } :
fAllocation)
For i from | to dim(7;) do
CurS = Allocation(CurS, P,[i]);
CurGoodness « stateGoodness(Cur§) ;

Chadi KALLAB 61

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

If CurGoodness > BestGoodness Then
BestS « Cur§ ;
BestGoodness < CurGoodness .
finishUpdateHistory(BestS, Py) ;

While N{)T{.-;IupSfmuImfrm[BeyrS, CurS, Threshold)}

Since the Simulated Evolution algorithm deals, in concept, with maximization, the
GOODNESS of a solution should multiply by (~1) the result of the evaluation function, mentioned
in a previous chapter. The result of the ALLOCATION function applied on an element in a given
state is, in other words, that of the perturbation of this state.

7.3.2 Object Oriented Design

Figure 16 shows an overview of the interaction between the different classes instantiated
during the runtime of the algorithm, discussed below. The algorithm creates only one neighbor
for the current solution per iteration from its current solution. This neighbor solution is compared
to the current solution and potentially to the best solution found so far. Therefore, the algorithm
handles only 3 solutions per iteration: a current and a neighbor solution, and the best one so far.

1.* 10 1
SimEState [| Himl-:i‘n_nhlumj

1

Simulated Evolution

Figure 16: Overview of SimE Objects Interaction

The problem-specific methods are handled by the class “SimEProblem”. The
algorithmic-dependent procedures are handled by the class “SimulatedEvolution™.

Chadi KALLAB 62

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.4 Stochastic Evolution

The essence of the Stochastic Evolution algorithm lies in stochastically (randomly)
considering the move of items from the current state to form a new state given a certain control
parameter, Let us define the gain in costs as the difference of the costs between the current and
new state. The stochastic probability, affecting the selection process, is bounded by the varying
value of a control parameter and compared with the gain, which is supposed to be negative. In
the last part of any iteration, the algorithm expands the control parameter, if there is no change in
cost from previous iteration, otherwise tightens it back to its initial value. Then, before going into
the next iteration, if the current state is better than the best one found so far, the algorithm
rewards itself with a given number of loop iterations R.

7.4.1 Stochastic Evolution Procedure
Inputs: Initial State §, Control Parameter p,

MNumber of iterations R Control Parameter Increment p,

Outputs: Optimal Solution BestS

Algorithm:
items dim[.‘_-'u }:
Cur§S « 5,; CurCost « cost(CurS);
BestS — CurS ; BestCost « cost(BestS);
p e py. numiterations « 0,

counter « ();
While counter < R
updateHistory(CurS);
PrevCost « CurCost
(Perturb)
For { from 1 to ifems do
8§ « movelCurs, I'}'. Gain « CurCost —cost(S);
If Gain > random(- p,0) Then
Curs « §;
add(Moves, §); add(Moves, CurS);
Curs mﬂkﬁSmm(CurS) CurCost « cost(CurS);
{Update control parameter}
If PrevCost = CurCost Then
P—P+P,;
Else
PeF

Chadi KALLAB 63

Masters in Computer Science
Heuristics: Encoding for parsimony Phylogenetic Trees & Generic Implementations

{Update BestS if needed, and counter}
If CurCost < BestCost Then
BestS « CurS ; BestCost < CurCost ;
Counter + Counter = R;
Else
Counter < Counter +1;
Numliterations < Numlterations +1;
ﬁnfshUpdmer.smry{BesIS, p.Counter, Moves):

Since the Stochastic Evolution algorithm deals, in concepl, with minimization, the COST
of a state should be the result of the evaluation function, mentioned in a previous chapter. The
result of the MOVE of an element in a given state is, in other words, the solution resulting from
the perturbation of this state, without trying to validate the changes. The MAKESTATE function
validates the perturbed state by propagating the changes to the entire data-structure.

7.4.2 Object oriented Design

Figure 17 shows an overview of the interaction between the different classes instantiated
during the runtime of the algorithm, discussed below. The algorithm creates only one neighbor
for the current solution per ‘teration from its current solution. This neighbor solution is compared
to the current solution and potentially to the best solution found so far. Therefore, the algorithm
handles only 3 solutions per iteration: a current and a neighbor solution, and the best one SO far.

StocEProblem |||

StuchasticEmlutiun

Figure 17: Brief Overview of StocE Classes Interaction

The pmblcm—sp&ciﬁc methods are handled by the class «StocEProblem”. The
a‘lgﬂriihmit:-dcpendcnt procedures are handled by the class “Stuchasticﬁvolutiun".

Chadi KALLAB 64

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.5 Tabu Search

Tabu Search (TS) is a heuristic procedure proposed by Fred Glover to solve discrete
combinatorial optimization problems. The basic idea is to avoid that the search for best solutions
stops when a local optimum is found, by maintaining a list of non-acceptable or forbidden
(taboo) solutions/costs, called Tabu list or Short-Term Memory (STM). Advanced TS algorithms
suggest that some of the best solutions found so far be saved, for search diversification, in a list
called Long-Term Memory (LTM). An additional list, called Medium-Term Memory (MTM)
may be used to intensify locally the search, by keeping track of solutions, with estimate close
enough to that of the best solutions in the LTM.

The use of these memory lists explicit the fact that the updating process of the current and
best solution does elude those that were marked in the lists, which grow and shrink per iteration.
Occasionally, moving the current solution to a “forbidden™ solution is allowed given a certain
“aspiration” criteria, usually involving an improvement in cost from the current one.

As opposed to other algorithms, the current solution of the inner loop next iteration is
selected from a set of N neighbor solutions, deduced from the actual current one by perturbing it
N times. This solution will be overwritten if, at the beginning of the next iteration, a better
solution was previously found in memory.

Initialize Parameters & Initial Solution

Select S; such that:
{81, 82... Sn} S;:hﬁb;l;ﬂ‘r Lllu]: S
Neighbors (S) 1 tabu
Update Memories

& Select Current Solution S v

./l Put §; in memory J

Update Current and Best Solution if Ftt.‘LE\HElr}-‘

—

Iterate again :
: & Return Best Solution

Terminate J

Figure 18: Advanced Tabu Search General Flow Diagram

Chadi KALLAB 65

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

7.5.1 Tabu Search Procedure
Inputs: Initial Solution & Number of iterations numliterations
Number of neighbors numNeighbors
Precondition: numliterations > 0 and numNeighbaors > ()
Outputs: Optimal Solution BestS
Algorithm:
(Initialization of Cur§, and BestS, STM]
Cur§ « §,;
CurEstimate « estimate{lCurS)
BestS « CurS ;
BestEstimate «— Curbstimate |
LTM « createDynamicList();
I
While TRUE do
If Terminate or { > numlterations then
Exit While
(LTM is updated with the current solution and/or the best one, STM is cleared]
!qm‘nffMt'mr}r}'{)
{Current Solution and Estimate are selected from LTM first if possible]
Cur§ « selectFromMemory();
CurEstimate « estimatelCurS§);
updateHistory(CurS);
add (STM , CurEstimate);
[Generate a fixed number of perturbed solutions from current one/
Neighbors| |« neighbors(CurS ,mumNei ehbors);
For j from | to numNeighbors do
Sol « Ncighbm'.v[j];
SolEstimate « estimate(Sol)
{If neighbor is NOT tabu OR tabu but aspires to be better than current solution]
(Otherwise, consider the neighbor as tabu)
If NOT{isTabu(Sol)} or aspiration(Sel, CurS) Then
CurS « Sol ; CurEstimate « SolEstimaie |
[Update best solution so far if neighbor aspires to be the best solution
If aspiration(Sol, BestS) Then
BestS « Sol ; BestEstimate «— SolEstimate
Else If NOT{isTabu(Sol)} and NOT {aspiration(Sel, CurS)} Then
add(STM . SolEstimate);

finishUpdateHistory(BestS, Nefghbur.'r[LSTM)3 fe—i+1;

Chadi KALLAB

66

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

In this implementation, only the estimates are moved to the STM list, instead of the
whole solution’s properties. Therefore, the check to see if a solution is tabu becomes as simple as
testing for its penalty. The aspiration method implemented relies on finding the minimal or
maximal solution estimate.

If the Tabu Search algorithm deals with minimization, the ESTIMATE of a solution should
be the result of the evaluation function, mentioned in a previous chapter, and multiplied by —I
otherwise. For both approaches, the result of the NEIGHBOR function for a given solution is, in
other words, a set of results of the perturbation of this solution.

The fact that TS may deal, with either minimization or maximization, yields the
obligation to implement accordingly the method * BestSolution(soll, s0l2)”, on which relies the

aspiration procedure.

7.5.2 Object Oriented Design

Figure 19 shows an overview of the interaction between the di fferent classes instantiated
during the runtime of the algorithm, discussed below. The algorithm creates N neighbors per
iteration from its current solution, where some of them may be compared to it and some to the
best solution found so far. Therefore, the algorithm handles N + 2 solutions per iteration.

TSSolution - TSProblem

TabuSearch

Figure 19: Brief Overview of TS Classes Interaction

The problem-specific methods are handled by the class “TSProblem™. The algorithmic-
dependent procedures are handled by the class “TabuSearch™.

Chadi KALLAB 67

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 8 Conclusion

This thesis focused on the NP-Hard problem of finding an optimal tree topology where
leaves represent biological sequences. [2, 3] The problem consists of minimizing the number of
changes between given and/or derived sequences. As the number of sequences (o be compared
increases, the size of the search space grows exponentially. This fast growth induces the
necessity of using optimization methods in order to come up with an acceptable optimal
topology.

Since the phylogenetic trees literature have only discussed the use of an exact method
(Fitch) or only one or at most two Heuristics (Genetic Algorithms, Simulated Annealing, Tabu
Search, Simulated Evolution and Stochastic Evolution) in each one, with few of them having
some pseudo-code/code or none what so ever, this thesis attempted to suggest an encoding
schema ready to use in one or more of the above-mentioned algorithms, including the suggested
alternatives.

Thus, as a conclusion, this research tried to settle Genetic Algorithms, Simulated
Annealing, Simulated Evolution, Stochastic Evolution and Tabu Search, to a common encoding
ground, allowing researches in that field to be able to compare them all simultaneously, and
come up with a relatively good ordering of these heuristics. In addition, the generic
implementations of these heuristics can be used in other NP problems, not necessarily dealing
with bio-informatics. The detailed tracing/chronology property of the algorithms can be helpful
essentially for detailed evaluation and analysis of the runs executed for the algorithms, with the
corresponding encoding.

Chadi KALLAB 68

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 9 Future Work Ideas

This research work can be extended by:

» Specifying more accurately the scoring matrix and external factors
Even thought this task is the responsibility of the biologist, the computer scientist’s
opinion does count, in a way that it will help mapping the factors into an accurale
mathematical and computing science formula.

» Applying benchmarks to validate the algorithms
In order to accurately analyze the suggested algorithms generic alternatives, benchmarks
for different problem encodings have to be applied.

» Properly combining Heuristics to get optimal tree the fastest possible
In the suggested encoding schema, the evaluation function of a data-structure,
representing a phylogenetic tree, by itself, has a non-negligible computational load,
which might be handled by encoding and applying a heuristic or other fast algorithm. In
other terms, computing the optimal evaluation can be treated as a separate problem to
deal with using heuristics or fast algorithms.

Some problems that appeared while researching the heuristics are the following:

» Fixed Input Parameters: which means that there is a need to guess or write an algorithm to

tune those parameters before running the algorithm itself, so that the heuristic runs laster.

— “Genetic Algorithms™ requests a given number of generations, and population size,
among others.

—» “Simulated Annealing” needs an initial temperature T, motion and cooling rates, and
initial number of jumps Mg, among others.

—s “Simulate Evolution” requests a given fixed bias number (1Bl <1}

_y “Stochastic Evolution” works for a given number of iterations, and a control parameter
and increment, among others.

—5 “Tabu Search” explores the search space for a given number of iterations, and a number
of neighbors per iteration.

» Random-ness doesn’t handle potentially repeated moves/changes:

— “Genetic Algorithms”™ in methods: MUTATION & CROSSOVER.
— “Simulated Annealing” in method: NEIGHBOR.

—» “Simulated Evolution” in method: ALLOCATION,

— “Stochastic Evolution” in method: MOVE.

» Starting Solution / State may be too far from the optimal one, thus the algorithm will take a
longer time to discover that optimal one.

» Getting stuck with one procedure, even very close to a fairly acceptable solution.
The use of a heuristic or fast algorithm might depend on how far the current solution/state
is from the optimal one, thus switching between algorithms might aver to be helpful.

Chadi KALLAB 69

Masters in Computer Science
Heuristics: Encoding for Parsimony Phylogenetic Trees & Generic Implementations

Chapter 10 References

|

15

16.

Kim,] & Warmow, T. Tutorial on phylogenetic tree estimation. Retreived March 05, 2005,
from: http://kim.bio.upenn.edu/~jkim/media/

Moret, B, Bader, D, & Warnow, T. High-performance algorithm engineering for
computational phylogenetics. Retreived March 05, 2005, from:
http://www.cs.umd.edu/class/spring2003/cmsc838t/papers2/

Stamatakis, A., Ott, M., & Ludwig, T. RAXML-OMP: An efficient program for phylogenetic
inference o SMPs, Retreived March 06, 2005, from:
http://www ics.forth.gr/~stamatak/publications/

Opper, D. Parsimony phylogenetic trees. Retreived March 06, 2005, from:
http://www icp.ucl ac. be/~opperd/private/parsimony. html

Thinkquest 2001: International internet challenge. Retreived March 06, 2005, from Genetic
engineering, the creation website: http://library. thinkquest.org/C0123260/

Felsenstein, J. (1982). Numerical methods for inferring evolutionary trees. The Quarterly
Review of Biology, 57 (4).

Fitch, Wm. (1971). Toward defining the course of evolution: minimum change for a
specified tree topology. Syst Zool, 20, 406-416.

Shiirer, K. Branch and bound and its application to phylogeny. [n.p.] : [n.p.]

Affenzeller, M & Mayrhofer, R. Generic heuristics for combinatorial optimization problems.
[n.p.]: [np]

. Fitch, W.M. (1975). Toward finding the tree of maximum parsimony. In G.F. Estabrook

(Ed.) Proceedings of the Eighth International Conference on numerical taxonomy, (pp.
189-230). San Francisco: W.H. Freeman

. Barker, D. (2004). LVB: Parsimony and simulated annealing in the search for phylogenetic

trees. [n.p.] : [np.]

. Busetti, F. (2004). Simulated annealing overview. [n.p.] : [n.p.]
. Clarke, J, Harman, M, Hierons, R, Jones, B, Lumkin, M, Roper, M, et al. The application of

mela-heuristic search technigues to problems in software engineering. [n.p.] : [n.p.]

. Sait, S., Abd-El-Barr, M., Al-Saiari, U., & Sarif, B. Fuzzified simulated evolution algorithm

Jor combinational digital logic design targefing multi-objective optimization. [n.p.]
[n.p.]

Sait, S, Youssef, H, Khan, J, El-Maleh, A. Fuzzified iterative algorithms for performance
driven low-power VLSI placement. [n.p.] : [n.p.]

Khan, J. Performance driven, low-power, standard VLSI cell placement using simulated
evolution. [n.p.]:[n.p.]

Chadi KALLAB 70

