AN IMPROVED QUORUM
SELECTION ALGORITHM

(IQSA)

by
SAMER YOUNES

B.S., Computer Science, Lebanese American University, 2007

Thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Science in Computer Science

Division of Computer Science and Mathematics

LEBANESE AMERICAN UNIVERSITY

September 2007

P
74

LesaneEseE AMERICAN UNIVERSITY

Thesis approval Form

Student Name: Samer Younes I1.D.: 198907790
Thesis Title: An Improved Quorum Selection Algorithm (IQSA)
Program : M.S. in Computer Science

Division/Dept

School

Approved/Signed by:

Thesis Advisor

Computer Science and Mathematics

Arts and Sciences - Beirut

Dr. Ramzi Haraty -

Member Dr. Sanaa Sharefeddine
Member Dr. Faisal AbuKhzam -
Date: 2L, September, 2007

ii

Plagiarism Policy Compliance Statement

I certify that I have read and understood LAU’s Plagiarism Policy. I
understand that failure to comply with this Policy can lead to

academic and disciplinary actions against me.
This work is substantially my own, and to the extent that any part

of this work is not my own I have indicated that by acknowledging

its sources.

Name: oSamev v ownes

Date: ZH /0‘1/2“\37“

Signature

1ii

I grant to the LEBANESE AMERCIAN UNIVERSITY the right to
use this work, irrespective of any copyright, for the University’s
own purpose without cost to the University or its students and
employees. I further agree that the University may reproduce and
provide single copies of the work to the public for the cost of

reproduction.

iv

ACKNOWLEDGMENTS

The author wishes to thank all those who made this work possible

and bore with me through it all; especially my beautiful wife-to-be,

Rana, for all the moral and emotional support.

Abstract

As communication becomes more and more an integral part of our
day to day lives, so our need to access information increases as
well. Mobility is currently one of the most important factors to
consider in our aim to achieve ubiquitous computing, and with it
rises the problem of how to manipulate data while maintaining
consistency and integrity. Recent years have seen tremendous
interest in quorum systems adapted to mobile hosts; however, the
more recent topic, of studying the effects of mobile networks on
gquorum systems, has also been the focus of interest for building
quorums aware of their network surroundings. This thesis presents
a novel approach in selecting mobile hosts to form epidemic
quorum coteries, based on metrics measured by mobile hosts and
then transmitted to Base Station servers. The BS constantly
maintains a vigil on the state of these mobile hosts to provide
higher quorum availability and ultimately higher data accessibility,

better integrity and consistency.

Keywords: distributed databases, host selection, mobility, epidemic

quorum, heap

vi

Contents

Chapter 1- INtrOAUCHOIL c..c...evierieii ettt emnre e e eneas 1
L.1- Back@round........cocoiiiieniiiiieeie ettt ettt ettt e mmreeens 1
1.2 Scope Of the ThesiS.....cocoiiiiiiiiiiieeice et 2
1.3 OrganizZation........cocceiviiirnriiie ettt ete s ste ettt e b et e snmnseereeteeeaseereea 3

Chapter 2- Literature Review & Related Work.........cccoovviiiiiiiciiiiiieiciccn e, 4

2.1- Architecture of Mobile Databases & Mobile Transaction Management Models 6

2.1.1- Mobile Database System ArchiteCture.............ocoevveereeerieiivieerrieeere e 6

2.1.2- Transaction Execution in MDS.........ccccooveviiiniiiiniiee e, 10

2.2- Mobile Transaction Models.......ccocooviieiiieiiinniniinincc e 13
2.2.1- CIUSTETING. .. oo vieeeireeeeeee ettt ettt e et e assve s e s et e eb e sttt staeseteeeneessne e eoee 15
2.2.2- Two-Tier RepliCation........cccoviiriiiiriiireieiinrie et 18
2.24- Pro-MOIOILcciiiiiiiiiccii et s ere e 24
2.2.5-Semantics Based..........ccccoviiiiiiiiniiiiei e 27
2.2.6- PrE-WIILR.....coviiiiiiiiiiiiicie ettt es et st eae vt 28

2.3- Epidemic Quomum AlZOrithms..........ccccoveriiiinienininn e eae e 29
Chapter 3- A Quorum Selection Architecture for Wireless Networks..............c....c........ 36
3.1- The AICRIECTULE.......ciiiiiiiiiiiiciii ettt et eae e 36
3.2-The AIZOIIIIM......ceiiiiiiii et 42
3.2.1- Client Agent ProCedUes.cvvveviirirsriecesie et 43
3.2.2- Server Side Procedures..........coovevverievinciiniinieioene et 46
Chapter 4- Performance Evaluation and Simulation Results.............cccoccoviiviioninninnnn 51
4.1- Theoretical Evaluation and Proofs............coccovvivienininiiinicsicc e 51
4.2- Simulation ReSULLS.......c.cceviiriiiiiiiiiicieiesie et 57
Chapter 5- CONCIUSION.cccciiiieiiieie sttt eve et ere e saeeas 63
REFERENCES. ..ottt n et emees v 65

APPENDIX A SOULCE COUC ettt e et e e e re e e et 69

APPENDIX B: NS2 Simulation Model (Tcl Source Code).......ccovvveeviciiiiieiviiieineeee 81

viii

List of Figures

Figure 2.1 Mobile Database System (MDS) Architecture.............cccoovvviviveeiviereesreecnnen. 7
Figure 2.2 Transaction Execution in MDS..........ccoviiiiiiiii e 11
Figure 2.3 The Clustering Model Architecture..........cocoveiveviinieniieninienc e 18
Figure 2.4 The 2-Tier Replication Model Architecture...........occcevercieneeiinierinnieie 21
Figure 2.5 The HiCoMo Replication Model Architecture............c.ccevuevcvereeinnireivimann. 24
Figure 2.6 The PRO-MOTION Replication Model Architecture............cc.ocovvmvvennnne. 27
Figure 3.1 IQSA General Architectural Overview............ccccvvvrivernicininneiiesis e 39
Figure 3.2 IQSA System Architecture: MH Agents - Max Heap Interaction................ 40
Figure 3.3 IQSA Architecture - Mobile Host Migration Process...........ccoevveiiereneenee. 41
Figure 3.4 IQSA High Level Modules Interaction.........c..cccoceeeevievinienncnnienensresee e 42
Figure 3.5 Host Data Record Structure............ccccovirieneenieninninie e 43
Figure 3.6 Host Metrics Initialization and Update Procedures............ccccocvvvivrrieinnnee, 45
Figure 3.7 The maxHeapify Procedure..........cccoooveiiieiiiiiiiinier et ceee e 47
Figure 3.8 The buildHeap Procedure..........ccoccvvieriniinciienieees e 47
Figure 3.9 The sortHeap Procedure.........c..ccoceviemrveniiriinienienieiieresiesnsesnesnneene e 47
Figure 3.10 The Iterative Search Procedure...........cccovevieniiniinniiiieniie e 48
Figure 3.11 The Migrate ProCedure..........cevuverieiiie it e oo 48
Figure 3.12 The Update Procedure..........c.ccovvveviirieiimniniicne e eee e 48
Figure 3.13 The Insert Procedure...........cccoevriieiiiiniriiinniee st 49
Figure 3.14 The Quorum Host Selection Procedwe............cccocvevvvriiienieiiic i, 49
Figure 4.1 Simulation Scenario L.........ccccoviiviiiiiiiiiiinice e 59
Figure 4.2 Traffic Pattern Graph from the 2 Nodes Simulation............c..cceccoevvrnennnnnn. 60
Figure 4.3 Simulation SCenario 2.........cocveiieiieeiiiniie et smereeeeene e 61
Figure 4.4 Traffic Pattern Graph from the 7 Nodes Simulation.........c.ccceecceevrriiennn. 62

ix

List of Tables

Table 2.1 Clustering Model ACID Properties...........cocveerierieenninieneniees e ee s 17
Table 2.2 Two-Tier Replication Model ACID Properties..........ccoccvvevvimvireriieeesvreenennn. 20
Table 2.3 HiCoMo Model ACID Properti€s.......ccvoverveereicieeiiieecirieseiiveeeimmeesesiveeeeenns 23
Table 2.4 PRO-MOTION Model ACID Properties.........ccoveerveeciearieeeieesieeireeesveeeennes 26
Table 2.5 Semantics Based Model ACID Properties..........ccoveevvverioieeeiirreeonnee e 28
Table 2.6 Pre-Write Model ACID Propertis..........ccvevvcviverieirrieieiresirieecveevreemeeeeesenns 29
Table 4.1 Availability Chart with dec=1 andrep=0.........cc..cccovivririirrieres e 54
Table 4.2 Availability Chart with dec=0.6 and rep=0............c...coceeeiviriiirieccere e, 54
Table 4.3 Availability Chart with dec=0.25and rep=0.........c...coeeiiiiiiriinie e, 55
Table 4.4 Availability Chart with dec=0.25 and rep=0.65...........ccevvvriiiiiriiiiveicnn, 56

Chapter 1- Introduction

Pervasive computing is a term loosely used to describe the
current state of computer technology in modern life. Our reliance
on computing mediums increases with the need for mobility,

connectivity and data availability.

We often find that the data we need, located on multiple
devices and in various locations, is inaccessible directly most of
the time. Pervasive computing also encompasses the concepts of
data, connectivity and their ubiquitous presence in an individual's

daily life.

As an example, in a single day, the average individual can go
through a minimum of three different devices to perform various
everyday tasks such as checking his/her email account on the
desktop computer, calling a family member on the cellphone,
listening to some music in the background on his/her personal
laptop and syncing all appointments from his/her palm-pilot to
his/her email client. Although we take such things for granted, our
daily interaction with data keeps increasing, and with it the need

to keep our data accessible, well-organized and safe.

1.1- Background

Current tools, such as Google's plethora of desktop search
tools, have reduced the divide by centralizing data management,
but they do not address issues such as unrelated data repositories,
data safeguard and integrity. In addition, the problem of

intermittent connectivity through wireless enabled devices is also

a major issue in mobility. As such, maintaining data integrity and

consistency in such mobile environments is a challenge; given the
diverse factors that influence connectivity, from geography to
battery life. Current trends in mobile databases suggest the
adoption, among other techniques, of the quorum approach in
which multiple mobile hosts perform reads and writes based on

the majority vote of hosts selected to the quorum.

Although the quorum algorithm has been extensively studied
since its earlier days, adapting it to mobile devices with
connectivity issues and providing a solid quality of service (QoS)
for quorum members is still in its infancy. The adaptation of
guorum consensus to mobile environments to insure a high level of

service is one of the main challenges to tackle.

1.2 Scope of the Thesis

The primary aim of this work is to come up with an
architecture capable of tracking mobile hosts and providing the
foundation for reliable quorum operations. This is achieved by
improving quorum host selection techniques, based on a scoring
mechanism that combines multiple measurements, such as signal
strength, database frequency access, priority and a derived trend
calculated by using a weighted linear regression function. This
system would complement any existing architecture directly linked
to the DBMS, thereby insuring ACID properties by simply plugging
into it when quorum consensus is being used. The secondary
purpose of this architecture is to attempt to reduce the amount of

status messages passed between both mobile and fixed hosts, thus

freeing up bandwidth for more critical operations.

1.3- Organization

The next section of this thesis presents a brief overview on
the current literature included in its scope. The third section lists
and explains the current trends and research in Mobile Database
Architecture and discusses the specifics of each approach. Section
four presents the contributed architecture, and the mathematical
model on which it is based. Section five provides extensive
theoretical and model simulation results that support both the
viability and added efficiency of the proposed model. Last, we

discuss the shortcomings and possible improvement paths to the

proposed contribution.

Chapter 2- Literature Review &
Related Work

Recent years have seen a much renewed interest in mobile
computing, especially with the advent of ubiquitous wireless
communication. This interest has also challenged some long held
concepts, which applied elegantly to wired networks but fail to
apply in wireless networks; more specifically mobile wireless

networks.

The architectures for mobile database systems have been
varied and diverse; however, all these architectures still adhere to
the ACID principals of standard databases systems. Serrano-
Alvarado et. al [21] provide an excellent overview of the various
mobile database models, the most popular of which, according to
[21] and Kumar [11], are the clustering model introduced by
Pitoura and Bhargava in [18], explained in chapter 3.2.1, the 2-Tier
replication model introduced by Gray et. al in [4], explained in
chapter 3.2.2, the HiCoMo model presented in [13] by Lee and
Helal, explained in chapter 3.2.3 and the Pro-Motion model by
Walborn and Chrysanthis [23] [24], explained in chapter 3.2.4.

With a comprehension of the workings of these various
models, recent publications by Holliday et. al [8], [9] and Baretto
Ferrero [1], seem to agree that quorum systems are the best suited
for a mobile environment. They present a study of how epidemic

algorithms can help increase the reliability and availability of

mobile database systems. An in-depth look at the model is also
tackled in chapter 3.3.

Very recently, the interest in studying the effects of mobile
network environments on the performance and availability of
quorum systems has spurred interesting publications in this area;
most notable of which are, [17] by Peysakhov et. al. that provides a
general quorum availability evaluation and Baretto Ferrero [1] that
deals more specifically with the performance evaluation of

epidemic quorum algorithms.

Other work by Gupta et al. [7] and Golovin et al. [4] were
also studied, pertaining to quorum placement and congestion

management, but the findings, although very interesting, were left

as future improvements on the architecture presented herein.

2.1- Architecture of Mobile Databases & Mobile

Transaction Management Models

This chapter starts off by explaining the architecture of a
mobile database system and its components to pave the way for a
discussion of previous research in the area of mobile transaction
management. Definitions of terms that are subsequently used

throughout the document will also be covered here.

2.1.1- Mobile Database System Architecture

Mobile database systems can essentially be summarized as
large distributed database systems, with the added property of
catering for mobile units that may experience connectivity outages
depending on their geographical location or data processing
capabilities. The acronym MDS (Mobile Database System) is used
to refer to them. An MDS comprises of interconnected computers
and communication systems, both wired and wireless (typically
GSM or 802.11), which allow users to connect to the systems that
host the requested data. Typically an MDS comprises of Fixed Host
(FH) units, interconnected through a high speed wired network,
Base Stations (BS) and Mobile Units (MU) or Mobile Hosts (MH)

(Both these terms will be used interchangeably in the text), which

typically describe a portable computing device ranging from a
laptop to a PDA.

W}{eié(:'% Network - BS
MU

il

Wirsless Hetwork

Fited Host

Wirelesa Network

85

AL

MU MU

MU

Figure 2.1 Mobile Database System (MDS) Architecture

Figure 2.1 depicts the various components of an MDS and
the interconnectivity among its various components. The mobile
unit, as stated earlier, refers to any hand held device that can be
carried by its owner and is able to communicate with other

computing devices. These mobile units are typically considered

outlying components of the system and are inter-networked

through the wireless network infrastructure. This wireless
infrastructure can be a typical 802.11 wireless network, a GSM
network or a hybrid of both, and comprises of a Base Station (BS)
with which the MU communicates directly. The BS, in turn,
communicates with a Base Station Controller (BSC), which work in
tandem to control and coordinate traffic among the various BS in a

given geographical region.

Communications from the MU are then routed either through
a standard wired network infrastructure or directly to the
Database Server, which handles fetching requested information
and sending information back to the MU that originated the

request.

An MDS with the above architecture would provide the

following basic properties:

Geographical Mobility: Essentially allowing a mobile host to move
around and still have access to their data without affecting

connectivity.

Connection/Disconnection: This is again a feature of a mobile unit,
through which an MU may opt to disconnect at any time and

reconnect to access the needed data, through any available server.

Data Processing: Use of data clustering and data partitioning in an
MDS would greatly enhance the response time of MU, by reducing
the amount of hops to get to a particular piece of data. This would
also minimize the amount of data that needs to be transported.
Typically, a MU would have relevant data subsets stored locally

These data subsets may be frequently accessed data or relevant

data in the context that MU is operating in. Whereas a FH would

have a replica of the entire database from which MUs are served

depending on geographical proximity or database load.

Network Connectivity Infrastructure: Which allows mobile hosts as
well as all the other elements of the MDS to communicate with

each other, typically through wired or wireless networks.

Transparency and Scalability: Insures that different types of
communications can coexist without one interfering with another
and that the infrastructure is adaptable enough to add or remove

clients at any time from the network.

It's also worth noting that an MDS would comprise of
multiple DBSs and various DB configurations, which could be in
various geographical regions and contain, either replicated data or
spatial data pertinent to the geographical location where that DBS
is located. The architecture is also dynamic enough to allow
semantically related data to be clustered together. The above three
DBS types (replicated, spatial, semantic) may also coexist together
and provide a hybrid MDS incorporating all of these features. The
choice for such configurations is usually related to data availability
and redundancy considerations. In the case of geographically
related data this distribution could also serve to provide users with

data relevant to their current geographical location as well.

As such we can define two broad categories of replication,
spatial replication for location dependent data or temporal
replication for traditional databases. The main difference being
that temporal replication provides a single, unique, consistent
value for any accessed data, from any replication site, whereas
spatial replication (although provides the same DB structure on all

sites) provides a single unique value of requested data, depending

9

on the geographical location where that request has been made.
Thus in spatial replication data in various geographical locations
may have different values that are unique to a particular
geographical context. Note that temporal replicas of spatial data in

a particular geographical location is also possible.

2.1.2- Transaction Execution in MDS

Transactions are the basic atomic units, that carry requests
and data between the DBS and the Client (MU or FH). In an MDS,
the distributed nature of data and the nature of requests made by
clients, involves a lot of parallel processing, both to improve
system performance as well as provide the necessary data. In short
transactions are no longer treated as atomic units in distributed
databases, but are themselves amenable to being divided into sub-
transactions, that are spread and sent to the DBS containing the
requested data. The entity responsible for breaking down a
transaction into subcomponents is called the coordinator. A
coordinator is usually a system that is aware of the network within
its coverage zone, spatial location of requested data and
geographical location of associated DBSs, making it a crucial
component in request dissemination (see Figure 2.2). As such a
coordinator is a system that should satisfy, at the very least, the

following two properties:
Continuous Connectivity: A coordinator should (in theory) maintain
connections with the rest of the system with no downtime or

intermittent failures.

Continuous Availability: It should also be accessible at any time

10

with no downtime and provide comparatively large storage

capabilities for cached data.

Coardirator

Figure 2.2 Transaction Execution in MDS

According to [11] the most suitable entity (as represented in
the above architecture) satisfying the above requirements, would
be the BS acting as the coordinator, as its features include, in
addition to the points mentioned above, direct communication with

MUs in its coverage zone.

Communication between the MU and the DBMS typically
involves transaction exchanges, that can be initiated by the DBS,
the MU or both. The processing of these transactions can also take
place exclusively at the MU where it was instantiated, exclusively
at the DBS, or at both locations simultaneously. In a multi-node

setup the following foreseeable scenarios may arise:

Transaction Originating at the MU: Transactions originating at an

MU can be processed entirely at an MU, with no requirements

11

from the DBS. If the data is not available on the MU, then the
transactions may be entirely processed at the DBS or execution
may be split among the MU and the DBS. In all cases the final

result is returned to the initiating MU.

Transaction Originating at the DBS: Such transactions are usually
executed either locally on the DBS or may be split across multiple
DBSs. The final result is returned to the initiating DBS.

Given that mobile units may move from one coverage area to
another, changing the BS/Coordinator to which it is attached, a

transaction may complete in one of the following scenarios:

Static MU: the MU establishes a connection with a given BS, which
is designated as its coordinator. If the MU does not move then the
transactions initiated by the MU will complete through the same
coordinator it was initiated from. If the MU is on the move and
finds itself outside the coverage area of its designated coordinator,
then all the transactions executed or requested by the MU will still
be processed by the primary designated coordinator even if the BS

changes.

Dynamic MU: In this scheme the designated coordinator of an MU
can change depending on the location of the MU and the coverage
area of the BS. Thus, when an MU leaves one BS's coverage area
for another, its the MU's responsibility to signal the new BS the
identity of its previous coordinator so that any transactions
initiated by the MU may be handled by the new coordinator.
Migration from one coordinator to another may happen using

various schemes, two of which are worth mentioning.

The first scheme, implies a residency limit, wherein the

12

coordinator of the MU is changed once that MU has stayed in a
new BS's coverage area longer than the specified residency limit.
Other parameters in this routine that may affect the designation of
a new coordinator to the MU may include, congestion, traffic load

and other network parameters that may prohibit such a migration.

The second scheme involves keeping the MU attached to a
given coordinator as long as the number of hops required to get to
its coordinator is one. This is also referred to as adjacency
migration where, as long as the MU is within cells adjacent to its
coordinator, that coordinator will remain assigned to the MU given

the high probability of that MU returning to the coordinator.

2.2- Mobile Transaction Models

This section covers the most recent mobile transaction
management and execution models by giving an informative
overview of their features and mode of operation, as well as
comparing their high-points and low-points. All discussed models
adhere (to varying extent) to, or extend, the ACID transaction
execution model. This model has been the generic underlying of all
transaction execution models because of its proven reliability,
insofar as the properties it provides guarantee that transactions
are processed in a reliable fashion. A brief explanation of ACID

properties follows:

Atomicity: This property guarantees that any executing transaction
is treated as an entity that may not be fragmented into any smaller
components. This property insures that any operations within a
transaction either all complete successfully, or, if any of the
operations should fail, the entire transaction fails. This subscribes

to the all or nothing execution paradigm.

13

Consistency: Insures that all integrity constraints (regardless of
granularity) is maintained to provide an accurate and timely view
of data. This property incorporates transaction conflict resolution
models as well as data constraints, whether at the level of an

entity or related entities.

Isolation: This property ensures that no data may be viewed in an
intermediate state by one transaction while another transaction is
operating on that data. Essentially this means that data can be
viewed in a single state and never in two (or more) simultaneous
states. The formal adjective describing this state is referred to as a
serializable state. This property complements the consistency

property mentioned above.

Durability: Refers to the persistence of the operations of a
transaction after successful execution, so that any modifications
carried out by that transaction on a data item will not be rolled
back.

As mentioned in the previous chapter, mobility introduces
new challenges to the way data is handled and presented, because
of its spatial quality, the same data in two different geographical
locations will have different wvalues. Therefore, maintaining
consistency also becomes more complex as the spatial component
gets factored in. Most MDS transaction execution models
introduce the concept of spatial consistency. The idea consists of
providing an MU consistent data, based on its current location, in
a way that the owner of the MU can use. As an example, assume a
user requests information about a particular restaurant which is a
mile from his current location. If the returned answer was given

back after that user has passed the restaurant, then that request is

14

no longer relevant; the user having left the geographical area
where this information would have been useful. The reason for
getting a belated response could be due to factors mentioned prior
such as bandwidth limitation, MU disconnections, or query

processing time.

Following are the most current mobile transaction models
according to [21], each which will be described in detail with

accompanying figures, where applicable.

2.2.1- Clustering

This model introduced in [18] and extended in [19], assumes
a fully distributed system where data is clustered based on a set of
dynamic semantic proximity. These clusters are created and
merged dynamically based on either global conditions, or on
conditions set by mobile users, which would allow them to cluster

frequently accessed data in a way that minimizes access time.

Data in a specific cluster is required to be fully consistent, in
so far as various versions of the same data cannot co-exist.
Different clusters may exhibit what [19] refer to as bounded
inconsistency wherein data items may have different values in
different clusters based on a certain set of predefined metrics. The
metrics include the number of different copies of the data in all
clusters. Once this limit is reached, a reconciliation function takes
care of minimizing the value of that metric back to a lower
threshold.

The model also defines two types of consistency, an inter-
cluster consistency and an intra-cluster consistency. Inter-cluster

consistency, is the equivalent of global consistency in traditional

15

database models, with the difference that inter-cluster states may
contain irregularities that fall within the values of the bounded
inconsistency threshold. The cluster is referred to as being m-
degree consistent, where the degree refers to the divergence in
the value of the chosen bounded inconsistency. Intra-cluster
consistency, on the other hand, is equivalent to strict consistency
in traditional database models, whereas no data in the specified

cluster may have more than one value associated with it.

To achieve this the model introduces two types of
transactions, weak transactions and strict transactions. Weak and
strict operations are also introduced in terms or reads and writes.
As a rule, strict transactions may apply to a single cluster or be
inter-cluster operations leaving the database in a globally
consistent state. On the other hand, weak transactions may only be
executed within a particular cluster only and modifications by a
write operation become permanent once the scheduled
reconciliation function is run. In general, strict reads will only read
values written by strict writes, and weak reads will read values
written by a weak write. A strict transaction becomes a set of strict
operations (reads and writes), whereas weak transactions refer to

a set of weak reads and writes.

It also worth mentioning that in this approach MHs, when
disconnected, become individual clusters on their own. Only weak
transactions are allowed to be performed by the MH on its dataset.
Once that MH reconnects, a synchronization operation process is
executed to bring the database back to a globally consistent state.
Table 2.1 summarizes properties and mechanism of the clustering

model to maintain ACID properties:

16

Table 2.1 Clustering Model ACID Properties

Atomicity

Consistency

Isolation

“ Durability

Clustering

MH Disconnected:
weak operations

are performed and
locally committed.

MH Connected:
strict operations
are performed
using 2 Phase
Commit (2PC)

DB Server:
reconciliation
function commits
or rolls back
transactions in

case of conflict

Intra-cluster
consistency: For
the two types of
data values either
weak or strict, a
single value for
each may exist for
each no data my
value may have
multiple values for

a specific type.

Inter-cluster
consistency: Is
maintained by
insuring that
divergence
doesn't exceed the
specified degree

of inconsistency.

Uses Strict 2PL
for concurrency
control and
introduces 4 lock
tables one for
each operation
type (WR, WW, SR,
SW).

Intermediate
values are not
visible to
transactions. but
locally committed
values are visible
to local
transactions on a

specific MH.

Strict versions of
data are
replicated using a
quorum consensus
protocol, whereas
weak versions are
propagating
according to the
degree of

inconsistency.

No guarantees on
durability.
Dependent on the
degree of
inconsistency in
the cluster.

o

17

Figure 2.3 illustrates the functioning of this model:

Synchronize

Figure 2.3 The Clustering Model Architecture

Two of the main drawbacks in this approach involve issues
with the architecture itself. First, the fact that clustering maintains
two different types of data, makes replication a very complex
operation. Compounded to that, the model does not fully adhere to
the durability property of the ACID model, as locally committed
transactions may be rolled back because of reconciliation conflicts,

leading to a higher degree of cascaded aborts.

2.2.2- Two-Tier Replication

Two tier replication [4], is another MDS model that relies on
a lazy replication mechanism geared towards mobile
environments. The model introduces the concept of Master copies
to which fully replicated copies are associated. As the clustering

model, it also classifies transactions in two categories, base

18

transactions, which operate on Master copies of data, and
tentative transactions, which operate on the replicated copies
when a MH is disconnected. As long as the mobile host is
connected, it participates in all operations using base transactions
to modify stored master copies of the data and propagate these
changes through a lazy replication scheme that guarantees one
copy serializability. When an MH is disconnected, it no longer has
access to stored master data and may only operate on tentative
copies of the data instead, using tentative transactions. Once the
connection is reestablished, the MH re-executes tentative
transactions as base transactions to update its master copy and
propagate the data changes. The acceptance of the re-executed
operation for final commit is dependent on the predefined
acceptance criteria. In case of conflicts, the initiating tentative
transaction is aborted. This model allows for semantic divergence
between tentative and base data, and reconciliation is done by the
re-execution of tentative transactions as base transactions. The
adherence of this model to the ACID properties can be found in
Table 2.2:

19

Table 2.2 Two-Tier Replication Model ACID Properties

Atomicity

Consistency

} Isolation

| Durability

J Two-tier

|
| Replication

MH Disconnected:

tentative
operations are

performed and

locally committed.

MH Connected:
Base operations
are performed

using an atomic

commit protocol

DB Server:
reconciliation is
performed by re-
executing
tentative

transactions as

base transactions.

Is maintained
through
acceptance
criteria and
commutative
tentative

transactions.

Uses a 2PL variant
for concurrency

control.

Intermediate

values are not

visible to
transactions. \
Locally committed }
values are visible
to local
transactions ona |

specific MH.

Base versions of
data are
replicated
through a lazy
replication
scheme,. Tentative
versions remain
local to the MH
that generated
them.

No guarantees on
durability.
Dependent on
acceptance
criteria during re-

execution.

20

Figure 2.4 illustrates the architecture:

MH1 e

fon,

Master Copy

@ Rezyre WMaster and Tardabive Datal

Terdative Copy

* Raplicate Master Copy!
Reconnected
foncuvte Base Transactionst S —
. Master Copy
< D
) Tentative Copy
14 o faplicats Master Copy!
i
&
0%
2P
sl
i {Master Copy
Exacute Terdative Transactions!
 Tentative Copy
Figure 2.4 The 2-Tier Replication Model Architecture
2.2.3- HiCoMo

Introduced by [13], is yet another novel approach to
managing transactions in highly mobile environments. Like the two
preceding models, it distinguishes between two types of
transactions, base transactions and HiCoMo transactions. The
difference being that HiCoMo mobile hosts do not operate on base
data but on aggregate data (summation, counts, minimum,

maximum, average, etc...) which are obtained from base tables.

21

HiCoMo transactions are executed when the MH is operating in
disconnected mode. Upon reconnection any modifications
performed on the aggregate tables is then re-synced with the base
tables using commutative inference and semantics functions,
which allow HiCoMo transactions to be transformed into base
transactions. A divergence threshold is also tolerated between

base and HiCoMo transactions.

The ACID properties of this scheme are maintained through
the following features: Atomicity is guaranteed in the use of an
extended nested transaction model in which base transactions are
treated as sub-transactions and organized in a tree like structure
with parent-child dependencies. What is most striking about this
approach is its flexible commit model that allows base transactions
(for the same HiCoMo transaction) to be re-executed within a
preset error margin (divergence criteria). Once that error margin
is exceeded the transaction is aborted. The triggering of the error
margin retry, due to a conflict between base transactions, results
from the transformation of the HiCoMo transactions into the
original base table data (i.e, a constraint on the maximum value of
a data field). The re-execution of transactions is allowed in this
model due to the commutative nature of the original aggregate
data made available to the MH. This commutative feature also
provides the model with a high level consistency. In terms of
isolation, intermediate values (locally committed results) of data
are only made visible to local transactions on the MH, whereas
concurrency is maintained using an optimistic concurrency control
strategy that uses timestamps to order operations and avoid
conflict between base and HiCoMo transactions. In terms of
replication, correctness is maintained through a convergence
scheme that guarantees that data between HiCoMo and base

tables always remains within the specific error margin. This

22

condition is guaranteed by the data commitment process.

One of the main drawbacks of this approach is inherent in its

design. The use of aggregate data, although improving local

transaction commit times, also makes the conversion process (from

HiCoMo to Base transactions) rather complex, and limits the

possibilities of data manipulation to commutative operations only.

Table 2.3 summarizes the ACID properties of the HiCoMo model.

Table 2.3 HiCoMo Model ACID Properties

Atomicity

Consistency

Isolation

Durability

HiCoMo

MH: HiCoMo
transactions are
locally committed
and manipulate
only aggregate
data.

DB Server:
reconciliation is
performed by re-
executing HiCoMo
transactions as
base transactions,
taking into
account the
predefined error
margin.
Transformed
HiCoMo
transactions are
aborted if ,during
re-execution, the
error margin is

not exceeded.

Is maintained
through the
generation of
aggregate tables,
commutative
transactions, and
predefined error

margins.

Uses an optimistic
timestamp
ordering
concurrency

control.

Intermediate
values are not
visible to
transactions. But
locally committed
values are visible
to local HiCoMo
transactions on a

specific MH.

A convergence
scheme maintains
consistency
among replicated
aggregate and
base tables.

Data items are
committed locally
directly after the
execution of a
HiCoMo
transaction.
However final
commit is
dependent on the
successful re-
execution of
HiCoMo
transactions as

Base transactions.

23

Figure 2.5 illustrates the general architecture of HiCoMo:
MH1 Aggregate Data

———

Syrichronize

Raogquest Aggregate Data

Send Aggregate Dats

Base Data
[Cervreit Dats

Trausformation Function
HiC oMo -» Base

Tranzactions (Base Txl

Figure 2.5 The HiCoMo Replication Model Architecture

2.2.4- Pro-Motion

One of the most innovative approaches to mobile databases
was introduced in [23] [24] and is mainly a data caching scheme
that allows for consistent local transaction processing. The main
innovation of this scheme is the introduction of the concept of
compacts. Compacts, as the name suggests, are an agglomeration
of data, operations and constraints, which form the basic caching
and control mechanisms among MHs and FHs, and considers all
operations executed on mobile systems as a very long transaction
executed on the server. In other words, all operations are
executed on the MH and are synchronized later with the server. A
compact manager takes care of the generation and management of
compacts on the server, whereas a compact agent takes care of
caching and processing transactions on the MH. Interaction
between various MHs and FHs are done through the mobility
manager in charge of data exchange between various compact
agents. The model extends the standard transaction execution
model with some specialized methods pertaining directly to the

manipulation and querying of compacts to support data

24

manipulation and concurrency schemes. As such, compacts can be
inquired about using the “Inquire” method and notified of any
changes in the state of the MH using the “Notify” method. Commit
and Abort operations are also used to validate or invalidate data
changes performed by compact transactions. A special “Dispatch”
method is used to process operations initiated by the compact

agent, which are to be locally committed.

The interaction between compact agent and manager is
confined to four types of transaction processing activities, which
involves the agent and/or manager. When the MH is connected to
the network, it always attempts to store compacts for an eventual
disconnection. This constant storage of compacts is referred to in

the model as hoarding. Compacts are stored in a compact registry.

While connected and performing its hoarding function, the
MH will continually process transaction with the compact
manager. Although the model does not differentiate between
connected and disconnected modes, when interacting directly with
the compact manager, the MH will be operating at a more
optimized level than in disconnected mode due to the quick
turnaround of operations. This is referred to as connected
execution. When disconnected, the MH will revert to local
processing of transactions and maintains a log of operations that

can be replayed later for either recovery or resynchronization.

After the MH re-establishes a connection with the network, a
synchronization process takes place to reconcile the locally
committed transactions with the permanent data store on an FH. If
no conflicts are detected, all updates are performed. In the
eventuality of a conflict or data expiry, the following venues may

be undertaken by the system: In case of data expiry, the compact

25

agent will attempt to get a renewal on the data item from the
compact manager, pending no other transaction (from another
MH) has modified that data after the expiry date. A contingency
procedure associated with the compact may be triggered to
attempt to remedy the problem. In case both of these operations
fail, compacts that have failed to reinstate their changes with the
compact manager and incorporate their changes with the
permanent data store, are aborted, and all associated compacts
are invalidated. Once a list of valid compacts is generated, these
are allowed to issue a dispatch event to the server, replaying the
operations that have been locally committed on the database

server for final commitment.

As far as the model's adherence to ACID properties, Table
2.4 summarizes the various mechanisms and schemes used by
PRO-MOTION to abide to them.

Table 2.4 PRO-MOTION Model ACID Properties

Atomicity Consistency Isolation Durability
PRO-MOTION MH: Local commit |Is maintained Uses isolation Data expiry and

using 2PC through levels (0-10) reconciliation

constraints and applied conflicts may

DB Server: state information |individually to rollback locally

synchronization in the compact each generated committed

operation to upon dispatch to | compact transactions

reconcile the the MH.

MH's data store

with the

permanent data

store. |

26

An overview of the PRO-MOTION architecture is depicted in the
Figure 2.6:

Databasae Server

Coropact PlanaEyar fuwd DRME

i b TP ACE AgiRrd

fompack Ragistary

Figure 2.6 The PRO-MOTION Replication Model Architecture

2.2.5- Semantics Based

The architecture described in [25], exploits semantic
relationships between data objects to split large data stores into
smaller manageable chunks that can be cached and manipulated
by MHs. The approach focuses on object fragmentation to provide
better concurrency and optimize communication. Objects in this
model refer to aggregate data or other data structures, such as
queues, stacks and sets. Every cached object at the MH is
exclusively locked for that MH. Hence, multiple access to the same
data object is not allowed under this model. The architecture is
very reminiscent of the PRO-MOTION model (albeit being its
predecessor) in some aspects, in terms of MH information caching.
As such the semantics model uses two parameters: one indicating

which data should be cached (the selection criteria), the second

27

specifying the constraints that apply to the selection in order to
maintain global consistency (consistency conditions). When an MH
is disconnected, all transactions are locally committed until the
MH regains its connectivity, at which point a reintegration process,
merging both MH and FH data fragments, takes place.
Inconsistencies are avoided by applying consistency conditions
originally imposed on the data fragment cached on the MH. The
model's adherence to the ACID properties are summarized in Table
2.5:

Table 2.5 Semantics Based Model ACID Properties

Atomicity Consistency Isolation Durability
Semantics Based |MH: Local Is maintained Uses 2PL to Because if data

commit. through control concurrent | fragmentation

constraints access to locally data availability
DB Server: conditions that cached fragments. | becomes limited
Merging of data were originally when MHs hoard
fragments loaded with the data for extended
between MH and |object fragments periods of time.
FH. on the MH.

2.2.6- Pre-Write

Another interesting approach to transaction execution in
mobile environments is Pre-Write [14]. The main purpose of this
architecture is to improve the availability of data for MHs and FHs,
by splitting operations into two categories: pre-operations and
normal operations. Transaction execution is divided between the
MH and the BS, to allow for higher concurrency and to reduce
transaction blocking. To achieve this, the model uses an optimistic
concurrency control scheme with no cascading aborts. Through
the division of transaction execution, the data becomes available
on both the MH and the DBS, even before final commit, which

increases data availability. Interaction between the MH and BS is

28

as follows: the MH first requests locks on data items on the DBS
through its transaction manager. Once these locks are successfully
acquired by the BS's data manager, the MH is free to disconnect.
When the MH finishes executing pre-operations, the final
operation that is executed on the MH is a pre-commit operation.
Once a transaction is pre-committed, it cannot be aborted. These
pre-writes are then sent to the BS and made visible to all
subsequent transactions that require that data item. A log of
operations is kept by the BS as well. To make them permanent, the
BS's data manager transforms pre-commits into normal commits
and stores the changes made by the MH. Adherence to the ACID

properties can be summarized in Table 3.6:

Table 2.6 Pre-Write Model ACID Properties

Atomicity Consistency Isolation Durability
Pre-Write MH: Local Is maintained by | Locally committed | Data is committed
commit. the separation of |operations are permanently after
operation into pre |viewable by all local commit.

DB Server: Locally | ops and normal hosts. However involves
committed data on | ops Uses relaxed 2PL | heavy message
the MH are made extended by one exchange.
permanent on the conflict table and

DBS new lock types
?

Other transaction management schemes also include IOT,
Kangaroo, MDSTPM, MoFlex and Pre-Serialization. Overviews of

these architectures can be found in [11] and [21].

2.3- Epidemic Quorum Algorithms

This section introduces a particular type of distributed
mobile transaction propagation and availability model called

epidemic quorum algorithms.

29

Traditional quorum algorithms have been extensively used to
insure a certain degree of reliability in distributed database
systems by providing checks on data replication and implementing
mutual exclusion [16]. However their applicability to mobile
networks is not adequate, given the promiscuous nature of
connectivity in such environments, which would lead to
disconnections in the quorum partition and disruptions of quorum

agreements.

Epidemic quorum systems, on the other hand, allow for data
propagation along unconnected quorums by initiating a finite
number of elections. As the results of these elections are decided,
the votes are propagated across the different quorums, leading
eventually to a full propagation across all quorums. This is
achieved through comparing the MH's local state to the current
quorum state and modifying its state to reach one consistent with
the quorum's. Epidemic algorithms usually operate similarly to
traditional quorum algorithms in so far as agreeing on the
propagation of a certain data item through vote results from
quorum groups. The following paragraph presents an epidemic
algorithm model on whose architecture, studies and quorum

selection model this thesis is based on.

In general terms, epidemic algorithms [9] rely on two
fundamental conditions to insure that data is properly propagated
across all sites. The first condition insures that all local data, to a
particular site, are totally ordered and form a one-copy
serialization sequence, whereas the second condition states that
the global order of inter-site events are causally ordered, so that if
event c; and c; happened at consecutive time t; and t, where t; <

t., then the causal order of events is maintained if ¢; - c,.

30

Epidemic algorithms maintain cross site timestamps using vector
clocks (variants of the standard Lamport clocks) to keep causal

order across sites.

Epidemic Quorum Algorithms (which will be referred to as
eQuorums from hereon), are a particular breed of epidemic
algorithms which, like the normal quorum algorithm, operate on
the same basis with some particular features that make them fit
for distributed environments. eQuorums are used as substitutes to
the standard pessimistic epidemic algorithm (ROWA) in
environments that require high system throughput, by allowing
one transaction to commit from each set of conflicting
transactions. As mentioned previously, transactions in eQuorums
are serialized in a causal fashion, so that out of each pair of
conflicting transactions, one and only one transaction will commit
through a yes, no, vote by site quorums. Vote results are stored in
a log that indicates the local site's time, vote result and the
identification number of that site. This log entry is then
propagated to other sites through eQuorum messages until all
sites have received the vote results. Vote results are sent from all
sites to all sites and are propagated according to availability,
among other factors. When a particular site receives a positive
vote for a particular transaction, it automatically commits the data
for that transaction. When a particular transaction commits at a
certain site, all other conflicting transactions at that site are
aborted.

Transactions in an eQuorum can usually be in three states,
two of which are trivial. A group of transactions can be in conflict,
or in an uncertain state, whereas one and only one transaction
from that group can be in a committed state. A group of

transactions are said to be in an uncertain state if a site S; has not

31

received enough information to commit or abort a transaction. This
usually occurs when the outcome of a vote at that site has yet to be
determined. Transactions in an uncertain state usually obtain locks
on a certain data item X. Unlike the ROWA algorithm, an item X
can have locks on it by more than one transaction that need to
access X. However, these write locks have been adapted from the
Pre-Write model [14], where the concept of Intention to Write (IW)
is introduced to mitigate the problem of multiple locks through the
addition of an extra conflict table for IW. It is also worth
mentioning that local transactions, wishing to commit a write
operation, are also forced into converting any write request to an
IW; thus, mimicking a remote transaction. This mechanism
prevents local transactions from accessing data items before pre-
committing. When two conflicting transactions possess an IW lock
on a data item, if either one should abort, then the data item
remains inaccessible until the fate of the remaining transaction is
decided. The performance results presented in [9], apply to a fixed
network, and as such do not provide any insight that may be

extended to wireless networks.

The property of eQuorums that this thesis is most intent on
dealing with, is the availability of quorums at various sites. The
goal is to maximize the availability of quorums and to increase the
probability of the system, eventually reaching a global consensus,
and thus agreeing on a given value. [1] provides a good overview
of the performance of eQuorums and provides tangible metrics
through which performance can be measured. [1] also presents a
unified framework to compare and measure various epidemic
quorum algorithms. As mentioned earlier, the main goal of this
thesis is to insure that the availability of quorums is maximized,
providing improved overall system performance. To better

understand the metrics used in [1], it is essential that we clarify

32

some details on the model presented in the earlier chapter
pertaining to the voting process. eQuorums propagate data items
based on per site quorum votes. However, given that some sites
may be unavailable at times, or may require more information (in
the case of uncertain vote outcome), eQuorums perform a finite
number of voting rounds; the outcome of which may be a second
round of votes (if uncertain) or a decision. The work refers to these
two metrics as probabilistic values represented by rep. for the
repeat probability condition and dec, for the decision probability

condition.

The probabilistic properties of rep. and dec: are as follows:
- rep.(n)+dec,(n)<1

-and Vn:rep.(n)<l

Following the above workings of eQuorum votes and its
probabilistic constraints, [1] has defined the availability of an

eQuorum by the formula given in (1):

y)(l—pf)”pﬁcy‘”)decf(n)
n (1)

y
,EO 1-rep (n)

Where pris the probability of failure of a given host to vote, part of

y

V1(1-p,)"p "M dec (n) represents

the numerator expression

the probability of having n correct processes out of y, and

dec (n)
————— represents the probability of consecutive repeat votes
1—rep£(n)

followed by a decide vote.

Although [1] assumes p; to be constant and uniform, in

33

reality, given the volatile nature of wireless networks, the
probability of failure cannot be fixed or defined ahead of time, as
disconnections may occur randomly and without prior precursors.
However, a general behavioral pattern for p; can be deduced and
applied to equation (1). The model presented in chapter 4
discusses this matter in more detail. The goal is to minimize the
probability of failure py; to maximize availability. It is also worth

mentioning that as rep. and dec. grow, availability grows

Although the sensing and incorporation of network states in
gquorums is a very recent topic of discussion, the most notable
work in this area of research has been done by Peysakhov et al.
[17] and Gupta et al. [6][7]. The approach brought forth by [17]
uses the same general principals, as detailed later. However,
instead of wusing the standard client/server model, [17] uses
migrating agents applied to standard quorums. As for the metrics
evaluated in [17], they use a probability density function
(equations (2) and (3)), similar to equation (1), of positive versus

total number of votes, to calculate a confidence factor.

y

1—p.)" (y—n)
n (1—pg)" ps (2)

and

(3)

Where C is a pre-selected confidence interval and F(C)
denotes the combined probabilities of all the members of C. The
process of measurement works by continually collecting votes until
such time as the uncertainty threshold (in the above example 0.9 ~
90%), defined as values lying outside of the interval C, is reached.

On a given site these values would tend to indicate that a certainty

34

for either a positive or negative outcome of the votes has been
reached by the quorum. Although [17]'s method enhances the
general confidence in a quorum, the presented approach deals
only with the quality of the host as measured prior to quorum
selection. Furthermore, an agent approach to data collection
suffers in weakly connected networks. The measures presented in
this work would also help agents find better hosts to collect data

from, reducing the amount of failed visits an agent may encounter.

The following chapter presents an idea for adapting quorum
host selection in wireless networks, by adding an extra middleware
layer, allowing the systems involved to be aware of the state of
hosts in a particular site. When quorums are formed, this
information would lead to minimized delays and less

disconnections that often occur in wireless networks.

35

Chapter 3- A Quorum Selection

Architecture for Wireless Networks

3.1- The Architecture

This chapter explains the architecture and various modules
used to achieve better quorum host selection, based on metrics
measured by the MH pertaining to its state, and sent periodically
to the BS. The agent approach was used to minimize the amount of
messages passed from client to server, as well as provide a
distributed architecture to circumvent any single point of failure

that may arise.

As mentioned in chapter 2.1.1, the base station is the most
suited element in a mobile network to keep track of mobile hosts in
its current orbit. Base Stations (BS), as adapted from the mobile
phone architecture, serve to keep registration information about
current mobile hosts in their area of coverage, thus making them
strategically placed to carry out the function delineated in this
work. The new role alloted to a base station will be to gleam the
chosen performance metrics from mobile hosts, currently
registered with that base station. As such, we introduce the
following metrics and variables to measure the performance,

connectivity and health of a particular mobile host.

- Signal Strength: Defines the current signal strength of a
MH, currently registered with a BS. This measure is
usually in decibels (dB), and is directly measured by the
MH's wireless network card (PCMCIA card or Centrino
wireless chip), accessible through the card's device driver

framework. In general, the signal strength can be

36

expressed as a percentage of the maximum speed
available on a particular wireless network. Typically an
802.11 b/g network would operate at 54 Mbps, and as
such, the signal strength is measured as the current
speed achieved by the mobile host as a percentage of 54
Mbps (representing 100% signal strength). Typically this
value depends on the geographical environment the
mobile host is located in, as well as factors such as

battery autonomy and I/O conditions on the MH.

Host Priority: Depending on the current signal strength of
the MH, a priority number is given to that MH. The
higher the signal strength, the higher the priority. This
can be set directly by the MH, or if selected as part of the
quorum in a given BS, the BS may assign that MH a
priority, based on measurements by the BS. The priority
can also be set based on the level of criticality of data
currently waiting to be read or written by a particular
MH. The more important the data, the higher the priority.
This is usually set and agreed upon when the MH first
checks out the necessary data items it wishes to work on
offline. The DBMS can set priorities on various data slices
which, when checked out by an MH, sets its priority

metric.

Host Trend: We also define a derived metric based on the
performance of a MH's signal strength with time. The
trend of an MH's signal strength is calculated using a
standard weighted linear regression, which shows the
trend over time of the aggregates of both aforementioned
metrics (Signal Strength & Priority). This metric would

help amortize discrete signal strength values (whether

37

high or low) and provide the BS with a better picture of

the overall performance of that MH.

— Other Variables: These include various variables such as
host identification and a variable that always contains the

last BS a particular host was registered with.

Any MH currently registered with a particular BS will have
an agent running that sends or receives metrics to and from that

BS, keeping that BS up to date on its current status.

The BS on the other hand, once it receives this data from a
MH, will classify it in a heap structure that allows the BS to pick
the best performing MHs when a quorum is being built. The heap
structure on the BS is constantly maintained as a max heap. Every
new mobile host addition to the MH, will force the BS to
restructure the max heap to take into account this new addition.
Figure 4.1 shows a general overview of the proposed architecture
and illustrates another use of the data in conjunction with Layer 7
switches. The Layer 7 switch can be used to provide traffic priority
to MHs which have been selected to act as quorum members. This
is especially important when selected MHs are present in a
congested BS. By providing higher traffic priorities to quorum
members, the Layer 7 switch insures that quorum traffic gets the
highest priority over other traffic when the quorum is casting votes

and deciding the outcome of a read or write operation.

38

Figure 3.1 IQSA General Architectural Overview

Figure 3.2 provides more insight into the architecture, by
showing how packets get arranged in the BS' max heap structure.
The max heap keeps a record of all currently registered MHs with
it, and orders the list, based on the metrics mentioned prior, from
largest (most reliable host) to smallest (least reliable host). This
max heap is constantly updated (Every five minute interval)
whenever a host is added or removed from the heap, providing the
BS with the most up to date state of MHs currently registered with
it. The priority metric is used for the comparison. However, during
selection, the BS may also use the trend data sent by the MH as an
added measure during the selection process. No mechanism for
selection has been implemented in the current release, as it serves
more as a proof of concept of basic functioning rather than a full

fledge application.

39

Cuorum Selection Max Heap

M1 Stats

M2 Stats

Figure 3.2 IQSA System Architecture: MH Agents - Max Heap Interaction

The architecture also introduces the means to migrate MHs
from one BS to another. Since the MH is essentially a mobile unit
(cellphone, PDA, Laptop) with a moving user, for example, this
user may travel through various BSs while going to work, and as
such may travel and register with various base stations (similar
again to the mobile phone network). So as not to clutter every BS
with stale data, the MH will automatically be unregistered from a
BS once that MH leaves its area of coverage. When a user
registers with a new BS, the MH will automatically send the new
BS the previous BS's address it was registered with. This allows
both BSs to communicate with each other and migrate the entry

from the previous BS to the new BS. In some cases, mobile users

40

may swing between two or more BSs, creating heavy migration
traffic. In these cases, the MH may opt to remain registered with a
particular BS as long as the cell that the user was registered in, is
adjacent, in terms of area of coverage, to the the cell he/she's
currently in. Figure 3.3 illustrates such a scenario, where MH7
migrates from a BS's coverage of cell C7 to a BS covering cell C6.
The entry for MH7 is automatically migrated from C7 to C6 by
communication between the BS's of both cells, as soon as the MH
provides the new BS with the address of the previous BS. The
adjacency scenario can also be inferred from Figure 4.3 as well,
where C7 has adjacent cells C6, C5 and C4 through which the BS,
if present in any of the three, may use them as a bridges to
communicate directly with C7, without re-registering with either
C4, C5 or C6.

Max Heap O

. —

Figure 3.3 IQSA Architecture - Mobile Host Migration Process

41

3.2- The Algorithm

In this chapter we discuss the high level algorithms that
need to be implemented, in order to mimic the architecture
discussed in the previous chapter. Although the core parts of it
have been implemented in C++, this chapter presents the various
modules in a more high level descriptive language. Where
necessary, references to actual code will be made. Appendix A
contains all the detailed implementation of a proof of concept code
that lays the foundations for the above mentioned architecture in
its general form. A simulation model of the architecture has been
implemented using the NS2 network simulator package to test the
performance of the algorithm. We leave the details of performance
and evaluation to the next chapter.

A general sectioning of the various modules needed will be
presented, as well as a detailed description and pseudo-code for
selected parts. Figure 3.4 shows the various high level parts and
their high level interaction with one another.

MY Heap DS
Sigaal Srength i i le] lp2id

Senafized
o Cliert Dats
Priosity Agent client 1)v» Server 1

Trand / A

Seriglized
Cherd Data

Signal Strangth

Priarty Agert e

Trend

Raguest aod Send
clientls Cats

Y

Reggister
Prieiity | Agent client 3 | sarver 2

Trand i

MAY Memp DS

i) S

XN

Figure 3.4 IQSA High Level Modules Interaction

42

As mentioned earlier on, quorum host selection is based on
client/server interaction. The agent modules running on the
various MHs are responsible for collecting metrics (signal
strength, priority, etc.). The client module is responsible for
serializing the data and sending it over the wire to the server.
When a server receives a packet from a client, it stores and
classifies the client data into a max heap structure, based on the
priority metric measured at the client end. The last module
involves the inter-server data exchange system, which allows
servers to exchange information about clients when they migrate

from one server to the other and complete registration.

The next chapter present the pseudo-code of the various

modules with an in-depth discussion of each one.

3.2.1- Client Agent Procedures

This particular piece of pseudo-code show how an agent
collects and measures the various metrics involved before sending
them to the client module for transfer across the wire to the
server. The snippet below in Figure 3.5 shows the record structure

of data gathered by the client.

type: HostData
record
SignalStrength : int
Hostname : string
PreviousBS : string
Priority : float
| Trend : double

Time : vector of

double
PrioSig : vector of

double

Figure 3.5 Host Data Record Structure.

Of the aforementioned variables, most should be familiar

43

from previous chapters, with the notable exceptions of the Time
vector structure and the priosig vector structure. The Time
structure, as the name indicates, holds a timestamp for every
measure of both the signalstrength and priority performed by the
agent, at specific intervals metrics. Every time these two metrics
are measured, a timestamp is added to the dynamic array. This
also holds true for the first time the structure is being initialized as
well. The priosig structure on the other hand, holds an aggregate
weighted measure of both the priority metric and signalstrength
metric. These two vector structures are used to store historical
data, needed by the linear regression function, which measures the

host's trend metric.

calculateTrend(PrioSig, Time) :
begin:
if { sizeof(PrioSig) = 2 } then
Linear A =
CalculateLinearReg(sizeof(Time), PrioSig,
Time);
return getSlopeOf(A);
else
return 0;
end;

calculateWeightedAggregate(SignalStrength,
Priority) :
begin:
signalWeight « signalImportanceFactor;
priorityWeight « priorityImportanceFactor;
return
(SignalStrength*signalWeight)+ (Priority*priorityWeight)

I

end;

Initialize(HostData) :

begin:
SignalStrength = measured(SignalStrength);
Hostname « gethostbyname();
Priority « measured(Priority);
Time[] « push { time(now) };
PrioSig[] « push {

weightedLinearDist (SignalStrength,
Priority) };

trend « calculateTrend(PrioSig, Time);

end;

44

updateMetrics(SignalStrength, Priority) :
begin:
Time[] « push { time(now) };
PrioSig[] « push {
weightedLinearDist (SignalStrength,
Priority) };
end;

updateTrend() :
begin:

trend « calculateTrend(PrioSig, Time);
end;

Figure 3.6 Host Metrics Initialization and Update Procedures

The calling of the procedures in Figure 3.6 takes place as
follows: when a MH first connects, it initializes all its metrics with
either the most current measure taken (signal strength and
priority), or to default values (trend metric). The trend metric is
initially set to zero due to the unavailability of data to perform
regression calculation. A minimum of two datum points are needed
to perform a linear approximation, hence the greater than or equal
to 2 condition in the calculateTrend procedure in Figure 3.6.
Calculations of a weighted aggregate value combining both signal
strength and priority metrics is also performed. The aggregation of
these two metrics and its subsequent use in the linear
approximation, would allow the environment to control which
metric should have a higher importance, by assigning it a variable
weight factor. The ensuing aggregate value is then associated with
a timestamp in order to calculate the trend metric over time. This
calculation is performed every time the client agent gets an
updated measure on the basic metrics: signal strength and priority.
The updates for the signal strength, priority metrics, and trend
metric have been split into two procedures to make allow greater
control over when and in which order these two procedures get

called. Once all the data has been updated, the client serializes the

45

host data and sends it over the wire to the BS.

3.2.2- Server Side Procedures

On the receiving end, is the base station, running a server
listening for registration and update requests sent by MH agents.
The BS is responsible for maintaining an organized max heap
structure of all currently registered MHs that fall under its zone of
coverage. Once a registration or update packet is received, the
following procedures take place to insure the careful
addition/update of that MH's information into the BS's heap

structure.

Stepl: The BS would first check if the record for that MH is
currently registered with it as a BS, if not the BS will retrieve that
data from the last BS that MH was registered with and ask the
previous BS to delete the entry of that MH in its heap. The BS will
then send the MH its credentials to update its BS information and

proceed to add the MH's record to its max heap structure.

Step2: If the MH's record already exists then the BS will
consider the incoming data as an update and proceed to search
and update its heap structure with the new data sent by the MH

agent.

Step 3: The last case the server considers is when no
previous BS record has been sent by the MH and no data for that
MH has been found in the server's heap structure. In this case the
server will assume that this is a first time sign on by a new client

and proceed as outlined in step 1.

Following, is the pseudocode of the above mentioned steps
and their associated procedures, most notable of which are the
heap building and sorting procedures. Every procedure will be

discussed in detail on its own, followed by a sequencing of these

46

procedures as described in the previous paragraph.

maxHeapify (heapStruct(] , 1)
begin:
1 « left(i);
r « right(1i);
if (1 = length[heapStruct] and
I1.HostData.Priority >
heapStruct[i].HostData.Priority then
largest « 1;
else largest « r;
if (r < length[heapStruct] and
r.HostData.Priority >
heapStruct[i].HostData.Priority) then
largest « r;
if (largest # i) then
exchange heapStruct[i] e
heapStruct[largest]
maxHeapify (heapStruct [], 1);
end;

Figure 3.7 The maxHeapify Procedure.

buildHeap (heapStruct[]) :
begin:
for i « Llength[heapStruct] / 2J downto 1
do maxHeapify(heapStruct [] , 1);
end;

Figure 3.8 The buildHeap Procedure.

sortHeap (heapStruct[], length [heapStruct])
begin:
buildHeap(heapStruct([]);
for 1 « length [heapStruct] downto 2
do exchange heapStruct[12]

heapStruct([i];
length [heapStruct] « length

[heapStruct — 1];
maxHeapify(heapStruct[] , 1);

end;

Figure 3.9 The sortHeap Procedure.

47

searchForElement (heapStruct[] , Element) :
begin:
foreach Element in heapStruct[] as Temp
if (Element.HostID eq Temp.HostID)
then
return position of Element;
else
return -1;
end;

Figure 3.10 The Iterative Search Procedure.

migrateRecord(Element.serverID, Element.HostID)
begin:

buff [] ¢« send(Element.serverID,

Element .HostID,
“Migrate”);

/* The above procedure, sends out a request
to the last BS Element was registered with,
retrieves the data and asks the previous
BS to delete its records of BS */

new (Element) « unserialize (buff[]);

heapStruct[] < push (Element);

buildHeap (heapStruct(]);

sortHeap (heapStruct([], length[heapStruct]
)i

end;

Figure 3.11 The Migrate Procedure.

updateElement(heapStruct(], Element, Position)
begin:
if (isdefined(Position) and Position # -1)
then
heapStruct|[Position] = Element;
buildHeap (heapStruct []);
sortHeap (heapStruct[], lengthf
heapStruct]);
end;

Figure 3.12 The Update Procedure.

48

insertMaxHeap(heapStruct[], HostData Element)
begin:
if(Element.serverID neq serverID) then
migrateRecord (Element.serverID,
Element .HostID);

else
if (position <« searchForElement
(heapStruct(],
Element) #
-1) then
updateFElement (heapStruct(],
Element,

position);
else
heapStruct([] « push (Element);
buildHeap (heapStruct []);
sortHeap (heapStruct[], length|
heapStruct]);
end;

Figure 3.13 The Insert Procedure.

selectQuorumHosts (heapStruct[], quorumSize)
begin:
if(length[heapStruct] 0) then
start mutex
for i <« length[heapStruct] downto (
length[heapStruct]
- quorumSize)
addToQuorum(heapStruct [1]);
end mutex
end;

Figure 3.14 The Quorum Host Selection Procedure.

Explanations of the pseudocode, presented in Figures 3.7
through 3.14, is to follow.

Figures 3.7 — 3.9 represent the heap creation, manipulation

49

and sorting procedures necessary to maintain the server side heap

data structure. This structure holds a HostData record sent by

registered MHs, and keeps them sorted based on the Priority
metric. Figure 3.10 describes the record search procedure, which
identifies the position of a MH record, if found, and returns it to
the calling procedure. Figure 3.11 describes the procedure that
takes care of migrating MH records from servers they were
previously registered with. Figure 3.12 describes the record
updating procedure, which relies on the pseudocode introduced in
Figure 3.10. Last, Figure 3.13 describes how these procedures get
called whenever a record is received form an MH and is about to
be inserted into the max heap. The pseudocode if Figure 3.13

mimics the three checking steps outlined earlier in this chapter.

The following chapter cover the performance of the
presented algorithm, both from a theoretical perspective as well as
from a simulated perspective, giving more insight into the

advantages and disadvantages of this approach.

50

Chapter 4- Performance Evaluation and
Simulation Results

This chapter presents the results obtained through, both
theoretical and simulated measurements, using mathematical
tools and the NS2 network simulator [5][22]. As such, this chapter
is divided into two parts, each presenting one of the
aforementioned aspects of measurements as well as a critical view

of the obtained results.

4.1- Theoretical Evaluation and Proofs

This chapter covers the mathematical evaluation of both the
algorithm runtime and the expected performance gains, based on

equation (1), presented in chapter 2.3.

The algorithm performance is measured in the standard Big
O notation. Every essential part of the algorithm will be evaluated
individually, and an aggregate performance measure will be
derived from the parts. We first identify the following areas of the
code that affect the performance of the algorithm, as presented in
Figures 3.7, 3.8, 3.9 and 3.10. An aggregation of these results, as
well as added complexity will be measured, relating to figures
3.11, 3.12 and 3.13. We also distinguish between the
preprocessing stage, which involves building and maintaining the
heap structure, and the quorum selection process, which is a
bounded function that depends on the size of the expected
quorum. The amount of messages passed between the MH agent
and the server are measured to insure that the least amount of
needed messages are passed and to minimize network congestion

problems that adversely affect the overall performance of the

51

quorum process.

The performance of the buildHeap [fig. 3.8] and sortHeap

[fig. 3.9] are well-known algorithms, whose performance measures
have been extensively detailed, so no formal proof will be given.
Instead, only the final end result will be presented. The buildHeap
function calls on maxHeapify, and the combined performance of
these two procedures is: O(n.log(n)), with an identical
performance for the sortHeap [fig. 3.9] algorithm. The
searchForElement procedure [fig. 3.10] has linear performance
O(n) . Although better search performance can be achieved using
more efficient algorithms, it is not the focus of this work to tackle
this issue, and is left as a future improvement. However, it is worth
mentioning that n is bounded by the limited amount of hosts a BS
can handle. As such we can represent the search procedure as

O(max(MH)) for a particular BS.

Taking the above performance measures into account, the
following paragraph evaluates the performance of the main
procedures that maintain and update the list of MHs currently

registered with a particular BS.

Since this particular procedure involves code execution on
two sites, a breakdown of the code execution on every site is
measured, whereas network delays and other external factors have
been ignored. The first step of the migration involves sending a
request to a remote server, where a search and delete procedure is
executed. The search procedure's performance is O(n), with

O(1) performance for deletion once that record is found. When a
record is received by the current server, the MH attempts to
register using the combined insert and sort operations of the max

heap structure. This adds a performance execution overhead of

52

O(n”.log”(n)), for a total combined worst case performance hit of
O(n*.log%(n)), which executes in polynomial time. Identical
performance can be expected of the insertMaxHeap procedure in
the case of an element update. Generalizing this to m sites,
would yield a worst case global performance described in

Expression (1).

> o(n*.log?(n) M)

Ordinarily an insert operation on a heap data structure
should be of the order Of{log(n)). However, due to the choice of
the key (the Priority variable) chosen to sort the heap on, finding a
host would require linear time instead, based on the MH's
identification string. This is one shortcoming that can be remedied
in subsequent development of this architecture, and as mentioned
prior, it is not the focus of this work to tackle all possible
optimization aspects of the algorithm, but rather, to show that it is
a viable architecture that can provide improved availability and

reliability to epidemic quorum groups.

By selecting the best performing hosts from the max heap
data structure to participate in an epidemic quorum, the BS
insures that the probability of a process failure on the selected MH
is kept to the minimum possible, based on the general state of the
network. As such, going back to Eq. (1), we propose to see the
effects of minimizing the process failure factor pr on the overall
availability of the epidemic quorum. Earlier, [1] sets p; as a fixed
value and measures availability based on the probabilities for vote
repetitions and vote decisions. Whereas, the proposed
mathematical model tackled here, measures how a variable py

affects the overall availability for discrete values of dec and rep.

53

The following tables and figures explain the mathematical

results obtained, based on the mathematical framework presented

in [1] for epidemic quorum availability measurement. The results
also indicate that a minimum threshold should be respected when
selecting MHs for quorums, below which, availability may suffer.
This threshold would allow the MH selection procedure to set a

cutoff point below which hosts would not be selected.

Table 4.1 Availability Chart with dec=1 and rep=0

Dec Rep \

1.0000000000 S —
pf Sum(Pf) 0.9000000000
0, 1.0000000000 0.8000000000
0.1 0.9999999999 0.7000000000
0.2 0.9999998976 0.6000000000 .
0.3 0.9999940951 0.5000000000 y o

0.4 0.9998951424 5 04000000000 e
0.5 0.9990234375 0-3000000000 |
0.6] 0.9939533824 gfzzzggzggg T
0.7 09717524751 oo -\
0.8 0.8926258176 01 02 03 04 05 06 07 08 09 1
0.9/ 0.6513215599 pf

1 0.0000000000

Availability

Table 4.2 Availability Chart with dec=0.6 and rep=0

Dec Rep
0.6 0

0.6000000000 ——
Pf Sum(Pf) i
0.5500000000

0| 0.6000000000 0.5000000000
0.1] 0.5999999999 0.4500000000
0.4000000000
0.2] 0.5999999386 0.3500000000
0.3 0.5999964571 0.3000000000
0.4] 0.5999370854 0.2500000000
0.2000000000
0.5 0.5994140625 0.1500000000 :
0.6/ 0.5963720294 0.1000000000 L
0.7/ 0.5830514851 g'gzgggggoog | 3
. 00 |
gg gggg?;ggg:g 01 02 03 04 05 06 07 08 09 1
2 0. P
1. 0.0000000000

§ [\ 0:6000080000

Availability

54

Table 4.3 Availability Chart with dec=0.25 and rep=0

The results clearly show that based on the mathematical
model presented in [1], the combination of a variable p;, decision
probability and repetition, although mainly affected by the
probability of a quorum reaching a decision, clearly diminishes as
the p; factor increases. Selecting MHs with low probabilities of
failures would ultimately lead to a far more stable and available
quorum system. The probability for reaching a quorum decision on
the other hand, is not directly related to p;, but an indirect relation
with the previous two factors may be inferred. Lesser available
systems will most likely delay the outcome of the vote, if systems
go off-line, forcing an increase in repetition cycles. Although the
model does indicate that high availability is achieved according to
the lemmas in chapter 2.3, the convergence time to a consensus
will increase with the amount of repetitions, leading to higher
delays in up-to-date data acquisition. Table 4.4 shows the variance

of pr with high probability of repetition.

55

Dec Rep
0.25 0
Pf Sum(Pf) 0.2500000000 S

0/ 0.2500000000 0.2250000000 ‘

0.1 0.2500000000 0.2000000000

0.2 0.2499999744| >, 0.1750000000

0.3| 0.2499985238 F 01500000000

0.4] 0.2499737856 = 12°00090%° 3590900905

> 0.1000000000 —

0.5 0.2497558594 & . e K
0.6/ 0.2484883456 0.0500000000 v
0.7| 0.2429381188 0.0250000000

0.8] 0.2231564544 0.0000000000 ; ‘ :

09 01628303900 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1/ 0.0000000000 pf

Table 4.4 Availability Chart with dec=0.25 and rep=0.65

Dec Rep
0.25 0.65
0.7500000000
Pf Sum(Pf) 0.7000000000 == .
0.6500000000
0 0.7142857143 0.6000000000
0.1 0.7142857142 0.5500000000

0.5000000000 S

0.2] 0.7142856411 £ 1500000000 !
S 0.4000000000 |

0.3 0.7142814965 § 0.3500000000)
0.4 0.7142108160] T 0.3000000000 L

0.2500000000
0.5 0.7135881696| < 0.2000000000 \
0.6 0.7099667017 giggggggggg T
0.7 0.6941089108 0.0500000000 \‘
0.8 0.6375898697 0.0000000000
0.9 0.4652296856 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 0.0000000000 Pf

Trivially, with higher vote repetition, in the worst case
scenario, the time fu.: it would take to create a quorum and reach

a result can be expressed by equation (4):

max (rep)

tvote = tcreate + ZO trepetition (4)
n=

Where trepeiion Would vary with each repeat round, depending,
among other factors, on network conditions as well. The repetition
factor is not only calculated based on process failure, but also
assumes the ability of a quorum to reach a decision based on the
amount of information available to that quorum. The model in this
thesis deals with the process failures due to network outages,
rather than quorum failures, and as such, the repetition time and
vote time factors expressed in Eq. (4) can be minimized by
selecting highly reliable hosts, thus reducing both t.eue, in the
initial creation of the quorum, and t.;..: when subsequent quorum

votes need to be carried.

Theoretically, the model provides insight into the availability

of epidemic quorums, but given the difficulty to model real world

56

[\ 0.7142857143

network failures due to its mathematical complexity, only live
system tests can verify the viability of such a model. The author, is
confident that by applying the presented theoretical model, this
will unequivocally have a positive result on the availability of
epidemic quorums. Since no live model was made available at the
time of writing, a simulation was constructed to portray the
availability of an epidemic quorum, by providing MH performance
results with a discrete MH failure model. The next chapter
explains in more details the simulation environment used, as well

as the assumptions made and the results obtained.

4.2- Simulation Results

Below is an account of the simulation environment and the
obtained results of a discrete MH failure model. The popular NS2
network simulation package [22] [6] was used to model the
network environment, in which these experiments were conducted.
The model comprises of one or two fixed node hosts (depending on
the measurements taken) representing the DBMS server, a base
station bridging the wireless network to the fixed network and
mobile nodes moving within a BS's zone of coverage. While
transmitting, an MH is made to fail at particular discrete times,
modeling MHs with low reliability factors, whereas other MHs are
attributed high reliability factors. Bandwidth usage is graphed to
show the effect of discrete random MH failure on data
transmission and how, reliable MH selection, would help reduce
the problem of intermittent or permanent MH process failure in a
quorum. Traffic priority modeling is also simulated to view the

effects of network congestion on mobile host traffic.

An explanation of the various parameters selected for the

57

wireless network environment model, will be elaborated upon as
needed. The model assumes the use of omni antennas that
broadcast in all directions. A simple Two-Ray Ground propagation
model is also assumed, which allows signals to, not only propagate
in line of sight, but also to be reflected off surfaces depending on
the geographical surroundings of a mobile host. The DropTail
priority Queue was selected as the interface's queuing protocol,
which, assigned to a host's interface, allows the host to drop
packets once a maximum traffic threshold is exceeded, simulating

a congestion scenario.

The first simulation (See Appendix B) scenario comprises of
two mobile nodes, a base station and two virtual fixed hosts that
simulate one DBMS server. To measure bandwidth, the simulator
requires two distinct interfaces to calculate it for separate hosts.
Figure 4.1 depicts the various simulation elements and their

interactions.

58

DBMS Server

Figure 4.1 Simulation Scenario 1

The purpose of this simple setup, is to show a comparison
between the traffic pattern generated by a reliable host, versus
traffic patterns generated by a lesser reliable host likely to exhibit
discrete process failure. A graph generated by xgraph, with labels
out.0 and out.1 referring respectively to, traffic from MHO to
virtual FHO and from MH1 to FH1. This graph is presented in
Figure 4.2 and shows how reliability can be a crucial factor in
sustaining communication with the least amount of lag time and/or
downtime. Both nodes are configured identically to generate traffic
of size 500 bytes with 2 second burst rates, less than 1 second idle

times and sustained rates of 600k.

59

X Graph
vx 1072
outQ.tr

700.0000

600.0000

500.0000

400.0000

300.0000

200.0000

100.0000 %

0.0000
0.0000 50.0000 100.0000 150.0000

Figure 4.2 Traffic Pattern Graph from the 2 Nodes Simulation

Host MH1, represented by the dotted line outl.tr, exhibits
the discrete communication failure with FH1 at times 50 and 100,
and recovery at times 70 and 120. Whereas, MHO represented by
the solid line out0.tr, shows a sustained communication round with
FHO. Such discrete failures by an MH participating in an epidemic
gquorum, may lead to longer quorum formation times, higher rates
of quorum vote repetition or, in the worst case, to quorum
consensus failure pending a subsequent voting round. In all three
cases, the selection of highly reliable hosts (as opposed to random
selection) would invariably lead to a more healthy quorum and
increase the chances of consensus and, by it, data propagation and

data availability.

The second simulation, uses the same basic environment
parameters mentioned prior with identical fixed host and base
station setups, but involves up to 7 mobile nodes associated with
BSO0. The setup serves to study the effects of network congestion
on quorum traffic, as well as the effects of increased traffic priority

for quorum members. In this case as well, the model assumes one

60

physical server with two virtual interfaces. The layout of this

scenario is depicted in Figure 4.3.

Low Reliability Traffic

% s

High Reliability Traffic

Figure 4.3 Simulation Scenario 2

Out of the 7 MHs, MHO and MH6 were chosen to
communicate with FHO at speeds of 16Mbps (combined data rate
of 32Mbps) with minimal idle time and large data payloads,
whereas the rest of the nodes communicate with FH1 at a
combined rate of 50Mbps and variable idle times. The graph in
Figure 4.4 depicts traffic patterns between MHO and MH6 with
FHO on one hand, marked as outl.tr, and the rest of nodes with
FH1 marked as out0.tr.

61

X Graph
Yx 103

cutO.tr
outlir

600.0000

500.0000

400.0000 —

300.0000

200.0000

100.0000

0.0000
0.0C000 50.0000 100.0000 150.0000

Figure 4.4 Traffic Pattern Graph from the 7 Nodes Simulation

This scenario shows that, by selecting reliable hosts for
quorum priority traffic, the sustained rate of data transfer between
client and server has a higher bandwidth throughput, leading to

increased quorum reliability and availability.

Both simulation scenarios show that MHs with more reliable
traffic patterns and less random disconnections, sustain better
traffic and higher bandwidth than MHs with less reliable traffic.
This observation supports the architecture, presented earlier,
categorizing MHs for quorum selection, based on pertinent
metrics. From the graphs in figures 4.2 and 4.4 we can clearly
infer how MHs with high failure probabilities (p; factor) affect the
overall performance and availability of a epidemic quorum, by
analyzing the generated traffic patterns. The results obtained also
corroborate the theoretical model in chapter 4.1, as to the effects

of pron the general availability of an epidemic quorum.

62

Chapter 5- Conclusion

This work has presented an overview of the various mobile
database models currently available, focusing mainly on the
epidemic model, and more precisely on epidemic quorums. A novel
approach to epidemic quorum selection based on an effort to
minimize network disconnections, often experienced by wireless
mobile hosts, was presented. The purpose of which, is to provide a
more reliable quorum, with higher data availability. The
classification of hosts according to measured and derived metrics,
allows the model to be extended and incorporate other metrics
which may be deemed important in later revisions, such as:
database connection counts and performed transactions counts, to
further refine the classification of mobile hosts. Although this
primary study of the architecture was deemed satisfactory by its
author, more work is needed to further refine the mathematical
model and incorporate more complex network failure models that
may further indicate the usefulness of this model. Work done in
[6] and [7] can also be incorporated in the model to provide better
guorum placement, minimizing network congestion and delays,

instead of relying solely on traffic priority settings.

One of the main points to focus on in future studies on this
topic, would include, building historical track record of mobile
hosts based on more elaborate regression models (such as a
Bayesian regression model), rather than the simplistic linear model
used herein. This would require that real performance data be
made available to the system in order to allow the Bayes engine's
learning process to evaluate its current state, based on
measurements that reflect the reality of the system. The author

also recognizes that much improvement should also be done on the

63

algorithm itself, allowing for much better performance, especially
in the area of host lookup, where a hash lookup table may be
constructed in order to minimize lookup times. All in all the studies
and results provided herein show how important a role the
network environment plays in the performance of quorums in
general, and epidemic quorums in particular. Although this is still
a very recent area of interest and study in mobility, it is however
receiving just attention, especially in the wake of the wireless
revolution, where reliable connectivity is considered whimsical in

comparison to its wired counterparts.

64

REFERENCES

[1] Baretto, J., & Ferrero, P, (February 2007).The Availability
and performance of epidemic quorum algorithms. INESC-ID
Technical Report 10/2007.

[2] Bernard, G., Ben Othman, J., Bouganim, L., et al. (June
2004).Mobile databases: a selection of open issues and
research directions. ACM SIGMOD record, 33(2) 78-83.

[3] Cormen,T., Leiserson,C.E., Rivest,R.,L., & Stein, C.,
(2001).Introduction to Algorithms Second Edition.

Massachusets: MIT Press.

[4] Golovin, D., Gupta, A., Maggs, B.M., Oprea, & F., Reiter,
M.K., (July 2005). Quorum Placement in Networks:
Minimizing Network Congestion. Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed
computing (PODC'05), Denver, Colorado, USA, 16-25.

[5] Gray,]J., Helland, P, O’Neil, P, & Shasha,D., (June 1996).The
dangers of replication and a solution. ACM SIGMOD

Conference, Montreal, Canada.

[6] Greis, M ns Tutorial. Retrieved from Marc Greis' Tutorial for
the UCB/LBNL/VINT Network Simulator "ns" Web site:

hitp://www.isi.edu/nsnam/ns/tutorial/index. html

[7] Gupta, A., Maggs, B.M., Oprea, F., & Reiter, M.K., (July
2005). Quorum Placement in Networks to Minimize Access

Delays. Proceedings of the twenty-fourth annual ACM

65

symposium on Principles of distributed computing
(PODC'05), Las Vegas, NV, USA, 87-96.

[8] Holliday, J., Agrawal, D., & El Abbadi, A., (July
2002).Disconnection Modes for Mobile Databases. Wireless
Networks, 8(4) 391-402.

[9] Holliday, J., Steinke, R., Agrawal, D., & El Abbadi, A,,
(September 2003).Epidemic algorithms for replicated
databases. IEEE Transactions on Knowledge and Data
Engineering, 15(5), 1218-1238.

[10] Kafri, N., & Janecek, J., (2002).Dynamic Behaviour of the
Distributed Tree Quorum Algorithm. Proceedings of the
twenty-second international conference on Distributed
Computing Systems (ICDCS'02), Vienna, Austria, 517-524.

[11] Kumar, V., (2006). Mobile Database Systems. New Jersey: J.
Wiley & Sons Inc.

[12] Kuruppilai, R., Dontamsetti, M., & J. Cosentino, F. (1997).
Wireless PCS. New York: McGraw-Hill.

[13] Lee, M., & Helal, S., (2002).HiCoMo: High Commit Mobile
Transactions. Kluwer Academic Publishers Distributed and
Parallel Databases (DADPD), 11, 1.

[14] Madria, S.K., & Bhargava, B., (2001).A transaction model
for improving data availability in mobile computing. Kluwer
Academic Publishers Distributed and Parallel Databases
(DAPD), 10, 2.

66

[15] Mouly, M., & Pautet M.-B. (1992) The GSM System for

Mobile Communications. France: Cell & Sys Publications.

[16] Peleg, D., & Wool, A., (1995).The availability of quorum
systems. Information and Computation, 123(2), 210-223.

[17] Peysakhov, M., Dugan, C., Modi, PJ., & Regli, W,, (May
2006). Quorum Sensing on Mobile Ad-Hoc Networks.
Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems (AAMAS'06),
Hakodate, Japan, 1104-1106.

[18] Pitoura, E., & Bhargava, B., (1995).Maintaining
Consistency of Data in Mobile Distributed Environments.
Proceedings of 15" International Conference on Distributed

Computing Systems.

[19] Pitoura, E., & Bhargava, B., (1999).Data consistency in
intermittently connected distributed systems. IEEFE
Transactions on Knowledge and Data Engineering (TKDE),
11, 6.

[20] Ross, K., A., & Wright, C., R., B., (1999). Discrete
Mathematics Fourth Edition. New Jersey: Prentice Hall.

[21] Serrano-Alvarado, P, et al., (2004).A Survey of Mobile
Transactions. Distributed and Parallel Databases. 16, 193-
230.

[22] VINT GROUP, from the Manual (formerly Notes and
Documentation) Web site:

hittn://www.isi.edu/nsnam/ns/doc/everything.html

67

[23] Walborn, G.D., & Chrysanthis, PK., (Sept. 1995).Supporting
semantics-based transaction processing in mobile database
applications. Symposium on Reliable Distributed Computing

Systems (SRDS), Bad Neuenahr, Germany.

[24] Walborn, G.D., & Chrysanthis, PK., (March 1997).PRO-
MOTION: Management of mobile transactions. ACM Symp.
on Applied Computing, San Jose, USA.

[25] Walborn, G.D., & Chrysanthis, PK., (Feb. 1999).Transaction
processing in PRO-MOTION. ACM Symp. on Applied
Computing, San Jose, USA.

68

APPENDIX A: Source Code

Class Name: HostData

File Name: hostdata.h

0 N N W N

10.
il.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.
30.
31.

#ifndef HOSTDATA H
#define HOSTDATA_H

#include <string>

#include <vector>

using std::string;

using std::vector;

class HostData {

public:
HostData();
HostData(int, double, string, float);
string replaceSpace(string&);
string restoreSpace(stringé&);
const char * toCString(const string&);
string toString(HostData&);
HostData toData(const string&);
void printHostData() const;
const float getTrend();
const float getPriority();
const string getHostname();

double calculateTrend(vector<float>s,
vector<double>&);

void setPrioritySignal(float, int);
void setTrend();

float weightedLinearDist(int, float);

private:
int sigStrength;
double trend;

69

32.
33.
34.
35.
36.
37.
38.

string hostname;

float priority;

vector<float> priosig vec;

vector<double> time_ vec;

}i

#endif

File Name: hostdata.cpp

19.
20.
21.
22,
23.
24.
25.
26.
27,

#include <iostream>

#include

#include

#include

#include

#include

using
using
using
using
using
using
using

using

std

std:
std:
std:

std

std:

std
std

¥include

<string>
<iomanip>
<sstream>
<vector>

<sys/time.h>

s:cout;

tendl;

:string;
rostringstream;
::istringstream;
isetw;
::vector;

:stime;

"hostdata.h"

#include "linear.h"

HostData::HostData() {

sigStrength = 0;

trend

= 0.0;

hostname = "";

priority = 0.0;

double HostData::calculateTrend(vector<float>&
ipriosig vec, vector<double>& itime_vec) {

70

28.
29.

30.
31.
32.
33.
34.
35.
36.
37.

38.
39.
40.

41.
42.
43.

44,
45.
46.
47.
48.

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

if(ipriosig vec.size() >= 2) ({

Maths::Regression: :Linear
A(itime vec.size(), itime_vec, ipriosig vec);

return A.getSlope();
}
else {

return 0;

float HostData::weightedLinearDist(int i sigStrength,
float i_priority) ({

float signalWeight = 10.00;
float priorityWeight = 3.00;

return (i_sigStrength * signalWeight) +
(i_priority * priorityWeight);

}

HostData::HostData(int i_sigStrength, double i trend,
string i_hostname, float i_priority) {

sigStrength = i_sigStrength;
hostname = i_hostname;
priority = i_priority;

time vec.push back((double) time(0));

priosig vec.push_back(weightedLinearDist(i_sigStrengt
h, i priority));

trend = calculateTrend(priosig vec, time vec);

string HostData::replaceSpace(string& str) {
int x = str.find(" ");
while(x < string::npos) {
str.replace(x, 1, "_");
X = str.find(" ", x+1);

}

return str;

string HostData::restoreSpace(string& str) {

71

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

77.
78.
79.
80.
81.
82.
83.

84.
85.
86.
87.
88.
89.

90.
91.
92.
93.
94.
95.
96.

int x = str.find("_");

while(x < string::npos) {
str.replace(x, 1, " ");
x = str.find("_", x+1);

}

return str;

}

const char * HostData::toCString(const strings& str) {

return str.c_str();

string HostData::toString(HostData &record) {

ostringstream outputStr;

outputStr << record.sigStrength << " " <<
record.trend << " " << replaceSpace(record.hostname)
<< " " << record.priority << endl;

return outputStr.str();

HostData HostData::toData(const string &str) {
istringstream inputStr(str);
HostData tmpRec;

inputStr >> tmpRec.sigStrength >> tmpRec.trend >>
tmpRec.hostname >> tmpRec.priority;

tmpRec.hostname = restoreSpace(tmpRec.hostname);

return tmpRec;

void HostData::printHostData() const {

cout<<sigStrength<<setw(1l6)<<trend<<setw(16)<<hostnam
e<<setw(16)<<priority<<endl;

}

const float HostData::getTrend() {

return trend;

const float HostData::getPriority() {

72

97. return priority;

98. }

99.

100. const string HostData::getHostname() {
101. return hostname;

102. }

103.

104. void HostData::setPrioritySignal(float i priority,
int i_sigStrength) {

105. priority = i_priority;

106. sigStrength= i sigStrength;

107.
priosig vec.push_back(weightedLinearDist(sigStrength,
priority));

108. time_vec.push_back((double) time(0)});

109. }

110.
111. void HostData::setTrend() {

112, trend = calculateTrend(priosig vec, time vec);
113.3%
Class Name: VecHeap

File Name: vecheap.h

#ifndef VECHEAP_H
#define VECHEAP H

1
2
3
4. #include <vector>
5. #include "hostdata.h"
6
7

using std::vector;

9. class VecHeap : public HostData {

10.

1l.public:

12. VecHeap(vector<HostData>&);

13. void displayVector(vector<HostData>&, const long
int&);

14. long int getParent(long int);

15. long int getLeft(long int);

73

l6.
17.
18.

19.

20,
21.
22.
23.
24.
25.
26.
27.
28.

long int getRight(long int);
void insertHeap(vector<HostData>&, HostData&);

void maxHeapify(vector<HostData>& , long int ,
const long int&);

void displayArray(vector<HostData>& , const long
int&);

void buildHeap(vector<HostData>&);

void heapSort(vector<HostData>& , long int);
private:

long int heapSize;
}i
#endif

File Name: vecheap.cpp

0w N oy O =W N =
.

e = T)
A N N

15.
16.
17.
18.
19.
20.
21.

#include <iostream>
#include <iomanip>
#include <math.h>
#include <vector>
#include "vecheap.h"

#include "hostdata.h"

using std::cout;

using std::endl;

.using std::setw;
.using std::setprecision;

.using std::vector;

.VecHeap: :VecHeap(vector<HostData>& vec arr) {

vec_arr.clear();

long int VecHeap::getParent(long int index) {
return (long int) ceil(index/2)-1;

}

74

int VecHeap::getLeft(long int index) {

22.long

23.

return 2*index + 1;

24.}

25.

int VecHeap::getRight(long int index)

26.long

27.

return 2*index + 2;

28.}

29.

30.void

31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.

42.
43,
44,
45,
46.
47.
48.

VecHeap: :maxHeapify(vector<HostData>& arr_heap,
int index, const long int &hsize) {

long int largest
HostData tmp_ex;
long int left getLeft (index);
long int right getRight (index);
//displayArray(arr_heap);

if((left < hsize) &s&
(arr_heap[left].getPriority() >
arr_heap([index].getPriority()))

if((right < hsize) &&
(arr_heap{right].getPriority() >
arr_heap[largest].getPriority()))

if(largest != index) {
arr_heap[index];
arr_heap[index] arr_heap[largest];
arr_heap[largest]

maxHeapify(arr heap, largest, hsize);

49.}

50.

51.void VecHeap::displayVector(vector<HostData>& heap_ arr,

52.
53.

54.

const long int &size) {
for(long int i=0; i<size; i++)

cout<< setw(1l0) << setprecision(4) <<
heap arr[i].getPriority();

cout<<"\n\n\n";

55.}
56.

57.void VecHeap::buildHeap(vector<HostData>& heap_arr) ({

58. for(long int i=(long int)
floor(heap arr.size()/2); i>=0; i--) {
59. maxHeapify(heap_arr, i, heap_arr.size());
60. }
61.}
62.

63.void VecHeap::heapSort(vector<HostData>& heap_ arr, long

int size) {

64. HostData tmp_ex;

65. for(long int i=size-1; i>=1; i--) {
66. tmp_ex = heap_arr[0];

67. heap arr[0] = heap arr[i];

68. heap_arr[i] = tmp_ex;

69. --size;

70. maxHeapify(heap arr, 0, size);
71. }

72.}

73.

74.void VecHeap::insertHeap(vector<HostData>& heap_arr,

HostData& element) {
75. heap arr.push back(element);

76.}

Class Name: (No Class)

File Name: ioclient.cpp

#include <socket++/sockinet.h>
#include <iostream>
#include "hostdata.h"

#include <math.h>

#include <ctime>

1

2

3

4

5. #include <sstream>
6

7

8. using std::cout;

9

. using std::endl;

76

10.using std::flush;

1l.using std::rand;

12.using std::stringstream;

13.

14.int main ()

15.4
16.
17.
18.
19.
20.
21.
22.
23.
24.

time t curr time;

srand((unsigned)time(0));

string temp hostname = "Client";
string rand str="";

stringstream ss;

ss << rand()%1000;

string temp_str = "";

HostData data(10, 30.5,

temp hostname.append(ss.str()) ,fmodf(rand(),99.99));

25.

26.
info.

27.
28.
29,
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
info.

41.
42.
43.
44.
45,

time(&curr time);

cout<<ctime(&curr_ time)<<" Sending the following
to server: "<<endl;

data.printHostData();

//char buf[1024];

iosockinet io (sockbuf::sock stream);
io->connect ("ronin", 4500);

temp str = data.toString(data);

io << data.replaceSpace(temp str) << endl;

sleep(2);

iosockinet io2 (sockbuf::sock stream);
io2->connect ("ronin", 4500);
data.setPrioritySignal(20.17, 10);
data.setTrend();

time(&curr_time);

cout<<ctime(&curr_time)<<" Sending the following
to server: "<<endl;

data.printHostData();
temp_str = data.toString(data);

102 << data.replaceSpace(temp str) << endl;

sleep(2);

77

46.
47.
48.

49.

50.
51.

info.

52.

53.

54.
55.

56
57

-}

iosockinet io3 (sockbuf::sock stream);

io3->connect ("ronin", 4500);

data.setPrioritySignal(20.17, 10);

data.setTrend();

time (&curr time);

cout<<ctime(&curr_ time)<<" Sending the following

to

server: "<<endl;

data.printHostDatal();

temp_str = data.toString(data);

io3

<< data.replaceSpace(temp_str) << endl;

return 0;

Class Name: (No Class)

File Name: ioserver.cpp

1
2
3.
4.
5.
6.
7.
8.
9.
10
11
12

13

l4.using std:

15

#include

#include

#include

#include

#include

#include

#include

using
.using
.using
.using

.using

std:
std:
std:
std:
std:

<socket++/sockinet.h>
<iostream>

<string>
<socket++/fork.h>
"hostdata.h"
"vecheap.h"

<vector>

scout;
sendl;
:flush;
:string;
:getline;

:vector;

16.void incrementCount(int * count) {

17.

18.

19.

20

*count = *count + 1;

.string process socket(iosockinet *sock) ({

21.

string buf;

78

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

50.

51.

52.
53.

54.
55.

56.

getline (*sock, buf); cout << buf << endl;
sock->flush();
delete sock;
return buf;
H
int main ()
{
int count=0;
vector<HostData> heap_arr;
VecHeap heap ops(heap arr);
HostData temp data;
string tmp str = "";
Fork *pF;
sockinetbuf sin (sockbuf::sock stream);
sin.bind (sin.localhost(), 4500);
sin.listen();
while(1l) {
iosockinet *io;
io = new ilosockinet (sin.accept ());
incrementCount (&count) ;
// pF = new Fork (0, 1);
// if (pF->is_child ()) {
io->rdbuf ()->keepalive (1);
tmp_str = process_socket(io);
tmp_str =

temp data.restoreSpace(tmp str);

temp data =
temp data.toData(tmp_str);

cout<<"Received info from:
"<<temp_data.getHostname()<<endl;

temp_data.printHostData();

heap ops.insertHeap(heap arr,
temp data);

heap ops.buildHeap(heap arr);

heap ops.heapSort(heap_arr,
heap arr.size());

heap_ops.displayVector(heap arr,

79

heap arr.size());

57.
so far"<<endl;

58. //

59.// }
60.

61. }

62.

63. return 0;

64.}

cout<<"Processed "<<count<<"

return (0);

80

Requests

APPENDIX B: NS2 Simulation Model

Source Code)

2 Node Simulation Model

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
12,

13.

14.

15.

16.

17.

18.

19.
20.
21.

sset opt(chan)
channel type

set opt(prop)
radio-propagation model

set opt(netif)
network interface type

set opt(mac)
MAC type

set opt(ifq)
interface queue type

set opt(1ll)
link layer type

set opt(ant)
antenna model

set opt(ifglen)
max packet in ifq

set opt(nn)
number of mobilenodes

set opt(adhocRouting)
routing protocol

set opt(cp)
connection pattern file

set opt(sc)

movement file.

set opt(x) 170
coordinate of topology

set opt(y) 170
coordinate of topology

set opt(seed) 0.0
for random number gen.

set opt(stop) 250
to stop simulation

set opt(ftpl-start)
set opt(ftp2-start)

Channel/WirelessChannel
Propagation/TwoRayGround
Phy/WirelessPhy
Mac/802_ 11
Queue/DropTail/PriQueue
LL
Antenna/OmniAntenna

50

DSDV

nn

"~/ns-allinone-2.31/ns-
2.31/tcl/mobility/scene/scen-3-test"”

;# node

(Icl

ity

:# seed

¥ time

160.0
170.0

81

22.

23
24

.set num wired nodes 2

.set num _bs_nodes 1

25.
26.

27

.set ns_ [new Simulator]

28.

29
30

31

32
33

34

35
36
37
38
39

40.

.$ns_ node-config -addressType hierarchical

.AddrParams set domain_num _ 2 ; # number of
domains i.e. x1 Wired - x1 Wireless

.lappend cluster num 2 1 ; # number of
clusters in each domain i.e. x2 Wired subdomains - x1
Wireless subdomain

.AddrParams set cluster num_ S$cluster_num

.lappend eilastlevel 1 1 8 ; # number of
nodes in each cluster

.AddrParams set nodes num _Seilastlevel ;# for each
domain

.set tracefd [open wireless.tr w]
.$ns_ trace-all $tracefd
.set nf [open out.nam w]

$ns_ namtrace-~all-wireless S$nf $opt(x) Sopt(y)

41.

42

43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.

.proc finish {} {

53.

54
55

global ns_ nf tracefd £0 f1l
$ns_ flush-trace
close $nf
close S$tracefd
close $£f0
close $f1
exec nam out.nam &
exec xgraph outO.tr outl.tr -geometry 800x400 &
exit 0
}
.# create wired nodes

.set temp {0.0.0 0.1.0} ;# hierarchical
addresses to be used

82

56.for {set i 0} {$i < S$num wired nodes} {incr i} {

57. set W($i) [$ns_ node [lindex S$temp $i]]
58.}

59.

60.

61l.set topo [new Topography]

62.$topo load_flatgrid $opt(x) Sopt(y)

63.

64.create-god [expr $opt(nn) + $num bs nodes]
65.

66.# configure for base-station node

67.%ns_ node-config -adhocRouting $opt(adhocRouting) \

68. -11Type S$opt(1l1l) \

69. -macType S$opt(mac) \
70. -ifgType Sopt(ifg) \
71. -ifqLen Sopt(ifglen) \
72. -antType Sopt(ant) \
73. -propType $opt(prop) \
74. -phyType Sopt(netif) \
75. -channelType S$opt(chan) \
76. -topoInstance $topo \

77. -wiredRouting ON \

78. -agentTrace ON \

79. -routerTrace OFF \

80. -macTrace OFF

81.

82.

83.#create base-station node

84.set temp {1.0.0 1.0.1 1.0.2} ;# hier address to be
used for

85. ;# wireless domain
86.set BS(0) [$ns_ node [lindex $temp 0]]

87.$BS(0) random-motion 0 ;# disable random
motion

88.

89.#provide some co-ordinates (fixed) to base station node
90.$BS(0) set X_ 1.0

91.$BS(0) set Y_ 2.0

92.$BS(0) set Z_ 0.0

83

93.
94.% create mobilenodes in the same domain as BS(0)

95.# note the position and movement of mobilenodes is as
defined

96.% in Sopt(sc)

97.# Note there has been a change of the earlier
AddrParams

98.# function 'set-hieraddr' to 'addr2id'.
99.

100.#configure for mobilenodes

101.$ns_ node-config -wiredRouting OFF
102.

103.# now create mobilenodes

104.for {set j 0} {$j < $opt(nn)} {incr J} {

105. set node ($j) [$ns_ node [lindex S$temp \

106. [expr $3+1]1]1]

107. $node_ ($j) base-station [AddrParams addr2id \

108. [$BS(0) node-addr]] ;# provide each
mobilenode with

109. ;# hier address of
its base-station

110.}

111.

112.#create links between wired and BS nodes
113.%ns_ duplex~link $W(0) $W(1l) 5Mb 2ms DropTail
114.$ns_ duplex-link $W(1l) $BS(0) 5Mb 2ms DropTail
115.

116.$ns_ duplex-link-op $W(1l) $W(0) queuePos 0.5
117.

118.$ns_ duplex-link-op $W(0) $W(1l) orient down
119.%ns_ duplex-link-op $W(1) $BS(0) orient left-down
120.

121.$node_(0) set X_20.0

122.%node_(0) set Y_ 60.0

123.Snode_(0) set Z_ 0.0

124.

125.%node_(1) set X 45.0

126.%node_(1) set Y_ 30.0

127.%node (1) set Z_ 0.0

84

128.
129.%ns_ at 0.0 "$node_(0) setdest 60.0 20.0 1.0"

130.$ns_ at 0.0 "Snode_(1l) setdest 90.0 20.0 1.0"
131.

132.$ns__ at 10.0 "Snode_(0) setdest 20.0 18.0 1.0"
133.3ns_ at 50.0 "$node_(l) setdest 40.0 40.0 15.0"
134.

135.$ns_ at 100.0 "$node_(0) setdest 100.0 18.0 1.0"
136.$ns_ at 50.0 "$node_ (1) setdest 140.0 40.0 15.0"
137.

138.proc attach-expoo-traffic { node sink size burst idle
rate id color priority} {

139. set ns_ [Simulator instance]
140.

141. set source [new Agent/UDP]

142. $ns_ attach-agent $node $source
143. $source set class_ $id

144. $source set prio_ $priority
145. $ns_ color $id $color

146.

147. set traffic [new Application/Traffic/Exponential]
148. Straffic set packetSize $size
149. $traffic set burst_time S$hurst
150. Straffic set idle time S$idle
151. $traffic set rate $rate

152.

153. Straffic attach-agent $source
154.

155. $ns_ connect $source $sink

156. return $traffic

157.}

158.

159.set sink0 [new Agent/LossMonitor]
160.set sinkl [new Agent/LossMonitor]
161.
162.
163.
164.

85

165.$ns_ attach-agent $W(0) $sink0

166.$ns_ attach-agent $W(1l) $sinkl

167.

168.set source0 [attach-expoo-traffic $node (0) $sink0 500
2s 0.5s 200k 1 Red 10}

169.set sourcel [attach-expoo-traffic $node_(1) $sinkl 500
2s 0.7s 200k 2 Blue 1]

170.
171.set £0 [
172.set £1 [
173.

open outl.tr w)

open outl.tr w]

174 .proc record {} {

175. global sink0 sinkl £0 f1

176.

177. set ns_ [Simulator instance]

178. set time 0.5

179. set bw0 [$sink0 set bytes_]

180. set bwl [$sinkl set bytes]

181. set now [Sns_ now]

182.

183. puts $£f0 "$now [expr $bwl0/S$time*8/1000000]1"
184. puts $fl1 "Snow [expr $bwl/$time+*8/10000001"
185.

186. $sink0 set bytes 0

187. $sinkl set bytes 0

188.

189. $ns_ at [expr $now+$time] "record"

190.}

191.

192.%ns_ at
193.%ns_ at
194.$ns_ at
195.

196.%ns__ at
197.$ns_ at
198.

199.%ns_ at
200.5ns_ at
201.

0.0 "record"
10.0 "Ssource0 start"

10.0 "Ssourcel start"

50.0 "S$sourcel stop”

70.0 "Ssourcel start"

100.0 "$sourcel stop"

120.0 "$sourcel start"

86

202.%ns_ at 150.0 "$sourcel stop”

203.%$ns_ at 150.0 "$sourcel stop"

204.

205.

206.for {set i 0} {$i < $opt(nn) } {incr i} {

207. $ns_ at 150.0 "$node ($i) reset";

208.}

209.$ns_ at 150.0001 "finish"

210.$ns_ at 150.0002 "puts \"NS EXITING...\" ; $ns_ halt"”
211.

212.puts "Starting Simulation..."

213.%ns_ run

7 Node Simulation Model

l.set opt(chan) Channel/WirelessChannel
channel type

2.set opt(prop) Propagation/TwoRayGround
radio-propagation model

3.set opt(netif) Phy/WirelessPhy
network interface type

4.set opt(mac) Mac/802_11
MAC type

5.set opt(ifqg) Queue/DropTail/PriQueue
interface queue type

6.set opt(1ll) LL
link layer type

7.set opt(ant) Antenna/OmniAntenna
antenna model

8.set opt(ifglen) 50
max packet in ifqg

9.set opt(nn) 7
number of mobilenodes

10.set opt(adhocRouting) DSDV
routing protocol

11.

12.set opt(cp) "
connection pattern file

13.set opt(sc) "~/ns-allinone-2.31/ns-

2.31/tcl/mobility/scene/scen-3-test” ; # node movement

file.
14.

87

P #

15.set opt(x) 170 i X
coordinate of topology

16.set opt(y) 170 H oy
coordinate of topology

17.set opt(seed) 0.0 i # seed
for random number gen.

18.set opt(stop) 250 ;# time
to stop simulation

19.

20.set opt(ftpl-start) 160.0
21.set opt(ftp2-start) 170.0
22,

23.set num wired_nodes 2
24.set num_bs nodes 1

25.

26.

27.set ns_ [new Simulator]

28.

29.$ns_ node-config -addressType hierarchical

30.AddrParams set domain_num_ 2 s # number of
domains i.e. x1 Wired - xl1 Wireless

31.lappend cluster num 2 1 ; # number of
clusters in each domain i.e. x2 Wired subdomains - x1
Wireless subdomain

32.AddrParams set cluster num_ $cluster num

33.lappend eilastlevel 1 1 8 ;# number of
nodes in each cluster

34.AddrParams set nodes num_ S$eilastlevel ;# for each
domain

35.

36.set tracefd [open wireless.tr w]

37.$ns_ trace-all $tracefd

38.

39.set nf [open out.nam w]

40.$ns_ namtrace-all-wireless $nf $opt(x) S$Sopt(y)
41.

42 ,proc finish {} {

43, global ns_ nf tracefd f0 fl
44, $ns_ flush-trace

45. close $nf

46. close $tracefd

88

47.
48.
49.
50.
51.
52.

close $f0
close $fl
exec nam out.nam &
exec xgraph out0O.tr outl.tr -geometry 800x400 &

exit 0

53.

54
55

56
57
58

.# create wired nodes

.set temp {0.0.0 0.1.0} ;# hierarchical

addresses to be used

59.

60
61

62.

.for {set i 0} {$i < $num _wired nodes} {incr i} {
. set W($i) [$ns_ node [lindex Stemp $i11]

-}

.set topo [new Topography]

S$topo load flatgrid $opt(x) $opt(y)

63.

64

.create-god [expr $opt(nn) + $num _bs nodes]

65.

66

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.

.# configure for base-station node
$ns_ node-config -adhocRouting $opt(adhocRouting) \
-11Type S$opt(ll) \
-macType Sopt(mac) \
-ifqType Sopt(ifqg) \
~-ifglen $opt(ifglen) \
-antType S$Sopt(ant) \
-propType $opt(prop) \
-phyType Sopt(netif) \
-channelType S$opt(chan) \
-topoInstance $topo \
-wiredRouting ON \
-agentTrace ON \
-routerTrace OFF \

-macTrace OFF

81.
82.

83

.#create base-station node

89

84.set temp {1.0.0 1.0.1 1.0.2 1.0.3 1.0.4 1.0.5 1.0.6
1.0.7} ;s # hier address to be used for

85. :# wireless domain
86.set BS(0) [$ns_ node [lindex $temp 0]]

87.$BS(0) random-motion 0 ;s # disable random
motion

88.

89.#provide some co-ordinates (fixed) to base station node
90.$BS(0) set X 1.0

91.$BS(0) set Y_ 2.0

92.$BS(0) set Z_ 0.0

93.

94.# create mobilenodes in the same domain as BS(0)

95.# note the position and movement of mobilenodes is as
defined

96.# in Sopt(sc)

97.# Note there has been a change of the earlier
AddrParams

98.# function 'set-hieraddr' to ‘'addr2id’'.
99.

100.#configure for mobilenodes

101.$ns_ node-config -wiredRouting OFF
102.

103.# now create mobilenodes

104.for {set j 0} {$j < Sopt(nn)} {incr j} {

105. set node_($j) [$ns_ node [lindex $temp \

106. [expr $3+11]]

107. $node_($j) base-station [AddrParams addr2id \

108. [$BS(0) node-addr]] ;# provide each
mobilenode with

109. :# hier address of
its base-station

110.}

111.

112.#create links between wired and BS nodes

113.$ns_ duplex-link $W(0) $W(1l) 1Mb 2ms DropTail
114.$ns__ duplex-link $W(1l) $BS(0) 1Mb 2ms DropTail
115.

116.$ns_ duplex-link-op $W(0) $W(l) orient down
117.%ns_ duplex-link-op $W(l) $BS(0) orient left-down

90

118.

119.$node_(0) set X_

120.%node_(0) set Y
121.$node_(0) set 2

122.

123.%node_(1) set X
124.%node_(1) set Y
125.%node_(1) set Z

126.

127.%node_(2) set X
128.35node_(2) set Y
129.%node_(2) set Z

130.

131.%node_ (3) set X
132.$node_(3) set Y
133.$node_ (3) set 2

134.

135.$node (4) set X
136.$node_(4) set Y
137.$node_(4) set Z

138.

139.%node (5) set X
140.$node_ (5) set Y
141.$node_(5) set Z

142.

143.$node_(6) set X
144.$node (6) set Y

145.$node_(6) set Z_

146.
147.%ns_
148.9%ns

149.%$ns_
150.%ns_
151.$ns_
152.8ns_
153.8ns_
154.

155.$ns_

at
at
at
at
at
at
at

o O O O o O o
O O O O O O O

20.0
60.0
0.0

45.0
30.0
0.0

90.0
20.0
0.0

15.0
10.0
0.0

65.0
60.0
0.0

75.0
40.0
0.0

85.0
90.0
0.0

"$node_(0)
"$node_(1)
"Snode_ (2)
"$node_(3)
"$node_(4)
"$node_(5)
"$node_(6)

setdest
setdest
setdest
setdest
setdest
setdest
setdest

60.0
90.0
90.0
15.0
65.0
75.0
85.0

20.0
20.0
20.0
10.0
60.0
40.0
90.0

1.0"
1.0"
1.0"
.o"
.o"
.0"

T

O"

10.0 "$node (0) setdest 20.0 18.0 1.0"

91

156.$ns_ at 50.0 "$node_(1l) setdest 40.0 40.0 15.0"
157.
158.$ns__ at 100.0 "$node_(0) setdest 100.0 18.0 1.0"
159.%ns_ at 50.0 "$node_(l) setdest 140.0 40.0 15.0"
160.

161.proc attach-expoo-traffic { node sink size burst idle
rate id color priority} {

162. set ns_ [Simulator instance]
163.

164. set source [new Agent/UDP]

165. $ns_ attach-agent $node $source
166. $source set class_ $id

167. $source set prio_ $priority
168. $ns_ color $id $color

169.

170. set traffic [new Application/Traffic/Exponential]
171. $traffic set packetSize $size
172. $traffic set burst_time_ $burst
173. $traffic set idle time_ $idle
174. S$traffic set rate_ Srate

175.

176. Straffic attach-agent S$source
177.

178. $ns_ connect $source $sink

179. return $traffic

180.}%

181.

182.set sink0 [new Agent/LossMonitor])
183.set sinkl [new Agent/LossMonitor])
184.

185.

186.

187.

188.%ns_ attach-agent $W(0) $sinkO0
189.$ns_ attach-agent $W(1l) $sinkl
190.

191.set source0 [attach-expoo-traffic $node_(0) $sinkl
15500 2s 0.1ls 16000k 1 Red 10)

192.set sourcel [attach-expoo-traffic $node_ (1) $sink0 300

92

12s 0.1s 200k

193.set source?
12s 0.1s 200k

194 .set source3
12s 0.1s 200k

195.set sourced
12s 0.1s 200k

196.set sourceb
12s 0.1s 200k

197.set sourceéb

15500 2s 0
198.

.1ls

2 Blue 1]

[attach-expoo-traffic

3 Green 7]

[attach-expoo-traffic

4 Magenta 6

[attach-expoo-traffic

5 Cyan 3]

[attach-expoo-traffic

6 White 9]

[attach-expoo-traffic
16000k 7 Black 10]

199.set £0 [open outl.tr w]

200.set f1 [open outl.tr w]

201.

202.proc record {} {
203. global sink0 sinkl £f0

204.

205. set ns_

[S

imulator instance]

206. set time 0.5

]

f1

207. set bw0l [$sink0 set bytes]

208. set bwl [$sinkl set bytes_]

209. set now [$ns_ now]

210.

$node (2)
$node_(3)
$node_(4)
$node_(5)

$node_(6)

$sink0

$sink0

$sink0

$sink0

$sinkl

211. puts $£0 "Snow [expr $bw0/$time*8/1000000}"

212. puts $f1 "$now [expr $bwl/$time*8/1000000]}"

213.

214. $sink0 set bytes_ 0O

215. $sinkl set bytes_ 0

216.

217. $ns_ at [expr S$now+$time]

218.}
219.

220.%ns_ at
221.%ns__ at
222.%ns_ at
223.8%ns__ at
224 .$ns_ at
225.%ns__ at
226.$ns_ at

0.0

10.0
10.0
10.0
10.0
10.0
10.0

"record"
"Ssourcel
"$Ssourcel
"Ssource?2
"Ssource3
"$Ssourced

"$Ssourceb

start"
start"
start"
start"
start"

start"

93

"record"

300

300

300

300

227.$ns
228.
229.8ns_
230.%ns
231.
232.%ns__
233.8ns__
234.
235.

at 10.0 "$sourceb6 start"

at 50.0 "$sourcel stop"

at 55.0 "$source4d stop"

at 150.0 "S$source(stop"

at 150.0 "$sourcel stop"

236.for {set i 0} {$i < $opt(nn) } {incr i} {

237.
238.}%
239.%ns_
240.%ns_
241.

242 .puts
243.5ns_

$ns_at 150.0 "$node_($i) reset";

at 150.0001 "finish"
at 150.0002 "puts \"NS EXITING..

"Starting Simulation..."

run

94

A" ; $ns_ halt"

