Rt
00544

<.

J
A Portable Message Passing Distributed Library

for Optimizing Combinatorial Problems

with Application to Circuits Testing

by
Ahmad El Maamoun

M.S., Computer Science, Lebanese American University, Byblos

Thesis submitted in partial fulfillment of the requirements for the Degree of Masters of

Science in Computer Science

School of Arts and Sciences
LEBANESE AMERICAN UNIVERSITY

June 2007

Student Name

Thesis Title:

Program:

Division /Dept:

School:

Approved by:

Thesis Advisor:

Member
Member

Member

Date:

LEBANESE AMERICAN UNIVERSITY

School of Arts and Sciences

Thesis Approval

AHMAD EL MAAMOUN 1.D.#: 199604830

A PORTABLE MESSAGE PASSING DISTRIBUTED LIBRARY FOR OPTIMIZING
COMBINATORIAL PROBLEMS WITH APPLICATIONS TO CIRCUITS TESTING

Computer Science

Computer Science and Mathematics
School of Arts and Sciences, Byblos
HAIDAR M. HARMANANI

DANIELLE AZAR

MOUNJIED MOUSSALLAM

JUNE 29, 2007

Plagiarism Policy Compliance Statement

I certify that I have read and understood LAU’s Plagiarism Policy. I understand that
failure to comply with this Policy can lead to academic and disciplinary actions against

me.

This work is substantially my own, and to the extent that any part of this work is not my

own I have indicated that by acknowledging its sources.

Name: HRad o€ Haamgeon,

Date: ©O4 - 07“— «19002

Signature:

il

I grant to the LEBANESE AMERCIAN UNIVERSITY the right to use this work,
irrespective of any copyright, for the University’s own purpose without cost to the
University or its students and employees. I further agree that the University may
reproduce and provide single copies of the work to the public for the cost of

reproduction.

To my parents,

Acknowledgment

I would like to thank my advisor Dr. Haidar Harmanani Advisor for his guidance
throughout my Thesis work. A thanks is also to Mr. Munjid Musallam and Dr. Danielle
Azar for being on my thesis committee.

I would like to express my sincere gratitude to the Lebanese American
University whose financial support during my graduate studies made it all possible.

Finally, I would like to thank my family for their long support.

Vi

Abstract

Various heuristic algorithms have been used to tackle combinatorial problems
such as genetic algorithms and simulated annealing. Recently, MPI has
recently emerged as a standard for parallel programming on cluster-based
machines. However, there is a difficulty in proposing an MPI Java port.

This Thesis proposes a portable and distributed library for
solving combinatorial optimization problems wusing Java. The library
facilitates the use of genetic algorithms and simulated annealing and uses
an MPI style message passing mechanism in order to create parallel processes
that can communicate across the network using Java RMI. The library is
optimized for communication and speed and improves the programmers
efficiency through a visual interface. We verify our approach by formulating a new
solution for the test generation problem in VLSI circuits based on parallel fault
simulation. The problem is formulated and solved using GA and SA and
solved using the proposed Library. The ISCAS benchmarks are attempted and

favorable results are reported.

vii

Table of Contents

Chapter 1:....eeeriernisssericsenes tesenntsesesssenteseseraterssanassssssansesnststssneresesesassttsesantesssnsanaessssants 1

Introduction...... ceeesressennresseeennreoennesne ceteeranserrentssenesssnronns ereesesseerrtesersesetannsennseransssresasnnasasnnne 1

1.1 A Comparison of Heuristic Algorithms with Traditional Problem Solving Methods. 4

1.2 The mechanics of a Genetic AIGOrithi.........coovevicsiinerircisncciinninseeenensenreneecsenseesseens 6
1.3 The mechanics of a Simulated Annealing Algorithm........cc.cceveeverveerrrerserserceeerseereereenne 8
1.4 Combining Heuristics and Message Passing......cccocveerrrernerrecrrerceervaensrresessnsssansessessoss 9
CRAPLEF 2: avvvevririiriscneirissonressnneresseseaseacses feereetttaesttttteteseastannnnranreresesesssransasrasssssesanarrran w12
Review of Literature............. ceassssansesaneane tenesssearsssaesesaseesenaissntesanessrassssestasaasessnatssennresenas 12
2L GALIB . ceetrecrersrnnesetstreresessssasssseseessssosssnssssssessssssesseses sessossasasssssss sossssssnnanesnsas 12
2.2 GAUL caviivtiiieiiieinrssneeriiecsccsscssesesersesssssssasnsesssesssonnsessessssessssssasssssssssensnnsssesosssssassanssssasas 14
2.3 PGAPACK cuiiiiiiieicceneeiiicccceecnneneeerisssssssssnestesessssnsseesessosssssssssssssessonssnssssssssossasssasensssasss 15
e JGADP e eeeeccecererrrecerernnntaeerttsesessesesasteessssssasasnesssssassssassntsssssnssstsasasters soesesansasaneseens 16
2.8 JGAL .ocerervccreresrerrenresersersesessesssssessnsssesssessessssssssssssssssssssenssssssssssessesssssasssessssssnannnnnnenns 17
2.6 GAlOPPS couverveiieinirininisiicsninstiinississeisisestsesssssasesissestsestessessansssssassssensesssesassssnessssses 17
2.7 GA rrtiitiiiscsiinnstirecsessssesateeresesesssssssnssesiesssesssssssesesssssssnnsssssssssssesssossssessssensnnssnsesssns 18
2B PAFSA....cccccicercricccrenennreeseesesssssssaraseesicssesssnrasees sessassssasaesisssssssssssssesssssnsnssanassasssesas 19
Chapter 3:...uueue. ceeeseressssssersssressrrensensenseee ererrerreeeereeretseeteeteastesennenasssssesssssessesssssrranne coeeens 20
The Heuristic Framework SYSTEmcivviisensseissrissssssssossssosansssassssssanssssassnsesaes ceenenenees 20
3.1 Genetic ALZOFItRINSveovieieiieriiniiiieniintiensnsie st ssrenstsssssrsesssnessasssnsssassssserenees 20
11 THE GENOIIEooveiiiiiciiee ettt ettt ettt st e e s et e s eeae s s eesneeataesstneeseereenee 20
DMUBALIORN ...t ettt e e et s e et e et te s ers et entaes s aeneenreeesneeans 22

FTIRESS ..o et ee e et et e et st e e st e r e s aenaes 22
SCREIUA ... et e ettt et a e ererae e raaaaan 23

L1 JGEIMOMIC ...t e e e ettt e et e e et e e r e reeeaae 25

3.1.1.2 IBYtEAITAYGEIMOMIE ..ottt ettt sa ettt ee et eene e e 26

3.1.1.3 JCharArrayYGemOmMEc.ooueiiiiiiciieitereet ettt a e bbb e et betens e 27

3.1.1.3 JDOUbBIeATrTayGenomIe.ccceerriricriicritiinacaie et ia e b s te et 28

BB 14 ISCREIMA ...ttt en 28

3.1.2 The POPUIAtION... ..ottt ettt e e v e v v st e sn s erenaas 29
QUICK SOFE ...ttt ettt et e r et r e ev et ettt er e e et n e st saens 29
Roulette WHeel SeleCtioncovovovieeiiiiiceiieiieiesieeiie st eseeeee s vreaeasereseesenes 30
TOUFRAIMERE SCLECLION.ccccviviiiiiiiiiiiiiee ettt e v eer et eeen e reesaees 31
RAAAOM SCLECLIOMN ...ttt st ee et et e e eeneneeenes 31

RAREK SCLECHION ... et 32

Linear SCAlingccccooiiiiiiiiioiie et et s 32

SIGMA TPUHCATION ..ottt ettt es et st es et e ste st saens 33

POWEE LAW.......oovoiioiiiiiee ettt e e et a sttt e e e r e e e re e e areearres 33
ASEXUAL CFOSSOVEFovveeeeeeeeviieieeiies s eettee s eete s et sa e s sttt et e st e e s reneneeesaeressanaeenias 34

SEXUAL CPOSSOVEF ...ttt ettt e e e e e e ste e seee s srean 36

SHLAPE SEXUAL CPOSSOVEFovcoeeeioeeeeeeeeee ettt ettt ete e e et e et a e e rene e as 36

viii

R DO SCUGL CHOSSOVET ... 37
ReoacE U WIS INASIAUGS.......cc....L 38
RePACE RANMOMY .o 38
Replace the Lower Closest TRAWIUGL .ot 38
RDACE IRE PUTENES .o 38
Replace the Best Between Parents and Children...................... 39

Serial and Parallel Fitness E VAIMGEON ..ot 39

L2 TPOPUIAGON ..o 40

3 TB AVGOINDS L 43

TG G MO .o 43

3.1.3.1 1 OCUCAIBONMIY oo 45

3.1.3.2 JSimpleGeneticAlgorithm ... 46

3.1.3.3) DOECENCUCAIGOI ... 46

3.1.34 JIncrementalGeneticAlgorithm .. 48

3.1.35 JSteadyStateGeneticAlgorithm ... 48

3.2 The Simulated ARDCRNNG ALGOTINI cooveerrresererssesss s 50

7 ANIEAIING PUCHOM o0 50
TGS FUCLOT. 51

3.2.1.1 TANRCAGAIGOTI .. 53

3.3 The Message PASSING INEIFACE v 54
333 e MPLSOIVEE ot 55
39 Z TN MPLCHEN L 56

3o O MPEBUIET .o 57
MR 58

A LT MPLSEIVET v 59

AT LI MPLCHENL 59
FFAIMPL oo 60

Chapter 4.......... cosrevennssennee e e et s 62
Case Study .unneeeseeees. covsnresssnes Cerrenetstiineesentneerssanee e errrenssrnressttterenaraessenes 62
4.1 The graphical user interface: The Wizard w..oouveeeunneeeeverrersseesseesoooo 62
The Simulated ANBEAUNG AIGOFUII ...t 64

4.2 Testing the framework: The ULSI fault detector........c.vuvvvummusesmeeeesssooooo 70
4.2.1 Testing the ALBOTINS ..o 70

THE GENEHE AIGOFIMIM ..o 70

The Simulated ARNEQLING AIGOFItNI ... 71

4.2.1 The ULSI Fault Detection PPOGram. .o 71
UCHAE FQUHS ..o 72

LUUIE EGUIVGLNCE .o T 72

422 The PQUIE SIMUIROT ... o 73
LML FUUE SUUMGHON ... 73

DL GUE QUL SIUULGEO ... 74

4.2.3 Simulating the AIBOHINMS .o 75

4.2.4 Simulating the Simulated Annealing Algorithm...........ccoooorro 75
Chapter 5: Conclusion.............. S sreneesessennsnens ettt ne s s eae s aeens e tana e e snneennsa 85
Appendix................... tesertressnenessrnenne verrrass ettt ettt s aeess s asesnes e senas 87
References..nnurnsensesssresrossoon, ressenas ettt assosaeesesnesssnns 88

List of Figures

Figure 1 Roulette Wheel SElCtION.........coviiuiiirmiiriiciiei i 31
Figure 2 One Point ASeXUal CIOSSOVETcuiiuiiiiitiiiiiice it 35
Figure 3 Asexual SWitch CrOSSOVET.......cciiviiiiiiniiiiiiiiis e 35
Figure 4 Two points ASeXUal CIOSSOVETovviiiviiiiiiiiiiiii it 35
Figure 5 One Point Sexual CrOSSOVELciiiiiimianiiiiiiiis it 36
Figure 6 Two Points Sexual CrOSSOVETc.ocviiviiiiiiiiiiiei et 37
Figure 7 The Genetic Algorithm Flowchart ... 43
Figure 8 The Simulated Annealing Algorithm Flowchart ... 52
Figure 9 The Single-Program, Multiple Data model [1]ccooioieniiiiinie 54
Figure 10 The Wizard’s first SCIEEIL ...ovviiriririieii it 63
Figure 11 The wizard's SECONA SCTEEM .. .ccvriviirieriiiietiiiit s 63
Figure 12 The type of the SOIULIONcoviiiiiiiiiii i 64
Figure 13 S.A. general ProPeItiesc.cciiiiviiiiiriiieiieeiiieieee s 65
Figure 14 The Simulated Annealing 1ast SCIEENocovviiiiiiininii 65
Figure 15 Genetic AlZOrithm Properties.......ccovuevriiiiniiiniens s 66
Figure 16 The Simple Genetic AIGOTIthImccooviiiiiiiiii 67
Figure 17 The Incremental GAocoiiiiiiieiiii e 67
Figure 18 The Steady-State Algorithm........cooociiiiiii 68
Figure 19 The DEme GAc.oiiiiiiiiioiinieie ittt 68
Figure 20 The Wizard's 1ast SCIEETcoviiiviiiiniiiiiniii e 69
Figure 21 Parallel Fault Simulation [15] ..o 74

List of Tables

Table 1 Sample Genome with their corresponding fitness values ... 31
Table 2 SA PATAIMELEISe.vveeviiiitiiie sttt ts bbbttt 75
Table 3 SA TESE TESULLS ..iuveiieeireeiieiiieeeerr e e eere e e s s st e et e e s a b be s e sra b e s e ste e e e s snn e 76
Table 4 SIMPle GA PATAMELETSoiviiviiirreeiret ittt s 77
Table 5 Simple GA test RESUILS ..o 78
Table 6 INCremental GAcovovi ittt et 79
Table 7 Incremental GA teST TESUILSiiviierreertieeer ettt 79
Table 8 Steady State GA PArAMCLEIS.......oiviuiiriiriri it 81
Table 9 Steady State GA 1St TESULLSovviiviieiiiiii e 81
Table 10 Deme GA PATaIMIEIEIS.ccuiivriveiiiereeireete sttt 83
Table 11 Deme GA Test RESUILS.....oiviiieiirirree et 84

xi

Chapter 1:

Introduction

Heuristic algorithms have been extensively used in solving combinatorial
problems based on natural selection and natural genetics basics. These heuristic
algorithms have proved to increase their efficiency in case the parallel execution, which
would eventually introduce new information to every running algorithm through the use
of data migration.

Genetic algorithms are based on the natural selection theory, which states the
following:

“Natural selection is the process by which favorable traits that are heritable become
more common in successive generations of a population of reproducing organisms, and
unfavorable traits that are heritable become less common. Natural selection acts on the
phenotype, or the observable characteristics of an organism, such that individuals with
Javorable phenotypes are more likely to survive and reproduce than those with less
Sfavorable phenotypes. If these phenotypes have a genetic basis, then the genotype
associated with the favorable phenotype will increase in frequency in the next
generation. Over time, this process can result in adaptations that specialize organisms
for particular ecological niches and may eventually result in the emergence of new
species ... The term was introduced by Charles Darwin in his groundbreaking 1859 book

The Origin of Species in which natural selection was described by analogy to artificial

selection, a process by which individuals with traits considered desirable by human

breeders are systematically favored for reproduction.” [19]

The concept of Genetic algorithms was first introduced by John Holland in 1960, from
the University of Michigan, and was proved to be very efficient in both explaining
adaptable natural systems and creating one of the first artificial science systems.
Another type of heuristic algorithms, simulated annealing, has also proven its efficiency
in solving global optimization problems. The algorithm’s name: “simulated annealing”
is taken from a process used in production where the crystal is shaped by varying the
temperature, in order to get the final shape at the ambient presumably low room
temperature. The idea of using this technique in solving combinatorial problems was
first presented by S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi in 1983 [20]. The
Simulated Annealing algorithm works by performing a random search around the
current solution, and if this search resulted in finding a better solution, then it would
replace the current solution with a certain probability that depends on a current global
variable called the temperature. The global variable “temperature” is directly
proportional to the probability of choosing an individual, in such a way that when being
very large, the probability of choosing a newly generated solution would be high.
Throughout the algorithm the temperature is gradually decreased to reach a final steady
state value.

The power behind these algorithms lies in their simplicity compared to other
algorithms that require heavy programming. One very important feature of these
algorithms is the possibility of their application to different problems. In fact, the next

important feature is the option of using these algorithms in more than one search

environment, which could include logic circuits, or random search algorithms which
have a predefined initial population that should be ordered in a specific way (traveling
salesman problem). Additionally, these algorithms inherit the ability to recover from a
newly generated non-efficient solution, and can always find the path to reach an optimal
solution by grouping the best parts of the previous generation and by applying random
changes that will eventually introduce new efficient individuals. On the other hand,
these algorithms have some limits which emerge from continuously choosing the
“fittest” individuals of a population, which would cause the population to become
homogeneous. This is when the migration would interfere to bring new genes to the
population.

As a matter of fact, running more than one version of an algorithm on more
than one machine, and performing a migration process of some selected individuals,
wouldn’t be an easy task to perform, unless a robust parallel programming standard was
followed. If that was the case, the proper execution of the data transfer, or message
passing processes, would be handled properly by the powerful standard, making sure
that each algorithm would transfer his best findings with the others.

MPI, the Message Passing Interface, is a parallel programming standard that can be used
to ensure the efficiency of data transfer between algorithms running on parallel
machines. MPI does not necessarily operate on a cluster of computers, rather an
interconnected network of computers can run MPI based programs since the basics of
MP]I are built on sending and receiving messages though a common bus, which can be in
this case a network.

MPI was driven by the need of increased performance which was done by dividing the

program into pieces and running every part on a machine, in parallel, hence the

tremendous time reduction and power. In fact, MPI offered an alternative way to create
cheap supercomputers, by grouping heterogeneous workstations and using this parallel
standard as a means of communication.

Briefly, the combination of Heuristic Algorithms and MPI, would result in a

powerful system that would be able to solve any problem with ease and efficiency.

1.1 A Comparison of Heuristic Algorithms with Traditional

Problem Solving Methods

Prior to the use of the heuristic algorithms, the traditional ways that were used
to sweep through a search space were based on either 1- abusively checking all the items
in the search space, 2- mapping the problem to an equation and trying to solve it, or 3-
randomly checking the items in the search space in order to find an optimized solution.

1. The first approach, which consists of listing all the items in the search space and
abusively checking them for an optimized solution, is based on a simple consecutive
method. These exhaustive search algorithms are usually contained in a limited and
narrow search space, however, their application on the problems that have an almost
infinite search space would prove to be very inefficient. Going through every
member of the search space might require dedicating a large amount of time, even
with the use of the fastest existing parallel machines. One important algorithm that
uses this search technique is the dynamic programming approach, that requires a

very large space to run, since it lists all the possibilities for the provided problem.

2. The second approach works by trying to model the problem as an equation, and
solve it. One method that is used in an attempt to solve this formula operates by
generating the derivative of this equation, setting this derivative equal to zero and
finally solving the resulting equality. This equality is solved by slowly approaching
the peak through finding solutions that are closer to the peak. This method follows
the notion of hill climbing, but it still faces the problem of being stuck at a local
minimum, thus never approaching a better solution. Calculation based methods
proved to be inefficient since not all the non deterministic problems can be
described by a single equation, they are rather described by complicated equations
whose derivative is very hard to generate, or sometimes impossible to calculate, in
case the equation is non-continuous or noisy.

3. The third approach is based on a blind random walk in the search space. In case the
search space was very large, the probability of this random search to locate an
efficient solution would be almost equal to zero. This random search method was
used as a last way out, to try to come up with a solution, when all the other
deterministic search methods failed. The obtained results from the random search
were not satisfactory and the search proved to be ineffective. As for the heuristic
algorithms, the use of randomness is not in the searching method, but in the random
choice that is guided by a search procedure, which converges towards an efficient

solution through the natural selection rules.

Eventually, heuristic algorithms, have proved, that they are highly efficient
reliable and robust, which are features that do not exist in the deterministic methods that

were previously used to solve combinatorial problems.

As a final point, seeking efficiency was the drive behind finding new and better
ways to perform the search methods, and the definition of efficiency is not simply to
find a good solution, since the conventional methods might serve to find a good solution.
Efficiency is rather finding the best solution with the limited provided resources such as
time and space, and this is another strength of the heuristic algorithms: providing an

optimum result with the limited allocated resources.

1.2 The mechanics of a Genetic Algorithm

To solve any type of problem using genetic algorithms, some procedures
should be followed which usually consist of creating a population and determining how
to evolve it. Following are the steps that should be followed prior to the use of a genetic
algorithm.

The first step is to model the solution as a chromosome, which should vary
over a limited range. In other words, the solution should be described as a limited
sequence of items that belong to a homogeneous collection of items. For example, in
solving the traveling salesman problem, the solution consists of the cities that can be
visited once. Another example is in the VLSI circuits, where the solution is modeled as
a string of Binary numbers.

The second step is to create a fitness function for the problem. A fitness
function is the means for the genetic algorithm to find out if the optimization is going in
the right direction. In other words, the fitness function is an important part of the
algorithm which operates by obtaining a solution and deciding how good it is, or how

close it is from the best solution. This decision can be achieved by performing a

simulation of the given problem, and checking how close the solution is to the optimal
solution.

A population is a group of candidate solutions that are randomly determined.
The population has many properties, that include the size, which can be greater than or
equal to one individual, and it is usually a constant. In fact, there are some selection
methods that are applied to the population, that remove the non-efficient individuals,
which in turn resize the population. There is a possibility of many choices that can be
taken when selecting individuals from a population for deletion, and the most widely
used choices are either based on selecting the worst individuals, selecting the parents of
the newly generated individuals, or simply based on a random selection among the
population’s individuals.

To create a new generation, a group of individuals should be selected from the
current population. There are many selection methods, but the most commonly used
techniques are the following: random, roulette wheel, tournament and rank of the fittest
individuals. These sclection techniques will be described in details in chapter 3. The
algorithm will next apply the genetic operators: Mutation and crossover, on the selected
individuals. Mutation works by randomly changing a part of a genome (gene), to a
random value that falls within the predefined range. Crossover works by performing a
mix to the genes of the genome(s) that were selected. These two genetic operators will

be discussed later in chapter 3.

This process of changing the population, through selection, mating and
replacement can be denoted as the process of evolution. This evolution process will
continue to run until the algorithm terminates, which might happen in one of the
following cases:

e The number of new generations has reached a predefined maximum.

e The maximum predefined fitness was reached.

e A combination of both methods, which states that if a solution having
the maximum fitness was reached, it would stop. If that weren’t the
case, then the algorithm would continue the evolution process until
reaching the maximum number of new generations.

Finally, there exists many combinations of the previously stated features, and
cach combination is considered as a variation of the genetic algorithms, knowing that

each algorithm is optimized for a specific problem type.

1.3 The mechanics of a Simulated Annealing Algorithm

Another commonly used search technique in finding an optimal solution is
simulated annealing which uses random processes to help guide the search until reaching
a minimal state of Energy.

To solve any type of problems by using the Simulated Annealing, three main things have
to be considered: assigning a global temperature and deciding on how and when to
decrease its value, and creating an initial solution and a corresponding fitness function,

which decides how “fit” is a certain solution.

Initially, a preliminary solution can be randomly generated, since any point of
the search space can be selected as a starting point. The progression of the algorithm
will make sure that this initial solution will converge to an optimum one.

An initial Energy state also has to be created which will decide on the probability of a
newly generated solution to replace the current one. In fact, the power behind this
algorithm lies on the possibility of a bad solution to be selected, which would help the
algorithm to escape being stuck at local minima.

Applying some randomizing operators to the current solution, derives the newly
generated solutions that would eventually replace the current solution. As for the
temperature, which denotes the current energy state of the system, it is gradually
decreased in order to reach the final steady energetic state. This way, the system will
check a large searching area before converging to a low energy state, and narrow search
space where, at this point, it would use hill climbing to reach the peak, or the optimal
solution.

When the Energy of the system reaches the minimal assigned value, the algorithm will
stop iterating and will display the fittest solution. The Simulated Annealing algorithm

will be discussed more thoroughly in chapter 3.

1.4 Combining Heuristics and Message Passing

The main idea behind creating MPI, was to create standards for message
passing systems, that can be implemented using any programming language. This idea
was very successful and lead to the spread use of this standard, especially that some of

the translations became available online free of charge. The carly versions of MPI were

written using the C and Fortran programming languages. Later on, after the creation of
the Java programming language, some versions of JAVA MPI were developed.

The declared standard did not state how the MPI process should be created and started,
and left this task to be fulfilled in the implementation step. What was defined in the
standard was the fact that every newly created process should have a rank id. This ID is
generated by the process that has a rank equal to one. Another requirement, was to
declare all the processes in a communicator called MPI COMM_WORLD, where every
process will have an associated rank value in an object called the communicator.

MPTI’s primary concern was to pass messages between the processes, and this is why the
standard required all the ‘send’ and ‘receive’ methods to begin with the letters MPI_ to
be differentiated when being imported to other programs.

There are over a hundred methods that were defined in the MPI standard, but to create
an efficient program, only six or a bit more methods can be used.

The various methods that will be used to transmit messages between the running
heuristic algorithms, will be based on the non blocking routines which allow the next
statement to be executed whether or not this routine was locally complete [1].

The implementation of the MPI standards can be written in JAVA with the
help of the native construct RMI. The benefits of the use of RMI are in the possibility of
referring to a remote object’s methods. Every RMI program is based on a client-server
model, where every client has an interface that holds a signature of the remote methods
of the server. When compiled and linked, a client stub and a server skeleton are created
in the RMI registry whose role is to manage the remotely available objects and the

Naming Services. When a client calls a remote method, the server object is first located

10

in the registry, then a client stub is returned to the client, holding information on how to
use the parameters of the server [11].

The non blocking sending and receiving methods are called MPI Isend and
MPI Ireceive, where the letter I stands for the word immediate. These two methods will
fork and try to send or receive a message, and their completion can be detected through
the use of two other methods MPI Wait and MPI Test, which return with a flag

indicating whether the operation has completed at that time [1].

The algorithm that supports parallelization can be run on many machines in
parallel or on a clustered machine. This heuristic algorithm can use any standard to
establish the communication between the parallel running algorithms, including the
message passing algorithm which can be easily fitted in this algorithm, due to its simple
standards and basic requirements. Thus, when an algorithm discovers a new solution
that it considers as very efficient, it can use the MPI standard to wrap the solution that
was found in a message and send it over to the destined receiver. This migration process
will introduce new unexplored solutions to all the participating members, which would

eventually lead to an increase in efficiency.

11

Chapter 2:

Review of Literature

Previous implementations that proposed Heuristic Algorithm libraries, were
written in various programming languages including C, C++, Fortran, Delphi and Java.
The rest of this chapter describes all the available implementations, and states their

features and capabilities.

2.1 GALIB

The GALIB library, was developed in 1996 by Matthew Wall at the
Massachusetts Institute of Technology, under the Mechanical Engineering Department
[1]. GALIB, which stands for the Genetic Algorithm Library, is a library of genetic
algorithm objects that was described by its author as a collection of “tools for using
genetic algorithms to do optimization in any C++ program using any representation and
any genetic operator” [2]. This library was amongst the first trials to create a portable
library of genetic algorithm components destined for general usage. In fact his library’s
general features include the incorporation of many examples, which illustrate the use of
its embedded components, in addition to its own random generators which are crucial to
the search algorithms’ operation. Furthermore, GALIB uses some templates in the
genome classes, which can be removed or disregarded in case the compiler does not

support them, or in case the programmer doesn’t wish to use them.

12

GALIB also included some other important features distributed over the algorithm
design, the system parameterization and the statistical methods. As for the algorithm
design, this library included the support four different types of algorithms which differ
in the replacement strategies, the evolution processes and in the possibility of parallel
execution.

The first algorithm is the simple genetic algorithm which uses non-overlapping
population and optional elitism. In other words, the newly generated population will
replace the old one with the possibility of copying the best individual from a population
to the other.

The second algorithm is the steady-state genetic algorithm which uses overlapping
populations, with the ability for the user to define the percentage of the population that
should be replaced. This algorithm’s efficiency resides in the ability of it being highly
parameterized where the user will shape the algorithm following his needs.

The third variation is the Incremental Genetic Algorithm whose population consists of
only two individuals, and that contains custom replacement methods such as replace
parents, replace worst, and replace random.

The final algorithm is the deme GA which uses a steady state algorithm with the
possibility of parallel execution [1]. The parallelization of the algorithm depends on the
PVM library that should be pre-installed on the multiprocessor system.

All these features are available, in addition to built in selection strategies, such as
Roulette wheel selection, tournament selection, random selection, stochastic uniform
sampling, and deterministic sampling [1]. As for the termination methods, they include

convergence and number-of-generation termination. All these features, in addition to

13

some extra embedded ones, will be discussed thoroughly in the next chapter since they

will all be used in the local implementation.

2.2 GAUL

The GAUL library which is an open source library that was released under the
GNU General Public License, was developed in 2001 by Stewart Adcock under the C
programming language. “It provides data structures and functions for handling and
manipulation of the data required for serial and parallel evolutionary algorithms™ [3].
GAUL was developed on Linux, but the code can be compiled on any “POSIX
compliant system” [3].
This interpretation of the genetic algorithm library also contains some important features
to make it a general purpose customizable library.
GAUL also supports a powerful possibility of parallel execution of the genetic
algorithm. In fact the parallelization can be performed using any of the most famous
parallel architectures ranging between MPI, Open MP, P Threads, and the forked-
process model which should be previously installed on the system. Some of these
parallel implementations leaves the task of multi population evolution to be handled by
the operating system. So in case it was installed on a cluster machine, it would run as
expected and offer optimized results. Some of GAUL’s other important features are the
following:

e Different Heuristic algorithms were included such as tabu search, simulated
annealing, simplex search, deterministic crowding, differential evolution,

steepest ascents, and hill climbing.

e Support for many genome data types.

e Different steady-state and generation based GA can be selected [3].
Finally, the main worry of the author of this library was to create a library that can
compile and run using either C or C++, or the advantage of C is that it is trivial to use

from within C++ [3].

2.3 PGAPack

The PGAPack, the Parallel Genetic Algorithm Library, was developed by
David Levine in 1996 in the ANSI C programming language [4]. This library was
created due to the contribution of a large team of professionals that originate from
various scientific research institutes or programs such as Argonne’s Science and
Engineering Research program and the U.S. department of Energy.
This library can be used as a package which can be called from either a FORTRAN or a
C program. It is customizable in a way that users can create new evolution operators
and data types. “PGAPack is a parallel genetic algorithm library that is intended to
provide most capabilities desired in a genetic algorithm package in an integrated
seamless and portable manner” [4].
PGAPack uses the MPI library to run its parallel version, but it requires the already
existing installation of the MPI environment. The MPI support will be included upon
installation, where the user has to specify the location where the files are located.
PGAPack includes some beneficial powerful features which facilitates the process of
embedding it in other projects. Some of these features are the following:

e Object-Oriented data structure design

15

e Parameterized population replacement strategies varying between two major
possibilities: the Generational replacement, and Steady-State replacement
schemes.

e Multiple choices for evolution operators varying between mutation and
CTOSSOVer.

e FEasy integration of hill-climbing Heuristics

e Multiple stopping criteria which are the following: iteration limit exceeded,
population too similar, and no change in the best solution found in a given
number of iterations [4].

e Multiple selection schemes which are: proportional selection, stochastic
universal selection, binary tournament selection, and probabilistic binary
tournament selection [4].

In addition to being available free of charge on the internet, the user of this library can

download a fully documented user guide which was a part of a Ph.D. study.

2.4 JGAP

The JGAP, Java Genetic Algorithm Package, was developed by Klaus Meffert
in 2002 under the Java programming language. It was designed in a “modular” way so
that users would be able to customize it depending on their needs. JGAP’s motivating
idea was to create a program that would help in designing a GP (Genetic Programming)
application which is a similar algorithm to GA. Knowing that GP is the process of
evolving Programs, this library was mainly designed for GP Programs developers, in

which a program evolves to becoming an optimal one having all the required features.

16

In other words, “the main philosophy that was setup before extending JGAP towards
GP, was to reach the goal by adding parts to GA to get GP” [6].

JGAP is a practical easy-to-use library where the user simply defines the traditional
genetic options and executes the algorithm without the need for complex setup steps.
JGAP does not support multithreading or distributed evolution, but the author promises a

future version that embeds parallelism.

2.5 JGAL

The JGAL (Java Genetic Algorithm Library) is also created under Java and it
features the basic genetic principles in the evolution theory. It was created by Janusz
Rybarski in 2006 and as stated by its author: "Java Genetic Algorithm Library is a set of
classes and functions for design and use Genetic Algorithm” [5]. This library is a very
simple and limited implementation since it only supports chromosomes which are coded
as binary numbers. The selection procedures are also limited and it doesn’t support

parallelism.

2.6 Galopps

The “Galopps” library is created by Erik Goodman in 1997 in the C
programming language. “It was based upon Goldberg's Simple Genetic Algorithm
(SGA) architecture, in order to make it easier for users to learn to use and extend.” [10].
This library supports parallel programming through the use of the PVM standards, and

has some other interesting features that are briefly explained below:

17

e Various traditional selection methods varying between roulette wheel, stochastic
remainder sampling, tournament selection, stochastic universal sampling, and
linear-ranking-then-SUS.

e Parameterized Genomes in the initialization and evolution stages.

e Various genetic operator including mutation (fast bitwise, multiple-field, swap
and random sublist scramble) and crossover (1-pt, 2-pt, and uniform)

e Support of different fitness scaling techniques which include: linear scaling,
Boltzmann scaling, sigma truncation, window scaling, ranking.

e Different selection for replacement algorithms including DeJong-style crowding
replacement, parent replacement, and random replacement.

e Optional Elitism.

e Many Convergence techniques: "lost,” "converged," "percent converged," &
other measures.

e The definition of different representations in subpopulations, with the optional

migration possibility.

All these feature in addition to some other capabilitics make Galopps a rich library, since

it was built on one of the best detailed GA books.

2.7 GA

The “GA” library is created by Jeff S Smith in the year 2000 under the Pascal
(Delphi) class library. It is a limited library with no multithreaded support and a limited

selection methods (only Random). It is best described by its author as follows:

18

“The genetic algorithm (GA) is basically a computer program which simulates
evolution. Namely, a simulated population of chromosomes is randomly created and
allowed to reproduce according to the laws of evolution with the hope that a very fit

individual chromosome will eventually result” [§].

There are also other programs that were developed as a Genetic Algorithm
library which will only be mentioned but will not be described in details. These libraries
include the Jaga library (Java Genetic Algorithm Package) which was developed by Jan

Koutnik in the year 2000 [9], and the GA Playground which was created by Ariel Dolan

[7].

2.8 ParSA

The “ParSA” is created by G. Kliewer, and S. Tschoke, in the year 2000. It is
an object-oriented simulated annealing library based on C++, which uses the MPI
message passing interface [21]. The library is based on object-oriented programming
and it can be easily extended with new features ranging from new cooling schedules to
different acceptance methods. This library requires the existence of an MPI
environment on the workstations, and it was tested on many MPI software such as
MPICH, ScaMPI and WMPI. parSA’s performance was demonstrated by applying it on
the Weekly Fleet Assignment Problem (FAP) which is an optimization problem that

occurs in the process of operating an airline.

19

Chapter 3:

The Heuristic Framework System

This chapter proposes in details the work that creates a portable and distributed
message passing library to solve combinatorial optimization problems. The work was
done using the Java programming language, and makes use of the native construct
Remote Method Invocation (RMI). This chapter is divided into three parts. The first
two parts discuss the Heuristic algorithms that are included in this framework: the
genetic algorithms and the simulated annealing algorithms. As for the third part, it
discusses the Message Passing Interface.

Note that since Java is an Object Oriented language, this framework relied heavily on
object oriented programming throughout the coding of all its elements. In addition, five

packages were created, where each package holds all the related classes.
3.1 Genetic Algorithms

The discussion about the Genetic algorithms includes three major components

which are the genome, the population, and the genetic algorithm itself.

3.1.1 The Genome

The Genome was previously defined in chapter one as being the result of
encoding the solution in a chromosome. All the genome-related classes were grouped in

one package called Genome, in order to ease the debugging and extension procedures.

20

Deciding on the type of the genome object, is one of the problem specific decisions that
should be specified by the user. John Holland, in his initial study, relied on binary
encoding and formulated all the theory based on that simple type. Evidently, this type of
encoding has limited domains of application and most of the combinatorial problems
need some rich encoding capabilities to be able to use this natural selection theory. The
mostly used encoding scheme is the array of characters or strings, since the alphabet
letters can denote a large number of choices ranging from city names (Ex: Traveling
Salesman Problem), to teachers names (Ex: class scheduling problem). Another type of
encoding is the tree encoding, but since a tree can uncontrollably grow, it is
recommended that this type should not be used unless the user can have control over the
size of the trees.

There are three possibilities of encoded genomes included in this library, but the user
can add his own genome implementation. The possible genome types are Double,
Character, and Byte.

The basic components that are necessary to create a genome object are the
fitness function and the array of genes. In this study, we decided to add to the genome
an essential evolution operator which is the mutation. The drive behind that decision
came from the will to include relevant code inside every class, and to simplify the whole
evolution process. And since the mutation factor performs a mathematical operation on
the genes, it would be better to include this method in the genome so that it would run

faster.

21

Mutation

Mutation is another word for change, alteration, or transformation. It is an
essential genetic operator in the evolution process because it helps in discovering new
genes that cannot be generated by other operators. The concept behind mutation is
somewhat simple given that all what this operator has to do is to change a certain gene
(which could be randomly selected) to a random value. Mutation cannot be used very
frequently since it can create changes in the genome to a point where it would become a
useless one. On the other hand, when a search process is stuck at a local peak and
cannot find a way to escape it, the best choice at that time would be the use of mutation.
The mutation probability is usually set to a low value, in a genetic algorithm, which
should be increased as the evolution process progresses. However, if a mutation leads to
the introduction of a deficient individual, the algorithm would have the means to

decrease its bad effect on the evolution throughout the selection.

Fitness

Fitness is an objective function that measures the goodness of the solution that
is embedded in the genome. Evaluating a genome’s fitness doesn’t necessarily rely on
the contents of the genes, but should in some cases take the order of the genes into
consideration. The fitness function plays a very essential part in the evolution process,
since the algorithm’s selection methods are founded on the fitness value of each
individual. Deciding on an individual to contribute in the next generation according to

his fitness value means that the selection process is directly proportional to the fitness.

22

Schema

Schemas (or Schemata) can be used to optimize some of the evolution methods
such as crossover and mutation. Theoretically, a schema is an approach of resemblance
between two genomes. A schema is simply an array that has the same size of a genome,
and it is created by selecting the different genes, that have the same index position, of
two chromosomes and replacing them by a ‘*’ in the schema’s array. As for the
common genes, they will be copied as they are. For example if we have two genomes:
101001 and 100011, the corresponding schema would be the following: 10*0*1. As a
result, this schema can represent four different genome formations: 100001, 100011,
101001, and 101011. A schema will have a lower contribution to the evolution process
when the genes have a large range of values, but their role would be extremely efficient
in the limited range genes (Ex: binary).

A schema has some functions that explain its properties, these properties are: the Order
and the Delta of the schema. The Order is simply the number of fixed genes in a
schema, and the Delta is the defining length of a schema which is the maximum distance
between the first and the last fixed genes. The Order value varies between 0 and the size
of the genome, and the Delta value varies between 0 and the genome size -1.

The schema’s role in the evolution algorithm is mainly in the trial to preserve the good

genes in a genome and keep them close together.

Since a mutation’s percentage is relatively low, the need of taking an
advantage of it is critical. Hence, a mutation shouldn’t select a star (*) and mutate it,

since a star indicates that there exists multiple values for this gene. So mutating a

23

“fixed” gene must have a greater influence over the fitness of the chromosome, which
might be beneficial in many circumstances, especially to escape local peaks.
Schemas are also useful for crossover, in a trial to keep the common genes closer
together. The analysis will include the interpretation of the Order and the Delta values
at the same time. Therefore, when the Delta’s value is very close to the Order value,
(Ex: ***]10*** Order=3 Delta=2) it means that the schema has close significant genes
and rarely separated by stars. This type of genome should transfer these grouped
significant genes to the next generation because the fitness is directly affected by the
presence of these fixed genes. If the Delta value is much greater than the order (Ex:
[#*sxxsk() Order=2 Delta=8) then we can conclude that the genome’s fixed genes are
scattered. The more the Delta value is close to the Order value, the closer is the distance
between the fixed genes, and the higher the probability of this genome to be selected for
the next generation. This analysis can affect our decision on the choice of the crossover
point of the genome, which should have a lower probability of intercepting the grouped
genes. In case a fitness value of a schema was higher than the average fitness of the
population then the probability of this schema to survive to the next generation should
be high.

The Genome package contains all the classes that are related to the genome
component, including the schema class and the initial genome class JGenome. The next

sections discuss the contents of this Genome package.

24

3.1.1.1 JGenome

JGenome is an interface which includes all the mandatory methods and
variables necessary for the creation of a Genome object. This inheritance feature is
necessary for the program to support more than one type of genomes. In addition to the
implementation of some methods in this interface that are important for all the genome
classes to have.

To add a new Genome class, the user needs to create a class in the genome package and
to have it implement the JGenome interface, and create all the predefined abstract
methods. Some other minor additions will be mentioned later in the JPopulation class,

which require the need to add a couple of lines that deal with object initialization.

The most important defined variables and methods in this interface are the following:

e Vector genes: this variable holds the array of genes which is the basic building
block of the Genome.

® double absFitness: this variable holds the current value of the fitness of the
genome object.

® double scaFitness: this variable holds the current value of the scaled fitness of
the genome object. The method used to generate the value of the scaled fitness
will be explained in section 3.1.2.

e Object program: this variable is of type Object because it is supposed to point
to any object that is created in the algorithm, and it was created in a direct
relation with the fitness function. To make use of this variable, the user has to

have a fitness function created in his original program. The next step would be

25

to pass his object program (this) as a parameter to the Genetic Algorithm object
which would route this parameter to the JGenome class. This way the user will
be able to call any function written in his program, from the fitness function of
the genome. This option was created to make it easier for the users to profit from
this framework, in case they had already created their program and do not wish
to do significant updates to their code.

e double fitness (): this method should be implemented by the user, since this is
where the differentiation process of the genomes occurs depending on the
subjective evaluation of the user. As we mentioned before, the user can create
his fitness function in his original program and call it in the body of this fitness
method through the use of the program variable.

e void mutate(int idx): this function applies the mutation operator on the
genes. The parameter idx denotes the location of the genome that needs to be
mutated. In case the user wishes this location to be a random one, he should pass

as a parameter the static global variable RANDOM_INDEX.

3.1.1.2 JByteArrayGenome

JByteArrayGenome is a class that implements the interface JGenome. Its genes
are of type byte which is a small 8-bit integer type ranging from -128 to 127. this
datatype is useful when dealing with data streams or raw binary data [11]. Since we
talked about all its features when describing the JGenome interface, we will only

mention the constructor.

26

public JByteArrayGenome (int geneSize, byte 1lowB, byte upB, boolean

randomize, int seed, Object prog)

The parameters that are passed to this constructor are the following:

genesize: which defines the total fixed size of the gene.

lowB, upB: these two variables define the boundaries of the datatype variation. When
defined, any mutation will only fall within the range that is defined, making sure that the
genes would still be relevant to the user’s original definition. For example, if using this
datatype for a binary representation of a logic circuit, the boundaries should be set to
zero and one.

randomize: this Boolean variable indicates to the genome, upon creation, if it should
initialize the genes to random values or not.

seed: this is a seed value that is passed to the genome’s random variable.

prog: this is where the program pointer is passed to the genome, to be used in the fitness

function.

3.1.1.3 JCharArrayGenome

JCharArrayGenome has genes of type char which is a 16 bit integer type.
This datatype uses Unicode to represent the characters, including a multitude of
character sets ranging from Arabic to Greek to Latin and many more. The range of a
char is between 0 and 65’536 [11] and it does not include negative values. The
constructor for this class is very similar to the JByteArrayGenome class including the
parameters. The only exception is for the datatype of lows and upB which in this case

are char.

27

3.1.1.3 JDoubleArrayGenome

JDoubleArrayGenome has genes of type double which uses 64 bits to store a
number. The double datatype can be used for problems that require extreme accuracy
over many iterative calculations [11]. It can also be used in mathematical applications to
calculate the area of a circle for example, or to calculate a derivative value. This
datatype has two constructors, one of which is similar to the previous class’s constructor,
and the other has an extra parameter added which is stp. This parameter defines the

width of the fraction part of the double number.

3.1.1.4 JSchema

As explained earlier, JSchema is not a class that implements the interface
JGenome, it is rather a tool used to find similarities between two genomes. The way
JSchema objects are created will be discussed later in section 3.2. The important
functions and variables in this class are the following:

® sString genes: which is the array that holds the significant genes and the stars.

e int order, int delta: are the variables that hold the value of the Order and
Delta.

e int fixedPos: this variable contains the index of the first significant gene.

e vector stars: this array contains all the locations of the stars in the schema’s
genome.

This class’s constructor is:
public JSchema (JGenome gl, JGenome g2, Object prog)

where g1 and g2 are the two genomes that form the schema.

28

3.1.2 The Population

The population class is where the evolution process takes place. The most
important role of the population object is that it defines the current container for the
genomes, and applies the evolution operators to generate a new population.

Upon its creation and initialization, the population object has all he required data it
needs to perform a single evolution process, but it still lacks the engine that will call all
these methods that will make the evolution proceed, this engine is the Genetic
Algorithm.

After being created, the population object will get initialized and will verify that it has
the proper number of genomes which can either be supplied by the Genetic Algorithm,
or generated locally using a random algorithm. The next step would be to start the
evolution by first calculating the fitness then sorting the genomes of the current

generation by using the quick sort algorithm.

Quick Sort

Sorting the genomes in the current population is an essential step that should be
performed before any evolution takes place. This step is important because all the later
evolution operators will be applied with the assumption that the population is sorted, and
will select the first members to be the genomes with the highest fitness value.

Quicksort, one of the fastest sorting Algorithms, was developed by C. Hoare in 1962.
The way this algorithm works in sorting an array, is by choosing a random element from
the array and distributing the smaller elements to its left and the bigger elements to its

right. Then a recursive call on this same method will be initiated on the left sub part,

29

then on the right one. When a set has less than two elements, the recursion stops, thus
ending the procedure [13]. The benefits from this sort is that it uses a function called
swap which swaps the position of two elements in the array, minimizing the amount of
space required.

Quicksort’s worst-case running time is ®(n%) on an input of n numbers [14], but it is
often the best practical choice for sorting because it is remarkably efficient on the

average [14] with an expected running time of ®(n 1g n).

After sorting the population, the Algorithm will select the exact amount of
individuals from the current population, clone them, and then apply the evolution
operators on them. Most selection methods are based on the Darwinian’s survival of the
fittest theory. Of these methods we state the following: Roulette Wheel Selection,

Tournament Selection, Rank Selection, and Random Selection.

Roulette Wheel Selection

The Roulette Wheel Selection method is based on the fitness value of each
individual in relation to the total sum of the individuals’ fitness values. Therefore the
higher an individual’s fitness value, the higher the probability of it being selected.

This method starts by summing all the fitness values for all the population while keeping
track of every individual’s contribution to the sum. The next step is to generate a
random number that varies between zero and the total calculated sum. The system then
selects the individual, in whose domain the random number was classified. In other

words, the total sum of the individuals’ fitness can be modeled as a wheel that is divided

30

into sectors where each sector corresponds to a single individual. The random number

falling in an individual’s sector would get that individual to be selected.

Table 1 Sample Genome with their corresponding fitness values

1101001 | 50 1101 001
179
0101011 | 20 & 1101001
a101011
0001 001 7% ® 0101011
1101110 | 90 43% 01101110
o1100010
1100010 | 10 W 0001001
1101110
0001001 | 130 1100010 0%,
3%,

Figure 1 Roulette Wheel Selection

As an example, consider table 1 which contains various individuals that are associated to

their fitness value. Fig. 1 shows each member's contribution to the wheel.

Tournament Selection

In the tournament selection, the system selects two individuals by using the
Roulette Wheel Selection and then selects the one that has a higher fitness value. This

type of selection makes sure that only the elite group are always selected for mating.

Random Selection

As its name indicates it, random selection treats all the individuals equally by
making the probability of an individual to be selected, the same for every present

member in the population. The selection method is performed by randomly generating a

31

number that ranges between one and the size of the population, this number would be

the index of the selected individual.

Rank Selection

In this selection method, the individuals that have the highest fitness value are

always selected.

But if we apply these methods on the normal fitness values, we might be faced
with two different problems. The first one is fast convergence which happens towards
the beginning of the evolution process. Fast convergence happens when only the
individuals that have a high fitness value are selected, which would result in a complete
reduction of the other members, resulting in a homogeneous population. The other
problem is that in some populations, after a certain number of evolutions, the fitness
value becomes almost equal for all the individuals, which will make it hard for the
selection methods to choose different individuals for mating. The solution to these
problems was to use a scaled value of the fitness in the selection process. The Scaling
algorithms used in this study are the following: Linear Scaling, Sigma Truncation

Scaling, and Power Law Scaling.

Linear Scaling

Linear Scaling is calculated from the normal fitness value by following this
formula [2]:

fscaled = A.fnormal +b

32

where the multiplying factor @ and the additive factor b are calculated by using these

formulas:
a= (fMultiple - 1'0) *‘ﬂivg /(fMax _f,“!vg)
b =f,‘4vg * (fMax 'fMultiple *ﬁ4vg) /(fMax "‘f/;lvg);

where fyumipre is a multiplier selected by the user, faug is the average value of the

population’s fitness, and fy is the value of the maximum fitness [16].

Sigma Truncation

The sigma truncation scaled fitness was proposed by Forrest in 1985 which
suggested using the standard deviation for the calculation of the scaled value [1]. This
scaled fitness is calculated using the following formula:

I =f- (farg-sigma)
where fi, is the average value of the population’s fitness, and sigma is the population’s

standard deviation.

Power Law

The power law scaled fitness was proposed by Gillies in 1985 where the fitness
is raised to the power of a constant k:

r=r
The inventor of this scaling method used the value of k = 1.005, but any value can be

used by the user flowing his needs.

33

In both linear and sigma truncation scaling, negative scaled fitness values are

not allowed, so all negative values are replaced by zero.

After selecting the individuals that should mate to create the new generation,
the genetic algorithm will call the evolution operators: crossover and mutation, and will
initiate the evolution process. Crossover operators, differ depending on the number of
genomes that should perform the crossover, and the way the crossover should be
executed. From that we state the following possible crossover possibilities: Asexual
Crossover, one point sexual crossover, two point sexual crossover and smart crossover
which makes use of the schema class that was discussed earlier.

Crossover is the basic operator that performs most of the reproduction
operation. In a crossover, the genome of the parents will be divided and mixed together,
and the child will inherit different parts in a different order. The result would be new

individuals that have some similarity to their parents, with a different fitness value.
Asexual Crossover

Asexual crossover is performed on one individual only by selecting a random
location index on his genome and flipping the left and right parts around it. In some
problems, asexual crossover is the only mating option that can be used. Thése problems
can have their genomes previously defined and what is needed is a proper arrangement
of the genes. A good example would be the Traveling Salesman problem which
searches for the best arrangement of the individuals’ genomes.

There are three types of asexual crossover: One point asexual crossover, asexual switch

and Two points asexual crossover.

34

In the one point asexual crossover, a random index in the individual’s genome is
selected and the two parts around it are switched. In the two points asexual crossover,
two random points are selected, and the upper part and the lower part around these two
point are switched. In the asexual switch, two gene indexes are randomly selected and
they get exchanged. The following figures explain the asexual crossover. in its three

types.

Original Final Original Final

Crossover
Point

~ 5 5
=

Figure 2 One Point Asexual Crossover

Figure 3 Asexual switch Crossover

Original Final

Crossover
Points Figure 4 Two points Asexual Crossover

.9

35

Sexual Crossover

In the sexual crossover, two individuals are selected from the population, then
an index point is chosen, whether randomly or deterministically, to become the

crossover index.

One point sexual Crossover

In the one point sexual crossover, the parents’ genes that are before and after a
previously specified crossover index, will be symmetrically exchanged, resulting in two
new individuals as seen in the figure below.

Original Final

Crossover
Point

-~ 5

Figure 5 One Point Sexual Crossover

Smart sexual crossover

The smart sexual crossover creates a schema from the two selected parents and
decides in a smart way on the exact location of the crossover point. After deciding on
this point, a normal one point sexual crossover is executed. The schema was discussed

in details in section 3.1.1 and 3.1.1.4.

36

Two points sexual crossover

In the two points crossover, two random points are selected in the parents’
genome and the crossover is done in the following manner: the leftmost and the
rightmost parts of the first parent are copied to the first genome child. The middle part
is copied to the second child genome, and the same way is done to the second parent’s
genome.

The two points crossover is explained in the following figure.

Original Final

Crossover
Point

~

Figure 6 Two Points Sexual Crossover

After generating the new individuals, a random test is performed to check if the
mutation should take place or not, depending on the percentage of mutation that was
specified earlier by the user. This test is performed in the following way: a random
number ranging between 0 and 100 is generated, it this number ranges within the
supplied percentage value, and then the mutation operation should take place. The
mutation function is very simple since it calls the mutation function that is embedded in

the JGenome class, which was discussed earlier.

37

When the evolution operators finish executing, the new individuals are placed
in a new array waiting to be inserted in the current population. There are many ways to
create a space for these new individuals in the current population, and these ways are the
following: Replace the worst individuals, Replace randomly, Replace the lower closest

individual, Replace the parents, and Replace the best between parents and children

Replace the Worst Individuals

In this method, the worst individuals are selected from the population and

marked for deletion, to be replaced by the new individuals.

Replace Randomly

In this method, a completely random number varying between zero and the

total size of the population, is generated, and the corresponding individual is deleted.

Replace the Lower Closest Individual

In this method, the fitness value of the new individual is calculated and an

individual with a close but lower fitness value is selected for deletion.

Replace the Parents

In this method, the parents that were selected for mating will be deleted.

38

Replace the Best Between Parents and Children

In this method, the fitness value of all the children is calculated, and the best
two individuals amongst parents and children will be selected.

After inserting all the newly generated individuals into the current population,
the Genetic Algorithm will need to calculate the fitness of these individuals, as a part of

the evolution process

Serial and Parallel Fitness Evaluation

There are two methods in this system that can initiate the fitness calculation of
the individuals in the current population. The user is the one who should decide which
method to use depending on the fitness function that he supplied to the system.

The first method will go over every individual in the current population and will call for
the fitness function to evaluate it. This method is a simple serial method that is not very
efficient, especially in complicated fitness calculation functions.

The second method has the ability to supply to the fitness function, an array that
contains the whole population that is destined for evaluation. In this case, the user has to
supply the system with a fitness function that can apply a sort of parallel computation,

which will evaluate the whole population. (see chapter 4 for more details)

Having explained all the theory behind the population class, it is time now to

mention some of the important variables and methods that are included in this class.

39

3.1.2.1 JPopulation

There are three constructors for the JPopulation class. The first one creates a
JPopulation object that will be used under the parallel Genetic Algorithm. The second
one creates a JPopulation object destined for normal evolution based algorithms. The
third constructor is used for cloning the JPopulation object, where all the variables are

included in the parameters list.

public JPopulation({int gSize,int gStep,int crScal,int crAlgo,
int crxType,int pSize,int crPtl,int crPt2,int gType,
double gUBd,double gLBd, int selType,Vector inPop,
float mutPerc,int fillPop,int nPSize,

int popNum, /*used for parallel populations only*/ Object prog)

gsize is the size of the genome.

gStep 1s related to JboubleArrayGenome, it defines the Genome’s precision.
crScal defines the method that should be used for scaling.

popNum is the number of the parallel populations that will be evolving concurrently.
cralgo denotes the type of the Crossover Algorithm that should be followed.
crType denotes the type of the Crossover operation that should be performed.
psize defines the size of the population.

crpt1 defines the first crossover point, in case it was previously defined by the user.
crpt2 defines the second crossover point, in case it was previously defined by the user.
gType defines the type of the genome that is followed throughout the evolution.
guBd defines the upper bound value of the genome.

gLiBd defines the lower bound value of the genome.

40

selType defines the way the individuals should be selected for mating.
£il1lpop defines the method that should be used in filling the initial Population
nPsize defines the size of the new population

prog is the pointer to the program object that was discussed in section 3.1.1.

The most important defined variables and methods in this class are the following:

® Vector newGeneration: this is the array that holds the current generation.

¢ Vector currGeneration: this is the array that holds the new generation.

e int crossoverType: this is the variable that holds the value of the crossover
type that should be followed throughout the evolution process (one point sexual,
two points sexual, asexual).

e int crossoverAlgo: this is the variable that holds the value of the crossover
algorithm that should be followed throughout the evolution process (random
point, smart point, specific point).

e int crossoverScaling: this variable specifies if the scaling should be used and
if yes, then which type (linear, sigma truncation, power law)

e int selectionType: this variable specifies the type of the selection that should
be followed throughout the evolution process (Rank, roulette wheel, tournament,
random).

® Dboolean anneal (..): this is the annealing function.

e void evolve: this is the evolution function.

e void crossover (..): this function performs the Crossover operation with the
supplied genome(s) indexes depending on the type of the crossover previously

defined.

41

void calculateFitness (..): this is the method that initiates the Serial
calculation of the fitness for all the individuals.

void calculateParallelFitness (..): this is the method that initiates the
Parallel calculation of the fitness for all the individuals.

Vector fitness (..): this function calls the fitness function in the user’s
program and is expected to return a vector that contains the fitness values of
the supplied Genomes.

void init (..): this is the method where the different JGenome constructors are
called. So in case a user wishes to add a new JGenome class, he should add the

call for the new class’s constructor in this method.

42

3.1.3 The Algorithms

The Algorithms are the main engine that run the heuristic search, in which all

the critical decisions are taken. These decisions are the factor that differentiates an

algorithm from the other, and this is why we have included in this study four different

Genetic Algorithms in addition to the Simulated Annealing Algorithm.

The Genetic Algorithm

The Genetic Algorithm has many roles to perform, in order to make the

evolution process run in an adequate
way. Some of the decisions that need to
be taken by the Algorithm are passed to
the population object in the form of
parameters.

In fact, the first step that is taken by the
Genetic Algorithm is to create the
population object and initialize it. All
the parameters that are passed to the
population’s constructor were initially
passed to, or were automatically deduced

by the Genetic Algorithm.

Initialize population

Select individuals
For mating

Mate individuals
To produce offspring

J Mutate offspring

Insert offspring
Into population

Are stopping
Criteria satisfied?

¥

Figure 7 The Genetic Algorithm Flowchart

43

The next step is to create a loop that will be exited if the stopping criteria of the Genetic

Algorithm were satisfied. These stopping criteria depend on the whole evolution

process, and are divided into three parts:

Number of Generations: This part depends on the total number of generations
that was reached. This total number is passed to the algorithm upon creation,
and after every evolution process, it is compared to the evolution counter that
exists in the Algorithm itself. If that counter reached the total number, the
Algorithm will stop the loop and will report the best solution found so far.
Convergence of population: This part depends on the individuals that exist in the
population. Upon its creation, the Genetic Algorithm holds a value of the fitness
of the best individual that should be reached. After every evolution, the Genetic
Algorithm will call the fitness function in the population, which evaluates the
genomes’ fitness value. What the algorithm does after every generation, is to
compare this stored fitness to the fitness value of the best individual. If these
two values were equal, then the Algorithm will stop the execution and report the
solution found.

Convergence or number of populations: The third part is a combination of the
previous two parts. This method will guarantee that the program will exit
anyway, instead of it being stuck in an infinite loop (stuck at a local minimum).
The way this method works is by checking first if the fitness of the best
individual has reached the maximum fitness value that the Algorithm holds. If it

wasn’t reached, the Algorithm will check for the number of populations that was

44

created so far, if it reached its limit, then the Algorithm will stop, otherwise it

would continue its evolution process.

After deciding on whether to stop or not, the Algorithm will call the evolve
function that exists in the population object. The evolve function, as discussed before,
performs the evolution process and creates one new generation only. This new
generation will be stored in a separate place, waiting to be inserted in the new
population. The next step is to delete some of the genomes from the current generation
and fill in their place the set of newly generated Genomes. The decision on which
individuals to delete from the current generation depends on the Algorithm type.
However, the population class supports all the deletion methods that are used by the
Algorithms.

These steps that were mentioned before are drawn in the flowchart in figure 7.
The four types of Genetic Algorithms are discussed in the next sections including the
main Genetic Algorithm interface that holds the common functionalities for all the

Algorithms.

3.1.3.1 JGeneticAlgorithm

The JGeneticAlgorithm interface contains the essential components for
creating a Genetic Algorithm. Every Genetic algorithm that needs to be created should
implement this interface to inherit the definition of the main components of the
Algorithm.

Every Genetic algorithm in this study holds only two methods: a constructor,

and a method to run the algorithm. The first role the Algorithm has to perform, is to

45

collect the parameters from the user, and this is done through the constructor. After
setting all the variables’ values, the algorithm will be tailored to perform in the way that
the user wishes, and this is when the “runAlgorithm” method should be called.

The runAlgorithm method does not contain a lot of detailed low level programming,
instead it only contains the main functions of the algorithm, and the rest was left for the

population object to accomplish.

3.1.3.2 JSimpleGeneticAlgorithm

The JSimpleGeneticAlgorithm class uses non-overlapping populations with the
optional Elitism that will enable the best genome from the previous generation to be
transferred to the new population. In every evolution step, a new population is created
having the same size of the current population. Then the Algorithm will replace the
current population with the new one, while taking into consideration the Elitism factor.
The most important defined variable that characterizes this Algorithm is the following:
boolean elitism: this variable is received by the Algorithm through the constructor

defining if the elitism option should be used in the evolution process.

3.1.3.3 JDemeGeneticAlgorithm

The JDemeGeneticAlgorithm class is the class that supports parallelism
through the use of the Message Passing Interface.
This algorithm is very easy to use since the needed MPI methods are all embedded in
this framework, so the user doesn’t need to worry about installing any external library or

program.

46

This algorithm will start by creating and initializing an MPI object which takes care of
the server and client initialization, and acquires a rank ID. The client that has an ID = 1
will be responsible to create a population and clone it several times depending on the
population size that was supplied by the user. Then the algorithm will wait until the
number of clients that are supposed to log in is complete. After the last client logs in to
the server, this algorithm will send the population object to all the clients and will send
another flag message that starts the evolution process on all the clients.

Each independent population will start by running a Steady-State Algorithm for a
repeated number of times. The next step involves using MPI to perform a migration of
some individuals to a neighboring population. Every population will send the migrating
genomes to the population that has the next rank in the list. As for the population with
the highest rank, it will send its migrating genomes to the initial one.

The type of messages that arc sent and received by the clients are of non-blocking
buffered type, since some populations might finish their evolution and wouldn’t be able
to receive any other messages from the other clients.

When an Algorithm finishes its evolution process, it sends the best individual of the
current population to its neighbor who in turn, will send it to his neighbor, in case it was

an optimal solution.

The most important defined variables that characterize this Algorithm are the following:
e String serverName: this variable contains the name of the server to which it
should connect.

e int port: this variable defines the port to which the clients should connect.

47

e int migratorsNumber: this variable defines the number of Genomes that should
migrate from a population to the next one.

e int generationsBeforeMigration: this variable defines the number of
evolutions that should be performed before a migration takes place.

e int neighborToReceiveFrom: this variable defines the neighbor that the
current Algorithm should receive the migrating genomes from.

e int neighborToSendTo: this variable defines the neighbor that the current
Algorithm should send the migrating genomes to.

e int populationsNumber: this variable defines the number of populations that

should be running in parallel.

3.1.3.4 JIncrementalGeneticAlgorithm

The JincrementalGeneticAlgorithm class uses overlapping populations with the
new generation’s size being equal to two.
The Incremental genetic algorithm allows custom replacement methods to define how
the new generation should be integrated into the population. So, for example, a newly
generated child could replace its parent, replace a random individual in the population,

or replace an individual that has the closest lowest fitness value.

3.1.3.5 JSteadyStateGeneticAlgorithm

The JSteadyStateGeneticAlgorithm is very similar to the incremental genetic

algorithm with the only difference that the user specifies the percentage of the

48

population that should be replaced. This Algorithm also supports custom replacement
methods and custom population initialization.
The most important defined variable that characterizes this Algorithm is the following:

e int popReplacementPercentage: this variable contains the percentage of the

population that should be replaced at each iteration.

49

3.2 The Simulated Annealing Algorithm

The simulated annealing algorithm doesn’t involve many complicated internal
methods, which makes it an easy algorithm to implement. The total steps that are
performed by this algorithm are basic and don’t require much computation and analysis.
The first step that is taken by this algorithm is to define the initial solution which could
be passed by the user. If the initial solution did not exist, then the algorithm will
generate a random solution and will use it as a starting point. The next step is to initiate
the randomization step according to the current temperature, in order to find a neighbor
to the current solution.

This step is embedded in the population object, and it is referred to as the annealing

function.

The Annealing Function

The annealing method, that is contained in the population class, is basically a
simple one. The basic functionality of this method is to randomize the current solution
and to perform the mutation. At this point the Algorithm will check the probability of
mutation by calling a function that performs some random calculation and returns if a

mutation should take place or not.

The annealing function is usually followed by the transition procedure, which selects the

best of the new and current solutions, depending on the current temperature value.

50

Transition Factor

A transition factor is the basis of the decision function that is used by the
Simulated Annealing Algorithm to decide whether the current individual should be
replaced by the newly generated one or not.

Consequently, the Annealing method checks the current temperature and calculates the

transition factor which is done using the following formula:

transitionFactor = ICtrrentNewy/temp)

where fcyument is the fitness value of the current individual, Jfiew is the fitness of the new
individual, and temp is the current temperature. The next step is to generate a random
number ranging between 0 and 1 and check if this number is smaller or equal to the
transition factor. Ifit was then the transition to the new individual should take place.

Note that when the temperature is high enough, the new individual will most likely

replace the current individual.

The Algorithm next checks if the number of trials for the current temperature
has reached its maximum, and if it has, then the algorithm will decrease the value of the
current temperature.

In fact the user can choose whether the reduction value is a constant the he will define,

or a calculated value that is automatically generated.

51

The next flowchart explains in details the different steps that are taken by the Annealing

Algorithm.

Start

v .

. Randomize according to
the current temperature
Replace current
Better than current solution with
solution? randomized solution
Yes—of |
No

¥
Reached max
tries for this
temperature?

Yes Decrease
E temperature by

specified rate

v Lowest
temperature
bound reached?

..... Vos »

Figure 8 The Simulated Annealing Algorithm Flowchart

Upon the creation of the Simulated Annealing Algorithm, the user decides on the
temperature reduction method that will be used throughout the annealing process. There
are two methods for reducing the temperature in this project. The first one is to reduce
the temperature by a constant. The second one is to use an equation that will handle

reducing the temperature depending on the number of cycles requested by the user.

52

The ratio that multiplies the current temperature in order to decrease it is the following:
Ratio = ¢ (1 (lowest temperature/highest temperature) / (number of cycles —1))

Next the Algorithm checks if the lowest temperature that was defined by the user was
reached, and if it has, then the system will stop the iteration process, and will exit and
display the solution reached that has the best fitness value. In the next section, the

Simulated Annealing class will be mentioned in details including the most important

variables and methods.

3.2.1.1 JAnnealingAlgorithm

The JAnnealingAlgorithm class contains the essential components for creating
a Simulated Annealing Algorithm. This Algorithm creates an initial solution by creating
a JPopulation object with a size equal to one. The JPopulation constructor can be called,
with some disabled parameters.
The function that contains the algorithm is called runAlgorithm and it performs the jobs
that were shown in figure 8.
The most important defined variables that characterize this Algorithm are the following:
float initialTemperature: this variable contains the value of the initial temperature.
float currTemperature: this variable holds the value of the current temperature.
float lowestTemperature: this variable holds the value of the lowest temperature that
should be attained by he system.
int cyclesPerTemperature: this variable holds the number of cycles that should be

performed at every temperature value.

53

3.3 The Message Passing Interface

The Message Passing Interface or MP], is the followed standard in this system
which deals with the process of exchanging messages between the different Algorithms
that are running in parallel. MPI’s benefit is only used in the Deme Genetic Algorithm
which, as described before, initializes and runs many populations on more than one
machine. In fact, MPI uses the SPMD (Single-Program, Multiple-Data) model of
computation [1], which states that the user has to write a single program and run it on
multiple processors, where every process will know what part of the code it should

execute.

Source File

Compile to suit

processor
o e
Y v
[))
Processor 0 Processor 1

Figure 9 The Single-Program, Multiple Data model [1]

In this framework system, MPI relied heavily on the native JAVA RMI which had the

major role in creating a server and connecting it with the different clients. The MPI

54

classes are all grouped in one package called MPI, and most of these classes serve the
requirements of RMI (client, server creation and initialization...).

This MPI implementation was created based on a client server architecture, since the
SPMD model does not prevent the use of this architecture [1].

The design of the MPI standard did not have too many requirements, but one of them
was the presence of a communicator which holds a list of all the clients that are
connected to the server. The definition of the communicator is the following: “A
communicator is a communication domain that defines a set of processes that are

allowed to communicate with one another” [1].

3.3.1 The MPI Server

To create a server object under RMI, a server interface has to be created, which
would hold a definition of all the methods that will be called by the remote client, and all
these method definitions should throw a Remote Exception. As for the interface itself, it
has to extend the Remote object which will enable this server object to be called through
the network. The next step would be to create a server class and make it implement the
server interface, which means that it should translate the method definitions into
concrete methods. After creating the server object, a specified registry port has to be
reserved, to which the server object will be associated, along with the server name.

The MPI server has a rank counter associated to it, which generates a new rank ID and
assigns it to a connecting client. The rank value is very important in the life of a client
process, especially when using the SPMD model, because the rank is the only way that

every process can distinguish the part of the code that it should execute.

55

When a client connects to the server, it has to initiate the method login which will
register this client in the server’s processes list. This list is an essential part of the
communicator.

After creating the server, the compiler has to be supplied with the variable that will
initiate the creation of a server Skeleton and a server Stub, which will make the

communication between the clients and the server possible.
3.3.2 The MPI Client

To create a client object under RMI, a client interface has to be created, which
will define the methods' that will be called remotely, and these methods should throw a
Remote Exception. When an MPI client connects to the server, it uses the RMI method
Naming.lookup which will search for the server object in the registry, and when found,
will return a remote link that will be saved in a remote server interface on the client side.
The next step for the client is to call the method connect which will add the client to the
communicator and assign his rank on the server.
Upon creation, the client is assigned a rank ID number that is supplied from the server.
Then the client will search in the supplied code for the part that he is supposed to run
according to his rank. This code division should be handled by the programmer and the
client shouldn’t be worrying about code differentiation.
The core of MPI is embedded in the client, since all the message passing methods are
defined in it. These methods begin with the letters MPI__ to make sure that they are not

mixed up with other methods in the code.

56

The server makes sure that at all time, all the registered clients have a list of the other
clients, so that the communication will be possible between them. So whenever a new
client gets connected, the server will broadcast a message to all the clients forcing them
to update their client list.

The most basic methods of communication are: MPI_Send and MPI_Receive.

MPI Send is initiated from a client. This method will be directed to the destination
client and will block the code on the source client until the destination client reaches the
part of his code that states MPI_Receive from the source client. The other name for
these two methods is blocking send and blocking receive. There are many types of
methods that send and receive data which can be non-blocking, or even buffered, which

brings us to the next subject: the MPI Buffer.

3.3.3 The MPI Buffer

Upon creation, every client initializes a buffer: the MPI Buffer. MPI_Buffer is
a simple class whose functionality is to hold all the messages that reach the client and
store them in a buffer. Thus when the client reaches the part that initiates a receive, this
client will check the buffer for any messages that are queued. MPI Buffer is a very
efficient way of sending and receiving data especially when being used in applications
where not all the processes are homogeneous. For example if the parallel program was
running on a network of heterogencous machine, where each machine is running a
process, some machines will finish their tasks before the others. This would result in a
wasted processing time, if the source client is waiting for the destination client to reach

the part that initiates the message reception.

57

3.3.4 MPI

To create an MPI based application, the user has to create an MPI object. This

object will automatically deal with the server and clients objects, and all what the user
has to do is to distribute his code on the machines and specify the name of the server and
the port to which the clients should connect.
The first task that is done by the MPI object is to check the name of the local machine
and compare it to the server name. If that name was the same, then it will try to create
an MPI Server. A successful server creation will imply that this machine is supposed to
run the server and receive client requests from other machines. In case of a failure or a
success, the MPI object will move to creating a client and connecting it to the server that
presumably should already be existing.

In case the user wishes to force all the clients to start running the code at the
same time, he should use blocking send and receive methods to block the clients from
executing any code. And when the server checks that all the clients are connected, it
will send a message to the list of clients that he has, signaling them to start the

execution.

The next part will skim through the different classes that form the MPI

package.

58

3.3.1.1 MPI_Server

As discussed previously, the MPI Server class includes all the initialization
methods that will enable the MPI standard to work properly. These methods include
server creation, client login, message broadcasting and many more...

The most important defined methods and variables that characterize this Class are the
following:

Hashtable broadcastList: this variable holds a link to all the clients that are currently
connected to the server.

int rankCounter: this is the counter that assigns the ranks to the connecting clients.
synchronized int connect (..): this method is created in a way (synchronized) that
only one client can run it (or one client can connect to the server) at a certain time.
synchronized boolean login(..): this method is also a synchronized method and it
will ensure that all the clients have a distinct rank value.

void broadcastMessage (..): this method sends a message to all the clients. It is

mainly used when a new client connects to the server, to update the clients’ lists.

3.3.1.2 MPI_Client

MPI _Client is the class that contains all the sending and receiving methods
which are the building blocks of the communication process. In addition to the client
initialization and connection methods, there is a finalize method that logs a client off the
server and stops execution of its code. Non blocking buffered send and receive methods

are also implemented in this class, which are very useful for our parallel algorithm.

59

The most important defined methods and variables that characterize this class are the
following:

Hashtable processList: this variable keeps a record of all the clients that are
currently connected to the server.

MPIBuffer buffer: this is the buffer that is used to store messages.
MPIServerInterface MPI_Server: this is the variable that holds a link to the server.
MPI_Send () :this method sends a blocking message to a destination client.

MPI Receive () :this method blocks until it receives a message from a source client.

int MPI_Ibsend(..): this method sends a non blocking buffered message to a
destination client

MPI_Ibeceive () :this method doesn’t block and it receives a message from a source

client through a buffer.

3.3.1.3 MPI

The MPI class is what the user has to create in case he wishes to use the MPI
library. As discussed before, the MPI object will create a server object, followed by
client object. After creating the MPI object, the user has to call the MPI_Init (..)
method which performs all these initialization methods.

The most important defined methods and variables that characterize this Class are the

following:

int myRank: this is the variable that holds the rank of the client object.
MPIClient mpiClient: this is the variable that holds the MPI client object.

MPTServer mpiServer: this is the variable that holds a link to the MPI Server.

60

void MPI_Init (..):this is the method that initializes the server creation and then
creates the client object.

void createServer (...) : this is the method that creates the server object.

61

Chapter 4:
Case Study

4.1 The graphical user interface: The Wizard

The Graphical User Interface or GUI, was added to this framework to facilitate
its usage. The wizard’s main job is to collect the data from the user in a smooth way,
and then to display the constructor that should be used to create the proper Heuristic
Algorithm.

The wizard is a succession of screens that are displayed to the user asking him about the
options that he wishes to include or exclude in his Algorithm.

The wizard is of a dynamic type, meaning that the next screen is always related to the
previous one, since some algorithms are not related to the others, thus the impossibility

of using a common wizard for all the algorithms.

The wizard’s first screen is a welcome screen that explains its features. It also states the
necessity of including this framework in the user’s project to take full advantage of all

the built in functionalities.

62

EER4ava Posallel G A Framownk

Weicome Yo the Java Parallsl Heurigtics Algorithin Framewark

This Wizard waill collect soma tata Frinn the user hat are counial
for th prapas exacetion of e Krary

Adtar choosing the disired pararantess, the usern will i

b dnghude {aks franmmmaaek I his program and wiss s own finess
fanctioe.

This fintess functing will decide on the goodness of (e solutiot
whinh wsuadhy helps Hur Muarithen to converga to 3 proper soldion,

Fhie ustr can siog this vizard and SHCK on e axi bution &
amytime, singe e oty functionaslity of s vizard is to coliect
da.

A Help Box will appear in eeery screan sxplaining brudby e
displaved optinng.

| Wed | | cancer |

Figure 10 The wizard’s first screen.

The second screen gives a choice for the user to select the algorithm that he wishes to
use. The list includes the supported algorithm: Simple GA, Incremental GA, Steady

State GA, Deme GA, and Simulated Annealing.

The Fiaple Genenie
Algnricthn uges

R nonevetlapping

{* incremental Genetic Algoeitten populations snd
optional eligzisz.

< Steady State Genefic Algaritun | {posaibility of
heepdng the best
imdiwidusl fros the
previous gensrarion).
Each gensration the
{2 Sinulated-Annealing Algorithm alygstithis cresces ah
sntitely new
population of
individusis.

& Simple Genetic Algordthm

1 Dame Genetic Algerithm

Figure 11 The wizard's second screen

63

A help box is placed in every screen that is shown to the user to help him decide on the
options that he can choose. Upon the selection of any algorithm, the help box will
change its contents, and display some details about the user’s choice.

The third screen is related to the properties of the Solution that the user wishes to use in
his algorithm. The user has to decide on the Solution’s type: (BYTE, CHARACTER,
DOUBLE), its size, the lower and upper bounds of the type that he chose, and the

maximum expected fitness. In this and all the following screens, the help box will be

situated in the bottom of the panel.

Seiact fhie type of yaur 3ol]CH;&RACTER fv[

H g7y Bie 34 ;
Enter the size of your soduion }
Enter (he upper haundvalue I
Enter the lower biumed valee [

Enter the Expecied Filness of the Solution E

The type of the soluticn depends on the problex s

in nand, For example if the probles is a ULST
cipenit which seoluvien iy an Shput vector

consisting of ‘zeross' and ‘ones’ then the chipicel |
A v BTE. H0es. ARLALYNes. fan. 02 suheiltet bl

Figure 12 The type of the solution

The Simulated Annealing Algorithm

In case the user chose the Simulated Annealing algorithm, the next screen will
ask the user to input the Simulated Annealing related variables. These variable are the
following: the initial, the minimal and maximal temperatures, and the temperature

reduction type which is either by a constant or a calculation.

64

Ented the Initiy) tamipersues l

Emter the lowest (emperature i

Enter the number of cycies per temperaiuee |

Spctthe temporatine reduction type [coms*rmr v]

oot

Ear the tpmperalure reduciipn constant |

The inizisl t=epersture iz the starting value of
the teaperatuce diich uiil be decresséd goadustly
sweith the wwglution process,

Figure 13 S.A. general properties

The last screen will show the constructor of the JAnnealingAlgorithm and some

instructions to the user on how to include the initial solution, in case he had one.

This is the constructor that shsould ha used

JanneslingAigoriohns onpALys « new
Janmenlinghlgorichn(12,0,12,IPopuletion. GENDHE TYPE C
HARACTER,D, t o1l , 100,0, L2, JPaputation. FILL USING RAN
GUH, CALCULATION, 5 uyProgras)

Figure 14 The Simulated Annealing last screen

The Genetic Algorithm

In case the user chose any other Genetic Algorithm, then the wizard will ask

the user some genetic Algorithm related questions spread on the screens.

65

The next screen will collect information on the mutation percentage, the size of the
population, and on the selection types which vary between: RANDOM, ROULETTE
WHEEL, TOURNAMENT, and RANK
As for the evolution operators, the wizard will collect the following data:
e Fitness scaling. The choices are: NO SCALING , LINEAR SCALING, SIGMA
TRUNCATION SCALING, POWER LAW SCALING
e Crossover Algorithm. The choices are: RANDOM POINT, SPECIFIC POINT, SMART
POINT.
e Crossover type: The choices are: ASEXUAL, ONE POINT SEXUAL, TWO POINT
SEXUAL

e Replacement percentage, will only be displayed if the user’s choice was Deme
GA or Steady State GA only.
e Replacement Strategy, which will only be displayed in the Incremental GA. The

choices are: REPLACE THE WORST, REPLACE PARENT, REPLACE RANDOM,
REPLACE THE CLOSEST

e Elitism, which will only be displayed in the simple GA.

Enter the Mutatien parcentage fw

Enter the pamilstion sizs

Swlect the genow sekction mefhod A
Seluct (he Fitness Scaling mathol [roscane | v
St e Crogsover Algarthm [ranpom =]
Select the Crassmver Type [reBma x]

The populacion size i3 nothing but the satal
nuzber of selutions chat will be crested to
peiticipate in the seafching. The populstion =ize 25
will remain constant throughout the evelurdon
FEIEIE e ¥]

Figure 15 Genetic Algorithm properties

66

Figure 15 shows the information that is related to the population, which is common to all
the Genetic Algorithms.

The next screen asks the user to input the termination method that should be used for the
algorithm, in addition to the name of the class that contains the fitness function. The
other information depends on the Genetic Algorithm that was previously selected.

If the case was Simple GA, then the screen will collect information about elitism.

Sukent thie algorithen tormanation method] BENERATION NL t]

Eater the maximum maunber of generations E

Ender the nane of the class that cosdains E [
W Mness funclion

Setectif Elitist shooki he applicd IFALSE 'I

zx cheloe sets how the Algarithe should step the
=eoiution process.

Figure 16 The Simple Genetic Algorithm

If the case was Incremental GA, then the screen will collect information about the

replacement strategy that should be followed throughout the evolution process.

Selact the slgoritianlermination method 1 GENERATIOM ral, 'I

Eider the masxinvon nymber of generatiohs E

Esster flue name of the Class that contalns T e Pragratn
the fitness function I mFrog

Seolect the roplacement steatepy in.mue:m v“]

Figure 17 The Incremental GA

}?‘his choice mety hou the Algozithe shouid step the

evolution process.

67

If the case was Steady-State GA, then the screen will collect information about the
population replacement percentage that should be followed throughout the evolution

process.

Helact the abgoritiam termieation method ;GENER&T%QN NL¥ l
Erilor th el iwimber of generations | /

Enler (g namme of he class that containg i [T S—
the fitness (unction

Enter the population Tepiacement parcentage i

Thig choice 2ecs how the Algoritlm anould scop the §
CURIULLION Preces. %
| !
‘ i

H

Figure 18 The Steady-State Algorithm

If the case was Deme GA, then the screen will collect information about the population
replacement percentage, the server name, the server port, the number of the parallel
populations, the migrators number and the number of generatins that should be

performed before a migration occurs.

Zejectthe algorithm termination method IG‘EN‘ER&HQN ML *i
Ertiey this shaxinurm muinher of geneestions |
Ertte the name of th chass ol containg | myProgrsm Figure 19 The Deme GA

the fitness function

Enter the popadation rejdacement percantage |
Servar Name %r Server Part i
Pagsilel poputations mmber

Migrators mnnber i

)
Nmnbier of Gerprations before a wégration |

Tais cholce asta how cthe Algerithe ahould atop The
EYOIUTIEN PLOCRsE,

68

The last screen is common to all the Algorithms, where it will show the constructor of

the Genetic Algorithm that the user chose and some instructions to the user on how to

include the initial solution, in case he had one.

This is:the consiructor that should he used

IBexeGeneticilgorivhin dexedlyo » new
JRexafeneticAlyorintia(l 2, 8,0,0,0, 06,8, ,JPopulacion. GE
ROHE. TYPE_CRAFACTER 0. L,0,v113,02,0,5,13, TPopulation.
FILL_USING_RANDON, 4, sexvet, 7808, 3,2, 5,uyTrogcax)

Figure 20 The Wizard's last screen

69

4.2 Testing the framework: The ULSI fault detector

4.2.1 Testing the Algorithms

The Genetic Algorithm

Having explained how the Genetic Algorithms functioned in the previous
chapters, this chapter will begin by introducing the way that this framework will be
tested by first writing some definitions which are followed by explaining the fault
detection program that was incorporated in this work, especially for testing purposes.

The test will be applied on all the Genetic Algorithms that were developed in
this work, with different options set to each one. In order to test all the components that
were mentioned earlier including different crossover algorithms, diverse genome
selection methods and different scaling techniques will be applied.

All the testing phase will be performed using the ULSI fault detection program
which takes as an input an ISCAS Benchmark, locates all the stuck-at faults, and tests
the supplied input to check how many faults it can detect. The Algorithm in this case
will be the engine that will supply the ULSI circuit tester with the proper input, and will
receive, as a returned value, the number of detected faults detected by the testing

vectors.

70

The Simulated Annealing Algorithm

The test that will be applied on the Simulated Annealing Algorithm will focus
on changing the parameters that are related to this specific Algorithm. In other words,
the test will focus on checking the effect of the initial temperature by varying it between
one test and the other. This test will also check the effect of changing the number of
cycles per temperature, and changing the temperature reduction type. Parallel fault
simulation will be used in this test, thus the algorithm will accept the array of individuals

and return their fitness values.

4.2.1 The ULSI Fault Detection Program

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year ... Certainly over the short term this rate can be expected
to continue, if not to increase. Over the longer term, the rate of increase is a bit more
uncertain, although there is no reason to believe it will not remain nearly constant for at
least 10 years. That means by 1975, the number of components per integrated circuit for
minimum cost will be 65,000. I believe that such a large circuit can be built on a single
wafer.” — Moore’s Law [19].

In 1965 Gordon Moore declared that every 24 months, the number of
transistors on a chip will double, thus increasing the probability of a fault to occur on an
integrated circuit. This is why testing this circuit for production faults is an important

issue that should be inspected.

71

Stuck-at Faults

A “stuck-at” fault is a defect that happens in the stages of production of
integrated circuits, where a short circuit can force a connector to be stuck at a certain
voltage value, regardless of the voltage that was applied at its boundary. There are two
types of “stuck at” faults: stuck at zero, where the connector is short circuited with the
ground, and a stuck at one where the connector’s voltage is short circuited to a high
voltage source.

Stuck at faults can be detected at the gates that are joined to these connectors
by checking the displayed logic value at their output. If the gate is expected to display a
logic value that is different from what it is currently displaying, then the fault is
detected. For example driving a logic zero to the inputs of an AND gate should result in
a zero logic value at its output. If the displayed value was a logic one, this is when we

can detect that there is a stuck at fault in this Gate.

Fault Equivalence

Every connector in an integrated circuit can be faulty, but some faults can be
detected in more than one location. In other words a fault’s detection can be equivalent
to some other fault’s detection, which makes the two faults Equivalent. For example, a
stuck at zero fault that exists on an input of an AND gate will be detected in the same
way that a stuck at zero fault will be detected at the output of this gate. Applying fault
equivalence on a circuit can reduce the number of faults that should be detected, thus

reducing the time spent to check the circuit for defects.

72

4.2.2 The Fault Simulator

The fault simulator accepts as an input, a file that is written following the
ISCAS Benchmark format which positions the inputs in the following way: INPUT(GO)
then the outputs: OUTPUT(G7), then the gates: G13 = AND(G20, G25).
After accepting this file, it starts creating the different components that form this circuit
and links them using various data structures. The next step would be to find all the stuck
at faults that exist in the circuit and apply fault equivalence on them to reduce the

number of faults that need to be detected.

This fault simulator supports two types of simulations: Serial and parallel fault

simulation

Serial Fault Simulation

Serial Fault simulation is the basic method that is used to simulate faults in a
circuit. It begins by first receiving an input vector of possible input values. Then the
circuit gets simulated, and the logic values of all the gates are stored in a data structure.
These values show how the normal fault-free simulation of the circuit should result.
Next the faults get simulated each one at a time, by injecting a fault in the circuit and
then checking the outputs for any change than the expected value. If any of the outputs

shows a difference, and this is when the fault is detected.

73

Parallel Fault Simulation

Serial Fault Simulation is a very slow procedure which is destined more for
humans than for machines. This is when circuit testers started coming up with

alternative testing methods that are faster and more efficient.

The basic idea that was behind parallel fault testing was to traverse the circuit
once, and for every gate check its value with more than one input possibility [15]. To
perform a Parallel Fault Simulation, the common bits of the input vectors are stored in
sequence in a variable that can store enough data such as the long datatype. The next
step would be to simulate the circuit with these inputs and to use bitwise logical

operators to calculate the results.

Bit 0: Fault-free circuit
Bit 1: Circuit with c Sa 0
ii Bit 2: Circuit with f Sa 1

}
(o7) >

Fault ¢ Sa 0 Detected

d > vl [EEENER
f

Sa 1

Figure 21 Parallel Fault Simulation [15]

4.2.3 Simulating the Algorithms

In the second part of this chapter, after presenting the VLSI fault simulator
circuit, the algorithms will be simulated for error-free code verification on the ¢432,
c1355, ¢1908, and the ¢3540 ISCAS Benchmarks.

In every simulation option, the parameters that were submitted to the algorithm
will be stated, but there are some default variables that are common to all the algorithms.
The first default parameter is the solution type which in this case is chosen to be the
JGenomeByteArray type with the upper bound = 1 and the lower bound = 0. As for the

genetic algorithms, they will be assigned the Limited Convergence termination method.

4.2.4 Simulating the Simulated Annealing Algorithm

In this simulation test, the following parameters were set:

Table 2 SA parameters

Test | Circuit | Genome | Mut. | Initial | Lowest | Exp. Reduction
Name Size % Temp | Temp Fitness | Type Cycles/Temp
1 C432 36 1 150 0 524 | CALCULATION | 20
2 C432 36 5 200 0 524 | CONSTANT 25
3| C1355 41 1 150 0 1574 | CALCULATION | 20
4 | C1355 41 5 200 0 1574 | CONSTANT 25
5| C1908 33 1 150 0 1880 | CALCULATION | 20
6 | C1908 33 5 200 0 1880 | CONSTANT 25
7 | C3540 50 1 150 0 3431 | CALCULATION | 20
8 | C3540 50 5 200 0 3431 | CONSTANT 25

75

Table 3 SA Test results

test # Total detected faults
502
513
1501
1524
1798
1829
3204
3225

@ |~N|O OB [WIN[—=

From the previous results we can conclude that by increasing the initial temperature, we
will get better results, and that is completely logical since the algorithm is generating

more individuals and taking more time to find a better solution

76

4.2.5 Simulating the Genetic Algorithms

4.2.5.1 Simulating the Simple Genetic Algorithm

In this simulation test, the following parameters were set:

Table 4 Simple GA parameters

Test | ISCAS | Gen. | Exp. | Mut. | Cross. | Cross. | Cross. | Pop. | Select. Term. | Gen. | Elitism

ID Circuit | Size Fitn. % Scal. Type Algo. size Type Algo. | Num.
1 C432 36 524 1 No Sexual Ran. 15 Roulette | Limited 150 No
1 point Point wheel conv

2 C432 36 524 3 Linear | Sexual | Smart 25 Tourn. Limited 150 Yes

1 point point conv
3 C1355 41 1574 1 No Sexual Ran. 15 Roulette | Limited 150 No
1 point Point wheel conv

4 C1355 41 1574 3 Sigm. | Sexual | Smart 25 Tourn. | Limited | 200 Yes

2 point point conv
5 C1908 33 1880 1 No Sexual Ran. 15 Roulette | Limited 200 No
1 point Point wheel conv

6 C1908 33 1880 3 Pow. Sexual | Smart 15 Tourn. Limited 200 Yes

2 point point conv
7 C3540 50 3431 1 No Sexual Ran. 15 Roulette | Limited 150 No
1 point Point wheel conv

8 C3540 50 3431 3 Linear | Sexual | Smart 25 Tourn. Limited 200 Yes

2 point point conv

77

Table 5 Simple GA test Results

test # Total detected faults
500
508
1497
1512
1805
1819
3215
3217

DN | WIN =

From these results we can conclude that the results can be improved by changing some
factors. These factors include

e increasing the number of generations

e Using some scaling function (power law, sigma truncation or linear scaling)

¢ Increasing the size of the population

After enabling the Elitism option, which is the special feature of this algorithm, we also

noticed some improvement.

78

4.2.5.2 Simulating the Incremental Genetic Algorithm

In this simulation test, the following parameters were set:

Table 6 Incremental GA
Test | ISCAS | Gen. | Exp. | Mut. | Cross. | Cross. | Cross. | Pop. | Select. | Term. | Gen. | Replac.
ID Circuit | Size Fitn. % Scal. Type Algo. size Type Algo. | Num.
1 C432 36 524 1 No Sexual Ran. 20 Roulette | Limited | 200 Rand.
1 point Point wheel conv

2 C432 36 524 3 Linear | Sexual | Smart 20 Tourn. Limited 200 Worst

2 point point conv
3 C1355 41 1574 1 No Sexual Ran. 25 Best. Limited 150 Rand.
1 point | Point conv

4 C1355 41 1574 3 Sigm. | Sexual | Smart 25 Roulette | Limited 150 Rand.

2 point point wheel conv
5 C1908 33 1880 1 No Sexual Ran. 15 Roulette | Limited | 100 Worst
1 point | Paint wheel conv

6 C1908 33 1880 3 Pow. | Sexual | Smart 20 Tourn. | Limited | 100 Rand.

2 point point conv

7 C3540 50 3431 1 No Sexua! | Smart 15 Best Limited | 150 Closest
1 point point conv

8 C3540 50 3431 3 No Sexual Ran. 15 Best. Limited | 150 | Closest.
1 point Point conv

Table 7 Incremental GA test results
test # Total detected faults
489

510

1511

1506

1804

1812

3216

3189

(N[O | |W|IN|=

79

From these results we can conclude the following:
e The replacement option has affected our results in a significant way since
choosing to replace the worst individual has shown a noticeable improvement.
e Using the roulette wheel selection has revealed an improvement since the bad
individuals still have a chance to be selected and to introduce new genes to the
population.

e The last tests have shown that the use of schemas improved our solution.

80

4.2.5.3 Simulating the Steady State Genetic Algorithm

In this simulation test, the following parameters were taken:

Table 8 Steady State GA parameters

Test | ISCAS | Gen. | Exp. | Mut. | Cross. | Cross. | Cross. | Pop. | Select. Term. | Gen. Repl.
ID Circuit | Size Fitn. % Scal. Type Algo. size Type Algo. Num. %
1 C432 36 524 1 No Sexual | Ran. 25 Tourn. | Limited | 150 10
1 point | Point conv
2 C432 36 524 3 No Sexual | Smart 20 Roulette | Limited 150 25
1 point point wheel conv
3 C1355 41 1574 1 Sigm. | Sexual | Ran. 15 Roulette | Limited | 150 10
2 point Point wheel conv
4 C1355 41 1574 3 Sigm. | Sexual Ran. 15 Roulette | Limited | 200 25
2 point point wheel conv
5 C1908 33 1880 1 Pow. Sexual | Smart. 15 Best Limited | 200 10
1 point Point conv
6 C1908 33 1880 3 Pow. | Sexual | Smart 20 Tourn. | Limited | 200 25
1 point point conv
7 C3540 50 3431 1 No Sexual Ran. 15 Roulette | Limited 150 10
1 point | Point wheel conv
8 C3540 50 3431 3 Linear | Sexual Ran 15 Tourn. | Limited | 200 10
2 point point conv

Table 9 Steady State GA test results

test #

Total detected faults

503

505

1515

1625

1812

1820

3223

N[O W (N[~

3201

81

From these results we can conclude the following:
e Increasing the replacement percentage is beneficial most of the time.
e The use of roulette wheel selection is showing better results than tournament

selection.

82

4.2.5.4 Simulating the Deme Genetic Algorithm

In this simulation test, some general common parameters were specified for all
the circuits. These parameters are:
Parallel populations number = 4
Migrants number = 4

Number of generations before a migration = 5

Table 10 Deme GA parameters

Test | ISCAS | Gen. | Exp. | Mut. | Cross. | Cross. | Cross. | Pop. | Select. | Term. | Gen. Repl.

ID Circuit | Size Fitn. % Scal. Type Algo. size Type Algo. | Num. %
1 C432 36 524 1 Linear | Sexual Ran. 15 Roulette | Limited 100 10
2 point Point wheel conv

2 C432 36 524 3 Linear { Sexual | Smart 20 Tourn. Limited 250 20

2 point point conv

3 C1355 41 1574 1 No Sexual Ran. 20 Roulette | Limited | 250 30
1 point | Point wheel conv

4 C1355 41 1574 3 Sigm. | Sexual | Smart 25 Tourn. Limited 250 15
2 point point conv

5 C1908 33 1880 1 Sigm | Sexual Ran. 20 Roulette | Limited | 150 20

1 point | Point wheel conv

6 C1908 33 1880 3 Pow. | Sexual | Smart 20 Tourn. | Limited | 150 15
2 point point conv

7 C3540 50 3431 1 No Sexual Ran. 15 Roulette | Limited 150 10
1 point | Point wheel conv

8 C3540 50 3431 3 Linear | Sexual | Smart 25 Tourn. Limited 200 25

2 point point conv

83

Table 11 Deme GA Test Results

test # Total detected faults

Best: 511

Best: 519

Best: 1521

Best: 1526

Best: 1811

Best: 1828

Best: 3230

O INO IR {WIN|=

Best: 3228

From these results we can conclude the following:

The migration feature has added good genes in every simulation.

The migration is making up for deficiencies that exist amongst the parallel
populations since they are all sharing their findings with each others.

The final detected faults by the different parallel populations have close
numbers, although at the beginning some populations were improving faster than
the others. But when a migrant was being introduced to the population, it was

boosting the number of detected faults.

84

Chapter 5: Conclusion

The work that was done in this thesis spanned over an important period of
time, where the MPI and the VLSI packages were first developed and tested
independently, and then joined along with the GA components and algorithms to form
this completely “independent” framework. The word “independent” was chosen simply
because all the previous works did not include a built-in library that would manage a
standard such as the Message Passing Interface. Instead, the couple of works that were
conducted with the support of MPI, needed a previous installation of this package on the
workstation. External packages such as MPICH and MPICH 2 were proposed in those

cases, for the machines running the windows O.S..

The code encapsulation feature of this framework was demonstrated in the
VLSI circuit tests. In fact, the VLSI fault detector was developed independently to test
the integration with the framework which was a success. This makes our framework a

reliable resource for the students of the introductory courses to use .

After comparing the results that were performed on the same ISCAS files,
using all the algorithms, an obvious speed up was noticed through the use of parallelism.
In fact, since every copy of the population will be directed in a different direction, the
search will make sure to broaden the search area. Another benefit is that whenever a
version of the algorithm gets stuck at a local peak, the migrating individuals will add

new data and new possibilities for the algorithm to use in his next evolution. The testing

85

results were satisfactory but the problem was with the time that the VLSI circuit was
taking to simulate the circuit. Some extra work needs to be done on this part to optimize
the VLSI fault simulator and reduce the calculations to a minimum value in order to

make the simulation process run faster.

This project can be extended with many extra features, especially in the VLSI
part, where other types of fault simulation methods can be added like the concurrent
fault simulation or satisfiability simulation. More solution types can also be added to
globalize even further the use of the built in algorithms. As for the genetic algorithms,
they can be extended with other heuristic searching algorithms such as the tabu search,
deterministic crowding, differential evolution... which can be also parallelized through
the use of the MPI package that made the parallelization job an easy one.

As for the parallel Algorithm, dynamic user login can be easily developed and added so
that whenever a user logs in, he will get a copy of the database and start the evolution

process.

86

Appendix

The ISCAS Benchmarks that were used in this study are listed in the following table:

Circuit No. of No. of No. of Total Collapsed
Name gates Inputs Outputs Faults Faults

C03 18 7 4 104 69
C432 160 36 7 864 524
C1355 546 41 32 2710 1606
C1908 880 33 25 3816 2041
C2670 1193 233 140 5340 2943
3540 1669 50 22 7080 3651
C5315 2307 178 123 10630 5663

87

References

[1] Wilkinson, B., & Allen, M. (2005). Parallel programming, techniques and
applications using networked workstations and parallel computers (2nd ed.).
[n.p.]:Prentice Hall.

[2] Wall, M. (1996), GALIB: A C++ library of genetic algorithm components.
[n.p.]: Massachusetts Institute of Technology.

[3] Adcock, S. (2005). GAUL: Genetic algorithm utility library. Retrieved June 25, 2007
from: http://gaul.sourceforge.net/

[4] Levine, D. (1996). PGAPack: Parallel genetic algorithm library. Retrieved June 25,
2007 from: http://www-fp.ncs.anl.gov/CCST/research/reports_prel 998/comp_bio/stalk/pgapack.html

[5] Rybarski, J. (2006). JGAL: Java genetic algorithms library. Retrieved June 25, 2007
from: http://jgal.sourceforge.net/

[6] Meffert, K. (2002). JGAP: Java genetic algorithm package. Retrieved June 25, 2007
from: http://jgap.sourceforge.net/

[7] Dolan, A. (1998). GA playground. Retrieved June 25, 2007 from:
http://www.aridolan.com/ga/gaa/gaa.html

[8] Smith, J. (2000). GA: Genetic algorithms. Retrieved June 25, 2007 from:
http://www.softtechdesign.com/products/GA_Delphi/GeneticAlgorithm.htm

[9] Koutnik, J. (2000). JAGA: Java genetic algorithm package. Retrieved June 25, 2007
from: http://cs.felk.cvut.cz/~koutnij/studium/jaga/jaga.html

[10] Goodman, E. (1997). GALOPPS: Genetic algorithm optimized for portability and
parallelism system. Retrieved June 25, 2007 from:
http://garage.cse.msu.edu/software/galopps/index.html

[11] Naughton P., & Schildt, H. (1999). Java2: The complete reference, (3" ed.).
[n.p.]:Osborne/McGraw-Hill.

[12] Ivask, E. (1998). Genetic algorithms in test pattern generation. Unpublished
master’s thesis. Tallinn Technical University, Estonia.

[13] Kernighan, B., & Ritchie, D. (1988). The C programming language, (2" ed.).
[n.p.]:Prentice Hall.

[14] Cormen, T., Leiserson, C., Rivest, R.,, & Stein, C. (2001). Introduction to
algorithms, (2™ ed.). [n.p.]: The MIT Press.

88

(15] Bushnell, M., & Agrawal, V. (2000). Essentials of electronic testing for digital,
memory & mixed-signal VLSI circuits. [n.p.]: Springer.

[16] Goldberg, D. Genetic algorithms in search, optimization, and machine learning.
[n.p.]:Addison-Wesley Puclishing Company.

(17] Holland, J.H. (1975). Adaptation in natural and artificial systems. [n.p.]:University
of Michigan Press

[18] Otten, RH.JM.,, & Van Ginneken, L.P.P.P. (1989). The annealing algorithm.
[n.p.]:Kluwer Academic Publishers

[19] Wikimedia Foundation. Wikipedia, The free encyclopedia. Retrieved June 25, 2007
from: http://www.wikipedia.com

[20] Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, Vol 220 number 4598

[21] Kliewer G. & Tschoke, S. (2000). Parallel simulated annealing library. Retrieved
June 25, 2007 from: http://wwwcs.uni-paderborn.de/~parsa/

89

