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Abstract—Node failures in distributed storage systems are
becoming a critical issue, and many erasure codes are designed
to handle such failures. The purpose of this paper is to evaluate
fractional repetition (FR) codes, a class of regenerating codes
for distributed storage systems, as a practical solution. FR
codes consist of a concatenation of an outer maximum distance
separable (MDS) code and an inner fractional repetition code
that splits the data into several blocks and stores multiple
replicas of each on different nodes in the system. We model the
problem as an integer linear programming problem that uses
modified versions of the fractional repetition code by allowing
different block sizes, and minimizes the recovery cost of all
single node failure scenarios. The contribution of this work
is three fold: We generate an optimized block distribution
schema that minimizes the total system repair cost in a data
center and we present a full recovery plan for the system. In
addition, we account for new-comer blocks and allocate them
to nodes with minimal computations and without changing
the original optimal schema. This makes our work practical to
apply. Hence, a practical solution for node failures is presented
by using a self-designed genetic algorithm that searches within
the feasible solution space. We show that our results are close
to optimal.

Keywords-distributed storage systems; FR codes; failure
recovery; genetic algorithms

I. INTRODUCTION

World data is increasing by more than two-fold every
two years and Internet traffic is dominating our network
highway. Photo storage in Facebook reached over 20 PB
in 2011 and is increasing by 60 TB every week [1]. In
fact, data is growing exponentially and data centers are
becoming a top priority for businesses. Data centers have
become critical for the very functioning of a big business
enterprise. Any interruptions in the data center operations
might cause huge losses for businesses if measures for
interruptions or failures were not considered [2], [3]. Data
centers use inexpensive individual hardware components that
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are prone to failure. ”Stuff fails in data centers, and always
has” [4]. For example, a study examined a large Facebook
cluster of 3000 nodes with about 45 PB of raw capacity [5].
Fig. 1 shows that the average failure rate was 22 nodes a day,
but failures could spike to more than 100 in a single day.
Thus there is a great need for data protection from device
failures, and for mechanisms to quickly recover or at least
mask the effects of node failures from users and connected
devices with minimum performance cost. The easiest way
for storage system to tolerate failures and prevent data loss
is to store replicas. This, however, results in decreased
storage efficiency. Another alternative is to store encoded
data using erasure coding [6] . Classical erasure codes
transform a message of k symbols into a longer message
(codeword) with n symbols such that the original message
can be recovered from a subset of the n symbols. Although
traditional erasure codes can reduce the storage overhead
as compared to replication, extensive network resources are
needed to repair a lost node. This is due to the fact that a
surviving node should read all its data, process them, then
send a linear combination of them to the replacement node.
To minimize the bandwidth consumed during the repair
process, regenerating codes were introduced in literature
where a failed node can be recovered by connecting to a
subset of d surviving nodes and downloading one block of
data from each.

In this work, we consider a family of regenerating erasure
codes that provide exact and uncoded repair where a surviv-
ing node reads the exact amount of data it needs to send to
a replacement node without any processing. This allows for
a low complexity repair process. These are the Fractional
Repetition (FR) codes that were first introduced in [7].

FR codes consist of a concatenation of an outer maximum
distance separable (MDS) code and an inner fractional
repetition code. In an (n,k,d) system where n is the total
number of storage nodes, k<n, is the total number of nodes
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Figure 1. Number of failed nodes over a single month period in a 3000
node production cluster of Facebook [5]

contacted to retrieve a file and d>k, is the number of nodes
contacted by a replacement node during node repair [7].
First, a file of size k packets is encoded using a (#;k) MDS
code as indicated in Fig. 2 such that any k out of 6 packets
can recover the file (MDS property). Then € distinct packets
are replicated p times and distributed on n storage nodes
where each coded packet is replicated on distinct nodes. A
user contacting k nodes can always decode the stored file
and this is achieved by the MDS property of the outer code.
A node failure can be repaired by constructing a new node
that contacts a specific set of d nodes for repair depending
on which node has failed. d represents also the minimum
node storage capacity expressed in packets [7].

In this work we present a practical solution for node
failures by implementing FR codes in a genetic algorithm
that is based on natural evolution. Since the problem is
huge and cannot be solved in polynomial time, the ge-
netic algorithm provides acceptable solutions in acceptable
time. The algorithm generates a close-to-optimal and a
post-optimal block distribution schema after arrival of a
new set of packets. Moreover, a full system recovery plan
that minimizes the total system repair cost is generated.
We demonstrate the optimality of the suggested algorithm
through simulation results on a variety of nodes and blocks
parameters.

We first provide a summary of the literature in section
II. The system model and our formulated problem are
discussed afterwards in sections III and IV, respectively. This
is followed by algorithms description and implementation in
section V, running examples and simulation results in section
VI, and finally the conclusion in section VII.

II. RELATED WORK

Several erasure codes [8]-[10] are being designed for
the purpose of optimizing performance in distributed stor-
age systems. Performance metrics include storage space,
reliability and recovery cost. Of these codes, regenerating
codes were first proposed as a new paradigm in coding
that achieves minimum bandwidth requirements by Dimakis
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Figure 2. An FR code with repetition degree p =2. A file consisting of k=2
packets is encoded using (3,2) MDS code. 6 =3 distinct encoded packets
are replicated and distributed on n=3 nodes.

[11]. However, in case of node failure, regenerating codes
require a helper node to read all its data and generate a linear
combination of them to send it to the newcomer node. In
this way the recovery approach does not satisfy the uncoded
repair property [7] explained earlier in the introduction.

Later in 2010 constructions of FR codes were introduced
by Rouayheb et al [7]. Of these, deterministic constructions
based on regular graphs and Steiner systems were presented
as a first step in the study of fractional repetition codes,
where a helper node reads only one of its stored packets and
sends it to the newcomer with no processing. Pawar et al pro-
posed a randomized construction of FR codes based on the
balls and bins probabilistic model [12]. These randomized
constructions provided more flexibility in terms of possible
system parameters compared to those constructions of El-
Rouayheb et al [7]. Both constructions take different design
considerations into account and are based on mathematical
models that do not provide an optimal block storage scheme
to achieve the goal of minimal recovery cost.

All of the above constructions were theoretical. Studying
the feasibility of implementing these new codes in practical
storage systems remains open.

As to recovery approaches, several studies were conducted
on the failure recovery problem in distributed storage sys-
tems. We state that of Zhu, 2012 who proposed a recovery
solution for distributed systems that use RDP and EvenOdd
RAID6 erasure codes. Single node failures can be recovered
by reconstructing the data of a failed node using decoding
techniques [13]. Another work was conducted on Facebook
warehouse clusters, where a framework was designed for a
recovery approach based on codes that are efficient in the
amount of data read and downloaded during node-repair.
The basic idea behind this framework was to take multiple
stripes of existing data on nodes and carefully add functions
of the data of one stripe to other stripes. This technique
required extra parities and computation of specific functions,
and thus used coded repair [14]. As we observe, the above
two approaches minimize the amount of data read during
repair but require extra computations and decoding. The
most recent and relevant work is that of Yu [15]. The
author proposed a new version of FR codes, irregular FR
codes, where different storage capacities of nodes, different
communication costs, and different number of packets per



coded block are assumed. The design considerations require
selection of helper nodes from a limited set of nodes
determined using hyper graphs. In this work, we provide
a new practical problem that was not tackled before where
a new set of packets is to be allocated on the current system
nodes following the optimal allocation of current packets.
The problem is approached using the concept of incidence
matrices such that all nodes in the network are candidates
for being helper nodes. Our goal is to implement a function
that generates a feasible and optimal (nx ) incidence matrix
that satisfies the FR code constraints, given specific system
parameters n, d, p, and 6. Then the incidence matrix will be
augmented with additional columns that account for new-
comer blocks in a practical minimal computation way that
can be easily implemented in reality without the need to
redistribute original on-node blocks. A storage allocation
matrix is computed based on an integer linear program
that selects the optimum recovery cost distribution scheme
and the corresponding table-based full-recovery plan for all
possible scenarios of single node failures.

III. SYSTEM MODEL

Data center infrastructure design is based on a layered
approach where issues regarding improving scalability, per-
formance, flexibility, resiliency, and maintenance are consid-
ered. The three functional layers of the data center are the
core layer, aggregation layer and access layer [16] and they
are described below:

1) The core layer is central to the data center network
and provides interconnection between the aggregation
layers. It uses high performance low latency switches
providing high densities that operate only on layer 3
devices.

2) The aggregation layer acts as a services layer for
the data center. Services such as load balancing,
SSL(Secure Socket Layer Optimization), Firewalling,
etc are typically found at this layer. It is used also
as an interconnection point for multiple access layer
switches.

3) The access layer is where the servers are physically
attached to the network. This layer contains modular
switches that afford layers 2 and 3 topologies and
allow future proofing the network [16].

Consider an (n,k,d) distributed storage system where the
FR code of repetition factor p is to be used as a redundancy
scheme. The underlying networked environment connecting
the nodes may have different transmission bandwidths and
topologies. Thus each storage node will have different
communication costs. Our system model is depicted in Fig.
3 where c,; represents the retrieval cost of a block j from
a helper node a.

To explain our work, we provide a detailed example
where we consider a distributed system with 6 nodes such
that an encoded data object with 4 distinct blocks is to
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Figure 3. Distributed Storage System Diagram

be stored. Assume that the system can tolerate 2 node
failures for a replication factor of 3. Each block will be
replicated on three different nodes and each node will store
two distinct blocks. The bandwidth and communications
costs of different nodes need not be the same. An initial
random block assignment matrix B where rows correspond
to nodes and blocks correspond to columns would be as
follows together with a given communication cost matrix C,
is given below. The cost matrix associates with every block
in a node a generic retrieval cost.

00 1 1 2 2 2 8]
1100 72 10 2
1010 5 7 6 6

B= C =
100 1 39 7 4
010 1 16 1 6
0 1 1 0 9 8 9 4

For the case of one node failure, assuming node 1 fails
the optimal recovery schema is to recover block 3 from node
3 and block 4 from node 4. If node 2 fails, it is optimal to
recover block 1 from node 4 and block 2 from node 5, and
so on as specified in retrieval plan matrix R.
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The total recovery cost would be the cost of recovering all
nodes individually taking into consideration all single node
failure scenarios. The total optimal recovery cost for this
distribution schema in this case will be RC = ¢33 + c44 +
€41+ Cs2+Cq1 +C13+C31 +C54 +Coa+Caqa +Co2+C33+Caq
= 45.

However, if the block distribution matrix B was given as:



01 1 0]
010 1
00 1 1
B =
1100
1010
1 0 0 1]

then the total recovery cost for all nodes would be 23.
Hence, there should be an optimal distribution of blocks and
replicated blocks among nodes so that the system recovery
cost would be minimal. The optimal recovery schema for
the second block assignment matrix B is given below in
modified matrix R, where the new-comer node will replace
the failed node by downloading respective blocks from the
nodes specified in R.

02 5 0
0106
005 2

R:
52 0 0
4010
5 0 0 2]

The interpretation of R would be to recover node 1 from
nodes 2 and 5, recover node 2 from nodes 1 and 6, and so
on..., based on optimal solution of block assignment matrix
for all nodes.

For the case of new-comer blocks, once a block arrives,
it is replicated p times and split among the nodes in an
optimal way such that the original optimal block distribution
matrix and the recovery plan are not changed. The new block
locations are added on top of the optimized problem plan as
described in the next example.

Given the optimized block distribution schema B, suppose
a set of packets grouped in a single new block is to be stored
in the system. Using the same concept of minimizing total
system repair cost on top of the given optimal arrangement,
the post-optimal block assignment matrix would be

01 1 01 3]
01 011 1
00110 . : 4
B = given new retrieval costs cg;
110 0 0 8
1 01 01 9
11 0 0 1 0] 18]

The corresponding post-optimal recovery plan is evaluated
as:

0 2 5 0 2]
0106 1
005 20
R=
520 0 0
4010 2
5 0 0 2 0]

The interpretation of the above R would be the same as
that in subsection A except for the new-comer block which
should be retrieved from node 2 if nodes 1 or 5 fail and
from node 1 if node 2 fails. This will be the best practical
solution that will take minimal computations which allows
it to be implemented on the spot.

IV. PROBLEM FORMULATION

Given a distributed system with n nodes. # distinct blocks
are to be stored on the nodes with a given replication factor
p. Every node can store a minimum of d blocks. Given
different communication costs and link bandwidths between
nodes, the problem of failure recovery with different failure
scenarios is modeled and solved using incidence matrices.

Let the communication cost matrix represent the cost of
new-comer node [ to retrieve block j from a helper node
a. Then we need to find a block assignment matrix that
minimizes the following value:

Retrieval Cost

n %
RC = minZZmincajxij.xaj (D

i=1 j=1 z;
a#i el

V node o that holds a retrieval block and satisfies cq;
minimal such that x,; & ;; # 0.

X;; € {0,1} is a Boolean variable indicating that node i
holds block j. The value RC is to be minimized under the
condition that the block assignment matrix satisfies the fol-
lowing constraints adopted from the FR code requirements,
and other additional constraints explained next.

> mij=p 2)
=1

The above constraint is a replication factor constraint
where the total number of replicas of a specific block j in
all nodes is p.

o
> mij=d 3)
i=1

Constraint (3) specifies the total number of blocks per
node.

Assuming different size blocks and a specific storage
capacity per node, we should add the following storage
constraint, where s; is the size associated with every block
j and SC is the total storage capacity of each node in the
system.



0
> s < SC. )
j=1

The failure recovery problem is an integer linear program-
ming problem and cannot be solved optimally in polynomial
time for large network sizes. The next section will present
the heuristic approach used to tackle the problem.

V. GENETIC ALGORITHM DESCRIPTION AND
IMPLEMENTATION

Genetic algorithms are stochastic search algorithms based
on natural evolution. Once a problem is clearly defined, and
candidate solutions are represented in a discrete way (i.e
binary string, distinct numbers string), then it can be solved
using the GA major steps described in the context of our
algorithm. Every iteration in a GA represents a generation.
The entire set of generations constitutes a run. One or more
highly fit chromosomes are expected to be generated at the
end of a run.

The implemented code for the optimization methodology
was designed as a self-cross-over genetic algorithm that
starts with a random distribution of blocks on nodes and
then searches within the feasible space by redistributing the
blocks and generating a close-to-optimal solution [17], [18].
A description of the algorithm phases is stated next.

A. Chromosome Representation

The modeling of a chromosome was that each one rep-
resents a feasible solution that constitutes a binary block
assignment matrix generated using different permutations
and satisfying the constraints (2), (3) and (4). An example
of a chromosome representation for the values (n=3, d=2,
0=3,p=2) is [1 0 1 1 1 0 0 1 1] where the nx# block
assignment matrix is transformed to a single (nx6,1) row
matrix.

B. Generation of Initial Population

The phase that follows is generating an initial population
for reproduction after carrying out the chromosome encoding
phase. Given a pre-specified population size p, the initial
population will include p chromosomes that are generated
at random using a self-designed constructive method im-
plemented as a function that generates feasible allocation
schema.

C. Self Cross-over and Mutation Operations

The conventional cross-over technique cannot be applied
in our model since it will result in an in-feasible new
chromosome. This paper adopts the self-cross-over method
inspired by the fact that the feasible allocation matrices can
be generated from one another by exchanging rows within
a single matrix. The implemented cross-over procedure was
done as specified in Algorithm 1.

Algorithm 1.  Self Cross-over Implementation

1. Select single parent chromosome from population based
on fitness function
2. Generate one, or two cross-over points (either random
or specified by user)
3. Genes between cross-over points move to the offspring
swapped.
4. Repeat steps 1 to 3 till we generate a certain number of
off-springs.

Note that elitism was used to help keep up the optimal
chromosome in every generation. Mutation is also used to
maintain diversity in the population and to make sure that
the achieved solution is not a local optima. In mutation, the
whole chromosome bits are swapped as if the chromosome
is read from right to left as follows:

original chromosome: [ 10111001 1]

mutated chromosome: [ 1 1001110 1]

D. Fitness Function

Every chromosome i.e. individual is associated with a
fitness function calculated using Algorithm 2.

Algorithm 2. Fitness Function Calculation

Given a chromosome that represents a binary block assign-
ment matrix, perform the following:
V node i € the system

1 Repeat

2 Let i =1 be the failed node

3. ¥ block j belongs to node i

4 Repeat

5 Check for all nodes o such that node o has a
replica of block j

6. Select the node a with minimum retrieval cost
Caj

7. Assign « as one of the helper nodes for failed
node i and save it in recovery plan matrix

8. Update node i retrieval cost value to be
Zgzlwcaﬂij-%a‘

aFi

9. Update recovery plan to include helper nodes for
recovering all blocks j of node i

10. End of inner loop

11. Update total retrieval cost value for all nodes to be
2 i (n\?cajxijwaj

12. Update system recovery plan for next failure scenario

13. i=i+1

14.  End of outer loop when i exceeds n




Algorithm 3 accounts for new-comer blocks and generates
a post-optimal recovery plan with the best possible distribu-
tion of new-comer blocks on the system nodes.

Algorithm 3. New-comer Blocks Allocation

Given a chromosome that represents an optimal binary block
assignment matrix, perform the following:
V newcomer block j

1. Replicate block j , p times

2. Distribute replicas of j by augmenting the optimal block
assignment matrix that was generated based on best
fitness _ using Algorithm 2

3. Calculate the fitness of the newly augmented column

4. Update the value of the optimal fitness; i.e. cost gener-
ated by Algorithm 2

5. Select chromosomes with best fitness

6. Apply cross-over and mutation operations only on aug-
mented columns of chromosomes with best fitness

7.  After a specific number of generations, select the optimal
chromosome and update the original optimal block allo-
cation schema together with the optimal recovery plan
to account for the new-comers

8. Repeat steps 1-7 for all new-comer blocks

Our heuristic can get an estimation of the minimum
system repair cost within few minutes when we have large
network sizes together with a table-based full recovery plan.

VI. SIMULATION RESULTS

In this section, we present the results of our implementa-
tion for different cases of single node failures. The machine
employed for simulation is a Lenovo laptop with an Intel
(R) Core i7 CPU running at 2 GHz with 8 GB RAM. The
operating system is Windows 7, and the computer is a 64-bit
machine. The elapsed time was 1.845 seconds for Figure 4
results and 34 seconds for Figure 5 results. The simulation
programs were written in MATLAB.

To gain more understanding about the performance, we
vary the parameters n, 6 and p. We then increase the network
size and measure its running time. Figure 4 shows the
convergence curve of the optimal repair cost together with
the average cost for each generation given n=10 nodes, 6
= 50 blocks and replication factor p = 4. Figure 5 shows
the curve for values of n= 50 nodes, 6 = 125 blocks and
replication factor p = 2.

As observed from Fig. 4 and Fig. 5, the average fitness
of individuals decreases in each generation. This illustrates
the fact that better solutions are being generated in newer
populations. It is also clear that the optimal fitness, i.e.,
optimal system repair cost decreases till it converges to a
minimum optimal value. We can make sure that the final
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minimum cost value is not a local optima by increasing the
mutation rate and re-running the algorithm.

Moreover, it is worth to state that the optimal solution
is achieved at the fifth generation for n = 10 nodes (Fig.
4) and at the sixth generation when the number of nodes
is increased to 50 nodes(Fig. 5). That shows the quick
convergence of the algorithm even when we have large
number of nodes.

We next compare the minimum system repair cost of our
heuristic implementation for the case of new-comer blocks to
that of the optimal brute force implementation for different
network sizes and this is shown in Fig. 6. Our results are
proven to be near optimal since the difference between the
heuristic solution and optimal solution is calculated at most
1.2%. The simulation for each value of n is averaged over
20 runs and the post-optimal cost after distribution of new-
comer blocks is normalized by the maximum average cost
for each generation for fair comparison.

VII. CONCLUSION

With the emergence of many erasure coding techniques
that help provide reliability in practical distributed systems
composed of unreliable components, we selected the frac-
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Figure 6. Minimum post-optimal system repair cost for different network
sizes for the case of newcomer blocks

tional repetition coding scheme to implement as a code in
designing an optimum block allocation method that mini-
mizes system repair cost. A key property of the FR code
is that it has a simple repair mechanism that minimizes the
repair and disk access bandwidth together with the property
of un-coded repair process. To minimize the system repair
cost we formulated a problem using incidence matrices
and solved it heuristically using a genetic algorithm for all
possible scenarios of single node failures. We then presented
and solved a practical variation of the main problem that
accounts for new-comer blocks. A storage allocation matrix
for the new-comers is computed in a minimal computation
way that can be easily implemented in reality without the
need to redistribute original on-node blocks. The proposed
heuristic is shown to provide very close performance to the
optimal solution.
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