--f_ Q@S‘_z.‘. :‘]U-" g ;‘]l

Lebanese American University

Lebanese American University Repository (LAUR)

Conference

Publication metadata

Title: Practical multiple node failure recovery in distributed storage systems
Author(s): M. Itani, S. Sharafeddine, I. Elkabbani

Conference title: 2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA)

DOI: https://doi.org/ 10.1109/ISCC.2016.7543851
Handle: http://hdl.handle.net/10725/8152

How to cite this post-print from LAUR:

Itani, M., Sharafeddine, S., & Elkabbani, I. (2016, June). Practical multiple node failure recovery
in distributed storage systems. Paper presented at the 2016 IEEE Symposium on Computers and
Communication (ISCC), DOI: 10.1109/1SCC.2016.7543851, http://hdl.handle.net/10725/8152

© Year 2016

This Open Access post-print is licensed under a Creative Commons Attribution-Non Commercial-No Derivatives
(CC-BY-NC-ND 4.0)

SIOISIO)

This paper is posted at LAU Repository

For more information, please contact: archives@Ilau.edu.lb

Practical Multiple Node Failure Recovery in
Distributed Storage Systems

M. Itani*, S. Sharafeddine and I. ElKabbani*¥
*Department of Computer Science and Mathematics
School of Sciences, Beirut Arab University
Beirut, Lebanon
Email:may.itani @lau.edu.lb; Email:islam.kabani @bau.edu.lb
fDepartment of Computer Science and Mathematics
School of Arts and Sciences, Lebanese American University
Beirut, Lebanon
Email: sanaa.sharafeddine @lau.edu.lb

Abstract—As multiple node failures are becoming so frequent
in distributed storage systems, many erasure coding techniques
are emerging to handle such failures. In this paper we use
the fractional repetition code to apply as a redundancy scheme
for multiple failure recovery with optimized system cost. The
fractional repetition (FR) code is a class of regenerating codes
that consists of a concatenation of an outer maximum distance
separable (MDS) code and an inner fractional repetition code that
splits the data into several blocks and stores multiple replicas of
each on different nodes in the system. We model the problem
as an integer linear programming problem that uses modified
versions of the fractional repetition code by allowing different
block sizes, and minimizes the recovery cost of all dependent and
independent multiple node failure scenarios. First, we generate
an optimized block distribution scheme that minimizes the total
system repair cost together with a full recovery plan with a
node repair order for the system. Moreover, we account for
the common scenario of having newcomer blocks. We allocate
newcomers to nodes with minimal computations and without
changing the original optimized plan. The problem is solved
using genetic algorithms that search within the feasible solution
space. Fast convergence validates the efficacy of our algorithms
for different system parameters. Simulation results are shown to
be close to optimal for the case of newly arriving blocks.

Keywords-distributed storage systems; multiple failures; FR
codes; failure recovery; genetic algorithms

I. INTRODUCTION

Recent availability studies on distributed storage systems
show that hardware failures in data centers occur in groups
rather than being single node failures [1]. In [2], two large
high-performance computing sites were examined for failures
over a period of nine-years and were shown that around 23,000
failures of different causes were recorded on more than 20
different systems. Another extensive one-year availabilty study
on Google’s main storage infrastructure in [3] showed that
37% of node failures in distributed systems are part of a burst
of at least 2 nodes. To tolerate failures, the easiest way to
prevent data loss is to store replicas; however, this results in
decreased storage efficiency. Thus the other alternative is to

0On leave from Alexandria University, Egypt

store encoded data using erasure coding [4]. Classical erasure
codes transform a message of k symbols into a longer message
(codeword) with n symbols such that the original message
can be recovered from a subset of the n symbols. Although
traditional erasure codes can reduce the storage overhead
as compared to replication, extensive network resources are
needed to repair a lost node. This is due to the fact that a
surviving node should read all its data, process them, then
send a linear combination of them to the replacement node. To
minimize the bandwidth consumed during the repair process,
regenerating codes were introduced in literature where a failed
node can be recovered by connecting to a subset of d surviving
nodes and downloading one block of data from each.

In this work, we address the problem of multiple failure
recovery using a family of regenerating erasure codes, frac-
tional repetition (FR) codes, that provide exact and uncoded
repair where a surviving node reads the exact amount of
data it needs to send to a replacement node without any
processing. This allows for a low complexity repair process
[5]. We present a solution for multiple node failures by
implementing FR codes in a genetic algorithm that is based on
natural evolution. The algorithm generates an optimized block
distribution scheme for the system that minimizes total system
multiple failure recovery cost, taking into account different
node failure scenarios. The solution also provides a full system
recovery plan together with the optimized repair order pattern.
We then extend the problem to account for newcomer block
allocation on nodes again with optimized multiple failure
recovery cost for the system. We demonstrate the performance
of the proposed algorithm through simulations with different
system parameters.

We first provide a summary of the literature in section II.
The system model and our formulated problem are discussed
in sections IIT and IV, respectively. This is followed by algo-
rithm description and implementation in section V, together
with running examples and simulation results in section VI.
Finally we conclude in section VII.

II. RELATED WORK

Several erasure codes [6]-[8] are being designed for the
purpose of optimizing performance of failure recovery in dis-
tributed storage systems. Performance metrics include storage
space, reliability and recovery cost. Of these codes, regenerat-
ing codes were first proposed as a new paradigm in coding that
achieves minimized system bandwidth requirements during
recovery [9]. However, in case of node failure, regenerating
codes require a number of helper nodes to read all its data
and generate a linear combination of them to send it to the
new node designated to substitute the failed node referred to
as newcomer node. In this way the recovery approach does
not satisfy the uncoded repair property.

Later in 2010 constructions of FR codes were introduced
by Rouayheb et al [5]. Of these, deterministic constructions
based on regular graphs and Steiner systems were presented
as a first step in the study of fractional repetition codes, where
a helper node reads only one of its stored blocks and sends it
to the newcomer with no processing. Pawar et al proposed a
randomized construction of FR codes based on the balls and
bins probabilistic model [10]. These randomized constructions
provide more flexibility in terms of possible system parameters
compared to those constructions of [5]. Both constructions
take different design considerations into account and are
based on theoretical mathematical models but are not applied
to provide an optimal block storage scheme to achieve the
goal of minimal recovery cost. Studying the feasibility of
implementing these new codes in practical storage systems
is still under research.

Several availability studies on data centers are being con-
ducted to show that there is a higher need for multiple
failure recovery approaches than single failure approaches [1]-
[3]. Very few research tackled the multiple failure recovery
problem. We state that of Li et al [7], who proposed a new
code that minimizes the bandwidth needed to recover from
concurrent failures. Another recent and relevant work is that
of Yu [11] where the author proposed a new version of FR
codes, irregular FR codes, that consider different storage ca-
pacities of nodes, different communication costs, and different
number of packets per coded block. The design considerations
require selection of helper nodes from a limited set of nodes
determined using hyper graphs. As for single node failures,
Zhu proposed a recovery solution for distributed systems that
use row diagonal parity (RDP) and EvenOdd RAID6 erasure
codes. Single node failures can be recovered by reconstructing
the data of a failed node using decoding techniques [12].
Another work was conducted on Facebook warehouse clusters,
where a framework was designed for a recovery approach
based on codes that are efficient in the amount of data read
and downloaded during node-repair. The basic idea behind this
framework was to take multiple stripes of existing data on
nodes and carefully add functions of the data of one stripe
to other stripes. This technique required extra parities and
computation of specific functions, and thus used coded repair
[13]. A previous work of the authors addresses the problem

of single node recovery [14].

In this work, we present the multiple failure recovery
problem with FR codes applied as a redundancy scheme. The
problem is approached using the concept of incidence matrices
such that all nodes in the network are candidates for being
helper nodes. Our goal is to implement a function that gener-
ates a feasible optimized (nx#) incidence matrix that satisfies
the FR code constraints, given specific system parameters n, d,
p, and 0. Afterwards, we provide an extension to the problem
where a new set of blocks arrives to the system and is to
be allocated on the spot without re-allocation of currently
residing blocks. The incidence matrix is then augmented with
additional columns that account for newcomer blocks and the
problem is resolved with minimal computation ; thus leading
itself to be easily implemented in reality. A storage allocation
matrix is computed based on an integer linear program that
selects the optimized recovery cost distribution scheme and the
corresponding table-based full-recovery plan for all possible
scenarios of dependent and independent node failures.

III. SYSTEM MODEL

Consider an (n, k, d) distributed storage system composed
of a collection of n nodes, labeled by ng, ni, ...,np—1,
where the FR code of repetition factor p is to be used as
a redundancy scheme. FR codes consist of a concatenation
of an outer maximum distance separable (MDS) code and an
inner fractional repetition code. In an (n, k, d) system where n
is the total number of storage nodes, k<n, is the total number
of nodes contacted to retrieve a file, and d>k, is the number
of nodes contacted by a replacement node during node repair
[S]. First, a file of size k packets is encoded using a (6;k) MDS
code such that any & out of 6 packets can recover the file (MDS
property). Then 6 distinct packets are replicated p times and
distributed on n storage nodes where each coded packet is
replicated on distinct nodes. A user contacting k nodes can
always decode the stored file and this is achieved by the MDS
property of the outer code. A node failure can be repaired by
constructing a new node that contacts a specific set of d nodes
for repair depending on which node has failed. d represents
also the minimum node storage capacity expressed in packets
[5]. The underlying networked infrastructure connecting the
storage nodes may have different transmission bandwidths
and topologies. Thus each storage node will have different
communication costs. Our system model is depicted in Fig. 1
where two independent nodes n; and ng are to be recovered
in parallel from helper nodes ny, ny and ns.

To explain our work, we provide a detailed example where
we consider a distributed system with 6 nodes such that an
encoded data object with 4 distinct blocks is to be stored.
Assume that the system can tolerate 2 node failures for a
replication factor of 3. Each block will be replicated on
three different nodes and each node will store two distinct
blocks. The communication cost between two nodes depends
on various factors including bandwidth transmission speeds,
cabling and I/O disk access. The cost matrix associates with
every node a generic retrieval cost for a given block size

' recovered node 1

o — / using d = 2 helper
ﬂa Cia nodes

recovered node 3
usingd =2
helper nodes

Fig. 1. Independent node recovery in a distributed storage system

from another node. In case of different block sizes, block
retrieval costs are calculated proportionally from the retrieval
cost matrix based on a minimum unit block size of 1500
byte. An initial random block assignment matrix B where
rows correspond to nodes and columns correspond to blocks
together with a given communication cost matrix C, is given
below.

01 10

10 01

1100

B =

01 01

1010

0 0 11
nmy Mg N3 Ng N5 Ng
ng (0 7 3 5 4 2
ng| 7 0 9 2 3 6
c_m|3 9 0 4 9 8
gl 5 2 4 0 2 3
ns| 4 3 9 2 0 1
ng \2 6 8 3 1 0

For all possible two-node failure patterns, we first check the
cases where nodes have at least one block in common thus we
name them dependent. In such cases, the order of recovery
affects the failure recovery cost unless the common lost block
has its replica available on two helper nodes. In other words,
the number of failing nodes f should satisfy the condition f
< p/2 as generalized in Fig. 2 to be possible to recover them
in parallel even if they have blocks in common. Assume in
our example that nodes 2 and 4 fail simultaneously. Since
they have block 4 in common which cannot be retrieved for
both failed nodes in parallel due to the fact that no two helper
nodes with replicas of block 4 are available. If both nodes
were to use node 6 as a helper node for block 4 retrieval,
then the total recovery cost to fully recover both nodes would
be Cs52 + Cg2 —+ 634 —+ 654 = 3 + 3 + 4 —+ 6 = 16, assuming
blocks of same size. Moreover, if node 2 was to be retrieved
before node 4 and later used as a helper node to node 4 then

the two-node recovery cost would be 15. Whereas, if node 4
blocks were retrieved before node 2 blocks then the recovery
cost for both nodes would be 12. The retrieval plan Ro4 for
these 2 nodes would be in this case evaluated as:

b 02 03 064
ne (5 0 0 4
ny < 0 3 0 6)

The interpretation of Rogmin Would be to recover node 4
blocks from node 3 for block 2 (65), and from node 6 for block
4 (04) , then to recover node 2 from node 5 and recovered node
4 according to the recovery plan given. The order of recovery
of nodes (ORN) would be then ORN = [4 2].

The total system recovery cost would be the cost of recov-
ering all two-node failures by selecting the optimized recovery
pattern order as specified above and taking into consideration
all multiple node failure scenarios. All independent node
failures will be recovered in parallel while dependent failure
scenarios would be tested for node recovery order and the
order with minimum cost would be selected. For the above
block distribution matrix B, the total 2-node failure recovery
cost with all failure combinations would be

RCiot = RC12min + RC13min + RCramin + RCi5min+
RC16min + RC23min + RC21min + RCo5min + RCo26min+
RC34min + RC35min + RC36min + RCasmin + RC4emin+

RCs6min =104+ 18 +114+9+9+ 174+ 12+ 15+ 9+ 18+

16 +16 + 10 + 10 4+ 9 = 189.

(1)

However, if we consider the optimized block distribution
matrix B, given as:

R24min =

0 0 1 1

1 0 0 1

01 0 1
Bmin =

1 1 0 0

1 01 0

01 1 0

then the total recovery cost for all 2-node failure scenarios
would be 171. Hence, there should be a wise distribution of
blocks among nodes so that the system recovery cost would
be minimized.

IV. PROBLEM FORMULATION

Given a distributed system with n nodes. 6 distinct blocks
are to be stored on n nodes with a given replication factor p.
Every node can store a minimum of d blocks. Given different
communication costs and link bandwidths between nodes, the
problem of failure recovery with different failure scenarios is
modeled and solved using incidence matrices.

A fractional repetition code can be represented by a {0, 1}-
incidence matrix B of dimensions n x € defined as the matrix
(bi;) where:

b — { 1, if block j € node i
771 0, otherwise

2

where rows represent storage nodes n and columns represent
blocks 6. These codes will be used in modeling our failure
recovery problem.

Let the communication cost matrix C represent the cost of
newcomer node [to retrieve a typical size block from a helper
node o defined as the matrix (cg,) Where:

v, veERT
Cha = Cap = { 07 if O(=ﬁ (3)

Let the variable c,; denote the cost for retrieving a specific
block j from a helper node «, where c,; = cqg*xnormalized
size of block j (with respect to typical size block). Let the
variable f denote the number of failed nodes and + denote the
set of failed nodes. v, € Y where Y is the set of all possible
sets of combinations of f node failures. The mathematical
formulation is as follows: For every possible combination we
have:

n [
RC, = min E E min Cui - Tii - Lo (4
T 12, (14) o IYR | Cod " Tij " Tag (&)

=1 j=1
i€y aé"f

The multiple failure recovery cost for the whole system is
then

RCop: = Y, RC,, (5)
Vv, €Y
subject to
> ay=p V block j (6)
=1
6
> ay=d V¥ node i (7)
j=1
6
Y s;<SC V node i ®)
j=1

We need to solve for a block assignment matrix B that
minimizes the value of the system retrieval cost RC in Equa-
tion (5). The retrieval cost constitutes the sum of single block
retrieval costs per node and evaluated to include all possible
orders of retrieval; i.e., f! permutations of ~ for failed nodes
in case of dependent nodes, and an additional cost evaluated
for the case of parallel retrieval for independent nodes, then
selecting the plan with minimum cost for each combination.
Moreover, the total cost value is then generalized to handle all
possible multiple node failure scenarios whose count is (7})
The helper node « holds a retrieval block j that satisfies c;
minimal. Note that the helper node « is one of the nodes that
have block j in common with the failed node i (xq;&x;; # 0).

z;; € {0,1} is a Boolean variable indicating that node i
holds block j. The value RC is to be minimized under the
condition that the block assignment matrix satisfies a number
of constraints.

Equation (6) is a replication factor constraint where the total
number of replicas of a specific block j in all nodes is p.

Equation (7) specifies the total number of blocks per node.
Assuming different size blocks and a specific storage capacity
per node, we should add the storage constraint (8), where s;
is the size associated with every block j and SC is the total
storage capacity of each node in the system.

V. GENETIC ALGORITHM BASED SOLUTION AND
IMPLEMENTATION

The implemented code for the solution methodology was
designed as a self-cross-over genetic algorithm that starts with
a random distribution of blocks on nodes and then searches
within the feasible space by redistributing the blocks and
generating an optimized solution [15], [16]. A description of
the algorithm phases is stated next.

A. Chromosome Representation

The modeling of a chromosome was that each one con-
stitutes a binary block assignment matrix generated using
different permutations and satisfying the constraints (6), (7)
and (8). Every chromosome represents a feasible solution.
An example of a chromosome representation for the values
(n=3, d=2, 6=3, p=2)is [1 01 1100 1 1] where the nx6
block assignment matrix is transformed to a single (nx#6,1)
row matrix.

B. Generation of Initial Population

The phase that follows is generating an initial population
for reproduction after carrying out the chromosome encoding
phase. Given a pre-specified population size p, the initial
population will include p chromosomes that are generated
at random using a self-designed constructive method im-
plemented as a function that generates a feasible allocation
scheme.

C. Self Cross-over and Mutation Operations

The conventional cross-over technique cannot be applied in
our model since it will result in an in-feasible new chromo-
some. This paper adopts the self-cross-over method inspired by
the fact that the feasible allocation matrices can be generated
from one another by exchanging rows within a single matrix.
Note that elitism was used to help keep up the optimal
chromosome in every generation. Mutation is also used to
maintain diversity in the population and to make sure that
the achieved solution is not a local optima.

D. Fitness Function

Every chromosome or individual is associated with a fitness
function equivalent to the optimization problem objective
function defined in Equation 5 and calculated using Algorithm
1 after following the steps in Fig. 2 introduced earlier in
section III.

Algorithm 2 accounts for newcomer blocks and generates a
post-optimized recovery plan with the best possible distribu-
tion of newcomer blocks on the system nodes.

For all multiple failure
scenarios: Given array of
multiple failed node numbers

Dependent nodes:
Calculate refrieval
cost for different
cases of recovery
order

Do failled nodes have 3
block in common?

Independent:
Retrieve in
parallel

Independent nodes:
Retrieve in parallel

Fig. 2. Node failure classification flowchart

VI. SIMULATION RESULTS AND ANALYSIS

In this section, we present the results of our implementation
for different cases of multiple node failures. The machine
employed for simulation is a Lenovo laptop with an Intel
(R) Core i7 CPU running at 2 GHz with 8§ GB RAM. The
operating system is Windows 7, and the computer is a 64-bit
machine. The simulation programs were written in MATLAB.
We consider a system with 10 storage nodes and 30 distinct
blocks being replicated three times for a total of 90 blocks (0
= 30, p = 3) to be distributed on the 10-node (n = 10) system
in an optimized scheme for multiple failure recovery. The
resulting simulation for these system parameters is presented
in Fig. 3. The convergence curve of the optimized repair cost
is shown together with the average cost for each generation.
This example handles 2-node failure scenarios. We notice that
mutation occurs in the seventh generation and by that we can
explain why the average fitness peaked to a maximum value.
As for Fig. 4, the system parameters are n = 25 nodes, 6 = 50
blocks and replication factor p = 3.

As observed from Fig. 3 and Fig. 4, the average fitness

1.02 T T T T T T T T T
: : : —& —normalized optimized fithess
—+ —nomalized average fitness
B
o
O
5
o
(i)
[
=
ik}
0
=
&1
b—&-0-9—0 80 98— -8 —-0-8—0
004 H i ! i | H i ! i
2 4 5} g 10 12 14 16 18 20
Generation
Fig. 3. Average and minimum system repair cost for n=10, 6=30, p=3

Algorithm 1. Fitness Function Calculation

Given a chromosome that represents a
binary block assignment matrix, perform the

following:
1. for w=1, while w< @%2%7’ w++
2. Let v be the set of failed nodes
3. check whether failed nodes are
dependent using steps in Fig. 2
4. If nodes are independent then Repeat
steps 5 through 9, else jump to step
14
5. V block j belongs to failed node
i
6. Check for all nodes « such that
node a has a replica of block j
7. Select the node a with minimum
retrieval cost cCuj
8. Assign « as one of the helper
nodes for failed node i and save
it in recovery plan matrix
9. Update node i retrieval cost value
to be E:?zla:ggﬁwncaj.xw.xaj
a¢y
10. Update recovery plan to include
helper nodes for recovering all
blocks j of node i
11. End of inner loop
12. Update total retrieval cost value
for the failed nodes in set 7
13. Update system recovery plan for next
failure scenario
14. V permutations P (y,) of array 7y
15. Calculate retrieval cost for
failed node i using
Zf’:l GmnCajt Tij - Loy
agy
16. Remove 1 from set of failed nodes
Y
17. Repeat till y=f! and update the

retrieval cost for the specific
permutation that constitutes a
recovery order

18. From set of all permutations
select the one associated with
the minimum recovery cost of
dependent nodes

19. Update total system recovery cost
for all cases of multiple node
failures

20. End of outer loop

of individuals decreases in each generation. This illustrates
the fact that better solutions are being generated in newer
populations. It is also clear that the optimized fitness, i.e.,
optimized system repair cost decreases till it converges to a
minimal value. We can try to avoid being stuck in a local
optima by increasing the mutation rate and re-running the
algorithm.

Moreover, it is worth to note that the optimized solution is
achieved as early as the fifth generation for n = 10 nodes
(Fig. 3) and as the sixth generation when the number of
nodes is increased to 25 nodes (Fig. 4). That shows the

Algorithm 2. Newcomer Blocks Allocation

Given a chromosome that represents an

optimized binary block assignment matrix,

perform the following:

for 7=1, while j <number of newcomer blocks,

j++

1. Replicate block j , p times

2. Distribute replicas of j by augmenting
the optimal block assignment matrix that
was generated based on best fitness using
Algorithm 1

3. Calculate the fitness of the newly
augmented column for different multiple
failure scenarios

4. Update the value of the optimized fitness;

i.e. cost generated by Algorithm 1
5. Select chromosomes with best fitness
6. Apply cross-over and mutation operations

only on augmented columns of chromosomes
with best fitness

7. After 20 or more generations, select the
best chromosome that has minimal retrieval
cost and update the original optimized
block allocation schema together with the
optimized recovery plan to account for the
newcomers

8. Repeat steps 1-7 for all newcomer blocks

N T T T T T I T T
: : : : =& —normalized optimized fithess

—+ —normalized average fitness

=
o
@

Systern Repair Cost
= = =
o [(u} o
(%) = o

=
w

o

o

@
T

e

O o b &8O SO Bt O
i 1 i 1 1 i 1 i

10 12 14 16 18 20
Generation

0.86 .
] 2 4 3 g8

Fig. 4. Average and minimum system repair cost for n=25, 6=50, p=3

quick convergence of the algorithm even when we increase
the number of nodes and blocks.

We next compare the minimum system repair cost of our
heuristic implementation for the case of newcomer blocks to
that of the optimal brute force implementation for different
network sizes and this is shown in Table I. Our results are
shown to be near optimal since the difference between the
heuristic solution and optimal solution for the specific tested
scenarios is calculated at most as 1%. As for Fig. 5, we present
the results of heuristic minimal normalized system cost for the

TABLE I
MINIMAL POST-OPTIMAL SYSTEM REPAIR COST FOR DIFFERENT
NETWORK SIZES FOR THE CASE OF NEWCOMER BLOCKS

0.964

0.9635

0963 i L i

Network Optimal Normalized | Heuristic Normalized | True Error
Size n Repair Cost Repair Cost (%)
6 0.966 0.966 0%
7 0.965 0.965 0%
8 0.9645 0.9645 0%
9 0.9641 0.9647 0.6%
10 0.963 0.964 1%
0.9665
0.965
_, 0868
w : :
] . N
] : :
= DOES : :
j= N B
[in] : :
= : :
E 0.9645 :
E : :
= : :
LT
45

i i
25 30
Metwark Size n

Fig. 5. Minimal post-optimal heuristic system repair cost for different
network sizes for the case of newcomer blocks

case of newcomer blocks for different number of nodes. We
can interpret the decreasing cost result due to the fact that as
the network increases, the repair cost becomes higher, thus the
normalized cost decreases.

The heuristic simulation results in Table 1 and those of Fig.
5 are calculated as the average cost of 20 runs for each value of
n ;i.e. a total of 80 runs and then normalized by the maximum
average cost in each generation for fair comparison.

VII. CONCLUSION

We presented the design of a failure recovery approach
that minimizes the system repair cost for the solution of
multiple node failures in a distributed storage system. We then
extended the work to consider a practical dynamic scenario
where new blocks arrive to the system. Our solution used
FR codes to provide a simple repair mechanism that mini-
mizes the repair and communication costs. We formulated the
problem using incidence matrices and solved it heuristically
using a genetic algorithm for all combinations of multiple
node failures. For the problem of newcomer blocks, a post-
optimal storage allocation matrix was computed in a way
that can be easily implemented in reality without the need
to redistribute actual residing blocks. Our simulation results
achieved fast convergence for different system parameters in
the first scenario. As for the second one, the solution was
shown to be close to optimal for the tested system parameters.

[1]

[2

—

[3

[t

[4

[5

[6]

[7

—

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. Nath, H. Yu, P. Gibbons, and S. Seshan, “Subtleties in Tolerating
Correlated Failures in Wide-area Storage Systems,” In NSDI, vol. 6, pp.
225-238, 2006.

B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4 ,pp. 337-350, 2010.

D. Ford et al, “Availability in Globally Distributed Storage Systems,” In
OSDI, pp. 61-74, 2010.

J.S. Plank and M. Blaum, “Sector-Disk (SD) Erasure Codes for Mixed
Failure Modes in RAID Systems,” ACM Trans. on Storage (TOS), vol.
10, no. 1, pp. 4, Jan. 2014.

S. ElIRouayheb and K. Ramchandran, “Fractional Repetition Codes for
Repair in Distributed Storage Systems,” 48th IEEE Annual Allerton
Conf. on Communication, Control and Computing, 2010.

O. Khan, R.C. Burns, J.S. Plank, W. Pierce and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads,” FAST Proc., pp. 20, Feb. 2012.

M. Li and P.P. Lee, “STAIR Codes: A General Family of Erasure Codes
for Tolerating Device and Sector Failures in Practical Storage Systems,”
ACM Trans. on Storage (TOS), vol. 10, no. 4, pp.14, Oct. 2014.

D.S. Papailiopoulos, J. Lou, A.G. Dimakis, C. Huang and J. Li, “Sim-
ple Regenerating Codes: Network Coding for Cloud Storage,” IEEE
INFOCOM Proc., pp. 2801-2805, March 2012.

A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network Coding for Distributed Storage Systems,” IEEE Trans. on
Information Theory, vol. 56, no.9, pp. 4539-4551, 2010.

S. Pawar, N. Noorshams, N. EIRouyaheb and K. Ramchandran, “DRESS
Codes for the Storage Cloud: Simple Randomized Constructions,” Proc.
of IEEE on Information Theory (ISIT), pp. 2338-2342, July 2011.

Q. Yu,C.W. Sung, and T.H. Chan, “Irregular Fractional Repetition
Code Optimization for Heterogeneous Cloud Storage,” IEEE Journal
on Selected Areas in Communications, vol. 32, no. 5, pp. 1048-1060,
2014.

Y. Zhu, PP. Lee, L. Xiang, Y. Xu, and L. Gao,“A Cost Based Het-
erogeneous Recovery Scheme for Distributed Storage Systems with
RAID-6 Codes,” 42nd IEEE/IFIP Intl. Conf. on Dependable Systems
and Networks, pp. 1-12, June 2012.

K.V. Rashmi, N.B. Shah, D. Gu, H. Kuang, D. Borthakur and K. Ram-
chandran, “A Solution to the Network Challenges of Data Recovery in
Erasure Coded Storage Systems: A Study on the Facebook Warehouse
Cluster,” UNISEX Hotstorage, 2013.

M. Itani, S. Shaafeddine, I. ElKabbani. “Practical Single Node Failure
Recovery Using Fractional Repetition Codes in Data Centers,” AINA
Intl. Conf., May 2016.

S. Hou, Y. Liu, H. Wen and Y. Chen, “A Self-crossover Genetic
Algorithm for Job Shop Scheduling Problem,” IEEE Intl. Conf. on
Industrial Engineering and Engineering Management, pp. 549-554, Dec.
2011.

M. Negnevitsky, “Artificial Intelligence: A Guide to Intelligent Systems,”
Pearson Education, 2005.

