>\ Lebanese American University

Regression Testing for

Trusted Database Applications

By
Wissam Mohieddine Chehab

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

Thesis Advisor: Dr. Ramzi A. Haraty

January 2005

Lebanese American University
Graduate Studies

We hereby approve the thesis of
Wissam Mohieddine Chehab

Candidate for the Master of Science Degree *

Dr. Ramzi A. Haraty
Associate Professor of Computer Science
Lebanese American University

- =

Dr. May Hamdan Dr. Zahi Nakad
Assistant Professor of Mathematics
Lebanese American Universit

Assistant l;ngf_essor of Computer E
Ve /e v/ / /4

gineering

Date:

* We also certify that written approval has been obtained for any proprietary material
contained there in.

I grant to the Lebanese American University the right to use this work, irrespective of
any copyright, for the University's own purpose without cost to the University or to its
students, agents and employees. I further agree that the University may reproduce and
provide single copies of the work, in any format other than in or from microforms, to

the public for the cost of reproduction.

Dedication

I dedicate this thesis

To my parents
To my brother

To my sisters

To my friends

Acknowledgment

I would like to thank my advisor Dr. Ramzi A. Haraty for his guidance throughout my
M.S studies. Thanks also to Dr. May Hamdan and Dr. Nakad for being on my thesis

comimtee.

I would like to express my gratitude to the Lebanese American University whose

financial support during my graduate studies made it possible.

Finally I would like to thank miy parents for their long support.

1

Table of Contents

INtroductionocovviiiiiniiiiiiiiiiiiiieiieieiirireeereeereeeeenenesnrsernenens 1
LIBackground.........coooiiiiiiiiiii e 1
1.2 Scope of the thesis.........c.ooviiiiiiiiii e 3
Literarture ReVIeW.....ocviiiieiiiiiiiiiiniiieiiieiinineniereeeiiirsceseesneess 5
2.1 Introduction.c.ouiviiiiiii 5
2.2 Regression Testing.........covviiiiiii il 6
2.3 Evaluation Criteria.............coooiiiiiiiiiii e 8
2.3.1 InCluSIiVeness.ouoviiiiiiiiii e 8
232 PIeCISION. ..ueniiiit i, 9
233 EffiCIeNnCY. ..o 9
2.3.4Generality.....ooooiiiiii i 10
2.3.5 Accountability.............oooiiiiiiiii e, 10
2.4 Selective Retest Approaches..............ocovevviviiiniiinininin., 11
2.4.1 Minimization Methods................................ 11
2.4.2 Coverage Methods...............co.ooeeviiiinin. ., 13
2.4.2.1 Harrold and Soffa's Method 13
2.4.2.2 Bates and Horwitz's Method 14
2.4.3 Safe Methods...............cocoii 15
2.4.3.1 Rothermel and Harrold's method 15
2.5 Security regression teSting.viiviinininiiniininnn, 17
Security Regression Testing Technique...........cvcvevevneniinrenrnnnnnnn 19
3.1 Introduction.coeiiuiniuii i 19
3.2 Background............cooiiiiiii 20
3.2.1 Control Flow Graphs..................cocvieiiininninnn, 21
3.3 Program Dependence Graph..............oocvvveeeneniniiinininnnn 21
3.3.1 Introductionooooiiuiniiii i 21
3.3.2Background..........ooiii 23
3.3.3 PDG Construction............cc.ocuveininnininennenennn, 25
3.3.3.1 Constructing the DDS 27
3.4 Security Regression Test Selection..................cooveuvenin.... 29

3.4.1 Background............oooiiiiiiiii 29

3.4.2 Issues in Security Regression Testing....................

3.4.3 ObServations.ovueeee e e

3.4.3 Our algorithm for secure regression testing..............
3.4.3.1 Example of Test Selection
3.4.3.2 Enhancements and Contribution...............

3.4.3.2.1 Program Slicing

SUPPOXt SYStemuvuivninnieiiiieiiiiieiiiinrenieeeeerreeenernresesnnsensnn
4.1 Trusted Application Parsingcovvvevininininininn.,

4.2 Trusted Code AnalysiS............coovviiuiiiiineieeiiiieieiein

4.3 CDS Construction.vuuenireinireeinitiieiei e,

4.4 Trusted Regression Test Selectioncoceeun.....

4.5 Backward SHCING........ooovinirii i
4.6 Tool Interfacecccovvvveniiiiiiiiiiii e,

Empirical ReSults....c.coiuiiriuiiiiiimininiiiiiiierenenereeresssesenseesncenen
5.1 Experimental Design..........coooiviuiviiiiiieiiiiieiiinn .
S2Results ..ovviii

5.2.2 Summary of Results................cccovvvienenni....
5.2.3 Discussion of Results..............cocovvevineneninn.. ..
Conclusion and Future Work.......ccccveveiivenenieeinincrssnenceeencenns
6.1 SUMMAIY ...oooiiiiiitiii e
6.2 Contributions of the Thesis..................oeeveeieninininnn..,
6.3 Future Work.........ooviviiiiiiii e

| A (0 3 1 1 L

Figure 1

Figure 2

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

List of Figures

AVG and its test history information
Fragments showing statement deletion
Procedure MedRec and its CFG

Access constraints CDG and CFG

Algorithm ConstructCDS

Algorithm ReachingDefs

Procedure MedRec and its CDG

Modified versus affected statements
SelectTests Algorithm

Procedure A2 and its CDG

Showing examples of bakward slicing

The tool's information display screen
Behavioral Specifications for GOP Capability
Grant-revoke trusted model application

CDG table for grant-revoke secure application
Original test suite table

Summary of Results

Percentage of test case reduction.

13
21
25
27
29
31
33
36
37
40
44
47
49

50
56
56

Chapter 1

Introduction

1.1) Background

Regression testing is any type of software testing, which seeks to uncover regression

bugs. Regression bugs occur as a consequence of program changes [9].

After unit, integration and system testing, the newly developed system enters
"maintenance mode", and once it is in use, new functionality may be desired or
undetected faults may surface. This will require the completed, tested system to be

modified, which will mean re-validation and re-testing.

Common methods of regression testing are re-running previously run tests and

checking whether previously-fixed faults have re-emerged.

No matter how well software is tested and conceived, it will eventually have to
be modified in order to fix bugs or respond to changes in user specifications.
Regression testing must be conducted to confirm that recent program changes have
not harmfully affected existing features and new tests must be created to test new
features. Testers might rerun all test cases generated at earlier stages to ensure that the
program behaves as expected. However, as a program evolves the regression test set
grows larger, old tests are rarely discarded, and the expense of regression testing
grows. Repeating all previous test cases in regression testing after each major or
minor software revision or patch is often impossible due to time pressure and budget
constraints. On the other hand, for software revalidation by arbitrarily omitting test
cases used in regression testing is risky [16]. Thus, we need to investigate methods to

select safe subsets of effective fault-revealing regression test cases to revalidate the

application.

Regression testing procedure is quite straight forward. First, select a subset of
test cases to be run on the modified program; second retest the modified program and
establish its correctness relative to the selected tests; third if necessary, create new

tests for the modified program.

When regression testing is performed, the purpose would be to isolate and
perform only re-testable-type tests. This requires the ability to recognize reusable tests
and obsolete tests. The isolation process is known as Regression Test Selection (RTS)
[19]. Analyses for RTS attempt to determine if a modified program, when run on a
specific test, will have the same behavior as before, without actually running the new
program.

The RTS analyses confronts a price/performance tradeoff. A more precise analysis
might be able to eliminate more tests, but could take much longer to run.
Most research literature addresses one or both of two problems [17]:

1. How to select regression tests from an existing test suite (the RTS problem)?

2. How to determine the portions of a modified program that should be re-tested
(the coverage identification problem)?

There are three main philosophies to RTS in the literature [9]:

1. Minimization approaches seck to satisfy structural coverage criteria by
identifying a minimal set of tests that must be rerun to cover changed code.

2. Coverage approaches are also based on coverage criteria, but do not require
minimization. Instead, they seek to select all tests that exercise changed or
affected program components.

3. Safe methods attempt instead to select every test that will cause the modified

program to produce different output than original program.

Rothermel and Harrold [9] proposed the following criteria for regression testing:
1. Inclusiveness
It measures the extent to which a method chooses tests that will cause
the modified program to produce a different output.
2. Precision

How well the RTS avoids tests that will not cause the modified

program to produce different output than the original program.

3. Efficiency

It measures the computational cost and automatability, and thus

practicality, of a selective retest approach.

4. Generality
It measures the ability of a method to handle realistic and diverse
language constructs, arbitrarily complex code modifications, and

realistic testing applications.

1.2) Scope of the Thesis

In this thesis the work is narrowed to cover only regression testing for secure

interfaces. A secure interface consists of the elements that are involved in enforcing
the system's security policy. Examples of secure interface kernel include interfaces for
operators , administrators, users, etc. The secure interface contains software elements
of the trusted computing base (TCB) that are involved in implementing system
security policies. So carrying out the new regression testing technique helps the
security kernel to satify its requirements. Security regression testing is a reliable
technique of gaining assurance that a system operates withing the constraints of a
given set of policies and mechanisms. Despite its usefulness to system security, little
research has been done in the discovery of regression testing methods specifically
tailored for the security area. Instead, security testing relies on scattered collections of
rules of thumb and testing philosphies [20]. Brute force approaches were used for
security regression testing, such as black-box testing approach, which cause a large
numbers of unnecessary tests to be generated; however, no attempt has been made to

present suitable approaches to security regression testing.

This thesis presents a new selective approach to security regression testing.
This approach constructs control dependence graphs for program versions. These
versions are used to determine which tests from the existing testing suite may exhibit

changed behavior on the new version.

A bundle technique is presented in this thesis that is neither coverage-criteria
based nor requires complete information on corresponding program components. It

constructs graphs representing control dependence of a program and its modified

version, and uses these graphs to identify tests that may reveal different behaviour.

The new algorithm detects portions of code that differ in the two versions of the
program, and selects for retests all tests that traverse these regions. The algorithm is
general and not restricted to a subset of language constructs, or limited to a particular

type of program modifications.

Chapter 2

Literature Review

2.1) Introduction

Estimates indicate that software maintenance activities account for as much as two-
thirds of the cost of software production [39]. One necessary but expensive
maintenance task is regression testing, performed on a modified program to introduce
confidence that changes thave have been made are correct, and have not adversely
affected unchanged portions of the program. An important difference between
regression testing and development testing is that during regression testing an
established set of tests is available for reuse. One approach to reusing tests, the retest
all approach, chooses all such tests, but this strategy may consume excessive time and
resources. An alternate approach, selective retest, chooses a subset of tests from the

old test set, and uses this subset to test the modified program.

Although many techniques for selective retest have been developed [1, 3, 4, 13, 17,
20, 21 28, 29 37, 40, 41], there is no established basis for evaluation and comparison
of these techniques. Classifying selective retest strategies for evaluation and
comparison is difficult because distinct philosophies lie behind the existing ap-
proaches. Minimization approaches [3, 19, 21] assume that the goal of regression
testing is to reestablish satisfaction of some structural coverage criterion, and aim to
identify a minimal set of tests that must be rerun to meet that criterion. Coverage
approaches [1, 4, 17, 29, 37, 40, 41], like minimization approaches, rely on coverage
criteria, but do not require minimization. Instead, they assume that a second but
equally important goal of regression testing is to rerun tests that could produce
different output, and they use coverage criteria as a guide in selecting such tests.

Safe approaches [10, 13, 20] place less emphasis on coverage criteria, and aim

instead to select every test that will cause the modified program to produce different

output than the original program.

These philosophies lead selective retest methods to distinctly different results

in test selection. Despite these differences, there are identified categories in which

selective retest approaches can be compared and evaluated. These categories are

inclusiveness, precision, efficiency, generality, and accountability [9].

Inclusiveness: measures the extent to which a method chooses tests that will
cause the modified program to produce different output.

Precision: measures the ability of a method to avoid choosing tests that will
not cause the modified program to produce different output.

Efficiency: measures the computational cost and automation ability, and thus
practicality, of a selective retest approach.

Generality: measures the ability of a method to handle realistic and diverse
language constructs, arbitrarily complex code modifications, and realistic
testing applications.

Accountability measures a method's support for coverage criteria, that is, the

extent to which the method can aid in the evaluation of test suite adequacy.

These categories form criteria for evaluation and comparison of selective retest

approaches.

2.2) Regression Testing

Most work on regression testing addresses the following problem: Given

program P, its modified version P, and test set T used previously to test P, find a way,

making use of T, to gain sufficient confidence in the correctness of P'.

Solutions to the problem typically consist of the following steps:

L.

Identify the modifications that were made to P. Some approaches assume the
availability of a list of modifications, perhaps created by a cooperating editor
that tracks the changes applied to P [9]. Other approaches assume that a mapping

of code segments in P to their corresponding segments in P' can be obtained

using algorithms that perform slicing [43].

2. Select T' included in T, the set of tests to re-execute on P'. This step may

make use of the results of step 1, coupled with test history information that
records the input, output, and execution history for each test. An execution
history for a given test lists the statements or code segments exercised by that

test. For example, Figure 1 shows test history information for procedure AVG.

S1. count =0
S2. fread(fileptr,n)
S3. while (not EOF) do
S4. if (n<0)
S5. return(error)
Else
S6. numarray|count]
S7. count++
Endif
S8. fread(fileptr,n)
Endwhile
S9. avg = calcavg(numarray,count)
S10 return(avg)
Test number nput Output Execution history
T1 empty file 0 $1,52,83,59,510
T2 -1 Error S1,S2,83,84,85
T3 123 2 51,52,53,54,56,57,S8,S3,...,59,510

Figure 1: AVG and its test history information.

3. Retest P' with T', establishing P' correctness with respect to T'. Since we are
concerned with testing the correctness of the modified code in P!, we retest P' with

each Ti € T'. As tests in T' are rerun, new test history information may be gathered

for them.

4. If necessary, create new tests for P'. When T' does not achieve the required
coverage of P', new tests are needed. These may include functional tests required
by specification changes, and/or structural tests required by coverage criteria.

5. Create T", a new test set history for P'. The new test set includes tests from steps
2 and 4, and old tests that were not selected, provided they remain valid. New test
history information is gathered for tests whose histories have changed, if those

histories have not yet been recorded.

2.3) Evaluation Criteria

The five categories described below are the criteria for evaluating selective retest

approaches.

2.3.1 Inclusiveness
Inclusiveness measures the extent to which S chooses modification-revealing tests

from T for inclusion in T'. We define inclusiveness relative to a particular program,
modified program, and test set as follows: suppose T contains n modification-
revealing tests, and S (regression testing strategy) selects m of these tests. The
inclusiveness of S relative to P, P', and T is the percentage calculated by the

expression ((m/n) * 100).

For example, if T contains 50 tests, 8 of which are modification-revealing, and S
selects only 2 of the 8 modification-revealing tests, then S is 25% inclusive relative to
P, P!, and T. If a method S always selects all modification revealing tests, we call S
safe. If for all P, P and T, S is 100% inclusive relative to P, P and T then S is safe.

For an arbitrary choice of S, P, P', and T, there is no algorithm to determine the
inclusiveness of S relative to P, P', and T. We can also perform experiments on a
group W of programs, modified programs, and test sets to measure the strategy's

inclusiveness relative to W by taking the average of the relative inclusiveness of S for

each member of W .

2.3.2 Precision

Precision measures the extent to which a selective retest strategy omits tests that are
non-modification revealing. The definition of precision relative to a particular

program, modified program and test set, is as follows:

Suppose T contains n nonmodification-revealing tests, and S selects m of these tests.
The precision of S relative to P, P', and T is the percentage calculated by the
expression ((m/n) * 100).

For example, if T contains 50 tests, 44 of which are non-modification-revealing with
respect to P, and S omits 33 of these 44 tests, then S is 75% precise relative to P, P',
and T.

As with inclusiveness, there is no algorithm to determine, for an arbitrary choice of S,
P, P', and T, the precision of S relative to P, P', and T. However, we can still measure
precision in several ways. We may be able to show that S is precise by proving that S

omits a superset of the non-modification-revealing tests.

If the precision of a strategy relative to every P, P' and T is 100%, we say the strategy
is precise. A precise strategy always selects only modification-revealing tests, while

an imprecise strategy selects some tests that cannot produce different output.
2.3.3 Efficiency

We measure the efficiency of a selective retest method in terms of its space and time
requirements. Space efficiency is affected by the test history and program analysis
information a strategy must store. Where time is concerned, a selective retest strategy
is more economical than a retest-all strategy if the cost of selecting T' is less than the
cost of running the tests in T-T' [16]. Thus, efficiency varies with the size of the test
set that a method selects, as well as with the computational cost of that method.
Methods for evaluating algorithms are well understood and will not be discussed in

this thesis. However, we discuss several factors that must be considered when

evaluating the efficiency of selective retest algorithms.

One factor influencing the computational expense of a selective retest method is
whether or not the method must calculate information on program modifications. If a
method must determine which program components have been modified, deleted, and
added, or construct a mapping between components of P and P', that method may
require more computational resources than a method that does not calculate such

information.
2.3.4 Generality

The generality of a selective retest method is its ability to function in a wide and
practical range of situations. Selective retest algorithms should function in the
presence of arbitrarily complex code modifications. Also, although we could apply
different methods in different settings, we prefer methods that handle all types of
language constructs, and large classes of programs. The need for information on
program modifications is also a generality issue since requiring knowledge of

modifications may impose unreasonable restrictions.

2.3.5 Accountability

Studies suggest that structural test coverage criteria increase the effectiveness of
testing [8]. If a program is initially tested with such a criterion, then after
modifications it is desirable to confirm that the criterion remains satisfied.
Alternatively, if a program is not initially tested using a coverage criterion, it is still
possible to apply a criterion at regression test time, ensuring that all new or modified
portions of the code have been covered properly [35]. The term accountability to
refer to the extent to which a selective retest method promotes the use of structural
coverage criteria. Selective retest methods may promote this use by identifying
unsatisfied program components, or selecting tests that maximize the coverage

achievable. Both coverage and minimization methods facilitate such efforts.

10

2.4) Selective Retest Approaches

In this section, we will evaluate a representative sample of regression testing methods,

other strategies are evaluated in [9].
2.4.1 Minimization Methods

Minimization approaches to selective retest have been proposed [3, 19, 21]. We
discuss Hartmann and Robson's method, since it extends the other methods , and
shows the strengths and weaknesses of minimization approaches.

The method uses systems of linear equations to express relationships between tests
and program segments (basic blocks). These equations are obtained from matrices that
track the segments of code reached by test cases, and the segments reachable from
other segments. The solution to such a system of equations identifies a minimal set of
tests T' such that each segment reachable from a changed segment is exercised by at
least one test in T'. Dataflow information is used to ensure that only tests that traverse

affected uses are selected.

This approach, like other minimization approaches, is not safe. If several tests
exercise a particular modified statement and all of these tests exercise a particular
affected statement, only one such test is selected, unless the others are selected for
coverage elsewhere. Some of the tests that are omitted may produce different output if
executed. For example, suppose statement S1 in procedure AVG (Figure 1) is
erroneously modified, to "count=1". Tests T1 and T3 both traverse S1 and reach
affected statement S9, which uses the value of count. Hartmann and Robson's method
selects only one of these tests, omitting the other. However, only test T3 exposes this
fault and if T1 is chosen instead, the fault will not be detected. Hartmann and Rob-
son's approach also may omit tests that can reveal faults caused by non-dataflow
dependencies, such as tests reaching S2 from S1 in the fragments on the left in Figure
2.

11

S1. call SetMode() S 1. if P then P 1.if P then
S2. call DrawLine(pointl,point2) S2. (do something) S2. (do something)
S3. ar=12
endif endif
Fragment F2 S4. if Q then S4. if Q then
S5. (do something) S5. (do something)
S6. print(a)
---------------------------------- endif endif

S2. call DrawLine(pointl,point2)

Figure 2: fragments showing statement deletion.

This method omits tests that are non-modification-traversing by ignoring tests that do
not execute changed segments. The method also uses dataflow information to further
increase precision.

Since Hartmann and Robson's method is a minimization method, it returns small test
sets and thus reduces the time required to run regression tests. The method can be
fully automated. However, due to the calculations required for solving systems of
linear equations, the approach may be data and computation intensive on large
programs. This method is defined and implemented for "C," and can handle all "C"
structures. The method depends only on identifying code segments, so it could be
implemented for any procedural language. The method may also be extended to
handle inter-procedural test selection, by treating entire routines rather than basic
blocks as segments. However, this extension reduces precision by admitting tests that
are non-modification-traversing, such as tests that traverse a modified procedure but
do not actually traverse modified code in the procedure. More importantly, Hartmann
and Robson's method is defined only for situations where code modifications do not
alter control flow. Thus, the method does not handle addition, deletion, or
modification of predicate statements. Note that any work to handle changes in control
flow will force reanalysis of the changed program, which is expensive. This method is
oriented to achieve structural coverage of a program at a basic block level; it
establishes such coverage by reusing as many existing tests as possible, without

selecting tests that are redundant in terms of coverage.

12

Frasment F 1 Fragment F3 Fragment F4

2.4.2 Coverage Methods

A majority of existing selective retest methods axe most described as coverage
methods. These include approaches proposed by Bates and Horwitz [37], Benedusi,
Cimitile, and De Carlini [4], Gupta, Harrold, and SofFa [35], Harrold and Soffa [28,
29], Leung and White [17], Ostrand and Weyuker [41], Taha, Thebaut and Liu [1],
and Yau and Kishimoto [40]. In this section we discuss the methods proposed by
Harrold and Soffa, and Bates and Horwitz, since these methods let us illustrate some

important facets of the use of coverage methods.

2.4.2.1 Harrold and Soffa's Method
Harrold and SofFa [28, 29] present a test selection method based on dataflow testing
techniques. Their approach identifies changed def-use pairs in a program, and

selects tests that exercise these pairs.

Inclusiveness: Harrold and Soffa's method specifically selects all tests that cover
affected pairs, thereby selecting a superset of the set selected by Hartmann and
Robson's method. Nevertheless, the approach may omit modification-revealing tests
in at least three ways, and thus is not safe. First, the approach may omit tests that
exercised statements deleted from P. Second, by relying only on data dependencies
as a guide in test selection, the method misses tests that may be exposed by other
forms of dependencies. Hence, for code changes such as that showed on the left in
Figure 2, the method does not select any tests. This method may omit tests that
execute modified output statements that contain no variable uses, although these

statements may cause the program to produce different output.

Precision: Because Harrold and Soffa's approach only selects tests that traverse new
or modified definition-use pairs, all tests selected necessarily traverse new or
modified statements, so the method selects only modification-traversing tests.
Moreover, by selecting tests that exercise definition-use pairs, Harrold and Soffa's
approach is capable of greater precision than methods that select all modification

traversing tests.

13

Efficiency: Harrold and Soffa's approach requires storage and/or calculation of
dataflow information, but dataflow calculation is at worst an O(n®) operation that is
well understood and is accomplished by many compilers [9]. However, the approach
also requires knowledge of program modifications, and typically assumes that these
modifications will be provided through a program development environment. To be
efficient, such environments must handle incremental updates of dataflow information
as changes are applied to programs. In doing so these environments acquire additional

computation and storage costs.

Generality: Harrold and Soffa's approach is fairly general, because it requires only
control flow graphs and test execution histories. Also, the method handles structural

program changes

Accountability: Harrold and Soffa's method is highly accountable, lending direct

support for dataflow coverage criteria [9].

2.4.2.2 Bates and Horwitz's Method

Bates and Horwitz [37] present a test selection method based on program dependence
graph adequacy criteria. The program dependence graph encodes both control and
data dependence information for a procedure [18]. Bates and Horwitz use slicing
algorithms to group statements in P and P' into execution classes such that a test that
executes any statement in an execution class executes all statements in that class.
Next, they identify affected statements, which are statements that may exhibit
different behavior in P', by comparing slices of corresponding points in P and P'.
Finally, they select for retest all tests that exercise any statement in the same

execution class as an affected statement.

Inclusiveness: Bates and Horwitz's method successfully identifies tests that traverse
modified statements, because all modified statements are identified as "affected".
Moreover, by using execution classes the method is able to identify tests that traverse
new statements, but this method does not report for deleted statements, and thus is not

safe.

14

Precision: The technique of selecting tests through affected statements, which ensures
selection of tests of new statements, causes the method to admit tests that are non-
modification traversing, and since Bates and Horwitz's method relies upon slices
along data and control edges in the program dependence graph, its precision is
adversely impacted by assumptions required in the presence of aliasing and dynamic
memory allocation. As with dataflow-based methods, some precision loss can be

prevented by using algorithms for identifying alias information [15].

Efficiency: Bates and Horwitz's method may require a large number of program
slices. The method computes a control slice for every statement in P and every
statement in P'. It then computes a backward slice on each statement in P that has a
corresponding statement in P, and each statement in P' that has a corresponding
statement in P. Moreover, since slice comparisons must be done with respect to state-
ments in P', the costs of slicing on P' are obtained after modifications are complete,
when testing has entered the critical phase. Finally, the method requires prior
knowledge of changes, in the form of a mapping of statements in P to their modified
versions in P'. This mapping must be computed after modifications are complete,

hence in the critical phase.

Generality: this approach supports all types of program modifications, but is presented
only for a restricted set of language constructs. Furthermore, no method for inter-
procedural testing is suggested.

Accountability: Like other coverage methods, Bates and Horwitz's method is highly

accountable, aiding in the satisfaction of program dependence graph coverage criteria.
2.4.3 Safe methods

Only three safe methods for selective regression testing exist. These are the methods
of Laski and Szermer [20], Rothermel and Harrold [10], and Agrawal, Horgan,
Krauser, and London [13]. We will discuss the second approach because it is based on

control dependence graphs which we will refer later in our thesis.

15

2.4.3.1 Rothermel and Harrold's Method

Rothermel and Harrold [10] present a safe regression test selection method based on
control dependence graphs. Control dependence graphs encode control dependence
information for a procedure. This method constructs control dependence graphs for P
and P, and instruments tests to report the regions (groups of statements sharing com-
mon control conditions) executed by the tests. Any test that executes a region of code

that contains a changed statement is selected for retest.

Inclusiveness: Since this approach selects every modification-traversing test, it is safe.

The approach also handles new and deleted code.

Precision: the method selects only modification-traversing tests, and thus is more
precise than methods that choose non-modification revealing tests. However, the
method makes no use of dataflow or other information that could reduce the size of

selected test sets further.

Efficiency: The running time of the method is bounded by the time it takes to
construct control dependence graphs, which is O(n?), so the method is efficient.
Moreover, much of the computation required by the method, such as construction of
the control dependence graph for P and collection of test history information, may be
completed during the preliminary regression testing phase. The only work that must
be done during the critical phase of regression testing is the construction of the control
dependence graph for P, and the execution of a tree walk on P and P'. Furthermore,
since the goal of Rothermel and Harrold's method is to identify tests, the method can
examine fewer parts of programs than Laski and Szermer's method, for which the goal
is to identify corresponding program components. This improvement is due to the fact
that when Rothermel and Harrold's algorithm walks control dependence graphs
looking for differing regions, it does not need to explore sub-graphs within a changed
region; it takes advantage of the fact that all tests entering the region are modification-
traversing and does not look at enclosed regions. Moreover, the approach can be fully

automated. Finally, since Rothermel and Harrold's method requires test histories

16

listing just the regions executed by a test, its space requirements are much smaller

than methods requiring test histories on a per statement basis.

Generality: the method applies to all programs in procedural languages, because
control dependence graphs may be constructed directly from control flow graphs. The

method also applies to all types of program modifications.

Accountability: By identifying changed regions of code, the method identifies the
areas of the code in which coverage needs to be verified, but does not aid with any

particular coverage criteria.

2.5) Security Resression Testing

Security regression testing is a good technique of gaining assurance that a modified
system operates within the constraints of a given set of policies and mechanisms.
Despite its obvious usefulness to computer security, little research has been done in
the discovery of regression testing methods specifically tailored for the security area.
Instead regression security testing relies on scattered collection of rules of thumb and
testing philosophies. However, no attempt was made to date to explore suitable
approaches for security regression testing.

Moreover, the evaluations show that a majority of current approaches are concerned
with coverage or minimization rather than safety. Accountability is an important issue
since coverage criteria are useful for improving test adequacy. However, in many
practical situations the most important concern is a method's safety. Testing
professionals are hesitant, in practice, to discard any tests that may expose errors.
Thus, effective safe approaches are needed. Existing safe approaches would benefit
most from improvements in precision and accountability.

As the evaluations also suggest, one major drawback for most current methods is their
need for information on program modifications or mappings between "old" and "new"
sections of code. This need leads techniques to either assume that knowledge of
modifications will be provided by an incremental editor, or that some algorithm will
be used to calculate a mapping. The former assumption adds requirements to the

production environment that may not be easily satisfied.

17

The latter assumption increases the cost of the method and forces more work to be
done during the critical phase of regression testing.

Finally, few unsatisfactory solutions have been offered to the problem of
interprocedural regression test selection.

So our work will introduce a new technique for security regression testing, which will
be based on control dependence graph. The aim of our method is to select every set of
tests from the original suite that can expose faults in the modified application, and if
necessary create new ones possibly to meet coverage criterion at a reasonable cost.
Under these conditions the method is safe. Unlike other methods, the new method

should handle all language constructs and all types of program modifications.

18

Chapter 3

Security Regression Testing Technique

3.1) Introduction

Software maintenance activities can account for as much as two-thirds of
the overall cost of software production [39]. One critical necessary maintenance
activity, security regression testing, is performed on modified secure interfaces to
provide confidence that the software behaves correctly and modifications have not

adversely impacted the system's security, in order that the trusted code remains trused.

An important difference between regression testing and development testing is
that, during regression testing, an established suite of tests may be available for reuse.
One absurd security regression-testing strategy is to reruns all such tests, but this
retest-all approach may consume inordinate time and resources. On the other hand,
Selective security retest techniques, attempt to reduce the time required to retest a
secure program by selectively reusing tests and selectively retesting the modified
program. These techniques address two problems:

1. The problem of selecting tests from an existing test suite, and
2. The problem of determining where additional tests may be required.
Both of these problems are important. Our new strategy presents an enhanced
regression test selection technique that is specifically tailored for trusted applications.
The approach constructs control flow graphs for a secure procedure or program and
its modified version and use these graphs to select tests that execute changed code
from the original test suite. The new strategy has several advantages over other
regular regression test selection techniques. Unlike many techniques, our algorithms
select tests that may now execute new or modified statements and tests that formerly

executed statements that have been deleted from the original program.

19

We prove that under certain conditions the algorithms are safe: that is, they select

every test from the original test suite that can expose faults in the modified program.
Moreover, they are more precise than other safe algorithms because they select fewer
such tests than those algorithms. Our algorithms automate an important portion of the
regression-testing process, and they operate more efficiently than most other
regression test selection algorithms. Finally, our algorithms are more general than
most other techniques. They handle regression test selection for single procedures and
for groups of interacting procedures. They also handle all language constructs and all
types of program modifications for procedural languages. We have implemented our
algorithms and conducted empirical studies on several subject programs and modified
versions. The results suggest that, in practice, the algorithms can precisely and safely

reduce in a significant way the cost of regression testing of a modified program.

3.2 Background

The following notation is used throughout the rest of this chapter. Let P be a
procedure or program, P' be a modified version of P, and S and S' be the

specifications for P and P', respectively.

Procedure MedRec /v

S1. Read(user, password) @

S2. find permission where user = usr and @
password = pwd no-lock.

P3. for each medrec F P
P4. If medrec.perm_level<=usr perm_level ¥
S5. Browse medrec:add(medrec). T o F

Else y
S6. Msg(full access denied, general info only) @ @
S7. Browse:add(partial medrec)

Endif v <D
S8. Refresh Browse medrec

End_For_each 3 _

S9. ms_g(read complete!)
S10. release(user, password) .

Figure. 3.1 Procedure MedRec and its CFG

20

P(i) refers to the output of P on input i, P'(i) refers to the output of P'
on input i. S(i) refers to the specified output for P on input i, and S'(i) refers to the
specified output for P' on input i.

Let T be a set of tests (a test suite) created to test P. A test is a three-tuple, (identifier,
input, output), in which an identifier identifies the test; input is the input for that
execution of the program; and output is the specified output, S(input), for this input.
For simplicity, the outcome refers to a test (t, i, S(i)) by its identifier t and refers to the

outputs P(i) and S(i) of test t for input i as P(t) and S(t), respectively.

3.2.1 Control Flow Graphs

A control flow graph (CFG) for procedure P contains a node for each simple or
conditional statement in P; edges between nodes represent the flow of control between
statements. Figure 3.1 shows procedure MedRec and its CFG. In the figure, statement
nodes, shown as ellipses, represent simple statements. Predicate nodes, shown as
rectangles, stand for conditional statements. Labeled edges (branches) leaving
predicate nodes represent control paths taken when the predicate evaluates to the
value of the edge label. Statement and predicate nodes are labeled to indicate the
statements in P to which they correspond. The figure uses statement numbers as node
labels.

However, the actual code of the associated statements could also serve as labels. Case
statements can be represented in CFGs as nested if-else statements. In this case, every
CFG node has either one unlabeled out edge or two out edges labeled "T" and "F". A
unique entry node and a unique exit node represent entry to and exit from P,
respectively. The CFG for a procedure P has size and can be constructed in time,

linear in the number of simple and conditional statements in P [18].

3.3 Program Dependence Graph

3.3.1 Introduction

Structural testing techniques use intermediate representations of programs to select
test data and determine test adequacy. A common program representation is the

control flow graph, in which each node represents a program statement, and each edge

21

represents a transfer of control between statements. Several recent testing techniques
make use of control dependence information that is not explicitly represented in a
control flow graph. For example, control dependence information has been used to
select data and determine adequacy [2], and to extend data flow testing techniques [6].
Control dependence information has also been used to generate reduced test sets for
programs [11]. Moreover, several techniques used for regression testing [5, 35, 37]
need control dependence information to identify the retesting required after changes
are made to a program. Finally, both static and dynamic slicing techniques require
control dependencies [7, 12, 14]. Thus, a program representation that contains explicit

control dependence information is extremely useful for testing.

One program representation that encodes both control and data dependencies is the
program dependence graph (PDG) [18]. Previous techniques for PDG construction
[18, 34] rely on a control flow graph to identify control dependencies and compute
data flow information. However, building a control dependence sub-graph during the
parsing phase of compilation using these techniques is only applicable to structured

programs.

We present a new technique for constructing a PDG that handles both structured and
unstructured programs. Our algorithm constructs the PDG during the parse phase of
compilation and the resulting PDG contains control flow information along with the
usual control and data dependence information. For structured programs, the
algorithm constructs the control dependence sub-graph without using the control flow
graph of the procedure. If structured transfers of control, such as "break", "continue"
and "exit", are encountered, the algorithm can still identify the program's structure
and construct the control dependence sub-graph without requiring the entire control
flow graph. If explicit "goto" statements are encountered, the resulting graph requires

additional processing to obtain the exact control dependence sub-graph.

A major part of the program dependence graph construction algorithm involves
ordering the nodes in the control dependence sub-graph to identify control flow in the
program. Our ordered control dependence sub-graph incorporates control flow either
implicitly through node order or explicitly through the creation of control flow edges.

To obtain the data dependence sub-graph, we perform data flow analysis directly on

22

the control dependence sub-graph augmented with explicit control flow information
where required. Using data flow sets, we add data dependence edges to get the data
dependence sub-graph and the PDG. There are several advantages to use this
approach. For many programs, our approach may result in substantial savings in the
time and memory it takes to construct the PDG, since we eliminate construction and
analysis of the control flow graph. However, our PDG can be used for all applications
that require information on control flow, such as data flow analysis, test case
generation, and regression testing. Further, our PDG contains a program's control
flow but retains the program's exact control dependencies, whereas previous

techniques incorporated control flow but only approximated control dependencies.

3.3.2 Background

A PDG encodes control dependencies in a control dependence sub-graph (CDS). To
facilitate analysis and obtain the CDS, a control flow graph is often augmented with
unique entry and exit nodes. Figure 3.2 gives a program segment and its control flow
graph. For statements (nodes) X and Y in a control flow graph, if X is control
dependent on Y then Y must have two exits where one of the exits from Y always
causes X to be executed, and the other exit may result in X not being executed [18].
We say that X is control dependent on Y with the label (true or false) that definitely
causes X to execute. A statement X may be control dependent on several statements
in the program. Since these statements form nested sequences of control
dependencies, we can always identify immediate control dependencies for X. For
example, in the control flow graph of Figure 3.2, statement (node) S6 is control
dependent on both P5-false and P3-false since both of these must hold for statement
S6 to execute, but statement S6 is immediately control dependent only on P5-false.
The nodes in a CDS represent statements or regions of code that have common
control dependencies. The CDS of the PDG for the program segment of Figure 3.2, is
shown on the right of Figure 3.2. The node numbers correspond to statement numbers
in the program. A CDS contains several types of nodes. Statement nodes, shown as
ellipses in Figure 3.2, represent statements in the program. Circles represent region
nodes, which summarize the control dependencies for statements in the region.

Predicate nodes, from which two edges may originate, are represented as squares in

23

the figure. Predecessors of a node in the CDS are known as its parent regions, and
successors of a region or predicate node are known as its children. Further, children
with the same parents are known as siblings of each other in the CDS. Control
dependencies are explicitly represented in the CDS. For example, it is clear from the
CDS that statement (node) S6 is control dependent on both P5-false and P3-false, but
immediately control dependent on PS5false. Region nodes in the CDS summarize the
control dependencies of a group of statements. For example, in Figure 3.2, both
statement node S6 and predicate node P7 are control dependent on P5-false; without
region node R3, there would be two edges labeled "F" from node P5. A second sub-
graph of the PDG, the data dependence sub-graph (DDS), encodes data dependencies
among statements. The DDS is obtained by creating edges between nodes in the CDS
to represent data dependencies. For example, in Figure 3.2, the DDS would contain an
edge from S2 to S6 since S2 defines sum and S6 uses that definition of sum.
Similarly, there would be data dependence edges for each of the other definition-use

pairs in the program. In Figure 3.2, the DDS are omitted for simplicity.

S1. SL = Get_security_level(usr). P5

$2. sum=i=0 F
P3.L1 if SL> 0 and i >max-access then goto L2

S4 j=session_time(minutes). R3

P5 if j =0 gotoLl

S6 sum=sum+j Y
P7 if sum > max_minutes goto L.2 P7 F
S8 i=i+1

S9 gotoLl
S10.L2 Exit session R4

Figure 3.2: Program applying time and sessions number access constraints on the user, with

its control flow graph and its control dependence graph.

24

3.3.3 PDG Construction

The algorithm for constructing the PDG takes procedure P and produces the PDG for
P in two steps. Step one constructs the CDS for P, and step two uses the CDS to
construct the DDS for P. We address the two steps in the next two subsections.

3.3.3.1 Constructing the CDS

We give an overview for constructing the CDS; details are given in [27]. Our
algorithm ConstructCDS, listed in Figure 3.3, accepts an abstract syntax tree (AST)
for a procedure P and outputs the CDS for P. For simplicity, we assume that P is
written in a language containing the following types of statements: simple statements
(assignment), structured statements (if-else, while), structured transfers of control
(continue, break, return, and exit), and unstructured transfers (goto). Other
constructs and statements are handled similarly. ConstructCDS uses a left to right
preorder traversal of P's AST and takes appropriate actions as each node is
encountered, and as each sub-tree in the AST is reduced. ConstructCDS handles two
important tasks:
1. Tt creates CDS nodes that represent exact control dependencies in P, and

2. It encodes control flow for use in algorithms that require it.

ConstructCDS uses a stack, CDStack, and the usual set of stack operations, to
maintain nesting, and therefore control dependencies. When ConstructCDS begins,
an "entry" region that represents the entire procedure is created and placed on
CDStack. Subsequently, nodes are added to the CDS as children of the node that is
on the top of CDStack (the active node). Whenever a statement that begins a new
region of control dependence, such as a structured statement or label, is found, a new
node is added to the CDS and pushed onto CDStack. Subsequent statements, added
under this new active node, are then properly nested. When the end of a structured
statement is detected, CDStack is popped. In most cases, our node order in the CDS
encodes control flow implicitly. From a parent region, control flow moves to the
leftmost child, then left to right among siblings until it reaches a region or predicate
node. At predicate nodes control flows down outgoing control dependence edges. By
ordering nodes as they are created, ConstructCDS preserves this implicit control

flow.

25

Algorithm ConstructCDS

Input AST: abstract syntax tree for procedure P with root program.

Output CDS: control dependence sub-graph for P.

Declare CDStack: stack of information about region nodes
Push (N), Pop (N): push and pop operations on CDStack. AdjustFlag: Boolean.
LabelTable: table to record labels for control flow edges
AddNode (N1, N2, L): create CDS node N1, add it to CDS under N2 with label L
(Active: the region on top of CDStack)

Begin

While more AST nodes do

Get ASTNode

Case ASTNode is
Program:
Create entry region as root of CDS; Push (entry)
Create exit region for later use
Assignment:
AddNode (statement, Active, -)
‘While:
AddNode (header region, Active, -); Push (header region) AddNode
(predicate, header region, -);
AddNode (body region. predicate, true); Push (body region)
End while:
Pop (body region)
Resolve unresolved nodes
Pop (header region)
Replace top of CDStack with "while" follow region if necessary. Set AdjustFlag
if required
If-else:
AddNode (predicate, Active, -); Push (predicate)
Begin if-clause/else-clause:
AddNode (region, Active, true or false);
Push (region)
End if-else:
Pop (if-else region)
Replace top of CDStack with if-else follow region if necessary
End if-clause/end else-clause
List unresolved nodes Pop (if/else-clause regions)
If else-clause region has no children remove it from CDS
Structured control transfer:
AddNode (statement, Active, -)
Calculate follow information and update CDStack insert special flow and dependence
edges
Goto:
AddNode (statement, Active, -); update LabeLTable; set AdjuatFlag
Label:
AddNode (label region, Active, -); Push (label region);
Update LabelTable
End case;
End while;

Add exit region to CDS under Active; Resolve remaining unresolved nodes and control dependence
edges for breaks; if AdjuatFlag then call Adjust
End.

Figure 3.3 Algorithm to construct the CDS of a PDG, complete with control flow edges [34].

26

3.3.3.2 Constructing the DDS

After the CDS is constructed using our technique, we perform data flow analysis on it,
and use the data flow sets to construct the DDS. The DDS may contain three types of
data dependence edges, expressing flow-, anti- and output-dependence, depending on
the application. Flow-dependence edges are added to the CDS from nodes containing
definitions of a variable to nodes containing reachable uses of that variable. Anti-
dependence edges connect nodes containing uses of a variable to definitions of that
variable that follow. Output-dependence edges connect definitions of the same
variable. We can develop both forward and backward data flow analysis algorithms
that use the CDS. Here, we present our algorithm to compute reaching definitions,

which is used to compute flow dependence information for the DDS.

To compute sets of definitions that reach each statement in the program, we first
compute local definition information, and then we propagate it throughout the
program using the implicit and explicit control flow edges in our CDS until the sets
stabilize. The number of iterations required depends on the loop nesting in the
program. The algorithm ReachingDefs is given in Figure 3.4. ReachingDefs assumes
that local data flow information, consisting of the usual GEN and KILL sets, has been
computed and is attached to CDS nodes. The GEN set consists of the definition, if
any, in that statement (node); the KILL set consists of all other definitions of the GEN
set's variable in the program. The GEN set is easily computed as the CDS is built.
Using the GEN sets, KILL sets are computed for each statement node. Predicate

nodes and region nodes have neither GEN nor KILL sets.

To propagate data flow information, we use IN and OUT sets where required. The IN
set of a node consists of those definitions that reach the point immediately before the
statement; the OUT set consists of those definitions that reach the point immediately
after the statement. Since IN and OUT sets for a statement node may differ, we
require both of these at each statement node in the CDS. However, since region and
predicate nodes have identical IN and OUT sets, we use the OUT set to represent both
of them.

27

On each iteration, algorithm ReachingDef s considers each node N in the CDS and
computes it's IN and OUT sets using either of two sets of equations depending on the
node's type. If N is a region or predicate node, OUT [N] is computed as the union of
the OUT sets of its control flow predecessors. If N is a statement node, IN [N] is the
union of the OUT sets of its control flow predecessors and OUT [N] is synthesized
using IN [N], GEN [N] and KILL [N].

Procedure ReachingDefs

Input control dependence sub-graph (CDS), with control flow edges (CF),
GEN /KILL sets computed for each statement node

Output reaching definitions at each node

Declare IN sets for each statement node OUT sets for each node

Begin
While changes do
Foreach node N in CDS do
If N is a region/predicate node then OUT [N] = U OUT [P], P is a control
flow predecessor of N
Else
IN [N]=UOUT [P], P is acontrol flow predecessor of N
OUT [N] = GEN [N] U (IN [N] - KILL [N])
Endif
Endfor
Endwhile
End ReachingDefs

Figure 3.4. Algorithm to compute reaching definitions using the CDS and control
flow edges.

28

3.4 Security Regression Test Selection

Our technique for security regression test selection has several advantages. Unlike
many other previous techniques, our algorithm is specifically tailored for security
regression testing. It selects tests that may now traverse new statements, and tests that
formerly traversed statements that have been deleted from the original program. Thus,
our algorithm selects every test from the original test suite that can possibly expose
errors in the modified program. Moreover, it is more precise than most existing
algorithms since it does not select tests that cannot traverse changed statements. Our
algorithm is also simpler and more efficient than most existing algorithms, in part
because it does not require a complete mapping of the "corresponding parts" of the
original and modified programs. The algorithm is not difficult to implement, and thus
allows automation of a substantial portion of the selective retest process. Finally, our
algorithm is more general than many previous approaches: it is not restricted to a
subset of language constructs, or limited to particular types of program modifications.
The algorithm is easily extended to facilitate selective retest at the integration and

system levels where its savings are even more spectacular.

3.4.1 Background

For statements X and Y in a program, if X is control dependent on Y then there must
be at least two paths out of Y, where one path always causes X to be executed and the
other path may result in X not being executed. A statement X may be control
dependent on several statements in the program, but we can always identify
immediate control dependencies for X. For example, in procedure MedRec in Figure
3.5, statement S7 is control dependent on predicates P4 and P3, but immediately

control dependent only on P4.

29

Procedure MedRec
S1. Read(user, password)
@ S2. find permission where user = usr and

password = pwd
@é ' no-lock.
P3. for each medrec :
@@ a P 1
5%3 medrec.perm_level<=usr_perm_level

T S5. Browse medrec:add(medrec).
®3) Else
‘ S6. Msg(full access denied, general
(P4 info only)
T F S7. Browse:add(partial medrec)
R9 ®) Endif
\ S8. Refresh Browse medrec
é é (s8> End For each
S9. msg(read complete!)
S10. release(user, password)

Figure 3.5: Procedure MedRec and its CDG.

Our way to encode control dependence information is with a control dependence
graph (CDG) [18]. The CDG for procedure MedRec is given in Figure 3.5. A CDG
contains several types of nodes. Statement nodes, shown as ellipses, represent simple
statements. Predicate nodes, drawn as squares, stand for conditional statements, and
have one or two labeled exiting edges that represent possible control paths. Region
nodes, represented by circles, summarize control dependencies for statements in the
region; the entry node, labeled entry, can be thought of as a region. An exit node

represents the program's exit.

A CDG represents control dependencies explicitly. In Figure 3.5 directed edges
denote immediate control dependencies, and the hierarchical structure of the CDG
encodes control dependencies generally. For example, it is clear from the CDG that
statement node S7 is control dependent on both P3-true and P4-false, but immediately
control dependent on P4-false. Figure 3.5 also illustrates the use of region nodes. For
example, nodes S6, S7, S8 and R1 are control dependent on P4-false; without region
node RS, there would be four edges labeled "F" from node P4. Thus, R5 summarizes

control dependence on P4-false.

30

The CDG of Figure 3.5 also illustrates two interesting control dependence
relationships in Al that occur due to the presence of the exit from the loop body in
statement S5. First, the while loop headed by region R1 is control dependent on
predicate P4, which controls execution of S5. This creates a cycle in the control
dependence graph (R1, P3, R2, P4, R5, R1). Second, statements S9 and 510, which
follow the while loop, are control dependent on P3 because an execution that traverses
P3-False reaches S9 and 510, while an execution that takes P3-True may not reach

them.

3.4.2 Issues in Security Regression Testing

Given a secure program P, its modified version P, and test set T used previously
to test P. Find a way, making use of T, to gain sufficient confidence in the

correctness of P.

Typical solutions to this problem consist of the following steps:

1. Identify the modifications made to P, and obtain a mapping between code

segments in P and P'.

2. Using the results of step 1, select T' C_ T, a set of tests that may reveal

modification-related errors in P'.
3. Run T on P, establishing P's correctness with respect to T

4. If necessary, create new tests for P. These may include new functional tests
required by changes in specifications, and/or new structural tests required by

applicable coverage criteria.
5. Create T", a new test set-history for P.

Our primary concern in this work is security selective retest, so when we focus on
steps 1 through for a program P, its modified version P, and a set of tests T for P, we
require that a selective retest algorithm meet the following criteria: Precision,
efficiency, and generality. Note that the retest-all approach is safe but is also

imprecise.

31

3.4.3 Observations

Our goal is to distinguish potentially revealing tests in a modified program from those
that cannot exhibit altered behavior. Toward this goal we offer the following

discussion.

In order for a particular test Ti, run originally on program P, to exhibit different
behavior when run on program P', the sequence of statements that T; traverses in P
must differ from the sequence it traversed in P. If test Ti, run on P', does not traverse
any modified statements, does not traverse any new statements, does not miss any
statements it traversed in P, and traverses all statements in the same order as it did on

P, it cannot behave any differently in P' than it did in P.

Fragment F Fragment F'
S1.ifP=1 S1. if P=1
S2. x:=2 S2.' x:=3
S3.ifQ=1 S3.ifQ=1
S4.y =X S4.y =X
test # input Execution history
Tl [P=1,Q=1 $1,S2,83,54
T2 [P=0,Q=1 $1,83,84

Figure 3.6. Modified versus affected statements.

For example, Figure 3.6 shows program fragments F and F', and two tests used on F.
Statement S2 has been modified, yielding S2'. Of the two test cases, only T1 traverses
S2'. T2 does not traverse S2' and thus, in the absence of other changes, cannot
possibly exhibit different behavior, so it does not need to be rerun. A first task in
secure selection of tests for retest is to distinguish tests that traverse changed code

from those that do not. This statement may seem obvious, yet it has been ignored in

32

previous techniques [5, 7]. These techniques suggest selection of all tests that traverse
affected statements in P'; affected statements are program statements that make use of
the results of, or are otherwise affected by, some code change. Affected code is quite
different from changed code since code can be affected without having been
modified, deleted, or added. It is possible for a test to traverse an affected statement
without traversing any changed code. Such tests cannot exhibit differences in program
behavior, and need not be rerun. For example, in Figure 3.6, S4 is an affected point,
because the definition in modified statement S2' reaches S4. However, test case T2,
which traverses S4, does not traverse any modified points, and cannot possibly exhibit

different behavior.

Note that changes in a program are reflected by changes in its CDG. Deletion,
addition, or modification of a statement in P results in the addition, deletion, or
modification of a node in P's CDG. Complex changes to P, of course, result in
substantial differences in P's CDG. Also note that we can attach to each CDG region a
list of tests known to enter that region, and we can keep test execution histories that

list these regions.

We now present the fundamental theorem on which our technique is based:

Given the CDG of program P, the CDG' of program P, and test suite T in which
test execution histories list the regions in P traversed by each test; the only tests in
T that can traverse different sequences of statements in P and P are those attached
to some region node R in P, such that R has a corresponding region node R’ in P',

and R's immediate children have been changed.

It follows from the theorem that a simple approach to test selection is to select all tests
that enter the parent region of any changed node. It is these tests, and only these tests,
that may exhibit changes in program behavior. The problem with this simple approach
is that it requires us to obtain a mapping of regions in CDG to regions in CDG', so

that we compare all corresponding regions.

33

Such a mapping is difficult to obtain in the presence of complex or multiple code
changes. However, by traversing nodes in CDG properly we avoid this problem, and
obtain an opportunity for optimization as well. Observe that once we have detected a
difference among the children of region R in P, and selected the tests attached to R,
we need not consider any of R's control dependence successors in CDG (unless they
can be reached from some other region not control dependent on R). For example, if
statement S6 in procedure Al (Figure 7) is modified, and the condition in predicate
P4 is changed to "n > 0", then we want to rerun tests attached to R5 and R2. However,
the only tests that may reach R5 are those that reached R2. Therefore, once we have
examined R2 and selected its tests, we don’t need to proceed further down in CDG.

The tests attached to R5 contributed along this chain of control dependencies have

already been selected.

So, an efficient test selection algorithm need not locate all regions immediately
enclosing changes; it need only search the CDG until some region R enclosing
changes is found, and return the tests attached to R. In doing so, the algorithm
automatically selects tests attached to regions control dependent on R. By traversing
the CDG in this fashion, we obviate the need for complete information on code
changes, or for complete information on the corresponding sections of code in two
program versions. We need only check, at any node reached in the CDG, whether the
children of that node in the new program differ from the children of the corresponding

node in the old program. If so, we need not worry about identifying nested changes.

3.4.3 Our Algorithm for Secure Regression Testing

Our algorithm SelectTests, given in Figure 3.7, takes a procedure P, its changed
version P', and the test history for P, and returns T', the subset of tests from T that
could possibly expose errors if run on P. The algorithm constructs CDG's for P and P',
and then calls procedure Compare with the entry nodes E and E' of the two CDG's.

34

Compare is a recursive procedure. Given any two CDG nodes N and N', Compare
method marks these nodes "visited", and then determines whether the children of
these nodes are equivalent. If any two children are not equivalent, a difference be-
tween P and P' has been encountered. In this case, the only tests of P that may have
traversed the change in P are those that traversed N in P. Thus, Compare returns all
tests known to have traversed N. If, on the other hand, the children of N and N' are
equivalent, Compare calls itself on all pairs of equivalent non-visited predicate or
region nodes that are children of N and N', and returns the union of the tests (if any)

required to test changes under these children.

Algorithm SelectTests

Input Procedure P, changed version P, and test set T
Output testset T'

Begin

Construct CDG and CDG', CDG's of P and P' let E and E' be entry nodes of CDG and
CDG' T' = Compare (E, E")
End
Procedure Compare
Input N and N': nodes in CDG and CDG' output test set T'
Begin
Mark N and N' "visited"
If the children of N and N' differ return (all tests attached to N) else
T'=NULL
For each region or predicate child node of N not yet "visited" do
Find C', the corresponding child of N' T'= T' U Compare(C, C")
End (* for *) end (* if *) end
Figure 3.7: SelectTests algorithm

3.4.3.1 Example of Test Selection Using SelectTests

Let's consider procedure MedRec' a shown in figure 3.8, a changed version of
procedure MedRec. In MedRec!, statement S7 has mistakenly been deleted, and
statement S5a has been added. When called with MedRec and MedRec', SelectTests
constructs the CDG's for MedRec and MedRec', and calls procedure compare with
entry and entry'. Procedure Compare finds the children of these nodes equivalent, and
invokes itself (invocation 2) on R1 and R1'. Recursive calls continue in this manner
on nodes P3 and P3' (invocation 3), R2 and R2' (invocation 4), and P4 and P4'

(invocation 5). In each case the children of the nodes are found equivalent.

35

Procedure MedRec

P4. If medrec.perm_level<=usr perm_level
S5. Browse medrec:add(medrec).
S5a. count=count+ 1.

Else
S6. Msg(full access denied, general info F
only) T y

S7 Browse:add(nartial . medrec) @ @
S8. Refresh Browse medrec

P4
End For_each

S1. Read(user, password) @
S2. find permission where user = usr and \\’
password = pwd no-lock. @
P3. for each medrec : ?:
P3

S9. msg(read complete!) A
S10. release(user, password) @:/\

Figure 3.8. Procedure A2 and its CDG.

In invocation 6 (on R4 and R4'), procedure Compare discovers nonequivalent
children, and thus returns test T2, the only test attached to R4, to invocation 5. Next,
Compare calls itself with RS and RS5'. Compare discovers nonequivalent children
again, and returns T3, the only test attached to R5. (Because R1 has already been
“visited, Compare does not examine it again.) Returning up the tree, {T2, T3} is
passed back to invocation 4, and then to invocation 3. Here, Compare calls itself with
R3 and R3', finds no differences, and returns a null set. Invocation 3 passes {T2, T3}
up the tree to invocation 2, then to invocation 1, and finally to the main procedure.
The resulting test set, {T2, T3}, contains all the tests that could possibly exhibit
different behavior in A2. If the deletion of S7 had been the only change, only {T3}
would have been returned. Had the addition of S5a been the only change, only {T2}
would have been returned. Most other methods [1, 19, 21, 28, 29, 32, 37, 41] fail to
identify T2 and/or T3 as necessary.

36

To see how SelectTests handles predicate changes, imagine what happens if line P4
in procedure Al is also changed (erroneously) to "n>0". This change alters only the
text associated with node P4 in program A2's CDG. Called with procedures Al and
A2, SelectTests proceeds as in the previous example until it reaches R2 and R2'.
Here it finds non equivalent children, and returns {T2, T3}. Note that in this case, no
analysis is needed on nodes under P4. No other methods for test case selection make
use of the opportunities afforded by the nesting of control dependencies to reduce

analysis in this fashion.

Procedure Compare in SelectTests requires a method for determining when the
children of two CDG nodes differ. A simple algorithm for doing this checks

corresponding nodes for identical text contents.

This simple algorithm is inexpensive and easy to implement, but can be imprecise.
Consider, for example, the program fragments shown in Figure 3.7, in which two
unrelated assignment statements, S1 and S2, are swapped. The simple algorithm
considers statement order significant, so it finds the children of entry and entry'
different, and returns all the tests attached to entry. An algorithm that distinguishes
between semantic and syntactic changes would note that the behavior of the nodes
under entry and entry' is not, in fact, different, and would continue searching the
CDG's for real differences.

3.4.3.2 Enhancements and Contribution

This simple algorithm is inexpensive and easy to implement, but can be imprecise.
Consider, for example, a secure program fragment, in which two unrelated assignment
statements, S1 and S2, are swapped. The simple algorithm considers statement order
significant, so it finds the children of entry and entry' different, and returns all the
tests attached to entry. So, an algorithm that distinguishes between semantic and
syntactic changes would note that the behavior of the nodes under entry and entry' is

not, in fact, different, and would continue searching the CDG's for real differences.

On the other hand, any algorithm that is useful in this matter will increase the

precision of the approach for an exchange with computational cost.

37

We observe that when the backward slices of two PDG nodes are equal then the
statements are semantically equivalent [35]. So, in addition to comparing ordered
CDG nodes for textual equivalence, we should compare nodes that are not textually
equivalent with backward slicing. Note that the use of backward slicing for nodes is
only applicable for "statement nodes" within same regions in both CDS's, since any
swapping of positions of "statement nodes" that removes the node from outside its
original parent region will result a change in the structure of CDS. Hence, backward

slicing is not applicable.

It is necessary to be able to determine when different secure program statements have
equivalent behaviors. Given program points pl and p2 in programs P1 and P2,
respectively, we say that pl and p2 have equivalent behavior if for every initial state
on which both P1 and P2 terminate normally; pl and p2 produce the same sequence

of values [5, 43].

Furthermore we use a table or a hash table to store slices of each node that is a child
of node N in P and N' in P' who aren’t identical and then we attempt to match the
slices of children of node N' in P'. We can further improve the hash table approach.
We calculate and stores complete slices on each non-identical node in the PDG, we
reduce slice calculation by summarizing the slices computed for nodes higher in the
hierarchy, and using these summaries in subsequent slice computations. For example,
given a PDG, when we encounter and attempt to slice back on a node Si, slices of
nodes Si-n have been previously computed and found equivalent. We need slice no

farther back from these nodes

3.4.3.2.1 Program Slicing

In this section we discuss three slicing problems:

S.1. For a given program point p in program P, find [a superset of] the points q of P
such that if the behavior at q were different then the behavior at p would be different.
S.2. For a given program point p in program P, find [a superset of] the points q of P
such that if the behavior at p were different then the behavior at q would be different.5

38

In other words, problem S.1 asks for the set of points that might affect the behavior at
p, while problem S.2 asks for the set of points that might be affected by p.

S.3. For a given program point p in program P, find a projection Q of P such that
when P and Q are run on the same initial state, the behaviors at p in P and Q are

identical.

Problems S.1 and S.3 are closely related. Often, a solution to one provides a solution
to the other . We refer to the two problems as backward slicing. Problem S.2 is

referred to as forward slicing.

A simple algorithm that computes backward slices can help identifying true
diffrerences between two secure programs, permitting to focus attention on

meaningful changes of the program.

S1.C=4 ‘__’ S1.P=3.14

S2.B=C —» S2.RAD=3
S3.A=B+C S4. area = p*rad*rad
S4.D=A+C __» | S4. Circ =2* rad*rad
S5.F=D+B S5. Output area

S6.E= 8 «— S6. Output Circ
S7.B=30+E <

S8.A=B+C <— | Backward slice from this point

Figure 3.9. showing 2 examples of bakward slicing.

Backward slices in figure 3.9 are : S8-S7-S6-S1, and S6-S4-S2-S1 respecitvely.

39

Chapter 4

Support System

We have implemented a security regression testing tool as a support system for this
thesis. The objective of the support system is to prove the validity and applicability of
the concepts and strategies presented earlier. The developed system helps testers and
application maintainer understand the secure applications, identify code changes,
support software and requirements updates, enhance, and detect change effects. It
helps create a testing environment to select test cases to be rerun when a change is

made to the trused application using our 3-phase regression testing methodology.

The system tool is made for Progress datatbase applications programmed using the

Progress language.
Our security regression testing tool is composed of six parts:

Trusted application parsing.
Trusted code analysis.

CDS construction.

Trusted regression testing selection.

Backward slicing.

AN

Test case reduction.

In the following, we will discuss the functionality implemented in each part of the
tool. Note that step one to step three is applied for both original trused application
and its modified version. Both parsing and analysis are necessary steps primary and

essential to CDS construction, which will be the basis of our test selection algorithm.

40

4.1) Trusted Application Parsing

A parser is a program that dissects source code so that it can be translated into object
code. In the parsing phase, we divide trusted code into small components that can be
analyzed. For example, parsing a procedure would involve dividing it into statements,
predicates, etc. and identifying the type of each component. Parsing is an essential
part of our strategy discipline. For example, compilers must parse source code to be
able to translate it into object code. Likewise, our application tool processes complex

commands. This includes eventually all trusted applications.

Parsing is often divided into lexical analysis and semantic parsing. Lexical analysis
concentrates on dividing strings into components, called tokens, based on punctuation
and other keys. Semantic parsing then attempts to determine the meaning of the

string.

Initially, our tool accepts the full path and name of both trusted program and its
modified version to be parsed, and the result will be the basis of work in the

subsequent steps.

4.2) Trusted Code Analysis

Trusted code analysis involves building syntax trees for the parsed code, removing
all non significant code like remarks, useless code, irreleavant definitions etc, and
then use these syntax trees to gather control flow information for use in CDS

construction.

Performing all these tasks requires a mechanism of storing the result in one step

using a lexical analyser, and passing them to succeeding steps.

41

4.3) CDS Construction

In this section, we use our algorithm for constructing the control dependence
subgraph (CDS). The tool accepts an abstract syntax tree (AST) for a procedure P
and outputs the CDS for P. For our tool, the language contains the following type of
statements: simple statements (assignment), structured (if-else, while, for-each, etc.),
structured transfers of control (continue, break, return no-apply, quit, exit, etc.), and
may contain unstructured transfers. Other constructs and statements are handled
similarly. The tool uses a left to right preorder traversal of P's AST, and takes
appropriate actions as each node is encountered. Our tool uses a stack, and the usual

use of stack operations, to maintain nesting, and therefore control dependencies.

In most cases, our tool encodes control flow implicitly through node order. By
ordering nodes, our tool preserves the implicit control flow. The reslt of CDS
construction will be used subsequently for the implementation of the trusted

regression test selection.

4.4) Trusted Regression Test Selection

At this stage, the CDS of the secure application and its modified version are ready,
and the entry nodes of each one of them is used as input for selection test phase
which will run recursively. The tool works as follows: given any two CDG nodes N
and N', the tool marks these nodes as "visited", and then determines whether the

children of these nodes are semantically and syntactally identical.

4.5) Backward Slicing

In addition to comparing ordered CDG nodes for textual equivalence, the tool uses
backward slicing to compare nodes that are not textually equivalent, and stores the
slices of both children nodes in a table. It then attempts to match the slices of both

nodes.

The tool improves the table approach by summarizing the slices computed for nodes

higher in the hierarchy, and using these slices in the subsequent slice computations.

42

4.6) Tool Interface

The information gathered in the previous steps is displayed. The tester can navigate
into the CDS trees of both main and modified trusted application. While navigating
through the module statements, the information gathered on each statement is

displayed. In figure 4.1 we give the screen that gives the full information.

insest window title>

7

Jymselreg\wroru. w

el \msevragi\w-cruz . w

NO-APPLY.

IF THIS-PROCEDURE: PE THEN RETURN NO-APPLY.

THEN - RETURN ‘NO-APPLY

s:oigioio ook

Figure 4.1 The tool's information display screen.

43

4.7) Modification Detection

The affected regions due to modification are determined and displayed in the tool's
interface. It gives the tester specific details about the region to be re-tested and which
part of the region is affected directly or inderctly in the modification process. Figure

4.1 displays the browser that contains the result of selection strategy.

4.8) Conclusion

The support system is an effective way for supporting testing efforts. It tackles the
problem of specification modifications and code modifications for trusted
applications. Also, The tool has an iterface that maps the original trused application
and its modified version to CDG and CDG' respectively, and represents the two
graphs separately in two different browsers. Furthermore, the tool detects
automatically new changes in the modified trusted application, and displays the

affected node, the region to be retested, and the contents of the modified node.

44

Chapter 5

Empirical Results

To empirically investigate the use of our regression testing methodology, we
have performed a study on a prototype of trusted application. In this chapter, we

describe this study and discuss its results.

5.1) Experimental Design

We use a prototype of a grant-revoke application. We propose a random number of
modifications to the application. Then, we study modifications using our maintenance
tool and report the regions and the test cases that should be rerun according to the
regression testing strategy implemented in the tool. The experimental work is done
on a PC, running Pentium IV 3.2 GHz, 512 MB RAM, and using the PC version of

Progress.

The application is a grant-revoke secure application (figure 5.1), which contains most

of the language constructs, statement, and controls that we have studied.

The variables identified in the trusted system can be identified as follows :

e PrivName is the type of object privilege that can be granted (all, select, insert,
update, delete).

e Grantor: user granting an object privilege.

¢ Grantee: user being granted an object privilege.

e GranteeType is the type of grantee for a particular grant operation as defined
in the first sentence of grant object privelege requirement, and a grantee can
be a user, role, or public.

» Selected object: object selected for a particular grant operation.

* Grantedobject: object for which grant privelege have previously been granted

(identified through grant option).

45

e Object owner is the owner of the object.

((grantor_owns_object) (NOT(grantor_owns_object))
OR AND
(has_grantable_obj_privs)) | (NOT(has_grantable_obj_privs))
AND AND
(grantor != grantee) (grantor != grantee)
AND AND
(granteeType = user (granteeType = user
OR (granteeType = role OR (granteeType = role
AND AND
granteeRolelD = granteeRolelD = valid_rolelD))
valid_rolelD) AND
OR granteeType = (selectedObjPriv = ALL
PUBLIC) OR selectedObjPriv = UPDATE
AND OR selectedObjPriv = SELECT
(selectedObjPriv = ALL OR selectedObjPriv = INSERT
OR selectedObjPriv = OR selectedObjPriv = DELETE)
UPDATE
OR selectedObjPriv =
SELECT
OR selectedObjPriv =
INSERT
OR selectedObjPriv =
DELETE)

grant_obj_priv_OK | TRUE FALSE

Figure 5.1 Behavioral Specifications for “Granting Object Privilege” Capability

A role is a gourp of related users, and the related variables are:

Roleld and the GranteeRoleld.

Granting object privilege(GOP):
A normal user (the grantor) can grant an object priv. To another user,role or public (
the grantee) only if:

a) the grantor owns the object.

b) The grantor has been granted the object privileges with the grant_option.

Grantor_owns_object_relation:

Grantor_owns_object = true if grantor = objOwner else = false.

Relation grantee constraints:

There are three cases:

46

a) If the granteeType is user then the grantee is a user, and to ensure that the

grantee is granted privileges as a user and not through the grantee’s role, the
roleld must not be equal to granteeRoleld.

b) If the granteeType = role then the roleld must be valid and the granteeRoleld
must be equal to rolelD.

¢) If the granteeType is public (all users) then the other vars could take any

value.

Relation granted object privileges:
a) The selected object is the object for which the privilege was granted (the
selected object is the granted object).
b) The privilege was granted with the option to grant others the privilege
(grant_option is true).
¢) The owner of the object is not the grantor.

d) The owner of the object is not the grantee.

Relation GrantObjPriv:
1. GOP(A) — Grantor can grant privilege to a grantee because the grantor
owns the object.
2. GOP(B) - Grantor can grant privilege to a grantee because the grantor

has been granted object privileges with Grant Option.

Also, the following situations must be verified:
-Grantor is not the grantee
-All possible combinations of the GranteeType (user, role, public)

-All possible privileges on operations (all, update, select, etc) .

The difference between the true and false case for the GrantObjPriv is that the true
case establishes the required conditions:
1- the grantor_owns_object relationship that is associated with GOP(A)
where the grantor owns the object OR.
2- granted_obj_priv and grantee constraints that is associated with
GOP(B).

47

The false case establishes the conditions where the grant operation fails:
1- grantor is not the object owner.

2- grantor has not been granted object privelege.

Input

PrivName Output

ObjectOwner

Grantor_ Owns_ Obj

Grrantor

Grant
Obj
Priv

A A
A\ A 4 JV

Granted_obj_priv | |

YVvvy

Grantee, selectedObyj,
GrantedObj

Grantee_constraints

A 4

GranteeType,
GranteeRoleID, RoelD

Figure 5.2 Grant-revoke trusted model application.

5.2) Results

To aquire and analyse empirical results, the tool was used on the grant-revoke trusted
application and its modified versions. Figure 5.3 represents the CDG table of the

initial secure application grant-revoke.

node # label fatherid loopid Value

1 Entry 0 0

2 exit 1 0

3 p1 1 0 if grantor = SelectedObjOwner then do:
4 R1 3 0

5 s2 4 0 Grantor_owns_object = true.

6 s3 1 0 def var f1 as logical .

7 s4 1 0 def var f2 as logical .

8 sh5 1 0 def var 3 as logical .

9 s6 1 0 def var f4 as logical .

10 p7 1 0 if selectedobjpriv = grantedobjpriv then do:
11 R2 10 0

12 s8 11 0 f1 = true .

13 p9 11 0 if selectedobj = grantedobj then do :

14 R3 13 0

15 s10 14 0 f2=true.

16 p11 11 0 if selectedobjowner <> grantor then do :
17 R4 16 0

18 s12 17 0 f3 = true .

48

p13 17 0 if selectedobjowner <> grantee then do :
R5 19 0
s14 20 0 4 = true .
p15 1 0 if grant_option and f1 and f2 and f3 and 4 then do :
R6 22 0
24 s16 23 0 Has_grantable_obj_privs = true .
25 s17 1 0 Define var 5 as logical .
26 s18 1 0 Define var f6 as logical .
27 s19 1 0 Define var 7 as logical .
28 s20 1 0 Define var 8 as logical .
29 s21 1 0 Define var {9 as logical .
30 s22 1 0 Define var 10 as logical .
31 s23 1 0 Define var valid_roleld as integer .
32 p24 1 0 if not { (grantor_owns_object) OR (has_grantable_obj_privs)) then do :
33 R7 32 0
34 p25 33 0 if (selectedObjPriv = "ALL" OR selectedObjl?riv = "UPDATE" OR selectedObjPriv ="
selectedObjPriv = "INSERT" OR selectedObjPriv = "DELETE") then do :
35 R8 34 0
36 s26 35 0 5 = true .
37 p27 33 0 if (granteeType = "user" OR (granteeType = "role” AND granteeRolelD = valid_roleid
"public") then do :
38 R9 37 0
39 s28 38 0 f6 = true.
40 p29 33 0 if (grantor <> grantee) then do :
41 R10 40 0
42 s30 41 0 f7 =true .
43 p31 1 0 if ((grantor_owns_object) OR (has_grantable_obj_privs)) AND f7 AND f6 and f5 the
44 R11 43 0
45 s32 44 0 GRANTt = TRUE .
46 R12 43 0
47 s33 46 0 Grantt = false .

Figure 5.3 CDG table for initial grant-revoke secure application

The test history of the grant-revoke secure application is divided into groups of tests,
each represent a class of tests that reach a set of regions. The tests groups that form

the original test suit is represented by the table in figure 5.4.

Execution history/Traversed regions Test class
entry, R1 T1
entry, R2, R3 T2
entry, R2, R4, R5 T3
entry, R6 T4
entry, R7, R8 T5
entry, R7, R9 T6
entry, R7, R10 T7
entry, R11 T8
entry, R12 T9

Figure 5.4. Original test suite table.

49

5.2.1 Modification Cases

In this section, we discuss each modification case alone (Modification include
insertion, deletion, addition, swapping, etc). We give the directly and indirectly
affected regions, and the test classe to be re-run. To get these results, we have to
analyse the modified version of the trused application of each modification case. This
task requires the same time required by the tool to analyse the initial which is around
3 seconds, in addition to the time required to identify modified regions, which is

around 4 seconds, for each modification case.

Casel:

Modification: delete statement s17.

Directly affected regions: all.

Test classes traversing all affected regions: T1, T2, T3, T4,....,T9.

Percentage of test reduction: 0%.

Case2:

Modification: modify statement s17.

Directly affected regions: all.

Test classes traversing all affected regions: T1, T2, T3, T4,....,T9.

Percentage of test reduction: 0%.

Case3

Modification: modify statement s3.

Directly affected regions: R12.

Indirectly affected regions: none.

Test classes traversing all affected regions: T9.

Percentage of test reduction: 89%.

50

Cased

Modification: add a new statement s right after statement s3 .
Directly affected regions: R12.

Indirectly affected regions: none.

Test classes traversing all affected regions: T9.

Percentage of test reduction: 89%.

Case5

Modification: modify statement s3.

Directly affected regions: R12.

Indirectly affected regions: none.

Test classes traversing all affected regions: T9.

Percentage of test reduction: 89%.

Caseb

Modification: randomly swapp places between statements s17,s18,..

Directly affected regions: none.
Indirectly affected regions: none.
Test classes traversing all affected regions: none.

Percentage of test reduction: 100%.

Case7

Modification: delete statement s8.

Directly affected regions: R2.

Indirectly affected regions: R3, R4,RS5.

Test classes traversing all affected regions: T2, T3.

Percentage of test reduction: 78%.

Case8

Modification: delete or modify s12.

Directly affected regions: R4.

Indirectly affected regions: R2, R4, R5.

Test classes traversing all affected regions: T3.

Percentage of test reduction: 89%.

51

.822.

Case9

Modification: add new statement s after statement s10.
Directly affected regions: R3.

Indirectly affected regions: R2.

Test classes traversing all affected regions: T2.

Percentage of test reduction: 89%.

Casel0

Modification: delete or modify s14.

Directly affected regions: RS.

Indirectly affected regions: R2, R4.

Test classes traversing all affected regions: T3, T4.

Percentage of test reduction: 80%.

Casell

Modification: move statement S2 and put it after statement S10.

Directly affected regions: R1, R3.
Indirectly affected regions: R2.
Test classes traversing all affected regions: T1, T2.

Percentage of test reduction: 89%.

Casel2

Modification: move s3 after P7.
Directly affected regions: All.
Indirectly affected regions: All.

Test classes traversing all affected regions: T1, T2, T3,....

Percentage of test reduction: 0%.

52

Casel3

Modification: move statement S5 to the beginning of all code.
Directly affected regions: none.

Indirectly affected regions: none.

Test classes traversing all affected regions: none.

Percentage of test reduction: 100%.

Casel4

Modification: add statement after statement S26 or modify statement S26.
Directly affected regions: R8.

Indirectly affected regions: R7.

Test classes traversing all affected regions: TS5.

Percentage of test reduction: 89%.

Casel5

Modification: delete statement S30.

Directly affected regions: R10.

Indirectly affected regions: R7.

Test classes traversing all affected regions: T7.

Percentage of test reduction: 89%.

Casel6

Modification: add statement after statement S14 and modify statement S10 and S30.

Directly affected regions: R3, R5, R10.
Indirectly affected regions: R4, R2, R7.
Test classes traversing all affected regions: T2, T3, T7.

Percentage of test reduction: 66%.

Casel?

Modification: modify predicate P25.

Directly affected regions: R7.

Indirectly affected regions: R8, R9, R10.

Test classes traversing all affected regions: TS5, T6, T7.

Percentage of test reduction: 66%.

53

Casel8

Modification: delete predicate P25.

Directly affected regions: R7.

Indirectly affected regions: none.

Test classes traversing all affected regions: T6, T7.

Percentage of test reduction: 78%.

Casel9

Modification: modify statement S14, S12, P13.
Directly affected regions: R4, RS5.

Indirectly affected regions: R2.

Test classes traversing all affected regions: T3.

Percentage of test reduction: 89%.

Case20

Modification: delete statement S26, S28, S30, and modify P27, P28, P29.
Directly affected regions: R7, R8, R9, R10.

Indirectly affected regions: none.

Test classes traversing all affected regions: T5, T6, T7.

Percentage of test reduction: 66%.

5.2.2 Summary of Results

In figure 5.5, we present a summary of test cases presented in this section. We classify
these results into two parts. In the first part, we give the results of phase one of our
regression testing methodology for secure applications. In the second part, we give
the results of phase two, which include a count of test case classes selected by our

tool.

Phase 1 results include a list of the following:
1. Directly affected regions.
2. Indirectly affected regions.

54

Phase 2 results include a list of the following:

1. Test case classes selected by our strategy.

2. Percentage of test case reduction.

Modification Directly Indirectly Percentage | Percenatage

Cases affected affected Of test Of
regions regions Case Reduction

selections

1.Modify statement. | 26 10 27 72.7

2. Add statement. 6 5 16.5 83.25

3. Delete Statement. | 20 9 33.16 67

4. Move Statement. | 14 1 30.5 72.25

5.Modify Predicate. | 16 7 33 66

6. Delete predicate. | 9 7 22 88

7. Add Predicate. 16 14 65.37 335

8. Move predicate. | 30 17 87 13

Figure 5.5. Summary of Results. (Total Test cases = 40)

100
80
60
40
20

Reduction Percentage

I=

1.Modify statement.
2. Add statement.
3. Delete
Statement.

4. Move Statement.

5.Modify Predicate.

1 6. Delete predicate.

7. Add Predicate.

8. Move predicate.

55

Figure 5.6 Percentage of test case reduction.

5.2.3 Discussion of Results

Using our new strategy in trusted regression testing, the tool did a good test reduction
and selection job. Out of 80 test vectors of the original test suite used to test the
trusted application, we had on average 39% of test cases selected with average of 17
regions directly affected, and 9 regions indirectly affected. This ratio is greatly
affected by the number of modifications and the distribution of test cases within the
regions. The number of affected regions per modifications depends on the interaction
level between the regions in the trused application. On the other hand, Execution time
was negligable, and this varies according to the size of the trusted application.

We repeated each experiment five times for each (base trusted program, modified
version). The experminetal results showed that our strategy reduced the size of
selected tests, and the overall savings were promising.

In fact, our tool reduced test case by more than 60 % on average comparing to "select-
all" approach. On the other hand, 60% reduction of test cases is equal to days, hours,
even weeks of testing effort. These results show that our approach is precise, and
directed towards safety, and greater precision in regression testing of trusted

applications.

56

Chapter 6

Conclusion and Future Work

6.1) Summary

Throughout this thesis, we demonstrated the need for a new systematic
methodogy that can be applied in practive to trusted application to handle both
requirement and code modifications. We achieved this by detecting code design, code
changes, and deriving the selected tests based on control dependence graph and
regression testing. The problem of security regression testing in practice is defined.
Existing regression testing methodologies are discussed and criticized. A new
technique for trusted application regression testing is presented. This technique is safe

and efficient.

Chaptersl and 2 provide the reader with definitions and background
information related to regression testing. The problems of regression testing were
identified and related work was discussed. Chapter 3 described the details of the new
methodology and our enhancements. Our new strategy provides a new objective in
regression testing of trusted applications, which has good potential to guide trusted
code test selection. In chapter 4, an implementation of our new strategy was
discussed. The resulting tool performs regression testing on trusted code, and its
modified version, and displays result in a simple and readable way even for less
experienced test personnel. In chapter 5, evaluations and discussions were presented
based on the case studies. The results of the case studies indicated that this technique

was cost-effictive, safe, and efficient in finding only real changes and defects.

57

In our thesis, we presented a new methodology for re-testing trusted applications,

because it is safe unlike previously mentioned methods, since it selects every test than
can possibly exhibit different behaviour in a modified trusted code, including tests
that cover new or deleted code, and that what it makes it specially tailored for trusted
applications.

Also, it is more precise than existing algorithms aimed at achieving safe solutions,
because it does not base its selection on whether code is affected, looking instead for
changed code. Our algorithm is faster and more space efficient than other algorithms,

and does not require information on code modifications.

6.2) Contributions of the Thesis

The contributions of this thesis can be summarized as follows:

¢ Demonstrate that trusted application regression testing is essential for
conducting and managing trusted code regression analysis.

* Provide a new technique for trusted code selective retest that is neither
coverage criteria based nor requires complete information on corresponding
program components, and can be implemented in a test tool. In addition, it is
directed toward finding modifications in trusted applications.

e Introduce a new strategy of combinging select-test algorithm and backward
slicing that work on both intra-procedural level and iter-procedural level. It
provides a clean and useful focus on the real modifications of trusted code.

* Develop and illustrate the use of our newly developped tool, and show that our

strategy can be used to produce quality regression testing suites.

58

60.3) Future Work

Future work includes using more components for case studies, performing
additional empirical results to evaluate the effectiveness of our technique, and
applying a variety of code changes to our tool in a production re-test environment. We
are looking into utilizing statistical analysis tool such as SPSS to aid in determining

the effectiveness of our technique in practice.

In below, we briefly expand on some of these issues:

o Implement the technique in production test environment: compared to
computer processing time, the time of software engineers is much more
costly. Hence, automation is essential to the usability of security regression
testing methodology. Our tool for trusted application regression testing can be

implemented in a production re-test environment.

» Use statistical analysis tools to determine the effectiveness of our strategy in
practice: when we evaluated our technique, we found that the future use of a
statistical analysis tool can be powerful in measuring test selections, and

improvements on test selections.

From our experience, incomplete and out-of date documentation exists throughout
project development and always causes big problems. Because requirement capturing
and system design are often done in an informal way, requirement and design
documentation is written manually. That causes more serious problems in trusted
application re-testing since the document is error-prone. As a part of testing,
documentation testing is not done efficiently. Formal regression testing
methodologies still have practical problems and not tailored specifically for trusted
applications. This thesis has opened new research topics related to secure application

regression testing.

59

[1]

[2]

[3]

[7]

[8]

[10]

[11]

[12]

References

A.B. Taha, S.M. Thebaut, and S.S. Liu, "An approach to software fault localization and
revalidation based on incremental data flow analysis," Proceedings of the 13th Annual
International Computer Software and Applications Conference, pp. 527-34, September,
1989.

B. Korel, "The program dependence graph in static program testing," Information
Processing Letters, vol. 24, pp. 103-108, January 1987.

B. Sherlund and B. Korel, "Modification oriented software testing," Conference
Proceedings: Quality Week 1991, pp. 1-17, 1991.

Benedusi, A. Cimitile, and U. De Carlini. Postmaintenance testing based on path
change analysis. In Proceedings of the Conference on Software Maintenance -
1988, pages 352-61, October 1988.

Binkley, "Using semantic differencing to reduce the cost of regression testing,"
Proceedings of the Conference on Software Maintenance '92, pp. 41-50, November
1992.

E. Duesterwald, R. Gupta and M. L. Soffa, "Rigorous data flow testing through
output influences," Proceedings of the 2nd Irvine Software Symposium (ISS'92),
pp. 131-145, March 1992.

E. Schatz and B. G. Ryder, "Directed tracing to detect race conditions," LCSR-TR-
176, Laboratory for Computer Science Research, Rutgers University, February 1992.
E.F. Miller. Exploitation of software test technology. In Proceedings of the 1993
International Symposium on Software Testing and Analysis (ISSTA), page 159,
June 1993.

G. Rothermel and M.J. Harrold, "A comparison of regression test selection techniques"
Technical Report 114, Clemson University, Clemson, SC, April 1993.

G. Rothermel and M.J. Harrold, "A safe, efficient regression test selection technique"
ACM transactions on software engeneering and methodology, Vol. 6, No. 2 , April
1997.

Gupta and M. L. Soffa, "Automatic generation of a compact test suite," Proceedings
of the Twelfth IFIP.

H. Agrawal and J. Horgan, "Dynamic program slicing," Proceedings of ACM
SIGPLAN '90 Symposium on Programming Language Design and
Implementation, pp. 246-256, June 1990.

60

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

H. Agrawal, J. Horgan, E. Krauser, and S. London. Incremental Regression Testing.
In Proceedings of the Conference on Software Maintenance - 1993, pages 348-
357, September 1993.

H. Agrawal, R. DeMillo and E. Spafford, "Dynamic slicing in the presence of
unconstrained pointers," Proceedings of the Symposium on Testing, Analysis and
Verification, pp.60-73, October 1991.

H. Pande, B. G. Ryder, and W. Landi. Interprocedural def-use associations in C
programs. In Proceedings of the Fourth ACM Symposium on Testing, Analysis
and Verification (TAV4), October 1991.

H.K.N. Leung and L.J. White, "A cost model to compare regression test strategies,"
Proceedings of the Conference on Software Maintenance, 1991, pp. 201-8, October,
1991.

H.K.N. Leung and L.J. White, "A study of integration testing and software regression at
the integration level." Proceedings of the Conference on Software Maintenance, 1990,
pp. 290-300, November, 1990,

J Ferrante, K. J. Ottenstein and J. D. Warren, "The program dependence graph and its
use in optimization,” ACM Transactions on Programming Languages and
Systems, vol. 9, no. 3, pp. 319-349, July 1987.

J. Hartmann and D.J. Robson, "Techniques for selective revalidation," IEEE Software,
Vol. 16(1), pp. 31-8, January, 1990.

J. Laski and W. Szemer. Identification of program modifications and its applications
in software maintenance. In proceedings of the conference on software maintenance —
1992, apges 282-90, November 1992,

K.F. Fischer, F. Raji, and A. Chruscicki, "A methodology for retesting modificd
software," Proceedings of the National Telecommunications Conference, Vol. B-6-3,
pp. 1-6, November, 1981.

L.J. White and H.K.N. Leung, "A firewall concept for both control-flow and data-flow
in regression integration testing," Proceedings of the Conference on Software
Maintenance, 1992, pp. 262-70, November, 1992.

M. Davis and E. Weyuker. Computability, Complexity, and Languages. Academic
Press, Boston, MA, 1993,

M.J. Harrold and B. A. Malloy, "A unified interprocedural program representation for
a maintenance environment," IEEE Transactions on Software Engineering, to
appear.

M.J. Harrold and B. A. Malloy, "Data flow testing of parallelized code," Proceedings
of the Conference on Software Maintenance '92, pp. 272281, November 1992.

61

(26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

M.J. Harrold and B. A. Malloy, "Performing data flow analysis on the PDG",
Technical Report 92-108, Clemson University, March 1992.

M.J. Harrold, B. A. Malloy and G. Rothermel, "Efficient construction of program
dependence graphs," Technical Report 92-128 Clemson University, December 1992.

M.J. Harrold and M.L. Soffa, "An incremental approach to unit testing during
maintenance,” Proceedings of the Conference on Software Maintenance, 1988, pp. 362-
7, October, 1988.

M.J. Harrold and M.L. Soffa, "Interprocedural data flow testing," Proceedings of the
Third Testing, Analysis and Verification Symposium, pp. 158-67, December, 1989.
M.J. Harrold, B.A. Malloy, and G. Rothermel, "Efficient construction of program
dependence graphs," Proceedings of the International Symposium on Software Testing
and Analysis 93 (ISSTA93), pp. 160-70, June, 1993.

M. Weiser, "Program slicing," IEEE Transactions on Software Engineering, vol.
5E-10, no. 4, pp. 352-357, July 1884,

P. Benedusi, A. Cimitile, and U. De Carlini, "Postmaintenance testing based on path
change analysis," Proceedings of the Conference on Software Maintenance, 1988, Pp-
352-61, October, 1988.

R. Ballance and B. Maccabe, "Program dependence graphs for the rest of us,"

Technical Report, University of New Mexico, November 1992.

R. Cytron, J. Ferrante, B. Rosen and M. Wegman, "Efficiently computing static single
assignment form and the control dependence graph,” ACM Transactions on
Programming Languages and Systems, vol. 13, no. 4, pp. 451-490, October 1991.

R. Gupta, M. J. Harrold and M. L. Soffa, "An approach to regression testing using
slicing", Proceedings of the Conference on Software Maintenance '92,pp. 299-308,

November 1992.

R. M. Stallman, "Using and porting GNU CC," Free Software Foundation, Inc.,
Cambridge MA, pp. 73-77, February 1990.

S. Bates and S. Horwitz, "Incremental program testing using program dependence
graphs," Annual ACM Symposiumon ~ Principles of Programming Languages,
January, 1993,

S. Horwitz, T. Reps and D. Binkley, "Interprocedural slicing using dependence
graphs," ACM Transactions on Programming Languages and Systems, v. 12, no. 1,
pp. 26-60, January 1990.

[39] Schach, Software Engineering, Aksen Associates, Boston, MA, 1990.

62

[40]

S.S. Yau and Z. Kishimoto, "A method for revalidating modified programs in the
maintenance phase,"” COMPSAC '87: the Eleventh Annual International Computer
Software and Applications Conference, pp. 272-7, October, 1987.

[41] T.J. Ostrand and E.J. Weyuker, "Using dataflow analysis for regression testing,” Sixth

[42]

[43]

Annual Pacific Northwest Software Quality Conference, pp. 233-47, September, 1988.
U. Linnenkugel and M. Mullerburg, "Test data selection criteria for (software)
integration testing," Systems Integration '90. Proceedings of the First International
Conference on Systems Integration, pp. 709-17, April, 1990.

W. Yang, "Identifying syntactic differences between two programs," Software-Practice

and Experience, Vol. 21(7), pp. 739-55, July, 1991.

63

Appendix

User Manual:
The tool developped is in fact very easy to operate even for unexperienced personnel.
It has a single interface, which contains 2 fill-in fileds, 3 browsers, and two buttons.
The first fill-in field should be filled by test personnel which should contain the name
and full path of the original trusted application.
The second fill-in field should aslo filled by test personnel which should contain the
name and full path of the modified trusted application.
Next, the "OK" Button is selected, and the whole process runs in the background
internally.
The result will be displayed on 3 browsers:

* Browser one contains the CDG table of the first trusted application.

* Browser two contains the CDG table of the modified version.

e Browser Three contains full information on the location of the modified,

deleted, or added code, plus the region(s) that are directly affected.

64

	test 2a
	test 2b

