Rt
OO b ?f L“f

<

&
A Parallel Optimization Algorithm for the

Maximum Clique Problem

by
Mohamad A. Rizk

B.S., Computer Science, Lebanese American University, 2005

Thesis submitted in partial fulfillment of the requirements for the Degree

of Master of Science in Computer Science

Division of Computer Science and Mathematics

LEBANESE AMERICAN UNIVERSITY

June, 2008

Lebanese American University
School of Arts and Sciences

Thesis Approval Form

Student Name: Mohamad Rizk ID. #: 200105318

Thesis Title

A Parallel Optimization Algorithm for the Maximum Clique Problem

Program : M.S. in Computer Science
Division/Dept : Computer Science and Mathematics
School : Arts & Sciences - Beirut

Approved by :

am, Ph.D. (Advisor)
Assistant Professor of Computer Science

Nashaat Mansour, Ph.D.
Professor of Computer Science

Rony Touma, Ph.D.
Assistant Professor of Mathematics

Date : T\»wvg \q/ 12004

Plagiarism Policy Compliance Statement

I certify that I have read and understood LAU’s Plagiarism Policy. I understand that
failure to comply with this Policy can lead to academic and disciplinary actions

against me.

This work is substantially my own, and to the extent that any part of this work is not

my own I have indicated that by acknowledging its sources.

Name: Mohamad A. Rizk

Date: June 19, 2008

I grant to the LEBANESE AMERCIAN UNIVERSITY the right to use this work,
irrespective of any copyright, for the University’s own purpose without cost to the
University or its students and employees. I further agree that the University may
reproduce and provide single copies of the work to the public for the cost of

reproduction.

"I can't understand why people are frightened by new ideas. I'm frightened of old ones."

John Cage

Acknowledgment

I would like to thank my advisor Dr. Faisal Abu-Khzam for his guidance throughout
my Thesis work. A thanks is also to Dr. Nashaat Mansour and Dr. Rony Touma for
being on my thesis committee.

I would like to express my sincere gratitude to the Lebanese American
University whose financial support during my graduate studies made it all possible.

Finally, I would like to thank my friends and family for their long support.

Abstract

Recent advances in exact algorithm design and multi-processor industry have led to
an increasing interest in exact (or optimal) solutions for hard problems. This inter-
est was also motivated by the emergence of parametrized complexity theory as well
as the the recent discouraging hardness of approximation results for most intractable
problems. Coupling the best exact algorithms with scalable parallel implementations
is a promising approach for dealing with computationally demanding problems. In this
work, we introduce a parallel technique for solving the Maximum Clique problem us-
ing clusters of multi-core machines. Our algorithm employs a scalable load balancing
strategy that is based on dynamic search-tree decomposition. We present experimental
results that verify the scalability of our technique and its utility as a better alternative
to approximation algorithms in many practical applications.

Contents

1 Introduction
I.1 Applications
1.1.1 Protein Structural Alignment
1.12 DNAClassification
1.1.3 MiningMarketData

1.2 LiteratureReview
2 The Tomita-Kameda Approach

3 The Buffered Work-pool Approach
3.1 TheMaster,

32 TheWorker,

4 A Buffered Work-Pool Algorithm for Maximum Clique

12

13

14

15

21

23

25

ii

4.1 DataStructures e e 25

42 TheMaster e 27
4.3 Parallel Branching By Workers 29
44 Search-TreePruning 31
Experimental Results 33
Concluding Remarks 36
Bibliography 36
Appendix A . . . L L L e 39

il

List of Figures

3.1 The General BWP Approach

4.1 Task-buffer in the BWP version of TK

......................

.................

iv

List of Tables

5.1 Sequential TK Vs BWP version of TK

.................

5.2 BWP version of TK without dynamic search-tree decomposition .

Chapter 1

Introduction

Recent innovations in multiprocessor technology, encouraged algorithm designers to
put more efforts in designing exact parallel algorithms to solve computationally de-
manding applications. This interest in exact parallel algorithms was influenced by the
emergence of fixed-parameter tractability [13] and the tendency to avoid approxima-
tion algorithms. This tendency is justified by the the fact that some problems are hard to
approximate with a guaranteed bounded error, unless some strongly believed complex-
ity theories are dismissed or proved oppositely. Also, undesirable double inaccuracy or
(what we call) two-fold approximation is another reason for discarding approximation
algorithms. Two-fold approximation is the result of adopting simplifying assumptions
to model a question by a certain problem and then adopting an approximate solution
to that problem. Bringing together powerful platforms and the best exact algorithms
seems to be a promising approach for bridging the gap between intractability and prac-
ticality, by solving practical instances of hard problems which are often judged as
intractable. Such is the case of many graph problems like maximum clique, minimum
vertex covet, maximum independent set, etc. ..

It is natural to choose the best exact algorithm and a highly scalable parallel im-
plementation when seeking an accurate solution for a problem within reasonable time
limits. An efficient scalable parallel implementation should guarantee fair load balanc-
ing among different processors, and the computation cost should not be overwhelmed
by the cost of communication. In this work, we make use of clusters of multi-core

machines to solve the maximum clique problem by proposing a new parallel technique
that realizes the above mentioned objectives.

Throughout this paper, we consider arbitrary, unweighted and simple graphs. A
graph is considered simple if it is undirected and containing no self-loops or multiple
edges. In other words, in a simple graph each vertex can not have an edge to itself
or multiple edges to the same endpoint, and each edge does not have a direction. We
denote a graph by G = (V, E) where V is the set of all vertices and E is the set of
edges. Two vertices are adjacent or neighbors if they have an edge between them, and
the degree of a vertex indicates the number of edges incident to it (cardinality/size of
its neighbors set). The maximum vertex degree in G will be the graph degree denoted
by A(G). Graph G' = (V, E) which is the complement of G is obtained by deleting
the edges between the neighbors in G, while adding edges between non neighbors.
G' = (V', E') is a subgraph of G if V'(G') and E'(G’) are subsets of V(G) and E(G)
respectively. G is an induced subgraph by V/(G') in G if every pair of vertices in
V'(G’) exhibit the same relationship as in G.

A graph is regular if all the vertices in it have the same degree. A complete graph
is a regular graph of size n and degree n — 1. If an induced subgraph K in G is
complete, then K is a clique of size |V (K)|. The neighbors or candidates set of a
clique is the set of vertices that are adjacent to all vertices in the clique and therefore
can extend the clique to a larger one. A clique K is considered maximal if it can not be
contained as a subgraph in any larger clique. The maximum clique (henceforth MC)
problem requires finding a maximal clique of maximum size in the given graph and is
differentiated from the maximal clique enumeration (MCE) problem, which asks for
generating all the maximal cliques in the graph.

Graph coloring is the process of assigning colors to the vertices of a graph such that
no two adjacent vertices have the same color. The chromatic number of a graph is the
minimum number of colors that can be used to color a graph. A color class is defined
as the set of vertices that have the same color. It is obvious that no two vertices from
the same color class can belong to the same clique. Therefore, the chromatic number
or any number of color classes in a graph is an upper bound on the MC size in that
graph.

An independent set [in a graph G is a set of vertices that induces an edgeless

2

subgraph in G. The maximum independent set problem seeks an independent set of
maximum size in the given graph and is equivalent to the MC problem. This being the
case because a clique in a graph G is an independent set in the graph G.

A vertex cover in a graph G is a subset .S of vertices such that each edge in G has at
least one of its endpoints in S. Searching for a minimum vertex cover in G and hence
solving the minimum vertex cover problem in G is also equivalent to solving the MC
problem in G. The reason is that the vertices that do not belong to a vertex cover in G
constitute an independent set in G and therefore a clique in G.

1.1 Applications

The importance of the maximum clique problem stems from its significant applica-
tions in a large number of diverse scientific fields such as Coding Theory [12], Image
Processing [19], Bioinformatics [2, 3, 4], VLSI Design [22], Telecommunication (7],
Fault Diagnosis [8], and Economics [9].

1.1.1 Protein Structural Alignment

Detecting similarities in proteins structures is of great importance in the field of Bioin-
formatics, since it is believed that proteins of similar structure have the same function
and therefore can be classified in the same family. Some of the existing algorithms
model the problem of matching d-dimensional proteins structures as the maximum
common subgraph (MCS) problem which is one of the NP-complete problems. It
has been found that the MCS problem can be solved by finding MC in an association
graph that encodes the possible mappings between the two graphs being matched. A
template/base algorithm for protein structural alignment works as follows: model the
two input proteins as graphs G; = (V4, E;) and Gy = (V3, E,) where the vertices
may represent the secondary structures (a-helix or 3-strand) and the edges may denote
connectivity between them. Then build the association graph Gs = (Vj, E3) where
V3 = Vi X V3 and any two vertices (u,v) and (v, v') (u,u' € V; and v,v' € V,) are
connected either if (u,u') € E; and (v,v') € E, or (u,u') ¢ E; and (v,v') € Es.

The final step is to find MC in G5 which will determine the maximum common sub-
graph between the two graphs and eventually the putative common structure between
the proteins.

1.1.2 DNA Classification

One of the powerful methods used to classify DNA clones is Oligonucleotide finger-
printing. Given an array of DNA clones to be classified and a set of small DNA se-
quences (i.e. oligonucleotide of 8-50 bases) called probes, a probe is said to hybridize
a clone if it occurs as a substring in it. After a series of hybridization experiments
are carried on each clone with the set of probes, a fingerprint for each clone is cre-
ated which is simply a sequence of hybridization intensity values for the clone with
each probe. Those fingerprints are then transformed into normalized binary finger-
prints using reference values from control DNA clones (a set of clones with known
hybridization values with respect to the probes used in the experiments) where each
hybridization value in the fingerprint is replaced either by a 1 (hybridization) or a 0
(no hybridization) or a N (unknown or missing value). F inally the binary fingerprints
are clustered into the smallest possible number of clusters. In order to achieve the last
step and to resolve the missing values, Figueroa ez al. [15] greedily partition the graph
into unique cliques in O(p2Pn?), where p is an upper-bound on the number of N’s in
any fingerprint and n is the number of fingerprints. They represent the fingerprints
by graph nodes, where an edge is placed between two nodes/fingerprints if they do
not differ at any position or at any position they differ, one of the values is N. After
all maximal cliques are found and removed from the graph; it is searched for MC.
Clearly, the maximal cliques together with the MC constitute the different clusters of
the fingerprints.

1.1.3 Mining Market Data

Studying the behavior of the stock market by analyzing and visualizing the financial
data is one of the essential problems in modern finance. However, the analysis becomes
more complicated with the enormous data generated each day from the market. One

way to solve this problem is to model the financial data as a graph (called market graph)
where the vertices are company stocks and two vertices are connected if they have a
price correlation coefficient above a threshold 4 (-1< ¢ <1). Moreover, connected
vertices will represent the stocks that have similar behavior over time. Clearly the
larger 6 is, the more the connected stocks behave similarly. Let P;(t) be the price of
stock 7 on day ¢, R;(t) = In P:Z(_t)l) be the logarithm of return for the stock ¢ from
day(¢-1) to day ¢, and < R; > be the average of return of stock i over period N. Then

the price correlation coefficient C;; for two stocks i and j is calculated as:

C.. = <RB;R;>—<R;><R;>
Y /<R-<R;>®><RI-<R;>?>

A maximum clique in the market graph denotes the largest number of stocks which
are correlated together and the maximum independent set in it represents the diversified
portfolios in the market. Boginski et al. [9] studied the behavior of stocks over the
period 1998-2002 by solving the MC problem in the considered graph. They start by
finding a lower bound [on the MC size using a greedy algorithm. Then, they reduce
the graph size by removing the vertices whose degree is less than [, after that integer
programming is used to find MC in the reduced graph. In order to find the maximum
independent set, they find MC in the complement graph since it is more efficient. They
also partition the studied stocks into different clusters using a greedy algorithm for
partitioning the graph into unique cliques.

1.2 Literature Review

The MC problem is known to be NP-Hard in arbitrary graphs [17]. It was also shown
that unless P=NP, there is no polynomial time algorithm that can approximate the MC
problem within a factor of n!~¢ for any € > 0 [18].

One of the first algorithms for MC is due to Brone and Kerbosch (BK in what
follows) [10]. BK solves MC by enumerating all cliques in the graph and then finds
the one with maximum size among them. Recently, Tomita ef al. [26] proved that BK
runs in O(3"™/%) time. Another notable MC algorithm is due to Tarjan and Trojanowski
[24], which solves the equivalent Maximum Independent Set Problem in O(2™3) time.

5

After the 1970’s, the majority of MC algorithms are based on the branch-and-bound
method. The key features in any MC branch-and-bound algorithm were identified as:

1. Lower-Bounding: How to find a lower bound on the MC size?
2. Upper-Bounding: How to find a tight upper bound on the MC size?

3. Divide-and-Conquer: How to break the problem into smaller subproblems?

Most of the algorithms, in the literature, select a vertex v and find the largest clique
containing it. If not satisfied with any of the cliques that contains v, select another ver-
tex and try to find a larger clique that does not include v. However, different algorithms
follow different approaches regarding the selection of the vertices and answering the
first two questions.

Balas and Yu [6] adopts a Lower-Bounding strategy by finding a maximum clique
in a maximal triangulated induced subgraph before starting the search. Balas and Xue
[5] added an Upper-Bounding technique to the same algorithm by using fractional
coloring. Woods [28] improved further the algorithm by coupling the same techniques
for lower and upper bounding with selecting each time a vertex from the current largest
color class to be added to a current clique.

Carraghan and Pardalos [11] did not implement any bounding methods. Their
algorithm keeps track of the sum of the current clique and the number of the candidate
vertices and it prunes the search when this sum drops below the current MC size.
In addition to the pruning strategy, it also enhances the overall computational time
by selecting the vertices in the ascending order of their degrees as advised by Fuji
and Tomita [16]. Fahle [14] tested cost-based filtering techniques on Carraghan and
Pardalos algorithm by adding two additional constraints.

Fahle [14] presented in his paper a taxonomy of upper bounds for the MC problem
and succeeded in solving 12 DIMACS that were not solved before. During the same
period, Ostergard [20] got also better results than Carraghan and Pardalos by ordering

1A simple graph is triangulated if every cycle of length greater than three has a chord in it. A chord
is an edge between two vertices not adjacent in the cycle.

the vertices in the reverse order they used and coloring the vertices using greedy colot-
ing. Recently, Tomita and Kameda [25] introduced a MC algorithm with remarkable
improvements (see Chapter 2).

Pardalos ez al. [21] implemented a parallel version of Garraghan and Pardalos
algorithm using MPI (Message Passing Interface) and following the master-worker
technique with a centralized load-balancing strategy. They tested their algorithm on
random graphs of maximum size 500 using 2 and 4 processors. Shinano et al. [23]
used PVM (Parallel Virtual Machine) and PUBB (Parallelization Utility for Branch-
and-Bound algorithms) to implement a parallel MC algorithm. They succeeded in
obtaining exact solutions for five unsolved DIMACS instances.

Chapter 2
The Tomita-Kameda Approach

Tomita and Kameda [25] introduced a MC branch-and-bound algorithm, with a great
improvement over previously known methods. We refer to this algorithm by TK in
what follows. The remarkable experimental results reported by the authors of the TK
algorithm made it a natural choice for us to implement a parallel version of it. A search-
tree based clique algorithm like TK can be viewed as a traversal of a virtual tree whose
nodes are search states. Every search state consists of a set CurrentK holding the
current clique, a set Clique_Neighbors containing the neighbors of CurrentK, and
the MC found so far, say Maz K.

In order to reduce the overall running time and search space, the TK algorithm
employs a similar technique to Fuji and Tomita [16], and Carraghan and Pardalos [11].
Given a graph G = (V, E), it starts by sorting the vertices in V in a decreasing order
with respect to their degrees, such that the degrees of the unsorted neighbors of a vertex
v are decremented after v is placed in the sorted list. During this process, if a draw
occurs between two vertices or more in terms of their degrees, the one with minimum
sum of neighbors® degrees is selected. However, if all remaining unsorted vertices
have the same (minimum) degree, that is, the subgraph induced by those vertices is
regular, the vertices of this regular subgraph G” are kept unsorted. If the degree of G
is (|G"| — 1), then G” constitutes a current Maz K of size |G”|. The importance of
this step is that it prunes the search tree in the branching/expansion phase later on by
setting a lower bound on the size of any MC to be found.

In addition to the above pruning step, the TK algorithm prunes the search-tree
further by finding an upper bound for any MC in a graph by taking benefit of the
well known fact: the size of MC can not exceed the chromatic number of the graph.
Moreover, it employs a greedy coloring at every state of its search. The assigned colors
are represented by positive integers in such a way that no two adjacent vertices have the
same color. The colored vertices are then sorted according to their colors such that any
vertex v of color ¢ must have at least ¢ — 1 adjacent vertices with ¢ — 1 different smaller
colors. This sorting according to colors, helps in pruning/terminating the search at
any point where |Maz K| is greater than the sum of |CurrentX| and the maximum
assigned color. In the greedy-coloring algorithm described below, Color will contain
the colors of the vertices after coloring such that Color|[v] is equal to the color of vertex

V.

Greedy-Coloring(S, Color)
Begin
for (each vertex v in S)
c=1
while (any neighbor of v have color c)
Increment ¢
Colorjv] = ¢
Sort vertices in .S in ascending order according to their colors
End

The needed input for the TK branch function is the set of vertices sorted according
to their colors in ascending order, and their colors. As a criteria for selecting a vertex
for branching/expansion (adding it to CurrentK), the vertex with maximum color
being the last vertex in the sorted list is considered. The selected vertex should also
satisfy the condition that the sum of its color and |Current K| is greater than |[MazK|.
We refer to this vertex by Candidate in the sequel.

Once Candidate is determined, Clique_Neighbors (Initially is the whole set of
vertices) is updated to become the intersection between itself and the neighbors of
Candidate. If Clique_Neighbors is not empty after update, greedy coloring is applied
to the new intersection set and the branching function is called again. However, if
Clique_Neighbors is empty and the size of CurrentK is greater than the size of

MazK, the latter is then replaced by CurrentK, otherwise CurrentK is ignored.
As a last step, the current Candidate is removed from CurrentK and another one is
chosen from the sorted list. If no other candidate is found, the search backtracks.
Branch, below, is a simple description of the TK branch function.

Branch(Clique_Neighbors, Color)
Begin
while (Clique_Neighbors is not empty)
Candidate = last vertex in Clique_Neighbors
Remove Candidate from Cliqgue_Neighbors
if (Color[Candidate] + |CurrentK| > |MazK)|)
Add Candidate to CurrentK
New_Clique_Neighbors = Clique;N eighbors N neighbors of Candidate
if (New_Clique_Neighbors is not empty)
Greedy-Coloring(New_Cligue_Neighbors, New_C' olor)
Branch(New_Clique_Neighbors, New_Color)
else if ((CurrentK| > |MazK]|)
MaxK = CurrentK
Remove Candidate from CurrentK
else
return
End

A requirement for the branch function is that the vertices should be sorted, in ad-
vance, in ascending order with respect to their colors. However, initially V' is sorted
only with respect to the degrees of vertices; therefore coloring should be applied on
V. Yet, if greedy coloring is used, the order in V with respect to degrees is lost and
the order according to colors is gained. In order to solve this complication, the TK
algorithm applies an approximation coloring to the initially sorted set of vertices in V'
prior to branch.

It is clear that greedy coloring can be applied safely to the vertices of the regular
subgraph (if any was found), since those vertices are kept unsorted as explained pre-
viously. Therefore, the vertices of the regular subgraph, say Vo] to V5] (0 < 4 <
|G| — 1) are colored and sorted using the greedy coloring method. As for the vertices

10

V]i+1] to V[|G|—1], they are colored using an approximation coloring according to the
following criteria: let RegC' be the largest color used to color the vertices of the regular
graph, then V'[i + 1] receives color equal to the minimum of (RegC + 1, A(G) + 1),
V[i + 2] receives color equal to the minimum of (RegC + 2, A(G) + .., Vi + k]
receives color equal to the minimum of (RegC + k, A(G) + 1). The theory behind the
bounds RegC + k and A(G) + 1 is that any MC to be found will have at minimum a
size of RegC' + k where k > 1 and at maximum a size of A(G) + 1. It is obvious that
after this step, the last vertex in the sorted list will have the minimum degree among
other vertices and at the same time the highest color (equal to the chromatic number of
G). The algorithm of initial sorting and coloring is listed below.

Initial-Sorting-Coloring()
Begin
R=V
V=¢
=G| -1
RegC =1
while (R is not empty or does not induce a regular subgraph)
v = vertex with minimum degree in R or vertex with minimum sum of neighbors’ de-
grees among vertices with the same minimum degree in R
Vliij=v
Decrement ¢
Decrement the degrees of v’s neighbors
Remove v from R
if (R induces a regular subgraph)
Greedy-Coloring(R,Color)
RegC' = Color[|R| — 1] /*color of the last vertex in R*/
for(:=0to|R|—1)
Vi] = RJ[i]
if (R is a complete subgraph)
MazxK = R
for(i = |R|to |G| — 1)
Color[Vi]] = Min(RegC + 1, A(G) + 1)
End

11

Chapter 3

The Buffered Work-pool Approach

In this work, we couple messaging passing using MPI, threading and the methodology
of dynamic search-tree decomposition, proposed by Abu-Khzam et al. [1], to present
a new parallel load balancing technique. Our technique called the Buffered Work-pool
approach (BWP in what follows) is an efficient scalable framework for implementing
parallel versions of exact algorithms, specifically recursive backtracking ones such as
the TK algorithm.

The BWP approach is a hybrid dynamic load-balancing technique that contains
threading and message passing between the different processors of any cluster. It be-
longs to the category of master-worker techniques and similar to decentralized work-
pool described by Wlinkson And Allen (see chapter 7 of [27]). The core concept
of BWP is to permit workers to attain their own local shared work-pools (or task-
buffers). Each worker have different local threads that exchange tasks from/to their
process’s work-pool and communicate tasks with other workers through the master
process. Communication and synchronization overhead is reduced by assigning the
role of grid middle-ware to the master process. Furthermore, the termination detection
problem is solved by delegating the task of raising the termination flag to the master
process.

Most of the exact algorithms for computationally demanding applications are search-
tree based ones, where each computation is subdivided further into tasks and each task
may generate a larger number of other tasks. Therefore, in BWP each task represents

12

a search-tree node which in turn corresponds to a certain state during computation.
All state-related information should be encapsulated/encoded in the structure of its
corresponding task. This dynamic nature of search-tree decomposition does not limit
the objectives of BWP to best enhancement of execution time but also for excellent
utilization of the distributed memory and computational power in use.

Figure 3.1 is a general overview of the BWP approach. We describe the possible
scenarios in the following sections.

Master Task Buffy

-q request to receive {when master hungry levelfiworker starving levet is reached)
_) urgent request to receive (when master starving level is reached)
-—) request to send (when buffer is full}

) (oke/add Tasks

Figure 3.1: The General BWP Approach

3.1 The Master

The master process does not start immediately acting as a grid middle-ware. However,
it starts the computation process by performing any problem specific pre-processing
steps. Afterwards, it fills its task-buffer with an initial set of tasks and distributes, in a
sequential manner, those tasks among different workers. Until then, the master’s role

13

changes to communication with the involved workers. Throughout this communication
role, the master process will be responsible for answering the different requests of the
workers. It satisfies a worker requesting tasks by designating a number of tasks to be
sent to this worker after settling an agreement with it. In addition, it realizes the wish
of a worker to share part of its load with other workers by trying to accommodate part
of its load. It will delegated this load to other workers upon request for tasks later on.

3.2 The Worker

After the initial set of tasks is received, each worker starts communicating with the
master through one communication thread. Moreover, it fires a pre-defined number of
threads whose role is to consume the tasks in its work-pool. During the consumption of
tasks, each thread will have the ability to add new generated sub-tasks to its parent task-
buffer. Yet, this ability is controlled by satisfying all of the following three conditions:

1. The number of new generated sub-tasks is greater than a user-defined parameter
Add_Threshold.

2. The current computation level is a multiple of a predefined parameter called
Level_Threshold.

3. The task-buffer is not full and not locked by another thread.

The first condition ensures that no thread wastes computation time by spending
more time on adding tasks rather on expanding/branching tasks. The reason is that if
the number of generated tasks is small, it will be more efficient to expand those tasks
than to add them to the task-buffer. The second condition gives the user the ability to
decide how coarse/fine (s)he wishes the computation to be. The third condition ensures
that at most one thread can access the shared memory space at any time.

If any of the above conditions fails, the search thread proceeds as in the sequential
version by expanding its tasks recursively.

14

3.3 Communication Scenarios

In BWP, the cost of exchanging messages is concealed by the computation cost since
they occur simultaneously, where each worker has search threads to handle the com-
putation part and one different thread to communicate with the master. The cost of
communication is depreciated further by using asynchronous messages whenever pos-
sible.

Before any exchange of tasks occurs, the master and the involved worker should
settle an agreement concerning the number of tasks to be exchanged. This agreement
is established using synchronous communication. However, asynchronous communi-
cation is used whenever messages are not followed by an immediate exchange of tasks
such as in the case of requests, negative replies, and announcements (example: an-
nouncing a new maximum clique size). We differentiate between the above mentioned
types of messages by assigning a unique tag to each one according to its role. We
should also note that announcements are usually problem-specific messages.

During the computation, the master tries to maintain a minimum number of tasks
(which we refer to by Master_Starving_Level) in its work-pool in order not to reject any
future requests for tasks. It achieves this will by sending a request for tasks, tagged
as Urgent_Request message, to workers whenever the number of its tasks drops below
Master_Starving_Level. When a worker receives an Urgent_Request message, it starts
the negotiation with the master by sending an Urgent_Request_Answer message con-
taining the number of tasks it is ready to send (a pre-defined percentage). In return,
the master replies either positively by accepting to receive all/portion of the tasks des-
ignated by the worker, or negatively by rejecting to receive any tasks. The reply of the
master depends on the current number of empty slots below Master_Starving_Level in
its task-buffer. If a positive reply is received by the worker, the tasks in need are then
sent.

As a precautious step to starving, the master process sends to workers a Nor-
mal_Request message indicating that it needs tasks, if the number of tasks in its task-
buffer falls below its Master_Hungry_Level parameter. Each of the workers will not
reply positively usihg tag Normal _Request_Answer unless it has tasks above the pre-
defined value Worker_Starving Level. The master process will reply to any positive

15

answer by sending the number of tasks it still needs to reach the Master_Hungry_Level.
The exchange of tasks occurs if the last two communicated messages contained posi-
tive values. Receive_Normal Request_Answer and Send_N ormal_Request_Answer,
below, are the algorithms for the above normal request scenario executed by the master
and workers respectively. (ISend indicates non-blocking send in what follows)

Receive_Normal_Request_Answer()
Begin
worker_reply = Receive(Normal Request_Answer, worker)
if(worker_reply > 0)
if(number of tasks < Master_Hungry_Level)
empty_slots = Master_Hungry_Level — number of tasks
master.reply = Min(empty_slots, worker_reply)
Send(Normal Request_Answer, worker, master_reply)
Receive_Tasks(Normal Request_Answer, worker, master_reply)
else
ISend(Normal Request_Answer, worker, 0)
End

Send_Normal Request_Answer()
Begin
Receive_Message(Normal_Request, master)
if (number of tasks > Worker_Starving_Level)
worker.reply = number of tasks — Worker_Starving _Level
Send(Normal Request_Answer, master, worker _reply)
master.reply = Receive(Normal Request_Answer, master)
if (master_reply > 0)
Send_Tasks(Normal Request_Answer, master, master_reply)
else
ISend_Message(Normal Request_Answer, master, 0)
End

Categorizing requests for tasks sent by the master into urgent and normal, is an-
other way of achieving fair distribution of tasks among workers. A loaded worker in
terms of tasks will satisfy a large portion of the master’s need upon receiving a normal

16

request. As aresult, the master will not send an urgent request forcing workers to reply
positively unless they have empty task-buffers. Moreover, the urgent request decreases
the probability of a worker becoming idle during computation. This being the case
because the master will maintain a minimum level of tasks whenever possible and thus
it will feed starving workers with tasks upon request.

Two types of requests can be issued by any worker. A worker informs the master
that it is ready to share some of its tasks specifically those above its Worker_Hungry_Level
by sending a Delegation Request message when its buffer is full. The master replies
back by a Delegation_Request_Answer message containing the number of empty slots
in its buffer. The flow of tasks will not take place, unless the worker still has a full
buffer after receiving a positive answer from the master. The delegation scenario can
be described by the following algorithms. (Check Deadlock() is explained in section
3.5)

Send_Delegation_Request_Answer()
Begin
Receive(Delegation _Request, worker)
if(task-buffer is not full)
master.reply = task-buffer size — number of tasks /*number of empty slots*/
Send(Delegation_Request_Answer, worker, master_reply)
Check_Deadlock(Delegation Request.Answer,worker)
worker_reply = Receive(Delegation_Request_Answer, worker)
if (worker_reply > 0)
Receive_Tasks(Normal Request_Answer, worker, worker_reply)
else
ISend(Delegation_Request_Answer, worker, 0)
End

17

Receive_Delegation_Request_Answer()
Begin
master_reply = Receive_Message(Delegation_Request, master)
if (task-buffer is full and master_reply > 0)
worker_reply = task-buffer size — Worker_Hungry Level
worker_reply = Min(master_reply, worker_reply)
Send(Delegation_Request_Answer, master, worker_reply)
Send_Tasks(Delegation_Request_Answer, master, worker_reply)
else if(master_reply > 0)
ISend(Delegation_Request_Answer, master, 0)
End

A Tasks_Request message is sent by a worker to indicate that the number of tasks in
its buffer dropped below Worker_Starving Level and thus starving. The master sends
back the number of tasks it can delegate to this worker using Tasks_Request_Answer
tag. Note that, the master reserves equal portions of its tasks for the different work-
ers. Therefore, the master replies by sending the size of the portion for this starving
worker. If the master’s reply is positive, the worker responds by sending the number
of tasks it needs to reach Worker_Starving_Level. The exchange of tasks occurs if the
communicated values were positive as shown in the below algorithms.

Send_Tasks_Request_Answer()

Begin

Receive(Tasks_Request, worker)

if(number of tasks > 0)
master_reply = number of tasks/number of workers
Send(Tasks_Request_Answer, worker, master_reply)
Check Deadlock(Tasks_Request_Answer,worker)
worker_reply = Receive(Tasks_Request_Answer, worker)
if (worker_reply > 0)

Send_Tasks(Tasks_Request-Answer, worker, worker_reply)

else
ISend(Tasks_Request_Answer,worker, 0)

End

18

Receive_Tasks_Request_Answer()

Begin

master.reply = Receive_Message(Tasks_Request, master)

if (number of tasks < Worker_Starving_Level and master_reply > 0)
worker._reply = Worker_Starving_Level — number of tasks
worker_reply = Min(master_reply, worker_reply)
Send(Tasks_Request_Answer, master, worker._reply)
Receive_Tasks(Tasks_Request_Answer, master, worker_reply)

else if(master_reply > 0)
ISend(Tasks_Request_Answer, master, 0)

End

To decrease the number of messages exchanged and to avoid a bottleneck state that
may be caused by the master process, we put the following restrictions:

1. The master and worker should always send the master number of tasks they own
in their requests. This helps in estimating the ability of the worker/master to
delegate tasks.

2. A master/worker should not send a request, unless the other party has replied to
previous requests and is expected to have tasks (except for Delegation_Request
case).

The communication algorithms are shown below. (Note that New_Message() is
true if the messages buffer has a new message.)

19

Master-Communication()
Begin
While (Terminate==FALSE)
if(number of tasks < Master_Hungry_Level)
for (each worker)
if(worker has tasks and has answered previous requests)
ISend(Normal Request, worker, number of tasks);
if(number of tasks < Master_Starving Level)
for (each worker)
if(worker has tasks and has answered previous requests)
ISend(Urgent_Request, worker, number of tasks);
if(New_Message())
if(new_message_tag == Normal Request_Answer)
Receive_Normal Request.Answer()
if(new_message_tag == Urgent_Request_Answer)
Receive_Urgent Request_Answer()
if(new_message_tag == Tasks_Request)
Send_Tasks_Request_Answer()
if(new_message_tag == Delegation.Request)
Send_Delegation_Request_Answer()
End

20

Worker-Communication()
Begin
While (Terminate==FALSE)
if (number of tasks < Worker_Starving_Level)
if(master has tasks and has answered previous requests)
ISend(Tasks_Request, master, number of tasks);
if (task-buffer is full)
if (master has answered previous requests)
ISend(Delegation_Request, master, number of tasks);
if(New_Message())
if(new_message_tag==Normal_Request)
Send _Normal Request_Answer()
if(new_message_tag==Urgent_Request_Answer)
Send_Urgent_Request_Answer()
if(new_message_tag==Tasks_Request_Answer)
Receive_Tasks_Request_Answer()
if(new_message_tag==Delegation_Request_Answer)
Receive_Delegation_Request_Answer()
if(new_message_tag==Termination)
Terminate = TRUE
End

3.4 Termination Detection

To raise a termination flag, the master process should insure that:

1. Its task-buffer and the workers’ buffers are empty.

2. All search threads of the workers are idle.

3. No messages are in transmission.

If the task-buffer of a worker is empty and it receives a zero-valued Urgent_Request

message (i.e. the master’s buffer is empty), it applies any of the following:

21

e Ifnone of'its search threads is active, and it is not waiting for a Tasks_Request_Answer
message, it replies back by a negative value for the number of its tasks. The neg-
ative value indicates that it is ready to terminate.

e If not all its search threads are idle, or it has an unanswered Task_Request mes-
sage, the worker sends back a zero number of tasks.

In its turn, when the master receives a negative value in the Urgent_Request_Answer
message from a worker, it tags this worker as idle. After all workers are tagged as idle
and the master’s task-buffer is still empty, the master process announces the termina-
tion by broadcasting a termination signal.

The urgent request and termination scenario is described in the below algorithms.

Receive_Urgent_Request_Answer()
Begin
worker_reply = Receive(Urgent_Request_Answer, worker)
if(worker_reply > 0)
if(number of tasks < Master_Starving_Level)
empty_slots = Master_Starving_Level — number of tasks
master_reply = Min(empty_slots, worker_reply)
Send(Urgent_Request_Answer, worker, master_reply)
Receive_Tasks(Urgent_Request_Answer, worker, master_reply)
else
ISend(Urgent_Request_Answer, worker, 0)
else if (number of tasks == 0 and worker_reply < 0)
if (all workers are tagged idle)
Terminate=TRUE
Broadcast(Termination)
End

22

Send_Urgent_Request_Answer()
Begin |
tasks_of_master=Receive_Message(Urgent_Request, master)
if (number of tasks > 0)
worker_reply = a pre-defined percentage of the number of tasks
Send(Urgent_Request_Answer, master, worker_reply)
master_reply = Receive(Urgent_Request-Answer, master)
if (master_reply > 0)
Send_Tasks(Normal _Request_Answer, master, master_reply)
else if (tasks_of_master == 0 and number of tasks == 0)
if (received reply for Task_Request message and all threads are idle)
ISend(Urgent_Request_Answer, master, —1)
else
ISend(Urgent_Request_Answer, master, 0)
else
ISend(Urgent_Request_Answer, master, 0)
End

3.5 Avoiding Deadlocks

A deadlock occurs whenever two processes are involved in a synchronous communi-
cation and each one is waiting to receive a message from the other process to continue.
In BWP, synchronous communication is used to settle agreements between the mas-
ter process and any of the workers and asynchronous messages is used for requests.
Therefore, it might happen that the master and a worker X are trying to settle differ-
ent kinds of agreements at the same time. The result is that each one of them will be
waiting to receive a different kind of message from the other and therefore a deadlock
occurs. To avoid this, we delegate the task of escaping deadlocks to the master process.
After sending a blocking send message and before waiting to receive the correspond-
ing receive message, the master process probes its message buffer looking for blocking
messages from X. If the master receives a blocking message from X whose tag does
not correspond to the previously sent blocking message. In this case, the master gives
the priority to serve the worker’s message and then goes back into the blocking receive

23

state. In particular, the master checks for deadlock occurrence after it replies positively
(using blocking send message) to a Delegation_Request or Tasks_Request of a worker
X since there is no possibility for a deadlock to occur in other places. This is justified
by the fact that these are the only cases where the master tries to initiate an agree-
ment with the worker X (by sending the first blocking send message in the agreement
procedure). A simple algorithm for avoiding deadlocks can be the following.

Check_Deadlock(Required_Tag, worker)
Begin
while (TRUE)
if (master received a Required_Tag message from worker)
return
if (master received a blocking message other than Required_Tag message from worker)
serve worker according to its message
return
End

24

Chapter 4

A Buffered Work-Pool Algorithm for
Maximum Clique

4.1 Data Structures

Every search tree node (a.k.a. search state) in the search tree of the MC problem has a
different CurrentK, and a graph state (i.e. a different set of active/candidate vertices).
Therefore in BWP, each task has its own Current K and list of candidate vertices. The
colors of the candidate vertices should not be specified in the task structure except for
the current last vertex(Candidate) in the list which is sorted according to colors. As
we will elaborate later, the parallel branching function uses the color of Clandidate to
check if this vertex should be added to task’s CurrentK or not. If yes, the other ver-
tices are assigned new colors. Moreover, we encode the task structure as a linear array
called data of size n + 5, where n is the number of vertices in the graph. Furthermore,
slots data[n] to data[n + 4] will be used in the following way:

e data[n] contains vertex Candidate.

e data[n + 1] specifies the color of data[n]

e data[n + 2] holds the size of CurrentK

e data[n + 3] indicates the level at which this task was generated/created

25

e data[n + 4] holds the size of Clique_Neighbors

On the other hand, the first n slots of data contain Cligue_Neighbors and CurrentK.
During branching, if a vertex is added to CurrentK, it will be contained at

data[n — 1 — |CurrentK|]. In addition, each task is considered as valuable if the sum
of its data[n + 2] and data[n + 1] is larger than current |Maz K| since it may lead to
a larger MC.

During sequential branching, vertices are expanded in a descending order with re-
spect to their colors at each level. Imitating this behavior in the parallel branching
has a great impact on the size of the search tree by affecting the overall number of
tasks being generated and consumed later on (see section 4.4). However, if tasks were
to be added to or removed from the task-buffer in a random manner, their expand-
ing/branching order will be lost; unless a kind a search for the “right” task is applied
when a task to be consumed.

As a first step to mimicking the sequential version, we implemented the task-buffer
of every process in a format similar to a hash table. We used a linear array of pointers
called levels (representing search-tree levels) where each pointer points to another
array of pointers called colors such that colors[c] points to a doubly-linked list of tasks
whose Candidate vertex have color c. The size of levels is equal to the chromatic
number of the graph computed in the initial coloring stage. This is justified by the
fact that the height of the search tree can not exceed the largest possible size of MC
which is the chromatic number of the graph, say MazC. Guided by the rule that no
two vertices from the same color class can belong to the same clique, we record the
following observation. At search-tree level ¢, only one vertex from each of the highest
¢ color classes would have been added to CurrentK, with no possibility to use those
color classes again in the chosen search path. Therefore it is safe to set the size of
colors at level 0 to MazC, at 1 to MaxC — 1,..., atito MazC — i.

26

Figure 4.1 illustrates the task-buffer in the BWP version of TK.

levels colors tasks
A /
/ N
o N . N ™
levels [0}
levels {i]
levels [MaxC-1}

Figure 4.1: Task-buffer in the BWP version of TK

As shown in the above figure, tasks point to each other even if they are at different
levels and belong to different color sets. This property reduces the time needed to add
and remove tasks from the buffer.

4.2 The Master

The master process starts the computation by doing the pre-processing steps that in-
clude the initial sorting and coloring of vertices as described in the TK algorithm. After
the pre-processing steps, the master process encodes/encapsulates each vertex v in the
sorted list (except for the vertices of the regular subgraph R, if any was found during
the pre-processing steps) as a task whose data[n + 2] and data[n + 3] are equal to zero,
whereas its data[n] and data[n + 1] contain v and its color respectively. Moreover,

27

every v in the sorted list represents a different search path which does not consider all
the vertices whose index is larger than v’s index. Therefore, the candidates list in each
task is defined as the list of all vertices from index zero to index of v in the sorted list.
Afterwards, the created tasks are inserted to the master’s task-buffer. In order to mini-
mize the search time, the master starts the search phase in a depth-first manner (starting
by the task whose Candidate has the highest color) and adds the tasks generated on
each level to its buffer. Moreover, the master stops the search when the number of
tasks generated, at search-tree levels greater than zero, is at least equal to the number
of workers. After that, the master distributes equally the generated tasks among the
processors. In the following, we explain the algorithm followed by the master process
in case of MC.

Master()
Begin
Initial-Sorting-Coloring()
for (i = |R|to |G| — 1)
task = New_Task()
task.dataln] = Vi
task.dataln + 1] = Color[V[i]]
task.dataln + 2] =0
task.dataln + 3] =0
task.dataln + 4] =i
for(j =0toi—1)
task.datalj] = V[j]
Insert task to the task-buffer
while (number of tasks whose data[n + 3] > 0 is less than number of workers)
Branch and add the new tasks to task-buffer
Distribute the tasks whose data[n + 3] > 0 equally among workers
Master-Communication()
End

28

4.3 Parallel Branching By Workers

After receiving the initial set of tasks, the worker sets off one communication thread
and a pre-defined number of search threads. Each search thread takes one task from
the buffer (if task-buffer is not empty) and starts recursively expanding it. Moreover,
the search thread checks whether the sum of task’s Candidate color and the size of
its CurrentK (i.e. data[n + 1] + data[n + 2]) is larger than the current MC size. If
so, Candidate is added to task’s Current K whose size is thus incremented by one.
Then, a new Clique_Neighbors set is created by determining the intersection between
the neighbors of Candidate and current Clique_Neighbors set.

If the new Clique_Neighbors set is empty and |CurrentK| is less than |[Maz K|,
then the branch on the considered task is terminated and a new task is chosen by the
search thread. However if |CurrentK| is greater than |[Maxz K|, then |CurrentK| is
sent to the master process to replace |MazK|. In its turn, the master broadcasts the
received |CurrentK | as the new |Maz K'|'. On the other hand, if the intersection set is
not empty and has a size s, greedy coloring is applied on it as in the sequential version
to get a new ordering by color. The search thread follows a similar procedure to the
master process by branching on a task in a depth-first manner and adding the generated
tasks in a breadth-first manner. The search thread produces a new list of tasks of the
colored and sorted intersection set according to the following: let v be a vertex of index
i(< i < s — 1) and has color ¢ in the sorted intersection list. The created task will
have v, ¢, |CurrentK | and current search-tree level contained in data[n], data[n + 1],
data[n + 2], and data[n + 3] respectively. The value for data[n + 4] will be i since the
vertices between index 0 and ¢ — 1 will constitute the candidates list for the new task.
If all the conditions in section 3.2 are satisfied, the produced tasks are added to the
task-buffer in ascending order of their colors except for the last task (task of highest
Candidate’s color) in the list which will be expanded recursively. On the other hand,
if not all the conditions are satisfied or the task-buffer accommodated only a portion
of the produced tasks, the current thread branch recursively the remaining tasks in
descending order of their Candidate color.

The BWP version of Branch() is shown below.

IThe master process assures again that the received |CurrentK)| is larger than |MaxK| before
sending a broadcast message; if not, no action is taken.

29

Worker-Parallel-Branching(task)
Begin
if (task.data[n + 1] + task.data[n + 2] > |MazK))
Candidate = task.data[n]
computation-level = task.data[n + 3]
for (i = 0 to data[n + 4])
Cligue_Neighbors|i] = task.datali]
for (i = 0 to data[n + 2))
CurrentK|[i] = task.datajn — 1 — 1]
Add Candidate to CurrentK
New_Clique_Neighbors = Clique_Neighbors[i] N neighbors of Candidate
if (New_Clique_Neighbors is not empty)
Greedy-Coloring(N ew_Clique.Neighbors, Color)
s =|New_Cligue_Neighbors|
new_tasks = New_Tasks(s) /*Allocate array of tasks and of size s*/
for(i=s—11t00)
v = New_Clique_Neighborsli]
if (Color[v] + |CurrentK| > |MaxK]|)
new_tasks(i].data[n] =v
new_tasks(i].data[n + 1] = Color[v]
new_tasks(i].data[n + 2] = |CurrentK|
new_tasks[i].data[n + 3] = computation-level + 1
new_tasks[i].dataln + 4] =1
for(j =¢—1t00)
new_tasksli].data[j] = New_Clique_Neighbors[j]
for (j = 0 to |CurrentK)|)
new_tasks[i}.data[n — 1 — j] = CurrentK[j]
else
break
If (task-buffer is not full and not locked and s > Add_Threshold and
computation-level %Level_Threshold == 0)
if possible add the first s — 1 tasks in new_tasks to tasks-buffer
while (new_tasks is not empty)

task = last task in new_tasks

30

Worker-Parallel-Branching(task)
Remove task from new_tasks
else /*New_Clique_Neighbors is empty*/
if (|CurrentK| > |MazK|)
MazK = CurrentK
ISend(New_MC, master, M az K)
End

4.4 Search-Tree Pruning

In addition to the fact, that the parallel branch function will ignore any task whose
data[n+1]+data[n+2] < |Max K| during addition of tasks and recursive branching.
We further reduce the number of tasks being handled by deleting tasks that do not
satisfy this condition during the exchange of tasks between the master and any of the
workers. Deleting tasks during communication is possible since the the master and a
worker X might have different values for |Maxz K| (synchronization of value did not
occur yet). Furthermore, when a process receives a new value for |Max K|, it deletes
all tasks in its buffer which may be become worthless after the update of |Maz K]|.

The criteria for selecting tasks for exchange and branching by the communica-
tion and search threads plays a major role in reducing the search space. There are
mainly two alternatives when removing a task from the task buffer: either remove a
task from the top of the search-tree or from its bottom, i.e. either in an ascending order
of data[n + 3] or vice versa. In general, the choice is problem-specific since when the
sequential version is brute-force in nature, it will not make a difference in what order
tasks are chosen because eventually all of them will be expanded.

However, in the BWP version of TK, it is clear that the larger Max K is, the less
the tasks and search-space will be. Moreover, priority is given to the tasks at the the
bottom of the search-tree with highest color since those represent the shortest path
to any new Maz K. Therefore, the master and the communication/search threads of
the workers are forced to select the task with the highest level and Candidate’s color
(data[n + 1] and data[n + 3]) from the task-buffer during exchange and branching of

31

tasks. If there is more than one task that share the same values for data[n + 1] and
data[n + 3], the one with minimum candidates list (data[n + 4]) is chosen.

32

Chapter 5

Experimental Results

In order to assess the efficiency of the BWP algorithm for MC, we implemented the
sequential version of the TK algorithm and our parallel version. We have used graphs
from the DIMACS Benchmark (http://dimacs.rutgers.edu/Challenges) to compare both
versions; moreover we chose the graphs that the sequential TK is known to take near
to or more than one hour to solve. Since, the BWP algorithm employs threads and
communication between the master and the different workers, the search-tree built and
the computation time for a given instance may vary over multiple runs. Therefore, in
Table 5.1 we report the average, maximum and minimum run times for 25 runs on each
instance. The parameters’ values which were used during the experiments are listed in

appendix A.

During experiments, we have used different sets of parameters’ values on each
instance until we had an average super-linear/linear speedup. We can not claim that
the reported speedups are the best nor the worst that one can ever get on the considered
instances. Another set of parameters’ values may result in greater or smaller speedup.
We should note also that the amount of work done by the parallel version is more than
that of the sequential since multiple search-spaces are explored at the same time(i.e.
more tasks are generated and branched). However, the speedup is achieved since more
processors are used and the search-tree is conquered in parallel. In other words, in
the BWP version, larger values for the maximum clique size are found faster than
the sequential version; therefore, the search tree is pruned at earlier stages than the

33

Graph Sequentlgl K BWP verslon of TK (processors = 6) 8peedup
Average Max Min
Uger Time UserTime User Time User Time
{V,B,MC) {8ecs) {8ecs) (Becs) {8ocs)
p_hat1000-2 5886 557 771 454
(1000, 244799 ,46) (1.83 hours) (9.28 min) (12.8 min) (7.56 min)
p_hat500-3 5691 619 726 411
(500, 93800,50) (1.58 hours) (10.13 min) (12.1 min) (6.85 min)
brock400_1 3861 620 914 494
(400,59723,27) (1.07 hours) (10.3 min) (15.2 min) (8.24 min)
brock400_3 2632 179 492 99
(800,59681,31) (43.87 min) (2.98 min) (8.2 min) (1.65 min)
brock800_1 34174 5669 7100 5032
(800,207505,23) (9.5 hours) (1.57 hour) [(1.97 hours) | (1.39 hours)
brocks00_2 30696 4980 7844 3710
(800,208166,24) (8.52 hours) (1.83 hours) | (2.17 hours) | (1.03 hours)
brocks00_4 14478 2171 3548 1734
(800,207643,26) (4 hours) (36.1 min) (59.14 min) (28.9 min)
MANN_a45 5400 825 938 753
(1035,533115,345) (1.5 hours) (13.75min) | (15.64 min) (12.55 min)

NN Super-linear Speedup
Average Speedup = Seq. Time/Avg. Time; Minimum Speedup = Seq. Time/Max. Time; Maximum Speedup = Seq. Time/Min. Time

N Linear speedup

Table 5.1: Sequential TK Vs BWP version of TK

sequential version and hence the computational time is less.

We have used six processors (one master and five workers) in our experiments.

Therefore, we consider a speedup in the range five to six as linear and as super-linear
if it is greater than six. The BWP efficiency is shown by the super-linear speedup
achieved in most of the cases. Also, the reported runtimes proves our previous claim
which is, in BWP the communication and synchronization times are concealed. Since
if otherwise, the the reported speedups should have been less.

In order to study the benefit of the dynamic search-tree decomposition and branch-
ing on the search-tree in a depth-breadth first manner by permitting the threads to
add tasks. We did experiments (shown in Table 5.2) on two graphs p_hat1000-2 and
brock800-1. During those experiments, we reduced the exchange of tasks to the min-
imum by setting the values of Hungry Level and Starving_Level parameters for the
master and the workers to 2 and 1 respectively. In addition, we used one search thread
in each worker without giving it the permission to add tasks to the buffer by setting
the Add_Threshold value to a very large value (100000). The speedup obtained was
near to linear in the case of p_hat1000-2 and below linear in the case of brock800-1.

34

Graph Sequential TK BWP version of TK (processors = 6)
{V,E,MC) User Time (8ecs) User Time (Secs) 8peedup
p_hat1000-2 5886 1300
(1000, 244799,46) (1.63 hours) (21.6 min) 4.60
brock800_1 34174 8330
(800,207505,23) (9.5 hours) (2.31 hours) 410

Speedup = Seq. Time/BWP Time

Table 5.2: BWP version of TK without dynamic search-tree decomposition

Even with increasing the number of the threads, the speedup achieved was not much
better. In most cases, the extra threads will be doing worthless work that does not help
in pruning the search tree at early stages. This is the case because each thread will

be using only depth-first search on a task (from the initial set of tasks) until this task

can not lead to any larger MC and without adding any generated tasks during search.
Permitting threads to add tasks at different levels (and hence adding the property of
breadth-first search) helps by increasing the chance of reaching a larger MC size and

reducing the search-tree size in a faster manner. However, we should note that this per-

mission should be controlled by taking into consideration the size and density of the
graph instance. In addition, a balance should be found between the number of threads,

the frequency of adding tasks, and the number of tasks to add.

35

Chapter 6
Concluding Remarks

Many real life questions are modeled by the maximum clique problem (MC). Approx-
imation algorithms may not be always convenient due to the complex nature of the
corresponding question. This is often the case in Bioinformatics and Economics ap-
plications. In this work, we proposed an efficient parallel exact algorithm for MC.
Our parallel algorithm employs the Buffered Work-pool approach (BWP), which is a
dynamic load balancing technique that targets clusters of shared-memory multiproces-
sors. BWP is suitable for highly demanding computations where each task assigned to
a process has the potential of producing a large number of sub-tasks. Another attrac-
tive feature of BWP is the fact that it reduces the communication latency by permitting
computation and communication to occur simultaneously.

The BWP method applies well to many other combinatorial problems. Other mem-
bers of our research team are currently using it in designing algorithms for many clas-
sical problems like SAT, Vertex Cover and Maximal Cliques enumeration.

36

Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[7]

F. Abu-Khzam, M. Langston, P. Shanbhag, and C. Symons. Scalable parallel
algorithms for fpt problems. Algorithmica, 45(3):269-284, 2006.

D. Bahadur, T. Akutsu, E. Tomita, and T. Seki. Protein side-chain packing prob-
lem: a maximum edge-weight clique algorithmic approach. In APBC ‘04: Pro-
ceedings of the second conference on Asia-Pacific bioinformatics, pages 191—

200, Darlinghurst, Australia, 2004. Australian Computer Society, Inc.

D. Bahadur, T. Akutsu, E. Tomita, T. Seki, and A. Fujiyama. Point matching
under non-uniform distortions and protein side chain packing based on efficient
maximum clique algorithms. IPSJ SIG Notes, 2002(36):21-24, 20020510.

D. Bahadur, E. Tomita, J. Suzuki, K. Horimoto, and T. Akutsu. Protein threading
with profiles and distance constraints using clique based algorithms. J. Bioinfor-
matics and Computational Biology, 4(1):19-42, 2006.

E. Balas and J. Xue. Weighted and unweighted maximum clique algorithms with
upper bounds from fractional coloring. Algorithmica, 15(5):397-412, 1996.

E. Balas and C. Yu. Finding a maximum clique in an arbitrary graph. SIAM
Journal on Computing, 15(4):1054-1068, 1986.

B. Balasundaram and S. Butenko. Graph domination, coloring and cliques in
telecommunications. In M. Resende and P. Pardalos, editors, Handbook of Op-
timization in Telecommunications, pages 865-890. Spinger Science + Business
Media, New York, 2006.

37

[8] P. Berman and A. Pelc. Distributed fault diagnosis for multiprocessor systems.
In Proceedings of the 20th Annual International Symposium on Fault-Tolerant
Computing, pages 340-346, 1990.

[9] V. Boginski, S. Butenko, and P. Pardalos. Mining market data: a network ap-
proach. Computers and Operations Research, 33(11):3171-3184, 2006.

[10] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. Communi-
cations of the ACM, 16:575-577, 1973.

[11] R. Carraghan and P. Pardalos. An exact algorithm for the maximum clique prob-
lem. Operations Research Letters, 9:375-382, 1990.

[12] 1. Chuang, A. Cross, G. Smith, J. Smolin, and B. Zeng. Codeword stabilized
quantum codes: algorithm and structure. ArXiv e-prints, 803, 2008.

[13] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[14] T. Fahle. Simple and fast: Improving a branch-and-bound algorithm for maxi-
mum clique. In ESA ‘02: Proceedings of the 10th Annual European Symposium
on Algorithms, pages 485-498, London, UK, 2002. Springer-Verlag.

[15] A. Figueroa, J. Borneman, and T. Jiang. Clustering binary fingerprint vectors
with missing values for dna array data analysis. J. of Computational Biology,
11(5):887-901, 2004.

[16] T. Fuji and E. Tomita. On efficient algorithms for finding a maximum clique.
Technical report, IECE.

[17] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman, New
York, 1979.

[18] J. Hastad. Clique is hard to approximate within n'~¢. In FOCS ‘96 Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, page 627,
Washington, DC, USA, 1996. IEEE Computer Society.

[19] K. Hotta, E. Tomita, and H. Takahashi. A view-invariant human face detection
method based on maximum cliques. Transactions of Information Processing So-
ciety of Japan, 44(SIG14(TOMDY)):57-70, 2003.

38

[20] P. Ostergard. A fast algorithm for the maximum clique problem. Discrete Appl.
Math., 120(1-3):197-207, 2002.

[21] J. Rappe P. Pardalos and M. Resende. An exact parallel algorithm for the maxi-
mum clique problem. pages 279~300. Kluwer Academic Publishers, 1998.

[22] R. Pal, S. Pal, and A. Pal. An algorithm for finding a non-trivial lower bound for
channel routing. Integr. VLSI J., 25(1):71-84, 1998.

[23] Y. Shinano, T. Fujie, Y. Ikebe, and R. Hirabayashi. Solving the maximum clique
problem using pubb. In IPPS ‘98: Proceedings of the 12th. International Parallel
Processing Symposium on International Parallel Processing Symposium, page
326, Washington, DC, USA, 1998. IEEE Computer Society.

[24] R. Tarjan and A. Trojanowski. Finding a maximum independent set. SIAM Jour-
nal on Computing, 6(3):537-546, 1977.

[25] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimiza-
tion, 37:95-111, 2007.

[26] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for
generating all maximal cliques. In 10th Int. Computing and Combinatorics Conf.
(COCOON), 2004.

[27] B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers (2nd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[28] D. Wood. An algorithm for finding a maximum clique in a graph. Operations
Research Letters, 21(5):211-217, 1997.

39

Appendix A

The parameters’ values that were used during the experiments are listed below:

e p_hat1000-2
{
Worker task-buffer size=1000; Worker_Hungry_Level=800; Worker_Starving_Level=250
Master task-buffer size=1000; Master_Hungry_Level=75; Master_Starving_Level=30
Number of search threads=5; Add_Threshold=50; Level_Threshold=5

}

e p_hat500-3
{
Worker task-buffer size=500; Worker_Hungry_Level=300; Worker_Starving_Level=200
Master task-buffer size=500; Master_Hungry Level=100; Master_Starving_Level=50
Number of search threads=5; Add_Threshold=25; Level_Threshold=5

}

o brock400-1
{

Worker task-buffer size=1000; Worker_Hungry. Level=800; Worker_Starving Level=250
Master task-buffer size=1000; Master_Hungry Level=50; Master_Starving_Level=20
Number of search threads=5; Add_Threshold=25; Level_Threshold=5

}

40

brock800-1

{

Worker task-buffer size=1600; Worker_Hungry_Level=600; Worker_Starving_Level=300
Master task-buffer size=1600; Master_Hungry Level=75; Master_Starving.Level=30
Number of search threads=15; Add_Threshold=20; Level_Threshold=3

}

brock800-2

{
Worker task-buffer size=1600; Worker_Hungry_Level=600; Worker_Starving _Level=300

Master task-buffer size=1600; Master_Hungry_Level=75; Master_Starving_Level=30
Number of search threads=10; Add_Threshold=15; Level_Threshold=4

}

brock800-4

{
Worker task-buffer size=1600; Worker_Hungry_Level=600; Worker_Starvin g Level=300

Master task-buffer size=1600; Master_Hungry_Level=75; Master_Starvin g Level=30
Number of search threads=10; Add_Threshold=20; Level_Threshold=4

}

MANN_a45

{
Worker task-buffer size=1400; Worker_Hungry_Level=800; Worker_Starving.Level=250

Master task-buffer size=1400; Master_Hungry_Level=75; Master_Starving_Level=30
Number of search threads=15; Add_Threshold=50; Level_Threshold=5

}

41

