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Abstract

Proteins are organic compounds made up of chains of amino acids. These amino acids
are formed from atoms and the chain fold into complex 3-dimensional structures based
on their chemical and physical properties. A protein is characterized by its 3D structure,
which defines its biological function. The protein structure prediction problem has real-
world significance where several diseases such as Alzheimer, cystic fibrosis, mad cow
disease, and many cancers are associated with the wrong folding of proteins.
Computational methods for predicting protein structures have recently gained
popularity. In this thesis, we present a scatter search algorithm for predicting 3D
structures of proteins. Given the protein’s sequence of amino acids and data collected
from known protein structures, our algorithm produces a 3D structure that aims to
minimize the energy function associated with protein folding. Scatter search is an
evolutionary approach that is based on a population of solution candidates. These
candidates undergo evolutionary operations that combine search intensification and
diversification over a number of iterations. We evaluate our algorithm on three proteins
taken from a protein data bank. The results show that our algorithm is able to produce
3D structures with good sub-optimal energy values. Also, the root mean square
deviations of these structures from the reference proteins are promising within limits

imposed by the assumptions used.
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Chapter 1 Introduction

Proteins are made up of combinations of twenty different amino acids. These
amino acids are formed from atoms, namely H, C, N, O, and S, with two or more C’s are
bonded to one another, thus, proteins are organic compounds of different types and roles
in living organisms. Structural proteins are responsible for maintaining the structure of
some biological components, or generating mechanical forces to ease the motility
process of organisms. Enzymes are proteins that act as catalysts to fasten chemical
reactions in living systems. Other proteins have different functions, such as, signal
carrying, oxygen transport, and antibody defense. Initially a protein is a linear chain of
amino acids, ranging - in general - from 50 up to 5,000 amino acids. These amino acids
fold into complex structures based on the chemical and the physical properties of the
atoms. These folds determine the function of the protein provided that the folding is in
its native structure, which is the correct three-dimensional structure of the protein. As a
result, any misfold of the protein leads to failure in protein accomplishing its function
(Setubal and Meidanis, 1997). Prusiner (1998) showed that some unrelated diseases such
as alzheimer, cystic fibrosis, mad cow disease, and many cancers are associated with the
wrong folding of proteins. However, not all protein structures can be determined
because of the limitations in the biophysical techniques used. This gives the motivation
to further study the protein structure prediction (PSP) problem, which is to
computationally generate three-dimensional native or native-like structures of target

proteins given amino acid sequences.

1.1 Computational Approaches to 3D Protein Structure Prediction

Computational approaches for PSP fall into two groups. Approaches in the first
group use predicted protein structures from protein data banks (PDB). These approaches

assume proteins evolve with time, thus, they belong to families of already predicted



proteins. Approaches in the second group solely rely on the given amino acid sequence
without obtaining any structural data from ancestors. There are two main approaches in
the first group: comparative modeling and fold recognition. In the second group, there
are many approaches that are all called ab initio methods. This section gives an

overview of some of the approaches of the two groups.

1.1.1 Comparative Modeling

Comparative modeling is also known as sequence alignment or homology
modeling. It uses sequences of known structures in PDB to align with the given or the
target protein’s sequence for which the 3D structure is to be predicted. This approach
assumes that new proteins are generated as a result of evolutions that mutate the
sequences by adding, deleting, or substituting some amino acids, and these mutations do
not change the structures, i.e., similar sequences end up having similar structures. The
accuracy of the alignment process here is important, since it largely contributes to the
accuracy of the prediction. For 50% sequence similarity between the target sequence and
any sequence in protein databases, comparative modeling gives results as good as
experimental methods (Kopp and Schwede, 2004). For 30-50% sequence similarity most
of the Ca-atoms are expected to have 3.5 Angstroms (A), 10710 meters, deviation from
their real positions (Kopp and Schwede, 2004), this indicates a moderate fit between the
target sequence and the reference sequence. For cases less than 30% sequence similarity
the prediction is expected to have large errors (Kopp and Schwede, 2004). Comparative
modeling consists of five steps: (1) finding one or more suitable structural templates for
the target sequence from families or classes of known structures in databases; (2)
aligning the target sequence with the template sequence(s); (3) constructing the
structures of the aligned fragments; (4) modeling side chains and structures of the non-
aligned parts, which are usually shaped as loops where no structural rules are imposed;

(5) improving and evaluating the final structure of the target sequence.

Some well developed algorithms exist for the first step, template identification,

that are served as benchmarks to any new approach. For example, BLAST (Altschul,



1990), which is a pair-wise sequence comparison method, records more than 30%
accuracy. However, multiple sequence alignment, where the target sequence is aligned
with more than one sequence, is far more accurate for detecting weak similarities
between sequences (Notredame, 2002). Profile based approaches (Gribskov, 1987) and
Hidden Markov Models (Krogh, 1996) excel in this field as well. PSI-BLAST (Altschul,
1997) introduced a position-specific scoring matrix. It scores position similarity between
the target sequence and already existing sequences in PDB in an iterative manner until

no new hits are found.

A recent tool that automates comparative modeling is TASSER-Lite tool
(Pandit ef al, 2006). It relies on similar sequences and accordingly optimizes some
parameters in order to decrease the computational time, while preserving prediction

accuracy.

The disadvantages of this approach is that some proteins do not align — or align
poorly — with other sequences of known structures in PDB. In addition, evolution might
dramatically change sequences of proteins that were once very similar in both sequence
and structure, and it is likely to have sequences with high degrees of similarities but with

different structures.

1.1.2 Fold Recognition

Fold recognition assumes the existence of a similar template structure in protein
databases for the target sequence. The reason for mapping to a template structure and not
to the native structure is because there are more unknown sequences than known
structures. Thus, this approach does not require the existence of similar sequences for
the target sequence. The basic intuition in this approach is that proteins might have
dramatically evolved by insertions, deletions, and substitutions in their amino acid
sequences, but yet they maintained the same structure and the same function as they did
before evolution. This intuition is seen in hemoglobin, which maintains the same

structure in different species (Smith, 1995).



There are many techniques in fold recognition, however, there is no clear cut for
these techniques as to which approach they belong. For example, one of the techniques
in fold recognition is advanced sequence similarity methods. In this class there are
methods like hidden Markov models (Krogh et al., 1996), and PSI BLAST, which were

recorded to be under the umbrella of comparative modeling approaches.

Another technique for fold recognition includes secondary structure prediction
and comparison of the target sequence with sequences in databases. The accuracy of this
model is based on the secondary structure prediction accuracy. An early approach in
secondary structure prediction is the Chou-Fasman (Chou and Fasman, 1974) model. It
uses statistical information from PDB. It calculates the frequency occurrence of an
amino acid in a specific secondary structure in order to assign secondary structures for
groups of amino acids using some rules. In fold recognition techniques, secondary
structure information of the target sequence is combined with corresponding descriptors
that might the scores for solvent accessibility of each amino acid. This approach predicts
the 3D structure of the target sequence by predicting the descriptors of the target
sequence and comparing them to the descriptors of the known structures (Przybylski and
Rost, 2004).

Threading, another subclass in fold recognition, assumes the presence of a core
structure in databases that threads with the target sequence. The threading of a sequence
to a fold is evaluated by either environment-based or knowledge-based mean-force-
potentials (Sikder and Zomaya, 2005) derived from PDB. It is shown that threading is a
NP-hard problem (Garey and Johnson, 1979; Lathrop, 1994) in cases where every
residue pairs are to be taken into account. Early approaches used simplified force-
potentials calculated according to the surrounding environment of each amino acid and
they used dynamic programming to evaluate the threading (Bowie et al., 1991). Other
approaches used the summation of pair-wise potentials for each and every atom in the
sequence as the force-potential (Jones er al, 1992) and applied double dynamic
programming (Jones, 1998). A recent work (Skolnick et al., 2004) developed an iterative

advance. It first aligns the target sequence with core structures without calculating pair-



wise potentials; in later iterations it uses the results of previous iterations to evaluate
pair-wise interactions. Evaluation is done with a hybrid of three different functions,
since many target sequences are capable of aligning with one structure. This helps in

identifying accurate alignments and less accurate ones.

Fold recognition’s efficiency, like comparative modeling, is restricted by the size
of PDB. Since the mean-force-potential explores many features of a structure it is
possible to find the optimal threading. However, there is no single approach until now
that finds the optimal threading for more than half of the test cases. Nevertheless, this
approach outperforms the comparative modeling for sequence similarities below 25%
(Sikder and Zomaya, 2005).

1.1.3 Ab initio Approaches

Ab initio approaches do not rely on known structures in PDB. Instead, they
generate a structure based on some thermodynamic principles between the atoms of the
target protein. Many of these approaches simplify the structure of the protein in order to
make the search space of structures manageable. Hydrophobic-polar (HP) and force field
(FF) models fall under the ab initio category. This section discusses some methods in

these two approaches.

1.1.3.1 Hydrophobic-Polar Methods

HP model simplifies the protein by assigning each amino acid to be a point in a
2D or 3D lattice. The intuition of this model is that hydrophobic amino acids are
gathered in the core of a protein structure since they do not react with solvents. The
output of this model is a valid 2D or 3D lattice (collision free) with maximum H-H
contacts, which are buried in the core of a lattice. Each H-H contact is given the value -
1; thus, the goal is to have a lattice with minimum energy, which is the summation of the
H-H contacts. A genetic algorithm (GA) for the 2D HP model was developed (Unger
and Moult, 1993). Individuals in a population are represented as sequences of letters
defined over the alphabet {u, d, r, I} (up, down, right, and left), of length n — 1, where n



is the size of the target protein. Genetic operators are applied on these strings to mutate
and combine the strings. The operators try to maximize the H-H contacts, thus, minimize
the energy. Another work (Bui and Sundarraj, 2005) for 2D HP model used secondary
structures to assign directions. In this approach, the secondary structures of hydrophobic
subsequences are chosen and a direction is assigned accordingly for each amino acid in
the hydrophobic segments. For the other segments the approach randomly assigns
directions.

The HP model is a simple model. While it is more efficient with peptides,
proteins with small lengths, it does not scale well with proteins of long chain of amino

acids, since the lattice becomes very complex, and hence hard to be kept valid.

1.1.3.2 Force Field Models

A FF model uses an energy objective function that evaluates the structure of a
protein. This function attempts to represent the actual physical forces and chemical
reactions occurring in a protein. Atoms are modeled as points in 3D with zero volume

but with finite mass and charge, and bonds among atoms are modeled as Newtonian

springs.

Schulze-Kremer (2000) introduced a GA approach for this model. In the energy
model, an individual in a population is represented as a sequence of angles, with length
4n, where n is the number of amino acids in the target protein. GA in this work selects
random angle values from PDB and applies controlled genetic operators, and tries to
minimize the energy objective function. Cui ef al. (1998) proposed another GA approach
for the FF model. In their work, genetic operators select angles from the supersecondary
structures angles library. Experiments in these two approaches lead to some interesting
results. In the former approach, the root mean square deviation (RMSD) of the target
protein against the reference protein reached to around 9 Angstroms (A), which indicates
a dubious relationship between the target structure and the reference structure. In the
latter approach, the distance matrix error (DME) deviation of the target protein against

the reference protein was between 1.48 and 4.48 A relative to the sequence length.



GA’s basic features proved to be more promising than other approaches applied
in the literature of PSP problem for many reasons. A population in GA contains several
structures, which is similar to running several Monte Carlo (MC) simulations, which
start with one structure and manipulates it to reach the lowest energy. Since GA explores
the search space all at once in a population, it avoids getting stuck with local optima that
the MC simulations might get stuck with. The objective function in the FF model
includes many physical forces and chemical reactions that mimic the molecular
dynamics (MD) approach (Klepeis and Floudas, 2003). MD starts with a random
structure, and it assumes that atoms move in a Newtonian manner under the influence of
the different forces that they exert on each other. Because there are many moving atoms
the error rate might be high in this approach; in addition, MD might also get stuck with

local optima.

1.2 Thesis Objectives and Organization

In this thesis, we present a scatter search (S8) algorithm, an evolutionary search
algorithm, for the PSP problem. To the best of our knowledge, there is no previous work
for the PSP problem that used SS approach to structural search. Generated structures are
evaluated by their energy potentials, which are used as factors to evaluate the computer
simulated version of the PSP problem. The SS algorithm exhaustively searches the
possible search space to find structures of proteins with low potential energies, which
indicates a similarity between native structures and predicted structures. Our algorithm
did produce structures with lower potential energy values than that of the real structures
for the same energy function. For structural similarity between native structures and
predicted structures, we use similarity measure, and our results are comparable to
previous work (Schulze-Kremer, 2000) that used the same assumptions we used in our

work.

The rest of the thesis is organized as follows. Chapter two is background
knowledge of proteins and their compositions. In addition, it explains the energy

potential function that is used to evaluate a protein structure. Chapter three gives an



overview of the SS algorithm, and compares SS with GA. Chapter four describes our
algorithm. Chapter five explains our experimental methodologies, presents our results,
and discusses them. Chapter six concludes the thesis and presents some future works

that will help improve our results.



Chapter 2 Problem Description

Approaches for PSP problem use low level information of the atoms and their
surrounding solvents in order to generate native or native like 3D structures for proteins.
Low level information deduce chemical reactions and physical forces among atoms.

These natural reactions among atoms result in hierarchical folding process.

In this chapter, we first explain the atoms of amino acids and the bonds among
the atoms. Next, we describe the levels of folding. We also illustrate the parameters
involved in proteins. We explain the potential energy function, which evaluates the
target structure. Finally, we explain how to represent atoms, which are points in space,

as Cartesian coordinates.

2.1 Amino Acids and Peptide Bonds

An amino acid is constructed from one central atom, which is called the alpha
carbon, Ca. To this Ca atom an amino group (NH;), a carboxy group (CO:H), a
hydrogen atom, and a side chain, R, are attached. A side chain is what differentiates
amino acids from each other, and it can be as simple as one hydrogen atom as is the case
of glycine amino acid or as complex as two carbon rings as is the case of tryptophan
amino acid. When two amino acids are in contact with each other they form a peptide
bond between the carbonyl C of amino acid i and amino N of amino acid i + 1. The
result of the peptide bond is the H,O molecule generated from the oxygen and hydrogen
atoms of the carbonyl group and the hydrogen atom of the amino group (Setubal and
Meidanis, 1997). Thus, all twenty amino acids have a common backbone shown in

Figure 2.1.
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Figun‘. 2.1: Backbone of an amino acid

2.2 Structural Hierarchy

Proteins undergo different levels of folding, and are categorized as four
structures. The primary structure of a protein is formed from a chain of amino acids. The
secondary structure of a protein is caused by hydrogen bonding of the backbone atoms,
and the resulting structures are repeated sequences of helices, P-sheets, and loops.
Carbonyl O of one amino acid is hydrogen bonded with H of amino N of another
noncontiguous amino acid. Helices are the result of hydrogen bonding between atoms of
two amino acids that are on average four amino acids apart. B-sheets are the result of
hydrogen bonding between atoms of two amino acids of two backbone sequences, called
B-strands, that are placed parallel or anti parallel with each other. Loops are the hooks
that connect helices to helices, strands to strands, or helices to p-strands. They do not
appear in the core of proteins as do the other two secondary structures. More complex
structures of proteins are tertiary and quaternary structures. Tertiary or three-
dimensional (3D) structures of proteins are formed as a result of different combinations
of the secondary structures. Figure 2.2 shows the 3D structure of Crambin, a protein
with 46 amino acids. Finally, quaternary structure of a protein is shaped by the

combination of proteins with tertiary structures (Setubal and Meidanis, 1997).
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Figure 2.2: 3D structure of ICRN. This figure is taken from Brookhaven database.

2.3 Parameters

Parameters involved in a protein are the result of the covalent bonds between
atoms of the protein. The three parameters involved are bond length, bong angle, and
torsion angle. The values of these parameters are based on the formation of the bonds
among atoms and the nature of the bonds whether they are single, double, or partial
double bonds. Most of the covalent bonds in the backbone of a protein are made by
single bonds, where only a pair of electrons, each from an atom, is needed to give the
electron octet shell to each of the two atoms. Double bonds appear in the side chains of a
protein, where two pairs of electrons are needed to form the electron octet shell. Partial
double bonds are the result of the peptide bonds between C of amino acid i and N of
amino acid i+1. The result of a partial double bond is a double bond between carbonyl C
and carbonyl O, and a single bond between C of amino acid i and N of amino acid i+1,

and vice versa also appears in the repeating pattern of the backbone.

While bond lengths and bond angles are quite rigid, torsion angles, which are the
angles between the normal vectors of two planes formed by three atoms, are flexible,
thus, degrees of freedom are based on the torsion angles. There are four torsion angles
present in a protein: phi ¢, psi y, omega m, and chi y. Phi is the angle between the planes
C-N-Cu and N-Ca-C, where N-Ca is the axis of rotation. This angle decides the distance

11




of C-C of two amino acids. Psi is the angle between the planes N-Ca-C and Ca-C-N,
where Ca-C is the axis of rotation. This angle decides the distance of N-N of two amino
acids. Omega is the angle between the planes Ca-C-N and C-N-Ca, where C-N is the
axis of rotation. This angle decides the distance of Ca-Ca of two amino acids. Finally,
the chi angle is between the planes formed by the atoms of the side chains, and side
chains can have as many as five chi angles depending on the length of the side chain.
is the angle formed by N-C4-Cy-C, atoms, y2 is the angle formed by Cy-Cp-C,-C; atoms,
and so forth (Forman, 2001). As mentioned earlier, the torsion angles are the only
degrees of freedom; therefore, they decide the structure of a protein. Secondary
structures of a protein have specific valid ranges of phi, and psi angles, which are
defined by the Ramachandran plot (Ramachandran and Sasiskharan, 1968). Regarding
the omega angle, studies show that it either oscillates near 180° or 0° (Schulze-Kremer,
2000). The chi angle is a secondary rotation as a result of the phi and psi rotations.
Therefore, proteins have 3D shapes because the bond between Ca and N atoms of one
amino acid rotates the plane A in Figure 2.3 and the bond between Ca and C atoms of

the same amino acid rotates the plane B in the figure.

NH;

plane A plane B

Figure 2.3: Segment of a protein backbone with planes of bonds Ca-N and Ca-C, plane A and plane
B, respectively.

2.4 Force Field

The objective function used in our implementation is a simplified version of the
force field introduced in the program Chemistry at HARvard Molecular Mechanics
(CHARMM) (Brooks ef al., 1983). The force field used in the CHARMM model
calculates the potential energy of a protein structure. The challenge in calculating the

12




energy objective function is to minimize this energy, which is a path in determining the
structure of a protein. In addition, it is used as a factor to evaluate the computer

simulated version of the PSP problem.
The potential energy function of the original CHARMM model is divided into

internal or bonded energies, and external or nonbonded energies. Equation (1) is the

potential energy function, E, as a function of the conformation, c:

E@)= Y Kyb-b,) + S Kp0-0,)" + > Kump@—9,)% + YK, (1+cos(ny - 8)) +

bordy angles fmproper  lorstons torsions
A, By
2 o a2 |t
hyedrogen| Ty iy
12 &
_ 94 Z ] e B (1)
¥
electrosiatic dme €, Y van der Waals ¥ f,:z ¥ ;

Internal energies of the potential energy function include bond, angle, improper
torsion, and torsion energy. External energies include the electrostatic and van der Waals
components which are calculated between atoms separated by two (1,3-pairs) or three
(1,4-pairs) covalent bonds. Hydrogen bond energy is between hydrogen acceptors
(mostly oxygen) and hydrogen donors (nitrogen), which are on average four amino acids

apart.

The first term of Equation (1) is the summation of bond stretches of the target
protein from the ideal bond lengths. b, is the ideal bond length between specific bonded
atoms, while & is the actual bond length in the predicted conformation. K} is the bond
force constant that determines the strength of the bond. The second term of Equation (1)
is the summation of bond bending of the target protein from the actual bong angles. 6, is
the ideal bong angle between three bonded atoms, while @ is the actual measured angle
in the predicted conformation. K is the angle force constant that determines the
elasticity of the bending angle. The third term of Equation (1) is the summation of out of
plane bending. ¢, is the ideal torsion angle, ¢ is the torsion angle of the predicted

13



conformation, and K, is the improper torsion force constant. These three components
of the potential energy function correspond to the difference in geometry of the
predicted conformation from the real conformation of the target protein. Thus, in cases
where the predicted conformation is optimum, the values of these three terms are close
to zero. The fourth term of Equation (1) is the torsion angle function. This function
represents a rotation around the middle bond of 1,4-pair atoms depicted by a torsion
angle y and multiplicity n=1,2,3,4,6. The purpose of this method is to prevent steric
clashes between 1,4-pair atoms, and thus, it can be modeled as a barrier. The torsion
energy function is modeled as a periodic function. Ky is the torsion force constant, and d
is the phase angle. The values of the torsion force constants for each set of four

connected atoms are tabulated (Jorgensen ef al., 1996).

For the non bonded atoms, the electrostatic energy is modeled by Coulomb
potential. It calculates the force exerted from the interaction of the charges of two non
bonded atoms. The role of this function is important in forming the structure of a protein
since it models the interaction of two charged atoms. ¢; and g; are the charges of the two
atoms. &, is the permittivity of free space, & is the dielectric constant, and r; is the
Euclidean distance between these two atoms. The van der Waals term of Equation (1)
uses Lennard-Jones 6-12 potential. This force depicts the attractive and repulsive forces
between atoms. The repulsive force is the result of electron collision; this force is

generated when two atoms are in close proximity to each other. The repulsive force is

12 4 12

ij 1", where oy is the van der Waals

represented in the van der Waals function as o

radii, and ry is the Euclidean distance between atoms i and j. The attractive force is the
result of variation of charges in the electron clouds of one atom, where this variation
leads to the generation of a dipole in this atom and in another atom, thus inducing an

attractive force among these two atoms. This force arises when two atoms are in long
range. The attractive force is represented in the van der Waals function as of; Iré'? . For

long distances between atoms the attractive force is dominant, whereas for short
distances the repulsive force is dominant. This phenomenon minimizes the total

potential energy function if atoms are placed in optimal distances. For example, if atoms
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are placed in a linear fashion the attractive force is dominant; thus, the van der Waals
term is very small and negative. This value is small compared to the large value of the
electrostatic function. Therefore, it will not help in decreasing the total potential energy.
In van der Waals function, &; is the van der Waals depth. The values of both van der

Waals sigma and depth are also tabulated (Jorgensen ef al., 1996).

2.5 Torsion to Cartesian

A protein is composed of a chain of 20 different amino acids. Various
representations exist for such chains. We are interested in two representations: the
torsion representation, where amino acids are characterized by the torsion angles
described earlier in this chapter, and the Cartesian representation, where each atom in a
protein is characterized by its Cartesian coordinates that identifies its location. The
parameters of these representations, the torsion and the Cartesian coordinates, are
primarily used to: (1) identify protein’s properties, such as RMSD and potential energy;

(2) enable protein structural analysis.

These two representations are: (1) similar, i.e., each can be described as the
function of the other; (2) exchangeable, i.e., can be interchanged when performing a
computation on the protein based on the complexity of the computation. For example,
the torsion angle representation provides a relatively small finite domain for randomly
building proteins, whereas the Cartesian coordinates provide sufficient information
about each atom’s location, which enables efficient computation of energies and

RMSDs.

The conventional way to transform between the two representations follows
directly from multidimensional mathematics (Parsons er al, 2005). To illustrate,
consider the set of bonded atoms in Figure 2.4. Given the coordinates of the three atoms
A, B, and C, the bond length of the bond C-D, the bond angle between the points B-C-D,
and the torsion angle in accordance to the bond B-C, all are used to compute the

coordinates of the point D as follows: (1) by placing point Dy of bond length C-D away
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from the point C in the same axis as the bond B-C; (2) rotating Dy with an angle
equivalent to the bond angle B-C-D to find Dy; (3) rotating D; along the bond B-C with

an angle equivalent to the given torsion angle to determine the position of D2.

Figure 2.4: Torsion to Cartesian transformation. This figure is taken from Parsons ef al., (2005).

The above example describes how to compute the coordinates of an atom given
the coordinates of the three previous atoms, the bond lengths, the bond angles, and the
torsion angles. To transform from the torsion representation to the Cartesian
representation, the same computation is repeated along the amino acid chain, To
illustrate, given the coordinates of the first three atoms in the chain, as well as, the
relative bond length, bond angle, and torsion angle, the coordinates of the forth atom are
computed. Then given the coordinates of the last three atoms, the coordinates of the fifth

atom can be then computed and so on.
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Chapter 3 Background on Scatter Search

Scatter search (SS) is an interesting evolutionary search strategy. Its initial
formulation dates back to the 1970s as a result of a combination of decision rules and
problem constraints. SS proved to achieve interesting results for different optimization
problems (Laguna and Marti, 2003). It uses search strategices to produce and maintain
diverse solutions, and to explore the search space extensively through controlled

randomization. In this work, we used SS implementation for PSP problem.

In this chapter, we first describe the basic SS algorithm. Next, we describe how
we represented the solutions in our implementation. We compare SS and GA. We
mention the assumptions that we made in our implementation. Finally, we illustrate our

implementation of SS for the PSP problem.

3.1 Scatter Search Design

Glover (1998) introduced the first outline of SS algorithm. Prior to this outline,
SS was incorporated into tabu search algorithm. The sketch of the general SS outline is
explained in the following five steps (Laguna and Marti, 2003):

. Step | generates an initial set of solutions by employing strategies to guarantee
diversity and randomness. Frequency-based memory is one strategy that
produces solutions that span the whole search space, and chooses parameters
from the pool of possible parameters for the solutions in the population in an
equally balanced manner. In this step, or in any part of the SS algorithm,
solutions that are newly generated do not have to be feasible. This allows the
algorithm to explore more choices, which exhausts the search space. This step is

referred to as Diversification Generation Method.
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Step 2 in the outline of S8§ is the Improvement Method. This step improves every
solution given as input to the Improvement Method, and its implementation is
problem-specific. The resulting solution is not necessary to be a feasible one,
although most probably it will be. In case the improved solution is not better
than the input solution in terms of the objective function, which again is

problem-specific, the input solution is considered in the following steps.

SS operates on a fairly small set of solutions. This set is called reference set.
Reference set contains solutions that are arguably the best solutions. Best in this
step is not only restricted to solutions that have best objective function values,
but also to solutions that introduce diversity to the reference set. In the initial
iteration of the S8, this step chooses b, best solutions from the initial population
generated from step 1. The remaining b, solutions that enter the reference set are
the ones that introduce diversity to the reference set. In this case, b, solutions are
chosen from the initial population, such that, they are diverse from the best by
chosen solutions. Diversity is implemented by choosing solutions that have
rather far objective function values from the best chosen solutions. The resulting
reference set is of size b = by + by, which, in most cases, is 20% of the initial
population size. In later iterations the reference set is updated to again include

“best” solutions; hence, this step is called Reference Set Update Method.

The solutions in the reference set are manipulated by SS operators. In addition to
the Improvement Method, SS performs a combination operator. The combination
operator combines two or more solutions together to yield another new solution.
Prior to the combination step a method exists to generate subsets of solutions
that are to be combined. This step decides which solutions to combine; hence, it
is called Subset Generation Method. A subset in this sense is the subset of
solutions to combine, which might be of size two, three, four, or from five up to
b, which is the size of the reference set. These subsets of different sizes are given
the names subset type 1, subset type 2, subset type 3, and subset type 4,

respectively. Subset type 1 generates subsets of every two solutions. Care is
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taken here and in all subset types not to include the same subset in later
iterations; i.e., in later iterations only new solutions gain admission to subsets.
Subset type 2 augments a third solution to subset type 1. Subset type 3 augments
a fourth solution to subset type 2. Finally, subset type 4 augments up to b — 4

solutions to subset type 3, which makes the whole reference set.

These subsets guarantee combinations of solutions “within clusters™ and “across
clusters”. For example, if subset type 1 combines two high quality solutions in
terms of the objective function, implementing subset type 3 augments to these
two high quality solutions a diverse solution. This is one of the key features in
SS, which proves the capability of SS to exhaust the search space with every

possible combination.

A Solution Combination Method combines the solutions in the subsets created
by the Subset Generation Method to yield one or more new solutions for each
combination. Its implementation is problem-specific. However, a common issue
among all solution combination methods is to extrapolate parameters that are not
considered in the current solutions or in the pool of possible parameters for the
solutions. Following are three types of solution combination methods that are

used in three different applications (Laguna and Marti, 2003):

e Linear combination: a SS implementation for an instance of
unconstrained nonlinear optimization problem used linear combination
for the Solution Combination Method. The problem can be put into the
form

Minimize fx),

subject to I<x<u
The number of resulting combined solutions is based on the quality of the
reference solutions. In this case three trial solutions are created from two
reference solutions. Following are the three trial solutions,

where x'and x'"' are the reference solutions:
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Combination 1:x = x'-d
Combination 2: x = x'+d

Combination 3: x = x'"'+d ,

x"-x'

where Jd=r and r is a random double between 0 and 1.

Score-based combination: a SS implementation for an instance of
knapsack problems, 0-1 knapsack, used score-based combination for the
Solution Combination Method. The problem is mathematically expressed

as follows:

Maximize Y cpx; ,
i

SUbject to Zﬂfxf <c,
i

with x; € {0} Vi,

where ¢, is the i" profit coefficient, x; is the i" variable that is either 0 or

1, a; is the i"™ weight coefficient, and ¢ is the total weight.

The Solution Combination Method in the context of 0-1 knapsack
problem is probabilistic. Each variable in the resulting trial solution has a
score, and according to this score a decision is made whether variable x;
should be 1 or 0. The score for variable x; is calculated according to the
objective function values of the two reference solutions j and &, which is
calculated as follows:

ObjVal(j)x] + ObjVal(k)x}
ObjVal( j) + ObjVal(k)

score(i)=

where ObjVal(j) is the objective function value of solution j, and x;j is
either 1 or 00, which is the value of variable x; in solution j. The decision
of the i™ variable in the resulting solution is implemented as follows:

{{} if r < score(i)

1 if r > score(i)

=
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where r is a random double between 0 and 1.

e Combinations by votes: a SS implementation of the linear ordering
problem (LOP) used combination by vote for the implementation of the
Solution Combination Method. A solution in the LOP is a permutation p

of size m consisting of indices of a mx m matrix of weights £ = {e!-;- }mm -

LOP tries to find p that maximizes the sum of the all weights in the upper
triangle of the matrix, triangle above the main diagonal. Mathematically

the problem tries to maximize the following equation:

m=l m

Ce(P)= 2, D epipii)

i=1 j=i+l
where p(i) and p(i) are the row and column indices of the matrix

respectively.

Voting combination methods try to reduce diversity between the
combined solution and its reference solutions. Each solution in the subset
votes for its first element that did not yet appear in the resulting solution.
If the entire reference solutions in a subset vote for the same element, the
Solution Combination Method chooses this element for the next available
position in the resulting combined solution. If the reference solutions
vote for different elements, then there exist two strategies to select from
the voted elements for the next available position in the resulting
combined solution. The first strategy always selects the one with higher
partial objective function value. The second strategy first selects the one
with higher partial objective function value and in later positions it

selects the one with lower position value.

In addition to these solution combination methods versions of crossover
implemented in GAs can also be used in solution combination methods.
However, the argument in this case is that crossover might lose track of some

good elements in solutions, thus, it might lose high quality solutions.
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Figure 3.1 depicts the implementation of SS; it is taken from Laguna and Marti, (2003).
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o 0®
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Figure 3.1: Schematic diagram of the basic SS algorithm

The SS algorithm starts by generating the initial population, P, by applying the
Diversification Generation Method, and each solution in P is subjected to the
Improvement Method. Solutions in Figure 3.1 are depicted as circles. Improved
solutions are depicted as dark circles. The Reference Set Update Method initially
generates the initial reference set, RefSet, from P. As mentioned above, RefSer size is
usually 20% the size of P, PSize, and stays as such throughout all iterations. Subsets of
the reference solutions are built by the Subset Generation Method, and the reference
solutions in each subset are combined by the Solution Combination Method. Each
resulting solution from the Combination Method is again subjected to the Improvement
Method. The improved solutions are added to RefSef in case they are “better” than the
solutions in RefSer. This step is implemented in the Reference Set Update Method. The
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notion “better” here is not only restricted to high quality solutions but to more diverse

solutions as well. The algorithm is terminated when there are no more new solutions to

be added to RefSer.

3.2 Scatter Search and Genetic Algorithm Comparison

GA is another population-based evolutionary search strategy. Throughout the
years many instances of GA were introduced. The basic GA’s design has some
differences with the basic SS’s design. Following are the differences between the two

search strategies:

SS operates on reference set with size 20% of the GA’s population size.

2. S8 applies combination and improvement methods on predetermined subsets of
reference solutions, while GA probabilistically selects parents from the
population to apply crossover and mutation.

3. Reference set in SS is updated by deterministic rules that are implemented in
Reference Set Update Method, while a population in GA is updated by
probabilistic rules that apply “survival of the fittest” attitude.

4. SS uses local search in combination and improvement methods to further
investigate solutions’ neighborhoods, while this feature was added later to GAs
to generate hybrid forms of GA operators to better improve the quality of the
solutions.

5. Solution combination methods in SS combine two or more solutions, while
crossover operators in GA combine only two solutions.

6. In generating the initial population, SS uses controlled randomization to
introduce diversity in the population, while GAs use full randomization in

generating the initial population,
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Chapter 4 Scatter Search Algorithm for Protein

Structure Prediction Problem

Our proposed solution is an adaptation of the SS approach for the PSP problem.
In this chapter, we describe the steps of the SS algorithm relative to this problem. In our

discussion, we use an example of a small protein, Crambin with PDB ID 1CRN.

4.1 Assumptions

Our solution of the PSP problem assumes constant binding geometry, where all
bond lengths and bond angles are constant, i.e., bond lengths and bond angles are not
affected by SS operators. This cancels bond, angle, and improper torsion components of
the potential energy function of Equation (1). This is not the case with real proteins
where the values of the bond lengths and bond angles are related to the changes of the
torsion angles; however, degrees of freedom introduced by the torsion angles are enough
to result in real structures of proteins with some small root mean square deviations. In
addition, hydrogen atoms of both amino nitrogen and alpha carbon are also discarded,
thus, the hydrogen energy component in Equation (1) is also canceled. The resulting

potential energy function is simplified to the Equation (2).

&

12
o . i j
E(e) = ZKX{I+cus(nznd}]+ Z — Z 4£§[ﬂ¢:2 _ﬂ#ﬁ } (2)
waals

torsions electrostatic 4}1‘{.‘0&',?'” van  der Y Fii

Every amino acid has 2 non-bonded atoms, and each two contiguous amino acids
have 6 non-bonded atoms. Since all the components of the above energy function are

calculated between atoms that are three covalent bonds apart, there are 8m — 6
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computations for m amino acids. Therefore, the complexity of the energy function is
O(m).

Side chains in our solutions are represented as a single carbon atom, Cg. This
assumption does not represent a protein as a whole; however, it represents the backbone
of a protein. Therefore, each amino acid in our solution has only five atoms: N, Ca, Cy,
C, and O. These assumptions have normally been used in previous works (Schulze-

Kremer, 2000).

4.2 Solution Representation

A protein is represented by a list of successive objects. An object represents an
amino acid in the backbone of the peptide chain, and its position in the list is the same as
that of the amino acid in the chain. Hence, the size of the list is equal to the number of
amino acids in the chain. Each object stores the type and characteristics of the atoms of
the corresponding amino acid. The characteristics of the atoms are: the partial charge,
van der Waals epsilon, and van der Waals sigma of the corresponding atom. Each object

in the list also contains values for the torsion angles phi, psi, and omega.

A target solution for the PSP problem is a 3D protein structure. The protein
structure produced by our SS algorithm is henceforth referred to as the target protein. It
is given by the values of the torsion angles in the list of objects, from which Cartesian
coordinates can be derived. For example, a peptide with three amino acids (AA) has
three object fields in its list: {AAl, AA2, AA3}. AAI object has nine attributes in this
case: {THR, 0, 147.7, 178.9, ATOMI1, ATOM2, ATOM3, ATOM4, ATOMS5}. THR 1is
shorthand for Threonine, which is the amino acid’s name; the three values are the phi,
psi, and omega values of this amino acid, respectively. ATOMI object has five
attributes: {N, -0.76, 0.17, 3.25, POSITION}. N is shorthand for nitrogen; the three
values are the partial charge, van der Waals epsilon, and van der Waals sigma of
nitrogen, respectively. POSITION object has three attributes: {17.047, 14.099, 3.625},
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which are the Cartesian coordinates of the nitrogen atom derived from the torsion

angles.

4.3 Diversification Generation Method

Our Diversification Generation Method produces random and diverse initial
solutions. Because a solution in our approach is a protein, it is characterized by its
potential energy value. For physical systems, the lower the energy, the more stable the
system. Therefore, a high quality solution is a solution that has a low potential energy
value. The Diversification Generation Method has no restriction to generate high quality
solutions; therefore, the solutions produced in the initial population are random
solutions. On the other hand, once an initial set of solutions are generated, the method
generates another set of solutions that are diverse from the initial set by their potential
energy values. Moreover, the method always generates feasible solutions in terms of the
torsion angles, because the repositories from which torsion angle values are selected
from are formed from PDB. The total population size of candidate solutions is assumed

to be |P| = 100.

Controlled randomization is employed in selecting phi, psi, and omega values for
each amino acid from the ten most occurring 10 degrees intervals of 100 proteins with
known structures. These values are collected manually from PDB. A 10 degrees interval
is not restricted to be an interval that starts with a value that is a multiple of 10 or ends
with a value that is a multiple of 10. It can be any 10 degrees interval that has the highest
number of occurrences in PDB. Each of the torsion angles has ten bins. A bin contains
angle values, and the exact number of angle values in a bin depends on PDB data. A 10
degrees interval 1s enough to provide us with a wide range of angle values, in addition,
its sets a limit on the Diversification Method not to include values that occur
occasionally. The latter point is also satisfied by selecting the ten most occurring
intervals. Since a protein’s 3D structure in our approach is mainly controlled by the
torsion angles, in a search tool like SS it is important to provide the SS operators with

wide range of values to exhaust the search. For this reason we are creating ten bins for
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each torsion angle. Table 4.1 shows one of the ten bins of the phi torsion angle, the
range of values for this bin is [-121, -131]. The bin contains 54 values, and as mentioned

earlier the number of values depends on PDB data.

Table 4.1: A phi bin of range [-121, -131]

Phi angle values

-128.7 -124.5 -123.3 -125.4 -125.3 -123.9
-126.3 -125.7 -129.7 -127.6 -130.0 -126.0
-124.9 -126.6 -124.2 -127.7 -129.8 -124.8
-126.8 -128.9 -129.3 -130.5 -128.4 -125.1
-130.8 -122.4 -124.1 -122.8 -126.4 -121.0
-129.5 -122.3 -122.6 -122.1 -123.5 -127.3
-122.9 -130.2 -121.6 -121.4 -121.2 -126.9
-128.1 -123.8 -121.8 -130.3 -129.2 -1274
-127.1 -130.7 -121.9 -125.6 -127.9 -123.1

To achieve diversity, our Diversification Generation Method uses frequency-
based memory. The frequency-based memory in the context of PSP problem keeps track
of the number of times a torsion angle value is chosen from a specific bin for a specific
amino acid in all the solutions in P. The goal of this strategy is to divide the counts in a
fair manner among the bins for a specific amino acid. For example, Table 4.2 shows
how many times a specific bin is chosen for the first 10 amino acids of 1CRN. Column
one shows the first ten amino acids (AA) of 1CRN, row one shows the ten selected bins.

Table 4.2: Frequency counts of the selected bins for the first 10 amino acids of 1CRN

Binl | Bin2 | Bin3 | Bin4 | Bin5 | Bin6 | Bin7 | Bin8 | Bin9 | Binl0
AAL |0 0 0 0 0 0 0 0 0 0
AA2 |11 4 7 12 12 8 17 6 16 7
AA3 |8 11 9 12 12 9 13 6 6 14
AA4 |5 15 13 9 7 i 11 8 15 10
AAS |12 11 11 9 13 12 9 10 9 4
AA6 |9 10 10 12 9 16 8 8 8 10
AA7 [ 11 6 12 11 11 7 12 9 12 9
AA8 |9 17 10 14 11 6 8 11 9 3
AA9 |7 13 9 Fi 13 15 11 8 11 6
AA1D | 6 7 10 - 13 12 17 10 11 10

Because we have 100 solutions in the initial population, the total frequency

counts of the selected bins for an amino acid is 100. The phi, psi, and omega values of
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the first amino acids of every candidate solution in the population are the phi, psi, and
omega values of the reference protein, which is the native protein under study. Its
torsion angle values are the values that are recorded in PDB. For this reason, the
Diversification Method did not choose bins for the first amino acids; this is shown in
Table 4.2 where all the frequency counts of the AA1 are zeros. The key idea in keeping
the real torsion angle values for the first amino acids is because of the torsion to
Cartesian conversion process. We are keeping the Cartesian coordinates of the first five
atoms, which are the atoms of the first amino acid, the same as the reference protein.
The key insight is to allocate the rest of the atoms of the target protein according to the
first five atoms so that the reference points of both the reference protein and the target

protein are compatible.

The process of assignment values to phi, psi, and omega has two parts: the first

part is to select a bin, and the second part is to select a value from this bin.

To implement the first part of the assigning process, we use three mxn freqCount
matrices, where m is the number of amino acids of the target protein, and n is the
number of bins, which in our approach is ten. Each of the three matrices refers to a
torsion angle, and the number of times a bin is selected for an amino acid is stored in the
freqCount matrix. The probability of selecting a bin for an amino acid is inversely

proportional to the frequency count of this bin with respect to the amino acid.

Figure 4.1 presents an algorithm for assigning a torsion angle value for an amino
acid, aminoAcidindex. Initially every element of a freqCount matrix is initialized to zero. The
algorithm first computes the total frequency counts of the ten selected bins for an
aminoAcidindex in lines 2-3. This sum is then subtracted from each amino acid-bin element
to be stored in the rFreq array in line 6, which holds the frequency complements of an
amino acid with respect to each bin. The variable total in line 7 holds the sum of the
frequency complements in the rFreq array. In case the variable total equals to zero, which
is the case of the first call of this method, the algorithm randomly selects a bin in line 10

and increments the frequency count of this bin in line 15. After the first call, the choice
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of selecting a bin is based on the total variable and the rFreq array, which is shown in lines
12-14. The second part of the assignment process is completely random, i.e., once a bin
is selected, the choice of a torsion angle value for an amino acid from this bin is random.

The algorithm returns any random value from this bin in line 16.

Each call to GET-TORSION-VALUE costs ((n) time, and there are O(3m) such
calls for a solution of m amino acids with three torsion angles each. The total cost of
GET-TORSION-VALUE is therefore O(nm) for a solution.

GET-TORSION-VALUE(aminoAcidindex)

1. sum « ()

2, fori—0ton

3. sum «— sum + fregCount|aminocAcidindex][ ]
4 total «— 0

5. forj«—0Oton

6. rFreq[/] «— sum - freqCount[amincAcidindex]|[f]
7 total «— total + rFreq|/]

8. index +— ()

9. if total = 0

10. index +— randomlInteger(0, n— 1)

11. else

12. k < randomInteger(0, total — 1)

13. while & > rFreq|index|

14. k +— k - rFreq[index++]

15.  freqCount|aminoAcidindex|[index]++
16. return value from the interval of index index

Figure 4.1: Pseudocode for assigning a torsion angle value for an amino acid

After generating a solution, the Diversification Generation Method checks
whether the generated solution is feasible in terms of the geometric placements of the
atoms. For non-bonded atoms, the minimum distance between them should be 1A. For
bonded atoms, the minimum distance should be 0.5A. In case these conditions are not
satisfied for the solution in hand, the method discards the solution and generates another

solution, The method generates |P| valid solutions.
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Every amino acid has 7 bonded and 2 non-bonded atoms. Therefore, if we take
amino acid by amino acid the running time of checking whether a solution with m amino
acids is a valid one is O(9m). For contiguous amino acids there are 4 bonded and 6 non-
bonded atoms. Therefore, for all amino acids that are contiguous the running time is
((10(m-1)). The total cost of the validation process is therefore O(m).

Table 4.3 shows ten solution candidates from P with their energy values. These
solutions are selected after P is sorted in an increasing order based on the potential
energy function values of the solutions. The first five solutions are the first five solutions

in P, and the next five solutions are the last five solutions in P.

Table 4.3: Energy values of the first five and the last five solutions in the initial population

Solution Energy Solution Energy
1 3.95EH7 6 6.18E+13
2 4,29E+07 7 7.72E+14
3 5.28E+07 8 8.15E+14
4 5.98E+07 9 2.19E+15
5 8.28E+07 10 5.23E+15

4.4 Improvement Method

Since the phi, psi, and omega values of the solutions generated by the
Diversification Generation Method are taken from 100 proteins collected from PDB, the
Improvement Method always begins with feasible solutions regarding the values of the

torsion angles.

Our Improvement Method improves every solution in a set of solutions subjected
to the Improvement Method. Therefore, every solution in the initial population and
RefSets are improved by the Improvement Method. The improvement technique used in
our Improvement Method is applied on the torsion angles of the target protein; this is
because the torsion angles determine the Cartesian coordinates of the atoms of a protein.

Thus, the structure of a protein is changed by changing the torsion angles.
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At the beginning of the SS iterations, only 40 percent of the torsion angles of a
solution are subjected to improvement. These angles are selected randomly. However, in
subsequent iterations the percentage of the torsion angles chosen for improvement
decreases; this is because a solution converges in later iterations, so we do not want to

alter any good solution in the last iterations.

The improvement applied on a torsion angle is rather a simple one. For example,
if the angle to be improved is a phi torsion angle, the method randomly selects a feasible

value from the ten bins, mentioned in Section 4.3, corresponding to the phi angle.

The improved solution replaces an existing solution in a set of solutions if its
potential energy value is lower. Then the method checks whether all the solutions in the
set are valid solutions in terms of the geometric placements of the atoms. For non-
bonded atoms, the minimum distance between them should be 1A. For bonded atoms,
the minimum distance should be 0.5A. In case these conditions are not satisfied for the
solution in hand, the Improvement Method tries to improve the invalid solution for five
times until a valid solution is produced. If after five attempts the method does not

generate a valid solution, the improved solution is discarded and the existing one is kept.

Only 40% of the torsion angles of a solution are improved. Therefore, there are
O(6m/5) replacements for a solution with m amino acids. Moreover, the running time of
the solution validation check is O(m), therefore, the total cost of the Improvement

Method for a solution is O(m).

4.5 Reference Set Update Method

Our RefSet contains two sets of solutions. The first set contains high quality
solutions, HQRefSet, and the second set contains diverse solutions, divRefSet. The size of
the RefSet ish = by +b,, where b; is the size of HQRefSet, and b; is the size of divRefSet.

We select b to be 20 percent of P’s size. Therefore, RefSef contains 20 solutions, and we

select b; = b> = 10. Solutions in the initial RefSer are taken from P, which is generated
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by the Diversification Generation Method, and improved by the Improvement Method.
Initially, b; solutions with minimum energy values are chosen from P. The b; diverse
solutions are solutions that have diverse energy values from the b; high quality

solutions.

In order to choose b, diverse solutions, we first need to define a diversity
measure. In our problem a solution is diverse from another solution if their structures are
diverse. Because the potential energy of a solution reflects its structure, the diversity
measure is based on the potential energy, thus, the torsion angles of a solution are the
parameters of the diversity measure. After selecting b, best solutions and including them

in RefSet, for each unselected solution in P and all the solutions already in RefSet, we

calculate the number of torsion angles that are different within +5°. For each unselected
solution in P, we save the solution in RefSet that has the minimum number of
differences. Then, from all unselected solutions in P, we select the solution that has the
maximum of these minima to be a member in RefSes. Once a new solution is added to
RefSet, the algorithm updates the minima set and repeats the same procedure until
|RefSet| equals b. The key insight in saving the minimum differences is to control
diversity. Moreover, selecting the solution that has the maximum of these minima

assures enough diversity in the RefSet.

Table 4.4 shows the initial RefSef of the 1CRN example. Columns one and three
show the solution number corresponding to the RefSet, while columns two and four
show their potential energy values, respectively. The first ten solutions are the solutions

in the HQRefSet, and the second ten solutions are the solutions in the divRefSet.
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Table 4.4: Solutions in the initial RefSet of the ICRN example

Solution Energy Solution Energy
1 3.95E+07 | 11 3.47E+10
2 4.29E+07 | 12 8.24E+10
3 5.28E+07 | 13 9.12E+10
4 5.98E+07 | 14 2.84E+11
5 8.28E+07 | 15 7.38E+11
6 8.80E+07 | 16 3.82E+12
7 9.18E+08 | 17 4.82E+13
8 9.35E+08 | 18 7.34E+13
9 9.75E+08 | 19 2.84E+15
10 2.38E+09 | 20 3.45E+15

The Reference Set Update Method is applied to the initial population P and to
each of the output solutions, output_solution, of the Solution Combination Method (after
improvement). For the latter case, there are two criteria for a solution to gain
membership to RefSer. Figure 4.2 presents an algorithm that takes an output_solution as an
input and checks whether this solution can replace an existing solution in RefSef. The
algorithm replaces a solution in HQRefSet, with the output_solution if the energy of the
output_solution, output_eneray, is less than the energy, HQ_worst_energy, of the worst solution
in the HQRefSet in lines 1-2. If this condition is not satisfied, the algorithm checks if the

output_solution is more diverse than the least diverse solution, least_diverse_sol, in divRefSet.

To check whether the output_solution is more diverse than the least_diverse_sol, we
first discuss the algorithm of Figure 4.3. The algorithm takes as input a solution, which
is a list of amino acid objects, and a solution pool, which is a list of solution objects. For

each solution in the solution pool, the algorithm counts the number of torsion angles that

differ within +5° with the input solution. In lines 13-15, the algorithm saves the count
that is the minimum corresponding to the input solution pool, and it returns this
minimum. REFSET-UPDATE-METHOD calls the MINIMUM-DIFFERENCE twice.

The call in line 4 sends as arguments an output_solution and HQRefSet, thus, it returns the

minimum count of torsion angles that differ within +5° of the output_solution and a
solution in the HaRefSet. The call in line 5 does the same for the least_diverse_sol and the
HQRefSet. In lines 6-7, the algorithm switches the output-solution with the least_diverse_sol if

the minimum count of the output-solution and the solution in the HQRefSet is greater than
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the minimum count of the least_diverse_sol and the HQRefSet. In case these two criteria are

not satisfied the algorithm discards the output solution.

REFSET-UPDATE-METHOD(output_soclution[ |, HQRefSet[ ], divRefSet[])

| if output_energy < HQ_worst_energy

2 HQRefSet[ HQWorstSolutionindex| «— outputSolution

3 else

4. difference1 «— MINIMUM-DIFFERENCE(outputSolution, HQRefSet)

5 difference2 «— MINIMUM-DIFFERENCE(least_diverse_sol, HQRefSet)
6 if difference1 > difference2

7 divRefSet[divWorstSolutionindex|«— outputSolution

Figure 4.2: Pseudocode for the RefSet Update Method

MINIMUM-DIFFERENCE(sol1[], sol_pool[])

1. min_count «— sol1_size ¥ 3 + |

2. for i < () to sol_pool_size

3 s0l2 +— sol_pool[i]

4, count «— ()

5. for j « 0 to sol1_size

6. amino_acid1 «— sol1[/]

7. amino_acid2 «— sol2[/]

8. fork+—0to3

9. difference «— abs(amino_acid1_torsion[k] —
10. amino_acid2_torsion[])
11. if difference > 5

12. count ++

13. if count < min_count

14. sol_min_count «— sol_pool[i]

15. min_count +— count

16. return min_count

Figure 4.3: Pseudocode for counting the minimum number of torsion angles that differ within +5°

The number of times MINIMUM-DIFFERENCE is called depends on how many
output solutions we have. For each output solution, the running time of
MINIMUM-DIFFERENCE is O(sol_pool_size * m).

The Termination criterion for our SS algorithm is based on the members of the

RefSet. In case the RefSet is not updated with new solutions for ten consecutive iterations

of the SS algorithm, the algorithm terminates.
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4.6 Subset Generation Method

The Subset Generation Method in our approach is subset type-1, which has two
elements in the subsets. For the first iteration of the SS algorithm, the number of subsets
is (b! / 21(b — 2)), where b is the size of the RefSer. For this case the algorithm combines
every possible pair of solutions. However, after the first iteration, we do not allow

previously combined solutions to be combined again.

4.7 Solution Combination Method

Because none of the Combination Methods discussed in Section 3.1 apply to our
context and solution representation, a Solution Combination Method is devised in an
incremental method that incrementally adds the torsion angle values of the amino acids
from one of the two target solutions, and calculates the partial energies of the partially
constructed solution. That is, for each amino acid position in the combined solution the
torsion angles from one of the target solutions are added and the energy function up to
this position is calculated. The same scenario is implemented for the second target
solution. The method keeps the angle values that give lower partial energy value. This

procedure is repeated until the torsion angle values of all amino acids are specified.

The algorithm has at most (b! / 2!(b — 2)!) subsets of solutions to combine, where
b is the size of the RefSet. For each of these subsets, there are 2m amino acid
replacements, and for each replacement the energy function is calculated. Therefore, for
each subset, the running time of the Combination Method is O(2m (8m - 6)), for all the
subsets the running time is O(b*m®). Thus the overall complexity of the algorithm for i

iterations is O(b*m’i).

Table 4.5 shows the updated RefSet of the second iteration for the 1CRN
example after executing both the Solution Combination Method and the Improvement
Method. Note that in the high quality RefSet nine out of ten solutions are changed from
the initial RefSer in (Table 4.4) to better energy values, and seven out of ten in the

diverse RefSet are changed to introduce more diversity in the set.
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Table 4.5: RefSet after executing both the Solution Combination Method and the Improvement

Method
Solution Energy Solution Energy

1 9.23E+06 | 11 3.82E+12
2 9.57E+06 | 12 4.23E+12
3 9.64E+06 | 13 2.12E+13
4 9.67E+06 | 14 3.34E+13
5 9.95E+06 | 15 3.38E+13
6 2.53E+07 ] 16 7.42E+13
7 4. 25E+07 | 17 7.69E+13
8 6.34E+07 | 18 9.87E+13
9 8.80E+07 | 19 2.84E+15
10 6.98E+08 | 20 3.45E+15
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Chapter 5 Empirical Results and Discussion

In this chapter, we evaluate the performance of our solution in generating native
like structures for the backbones of our target proteins. We first describe the
methodology of our experiments and present our experimental subjects. We use our

algorithm to generate 3D protein structures and the results are then discussed.

5.1 Methodology

In our experiments, we use three proteins with known structures in PDB. Our
reference PDB is that of the Brookhaven database (Bernstein ef al., 1977). Up to this
point, there are 47509 known structures in this database.

We evaluate our results in two ways. In the first way, we consider the energy
values over the iterations of the algorithm. For each updated RefSer, we find the
minimum energy in that RefSer. In the second way, we evaluate the target protein’s
structural difference from the reference protein by calculating the RMSD of the

solutions in the last RefSet to the reference protein.

RMSD is one method of evaluating the structure of a target protein. It calculates
the average distance, expressed in A, of the Cartesian coordinates of the atoms of the
target and reference proteins. Our RMSD calculation is based on the Cartesian
coordinates of the Ca atoms of the two proteins. The RMSD is given by (Carugo and
Pongor, 2001):

,JZ Coai = %50 + ot = Vi)* + (24 —23i)
Jn

RMSD =
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where a is the target protein, b is the reference protein, i is the position of an amino acid,

and n is the total number of Cu atoms (i.e., the number of the amino acids of the

protein).

The RMSD value of two identical structures is 0. It increases with the increase of
structural difference among the two proteins. According to Carugo and Pongor (2001),
the relationships between RMSD values and structural homology can be classified as

follows:

e  For RMSD values greater than 12A, the two structures are completely unrelated.

e For RMSD values between 8 and 12A, there is a questioned homology among
the two structures.

e For RMSD values between 5 and 7A, the two structures are related.

e For RMSD values between 1.5 and 4A, the two structures are good match.

e For RMSD values between 0.6 and 1.4A, the two structures are very good match.

e For RMSD values between 0 and 0.5A, the two structures are almost identical.

The RMSD values of the last two points are more referenced by methods that use
experimental techniques to generate 3D structures of proteins. For computational

approaches higher values are more probable.

Our experimental subjects are 1CRN, Repressor of Primer (1ROP), and
Uteroglobin (1UTG). 1CRN is rather small in size, 46 residues, and is mainly found in
plant seeds. It is one of the most studied proteins both theoretically and experimentally,
because its crystals diffract very well. Hence, experimental methods can easily generate
3D structures for 1CRN (Teeter and Hendrickson, 1979). 1ROPis a protein of size 56. It
is found in a bacterium and its role is to regulate the number of copied genes in DNA
molecules. Recent studies showed that in cancer cells the number of copied genes

increases (Cappuzzo et al., 2005). Thus, Repressor of Primer’s function may be
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important cancer prevention studies. 1UTG is a protein of size 70. It is specific to
rabbits, hares, and picas. Its precise role is still unknown (Dunkel er al., 1995).

To the best of our knowledge, no computational method using our assumptions
discussed in Section 4.1 has reported RMSD values for the structures of 1ROPand
IUTG. Regarding 1CRN, we are comparing our RMSD results with that of Schulze-

Kremer (2000), which used the same assumptions as ours.

5.2 Experimental Results and Discussion

Figure 5.1 displays the graph of the minimum energy in each updated RefSet for
1CRN. Each updated RefSet is represented as an iteration number in the graph. This is
because at each iteration solutions in the RefSer are updated. The x-axis represents

iteration numbers and the y-axis represents energies in kcal/mol.

The minimum energy of the first RefSet, which is the RefSet constructed from the
initial population, is relatively large since solutions in the initial RefSef are random
solutions. After applying the SS operators on the solutions of the initial RefSer, the
minimum energy in the second iteration decreases almost 70%. From iteration 2
onwards, the minimum energy decreases constantly until it reaches convergence. In all
RefSets, the solution with minimum energy is a member of the high quality RefSes. In
iterations 6 and 7 the minimum energy is not changed. That means no new solution with
lower energy value than that of the one in iteration 5 is generated in both iterations 6 and
7. The same scenario happens with two sets of consecutive iterations: 9, 10, and 18, 19,
20. The algorithm terminates when there are no more new solutions entering the RefSet
for 10 consecutive iterations. This criterion is depicted in Figure 5.1 from iteration 39 to
49. Prior to convergence, the decrease in the minimum energy from iteration to iteration

is very small.
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Figure 5.1: Minimum energy of each updated RefSet for ICRN

We note that the energy of the reference 1CRN, with PDB torsion angles,
according to our energy function is 2,519,470 kcal/mol. The minimum energy that we
reached in the last iteration is 2,459,798 kcal/mol. This shows that our SS algorithm is
reliable in reducing the energy value.

Table 5.1 displays the solutions in the last RefSer with their energy values and
RMSDs to the reference 1CRN. The first ten solutions are the ones in the high quality
RefSet, while the last ten solutions are the ones in the diverse RefSet. The minimum
RMSD we reached is 9.43A, which indicates a dubious similarity between the structure
that our algorithm generated and the reference 1CRN. Note that this RMSD is not for the
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solution with minimum energy value. In addition, there is no accurate relationship
between energy value and RMSD. The major problem lies in our energy function, which
is not an accurate indicator of 3D structures of proteins. However, as we can see in
solutions 11 to 20, we have relatively higher RMSD values for higher energy values.
This proves that our energy function is working well with energies that differ in large
amounts. Our minimum RMSD for 1CRN is comparable to that obtained by Schulze-
Kremer (2000), which used a genetic algorithm and reached 9.15A. The algorithm ran
for roughly 9 hours.

Table 5.1: Potential energy values and RMSDs for ICRN in the last RefSer

Solution Energy RMSD Solution Energy RMSD
1 2459798 18.21 11 5.34E+12 18.68
2 2484300 19.12 12 3.98E+13 24,77
3 2492144 17.87 13 5.63E+13 18.69
4 2498973 19.98 14 8.97E+13 20.34
5 2534834 13.78 15 9.78E+13 23.31
6 2545990 16.67 16 3.26E+14 25.49
7 2549229 19.23 17 4.67E+14 2549
8 2549839 10.23 18 8.87E+14 19.80
9 2549869 043 19 3.44E+15 26.48
10 2551423 13.89 20 5.80E+15 23.11

Figure 5.2 displays the minimum energy in each updated RefSet for Repressor of
Primer. The algorithm ran for 78 iterations. The minimum energy it reached is 2897495
keal/mol, while the energy of the reference 1ROPwith our energy function is 3021593

kcal/mol.

Table 5.2 shows the solutions in the last RefSer with their energy values and

RMSDs to the reference Repressor of Primer.
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Figure 5.2: Minimum energy of each updated RefSet for IROP
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The minimum RMSD of the produced solutions to the reference 1ROPin the last
RefSet is 17.25A. Note that the solution with minimum energy, solution number 1, is not
the solution with minimum RMSD. Once again, this shows a discrepancy between the
energy function representation of the protein structure and the RMSD; although the SS
algorithm produces a solution with energy values less than that of the reference protein,
this solution does not yield the lowest RMSD values. This discrepancy points to the
inaccuracy of the energy function expression used. It also indicates that our assumptions,
which eliminated some energy terms, have further decreased the accuracy of the energy
function. Our choice of torsion angles is limited to the ten most occurring 10 degrees
intervals in PDB for 100 proteins. This restricts the choice of angles, because throughout
our entire algorithm we are selecting torsion angle values only from these ten intervals.
In addition, ignoring the side chains in the computation of the energy function if another
factor that has limited the quality of the solutions generated by our SS algorithm.
However, for solutions with higher energy values, solutions 11 to 20, RMSD values are
higher than the ones with low energy values, solutions 1 to 10. This shows again that
although there is no accurate relationship between the energy values of solutions and
their RMSD values, solutions with higher energy values lead to relatively higher RMSD

values. The algorithm ran for roughly 15 hours.

Table 5.2: Potential encrgy values and RMSDs for IROP in the last RefSer

Solution Energy RMSD Solution Energy RMSD
1 2897495 26.34 11 9.12E+11 31.43
2 2927498 27.12 12 2.10E+12 35.12
3 2946598 17.25 13 4.18E+12 32.53
4 3098678 21.51 14 6.91E+12 39.22
5 3147598 29.41 15 7.12E+13 30.24
6 3409180 18.14 16 9.81E+13 36.23
7 3580951 28.53 17 3.72E+14 41.23
8§ 3687235 28.21 18 8.79E+14 38.58
9 3693498 24.42 19 9.23E+14 38.26
10 3702349 19.12 20 3.24E+15 39.48

Figure 5.3 shows the minimum energy graph of each updated RefSef for IUTG.

The behavior of the minimum graph is the same as 1CRN and Repressor of Primer. The

43




algorithm ran for 111 iterations. The minimum energy we reached is 4001294 kcal/mol,
while the energy of the reference 1UTG with PDB torsion angles is 4043153 kcal/mol.

Table 5.3 shows the solutions in the last RefSer with their energy values and

RMSDs to the reference 1UTG. The minimum RMSD found is 20.63A. For 1UTG the
algorithm ran for roughly 24 hours.
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Figure 5.3: Minimum energy of each updated RefSet for IUTG
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Table 5.3: Potential energy values and RMSDs for IUTG in the last RefSet

Solution Energy RMSD Solution Energy RMSD
1 4001294 29.12 11 6.93E+12 35.45
2 4029489 31.42 12 7.12E+12 37.34
3 4099384 21.42 13 4, 52E+13 39.14
4 4137499 30.54 14 4.91E+13 33.54
5 4198986 28.31 15 5.19E+13 39.65
6 4212939 27.44 16 2.12E+14 37.53
7 4279128 20.63 17 6.05E+14 38.65
8 4399183 39.72 18 3.92E+15 38.87
9 4398724 23.45 19 9.24E+15 39.65
10 4361238 26.64 20 2.06E+16 37.88

We can infer that our SS algorithm is an excellent algorithm for finding low

energies. Moreover, we can say that there are some limitations in our approach that we

believe are the reasons for producing relatively high RMSD values.
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Chapter 6 Conclusion and Future Work

We have presented a scatter search algorithm for building 3D structures of
proteins. Given an amino acid sequence, our algorithm generates 3D structures for the
backbone of this sequence. Each generated structure is represented as a solution in a
population. A structure is characterized by the backbone torsion angles, phi, psi, and
omega of the protein. The algorithm starts by generating random solutions in the initial
population. However, controlled randomization is employed throughout the algorithm by
restricting the choice of the torsion angles to protein data bank data. Solutions are then
evaluated to be part of the RefSet, which in all the iterations of the algorithm holds two
types of solutions: high quality and diverse. A solution is evaluated by its potential
energy. High quality solutions have low energy values. Thus, our algorithm’s main focus
is to decrease the energy values of the solutions. Moreover, the energy function is
manipulated by the torsion angles, thus, SS operators are applied on the torsion angles of
the solutions. We have two SS operators that modify the solutions in search of better
solutions, these operators are: the Improvement Method and the Combination Method.
Solutions in the RefSet are first combined to yield new solutions that are later improved.
An improved solution is then evaluated to be a member of the RefSef in the next
iteration. This process is repeated until there are no more new solutions to be part of the

RefSet for ten consecutive iterations.

We evaluated our algorithm on three proteins taken from a PDB in two ways. In
the first way, we showed the energy decrease over the algorithm. In the second way, we
calculated the structural difference of the protein our algorithm generated with that of
the one in PDB. We used RMSD as a measure of similarity between the structures. For
the three proteins, our algorithm is able to generate structures with energies less than that
of the reference proteins. Moreover, for proteins with relatively small in size, our
algorithm generates structures with RMSD values that are comparable to that of existing
approaches. For example, the RMSD value of 1CRN, 46 residues, we reached is 9.43A.
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This value is comparable to an existing approach that used genetic algorithm and
reached 9.15A. For Repressor of Primer, 56 residues, and 1UTG, 70 residues, our
algorithm generates structures with 17.25A, and 20.63A RMSD values, respectively.
The major problem lies in our energy function, which is not a real indicator of the native
3D structures of the proteins. Many energy models, mathematical, experimental, or
statistical are still not reliable enough to differentiate native or non-native structures.
Moreover, the assumptions that we used in order to cut the cost of the execution time
further decreased the accuracy of the energy function. However, SS approach proved to
be a reliable search algorithm for the PSP problem, since it exhaustively searches the

ossible search space of proteins' structures to find structures with low ene values.
P P p gy

There are some promising future directions that can be integrated to our
algorithm. These directions are mainly the implementation of the assumptions that we
made. We assumed constant binding geometry; by keeping all bond lengths and bond
angles constant we are ignoring the real behavior of proteins, where bond lengths and
bond angles vary with a small variation in any of the torsion angles, This factor leads to
a simplified version of the CHARMM energy model, where bonds, lengths, and
improper torsions components of the CHARMM energy model are canceled. In addition,
our energy potential function can be expanded to include hydrogen bonding, which
calculates the forces exerted by hydrogen bonds among hydrogen acceptors and
hydrogen donors. In this case, the H attached to amino N of every amino acid should be

added in order to calculate the hydrogen component of the energy function.

Our solution completely discardes the side chains associated with every amino
acid backbone. This is a great simplification in a protein representation, since side chains
are the groups that differentiate amino acids from each other. In addition, side chains
largely contribute to the folding process of proteins. By adding side chains in future

works, more realistic protein structures can be generated.

Another factor that is ignored in our approach is that of the surrounding reactions

with — or solvent energy contribution to — the target protein. In future works, reactions
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with the solvents can be added to the energy function in order to simulate the real
folding process. This has been recently addressed in CHARMMR22 version ((Brooks et
al., 2006).
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