R4
=N

<

A COMPARATIVE STUDY BETWEEN CACHE

REPLACEMENT ALGORITHMS USED IN THE
SCALABLE ASYNCHRONOUS CACHE

CONSISTENCY SCHEME

by
LANA TURK

B.S., Computer Science, Haigazian University, 2001

Thesis submitted in partial fulfilment of the requirements for the Degree of Master of

Science in Computer Science

Division of Computer Science and Mathematics
LEBANESE AMERICAN UNIVERSITY

May 2006

"LEBANESE AMERICAN UNIVERSITY

é

School of Arts and Sciences - Beirut Campus

Thesis approval Form (Annex HI)

Student Name:Lana Turk L.D. #: 200102455
Thesis Title : A Comparative Study between Cache Replacement Algorithms

used in the Scalable Asynchronous Cache Consistency Scheme

Program : Master of Science

VDivision/Dept : Computer Science and Mathematics
School : School of Arts and Sciences
Approved by: Ramzi A. Haraty

Thesis Advisor: W

Member 3 Faisal Abu Khzam /

Member : Abdul Nasser Kassar W/WV

Date 29/5/2006

Plagiarism Policy Compliance Statement

I certify that I have read and understood LAU’s Plagiarism Policy. I understand that
failure to comply with this Policy can lead to academic and disciplinary actions

against me.

This work is substantially my own, and to the extent that any part of this work is not

my own I have indicated that by acknowledging its sources.

Name: Lana Turk

Signature: {& Date: 30/05, / 206"

il

I grant to the LEBANESE AMERCIAN UNIVERSITY the right to use this work,
irrespective of any copyright, for the University’s own purpose without cost to the
University or its students and employees. I further agree that the University may
reproduce and provide single copies of the work to the public for the cost of

reproduction.

iti

Acknowledgment

I would like to thank my advisor Dr. Ramzi Haraty. for his guidance throughout my
Thesis work. Thanks are also to Dr. Abed El-Nasser Kassar and Dr. Faysal Abu
Khzam for being on my thesis committee.

I would like to thank my family and friends for their encouragement.

Finally, a special thanks to my husband for his support.

iv

Abstract

The technology of PCs has been in progress in a fast rate for many years. Mobile
computing is one of the technologies brought into the area of computers. Different
problems have arisen from the narrow bandwidth and limited battery power of mobile
clients. Therefore, algorithms have been proposed to provide cache consistency in
mobile databases by using cache invalidation strategies. Scalable Asynchronous
Cache Consistency Scheme (SACCS), a highly scalable, efficient and low complexity
algorithm, is one of the cache consistency maintenance algorithms proposed. It counts
on invalidation reports to maintain cache consistency between server databases and
mobile user databases. Least-Recently-Used (LRU) is used as a cache replacement
algorithm in SACCS. In this work, different cache replacement strategies are
proposed to be applied in SACCS: MRU (Most-Recently-Used), MFU (Most-
Frequently-Used), LFU (Least-Frequently-Used), FIFO (First-In-First-Out). A
simulation of SACCS with these cache replacement algorithms is done and produces
results that will be compared to show the variation of the performance of the system.
Statistical results will point out the advantages and disadvantages of each algorithm

concerning miss ratio, delay, total hit, and total miss.

Contents

1. Introduction
1.1 Background
1.1.1 Mobile computing
1.1.2 Mobile database system
1.1.3 Data caching
1.1.4 Cache replacement algorithm
1.1.5 Invalidation report
1.2 Scope of the thesis
1.3 Organization of the thesis
2. Literature Review
2.1 Cache invalidation model
2.1.1 UIR-based cache invalidation
2.2 Counter-based cache invalidation algorithm
2.3 Cache invalidation strategy
2.4 Power-aware cache management
2.5 Energy-efficient cache invalidation
2.6 Cache consistency strategy in a disconnected distributed environment
2.7 Ordered Update First with Order
2.7.1 OUFO protocol description
2.7.2 Data inconsistency resolution
2.8 PRO-MOTION
2.9 Policy-based management for distributed systems
2.9.1 Domains

2.9.2 Policies

vi

10

11

12

14

16

16

17

18

19

19

21

2.9.3 Roles
2.9.4 Conflicts
2.10 Peer database management system
2.10.1 PDBMS characteristics
2.10.2 Interest groups and acquaintances
3. Scalable Asynchronous Cache Consistency Scheme
3.1 SACCS Key Features
3.2 Data Structures and Communication Messages
3.3 Replacement Algorithm used
3.4 SACCS Algorithm Description
3.5 MUC consistency maintenance and efficiency in SACCS
3.6 Additional techniques
3.6.1 LFU (Least Frequently Used)
3.6.2 MFU (Most Frequently Used)
3.6.3 MRU (Most Recently Used)
3.6.4 FIFO (First In First Out)
3.6.5 MUC Management
4. Experimental Results
4.1 Cache Miss Ratio
4.2 Total Delay
4.3 Total Hit
4.4 Total Miss
4.5 Performance Evaluation
5. Conclusion and Future Work

References

vii

22

22

23

24

24

26

27

28

30

30

34

35

36

36

37

37

37

39

39

41

42

43

45

46

48

Appendix SACCS Simulation Results
A-1 LRU Simulation Results

A-2 LFU Simulation Results

A-3 MFU Simulation Results

A-4 MRU Simulation Results

A-5 FIFO Simulation Results

viii

50

50

51

52

53

54

List of Figures

Figure 2.1 Architecture of a mobile database system
Figure 2.2 Reducing the query latency by replicating UIRs
Figure 2.3 The counter-based cache invalidation

Figure 2.4 System architecture

Figure 2.5 Compacts as objects

Figure 2.6 Domains

Figure 2.7 Management roles

Figure 2.8 Overlap between subjects, ta;gets, and actions
Figure 2.9 Interest group hierarchy

Figure 3.1 Cache entry state diagram

Figure 3.2 MSSMain() pseudocode

Figure 3.3 MUMain() pseudocode

Figure 4.1 Miss ratio versus simulation time

Figure 4.2 Total delay versus simulation time

Figure 4.3 Total hit versus simulation time

Figure 4.4 Total miss versus simulation time

Figure A.1 LRU Simulation Output

Figure A.2 LFU Simulatibn Output

Figure A.3 MFU Simulation Output

Figure A.4 MRU Simulation Output

Figure A.5 FIFO Simulation Output

ix

10

15

18

20

22

23

24

29

31

33

40

41

42

44

50

51

52

53

54

List of Tables

Table 3.1 Communication messages in SACCS 29

Chapter 1

Introduction

In the past few years, mobile computing has been used profusely in computer
technology. Many problems arise from this computer field because the wireless
connection is expensive and the bandwidth is limited. To save time in exchanging
data between base stations and mobile users and improve the performance of the
system, data caching is imposed on mobile users in order to access the data recently
used or most likely to be used in the future. To maintain cache consistency between
mobile users and base stations, two approaches have been proposed: the stateful and
the stateless approach.

A cache consistency maintenance algorithm called Scalable Asynchronous
Cache Consistency Scheme (SACCS), gathering both stateless and Stateful
approaches, was proposed with the Léast-Recently—Used (LRU) replacement
algorithm‘ (Wang, 2003). In this work, different replacement algorithms are used
instead of the LRU in the SACCS, producing different results concerning the system
performance. A comparison is made between the LRU and the replacement
algorithms used to show the advantages and disadvantages of each of these algorithms

in system performance.
1.1 Background

The progress of computer technology in the past ten years has been leading to a

smaller size PC and an increase of the capacity of software and hardware

functionality. The cellular, satellites and wireless LAN expanded technologies have
added Mobile Computing (MC) technology to the field of computers. Mobile
computing environments have faced physical constraints, such as low network
bandwidth and high communication latency, which are subject to studies and a lot of

work to solve such problems.

1.1.1 Mobile computing

Mobile computing is considered as an expanded version of distributed systems. A
client/server network is an example of mobile computing. The clients act as mobile or
fixed units and the servers as hosts or base stations for data (which serves as the
communication link between MU and the entire network). The connection of mobile
units to the servers can be started and terminated during different periods of time for
many reasons, such as the limitation of battery power, the high cost of wireless
connection, etc. Data caching on a mobile unit is one of the important solutions to this

problem.
1.1.2 Mobile database system

A mobile database system is a distributed system with mobile connectivity (where a
mobile client can communicate to a server whenever needed), full spatial mobility,
and wireless and wired communication capability. A personal communication system

is a mobile database system in which mobile components can communicate to the

base station or server through a number of wireless channels.

1.1.3 Data caching

Data caching is used in mobile databases to reduce the number of queries sent by
clients to the server to access data needed. The recently used or likely to be used data
is fetched in the caches of the mobile users in order to be reused in the future.
Therefore, data caching improves the performance of mobile applications by reducing
the expected data access delay. The caching performance is also affected by the cache

replacement policy being used.

1.1.4 Cache replacement algorithm

It is an algorithm that determines which data in the cache will be replaced (i.e. choose
a replacement victim) when the cache is full. Different strategies of selecting -
replacement victims are being used to increase the performance of mobile systems.
Temporal locality, spatial locality, and semantic locality are three types of cache
replacement policies: Temporal locality defines that the data being used will be reused
in the future like MRU (most recently used). Spatial locality defines that the data in a
near place with the recently used data will be used again in the future. The semantic

locality is that a currently used area could be accessed in the future.

1.1.5 Invalidation report

To validate the data in their caches, mobile clients try to query the server congesting

the network narrow bandwidth and getting stuck in the limited capability of the

transmission. The invalidation method is a solution to this problem. It reduces the data

transfer from the clients to the server and vice versa. Invalidation reports are proposed
to invalidate out of use (or invalid) data in the mobile user caches. After
disconnections, reconnected users are prevented, by using invalidation reports, from
discarding wastefully all their caches since some data may still be valid for use.
Invalidation reports are composed of different methods like:
- The Broadcasting Timestamp Strategy:
Updated data is represented in the report as a pair (ID,timestamp) where the
ID is the updated data itself and the timestamp is the time at which the data
was updated.
- The Bit-Sequence Approach:
The invalidation report gets bigger as the amount of the updated data gets
larger. The bit-sequence approach is proposed to solve this problem by
presenting each data in the report by a bit where the bit sequence number in
the report represents the data sequence number in the database. If the data has

been updated, the value of the bit is 1 in the report or else 0.

1.2 Scope of the thesis

Mobile computing encounters a lot of problems regarding wireless connection and
limited bandwidth. Solutions have been proposed to such problems like data caching
and invalidation reports. These methods have been used in the cache consistency
maintenance algorithm SACCS, which maintains the cache consistency between the
mobile users and the servers by gathering the features of both the stateful and stateless
approaches. SACCS uses the cache replacement algorithm LRU as a base replacement

algorithm in the mobile user caches.

In this thesis, the LRU is replaced by different cache replacement algorithms:
LFU (Least-Frequently-Used), MRU (Most-Recently-Used), MFU (Most-Frequently-
Used), and FIFO (First-In-First-Out). The purpose of this thesis is to show and
compare between the results of these cache replacement algorithms used in the
SACCS (including the LRU already used). The comparison between the different
outputs of the SACCS algorithm will be built on experimental and statistical results to
show the advantages and disadvantages of each cache replacement algorithm in
different characteristics of the system performance, for example the miss ratio and the

delay in data access.
1.3 Organization of the thesis

The remainder of this thesis is composed of 5 chapters: Chaptér 2 is a literature
review of related techniques and approaches used in the field of mobile comi)uting.
This chapter provides for the reader some knowledge about what has been proposed
in the past few years of methods related to caching and cache consistency between
mobile users and servers in mobile computing. Chapter 3 describes the cache
consistency maintenance SACCS in details: the circumstances under which it was
proposed, the way how it works between mobile users and servers. It also describes
the additional techniques applied to the SACCS: the different replacement algorithms
used and the updated code of the SACCS for each replacement algorithm. Chapter 4
presents the experimental and statistical results of the SACCS, using different

replacement algorithms. Chapter 5 presents the conclusion drawn from this thesis.

Chapter 2

Literature Review

Computer interconnection through wireless networks has been increasing at a high
speed in mobile environments. Data is broadcasted repetitively from the server to the
clients without the need for a client request. Thus, the server is not informed before a
mobile transaction accesses a data object because the data is accessed by the clients
while it is being broadcasted. A distributed database system, whose architecture is
shown in figure 2.1, faces a lot of challenges concerning data consistency, especially

with a large number of mobile clients.

Figure 2.1 Architecture of a mobile database system (Seetha, 2001)

The server may broadcast data items during update transactions in its database.

Thus, mobile clients observe data inconsistency through their transactions. During the

past few years, different studies have been made on preserving data consistency in
mobile distributed database systems. This chapter describes a number of cache
invalidation strategies proposed to solve efficiently the problem of data inconsistency.
These strategies lead to a better system performance by reducing bandwidth

utilization and query latency, saving power and energy for mobile clients.

2.1 Cache invalidation model

The dynamic progress of mobile computing has led to a major concern regarding data
consistency. Mobile clients want to connect to the server, send queries and receive
data at different periods of time but they are facing different limitations, such as the
limited battery power of the clients, and the narrow bandwidth of the network. In
addition, the mobility and frequent disconnections of the mobile clients cause the data
cached in the client side to become invalid. To solve this problem, different cache
invalidation mechanisms have been proposed.

The IR-based cache invalidation approach was used to preserve cache
consistency (Yin, 2006). In this approach, invalidation reports (IRs) are periodically
broadcasted by the server to the clients. When a client receives a request for some
data, it waits for the next IR to invalidate or validate the data in its cache accordingly.
If the data is invalid, the client sends a request to the server for a valid copy of the

data. Otherwise, the client returns the requested data directly.

2.1.1 UIR-based cache invalidation

The latency for any client to answer a query depends on the length of the IR interval;
as the IR interval gets longer, the answer to the query gets delayed. A solution to that
delay was proposed by Cao to replicate the IR m times within the IR interval (Yin,
2006). The replicated IRs called updated invalidation reports (UIRs) contain only the
data items updated after the broadcast of the last IR. In this way, the client should wait
the maximum of 1/m of the IR interval to answer a query for any data. This
proposition reduced remarkably the query latency. Figure 2.2 presents a sample of

replicating UIRs in IR intervals.
 update

Jawery

Figure 2.2 Reducing the query latency by replicating UIRs (Cao2, 2002)

2.2 Counter-based cache invalidation algorithm

The counter-based cache invalidation approach is desigrled to reduce the query
latency and the congestion on the bandwidth by following three schemes.
First, prefetching data that is likely to be used in the future by the clients

makes a better utilization of the broadcast bandwidth. In this case, when the server

broadcasts data items, the clients download the data that is invalid in their caches and
do not have to send additional requests to the server for valid data.

Second, using a broadcast list saves power and bandwidth. The server
broadcasts only the data that has been updated since the last IR (invalidation report).
After the server broadcasts an IR, it broadcasts the id list of data being updated
(Lbcast). Then it broadcasts the data itself. The clients, on their side, save the
broadcast list and wait until the data arrives to wake up and download it.

Third, relying on counters also helps in saving bandwidth and in identifying
the frequently accessed data to be broadcasted. The broadcast list includes only the ids
of the data most frequently accessed by the clients. To identify the data to be included
in the id list, a counter is associated with each data item. This counter is incremented
by one on every request of the data from the server and decremented by one if the
data has been discarded by the client. The data with a counter that is equal to 0 is not-
included in the IR, unlike the IR-based approach, which includes all updated data in
the IR. Hence, this counter-based scheme saves the broadcast bandwidth. Figure 2.3

. shows the design of the counter-based cache invalidation approach:

- Lo T o —— BRIELEE & e -
L] b T]

e QURTY FRUIL
or troadeastdata-

Figure 2.3 The counter-based cache invalidation (Cao2, 2002)

2.3 Cache invalidation strategy

In the previous years, different cache invalidation strategies existed, such as the bit-
sequence (BT), the timestamp (TS), the dual-report (DRCI) and others, to maintain
data consistency between data items in the server database and data items in the
mobile client caches.

A new cache invalidation strategy is proposed to reduce the invalidation report
sizes and invalidate the necessary data items in the mobile client caches (Chuang,
2004). In this strategy, when the user sends a query to the mobile client, the queried
data will be checked for its validity; if the data exists in the client cache and is valid, it
will be used by the user. On the other hand, if the data does not exist in the client
cache, it will be requested from the server. If the client is disconnected for a period of
time and reconnected again, the data in'its cache will be in an uncertain state. In this
case, if data is requested by a user and exists in the client cache, the client should
check: for the validity of all the data in its cache by sending the server the value of the
time when the last invalidation report was. received by the client (Ty) and the
requested data. Then, the server broadcasts to the client the invalidation report
containing only the ids of the updated data since Ty, (including the last updated
timestamp T) and the requested data. Thus, the client answers the user’s request and
replaces its Ty, by T if Ty, is less than T. In addition, the éther mobile clients,
receiving the IR, will update their Ty, if its value is less than T.

As aresult, the IRs broadcasted by the server will be smaller in size consisting
only of the ids of the invalidated data since the Ty, and the data in the mobile client
caches would not be invalidated unnecessarily. Thus, this proposed cache invalidation

strategy leads to better bandwidth utilization and less cache requests to the server.

10

2.4 Power-aware cache management

Improving performance and bandwidth utilization in a mobile environment have led
to the suggestion of different cache solutions. The invalidation report (IR) approach
was proposed in order to improve the performance in mobile systems. In this
approach, IRs are broadcasted periodically by the server to the mobile clients. The
clients listen to these IRs and validate their caches instead of querying the server for
any invalid cached data. To improve the bandwidth utilization, the updated
invalidation report or UIR-based approach, which is an additional technique to the IR~
based solution, was proposed. In this approach, UIR is repeated during an IR interval
so the client will not have to wait for the next IR to answer a query.

Beside these approaches, prefetching data in the client caches helps in
increasing the data hit ratio but does not consider power consumption in the client
pcs. To solve the problem of power consumption, a power-aware cache management
was proposed based on a prefetch-access ratio scheme (Caol, 2002). After the server
broadcasts an IR, it broadcasts the id list of data being updated. Then it broadcasts the
- data itself. The clients, on their side, save the broadcast list and wait until the data
arrives to wake up and download it. This approach can save power and reduce
bandwidth utilization.

The prefetch-access ratio (PAR) scheme uses the ratio of the number of
prefetches over the number of accesses to evaluate the usefulness of prefetching the
data by the clients. If the data is accessed frequently, then the PAR will be less than 1,
which means that the data should be prefetched by the client. Otherwise, if the PAR is
greater than 1, then the data is marked as non-prefetch because it has a2 low access

rate. With this proposed prefetch-access ratio scheme, the power consumption will be

11

reduced remarkably and the cache hit ratio will be increased, leading to an upgrade in

performance.

2.5 Energy-efficient cache invalidation

In a mobile environment, two types of invalidation strategies exist.

The first strategy is when the server is called a stateful server, which knows
about the state of data cached by its clients and the clients’ relocation. When the data
is updated, the server sends invalidation reports to the clients caching this data.

The second strategy consists of a stateless server, which is not informed about
the state of the data cached in its clients’ caches. Thus, whenever data is updated, it
broadcasts invalidation reports containing this specific data to all its clients.

With the stateless approach, whenever a client disconnects from the server for
a period of time and reconnects again, it discards all the data items in its cache. But
this method is very costly, especially if there is a large number of data in the client
cache still valid.

To solve this problem, an energy-efficient cache invalidation scheme is
proposed where cache validity is checked after a client is reconnected to the server.
Because checking cache validity consumes energy and utilizes bandwidth, this
scheme called Grouping with COld update-set REtention (GCORE) is proposed
where the validity of data is checked on a group level (Wu, 1996).

The server database is divided into groups of data objects for the only purpose
of cache validity checking after the client’s reconnection to the server. Thus, the
GCORE scheme tries to retain the cold update set and exclude the hot update set from

a group when the group validity is to be checked. A cold update set is the set of data

12

items which are rarely updated by the server transactions and a hot update set is the
set of data items which are frequently updated in the server database by transactions.
When checking the group’s validity, the GCORE scheme retains the cold
update set in the group while the simple-grouping caching scheme invalidates the
whole group if a data item from the group gets updated after the client is
disconnected. Therefore, the GCORE scheme is energy efficient because it reduces
downlink costs by retaining more valid data objects in the client’s cache than a

simple-grouping caching scheme or any other cache invalidation schemes.

2.6 Cache consistency strategy im a disconnected distributed

environment

As mentioned earlier, the mobile computing environment is prone to frequent
disconnections of mobile clients or mobile hosts (MHs) from the server caused by low
battery power. These disconnections make the cache consistency in the mobile hosts
difficult to maintain. Several cache consistency schemes were proposed to solve this
problem. Most of these schemes use the invalidation report approach (calt-back
mechanism).

An asynchronous invalidation reports scheme is proposed where invalidation
reports are broadcasted only when data items are updated unlike periodic invalidation
reports scheme where the server broadcasts invalidation reports periodically (Kahol,
2001). In the proposed caching scheme, an additional memory, called the Home
Location Cache (HLC), is used for each mobile host in order to maintain each data

item cached by the MH and the time-stamp of each data item last updated. The HLC

13

of each mobile host is found at a Mobile Switching Station (MSS) as shown in figure

2.4 presenting the structure of the mobile computing system used in this scheme:

Figure 2.4 System architecture (Kahol, 2001)

When a MH receives a query, it checks for the data in its cache; if the data is
valid, then the MH answers the query immediately by using its local cache.
Otherwise, the MH sends a request for the data to the MSS, which in its turn sends a
réquest to the server for the data. When the MSS receives the data, it saves an entry of
each data item in the HLC and forwards the data to the MH.

Each MH preserves a time-stamp for its cache, called the cache time-stamp,
which is the time of the last invalidation report received by the MH. The cache time-
stamp is used to decide which invalidation reports to discard or to resend to the MH
just reconnected. The invalidation reports with a time-stamp less than the cache time-
stamp of the MH are discarded and the ones with a time-stamp greater than the cache
time-stamp in the HLC are resent to the MH. In fact, when a MH reconnects to the
server after a disconnection for a period of time, it sends a probe message containing
the cache time-stamp. The HLC responses to the MH message by sending an

invalidation report. Thus, the MH can recognize which data was updated during its

14

disconnection by using the cache time-stamp. This scheme handles frequent
disconnections of the MHs by maintaining the consistency of their caches with the

cost of extra memory used for HLCs.
2.7 Ordered Update First with Order

Data broadcast has been one of the important methods in coping with the limitations
of the mobile computing environment, such as the narrow bandwidth of the network
and the frequent disconnections of the mobile clients. When the server periodically
broadcasts invalidation reports, it informs all its clients about the out-dated data in
their caches; hence, the clients do not have to congest the network with their dueries
to the server concerning data validation and the data consistency will be ensured in
their caches after frequent disconnections. But this broadcast method does not control
the flow of the update transactions on the data in the server while the data is ‘being
broadcasted. The clients might read inconsistent data values during their mobile
transactions (MTs).

A broadcast method called Ordered Update First with Order (OUFO) has been
designed to solve the problem of receiving inconsistent data by the client mobile
transactions and to reduce the delay in accessing the data by these transactions (Lam,
2000). OUFO is an extension of another broadcast method called Update First with
Ordering (UFO). The UFO maintains the concurrency control between the update
transactions in the server and the mobile transactions of the clients but it is designed
for unordered operations in mobile transactions. OUFO is defined as the UFO

extended to deal with ordered data requests in mobile transactions.

15

2.7.1 OUFO protocol description

OUFO is designed to ensure consistency in data items broadcasted by the server and
read by ordered operations in mobile transactions. Hence, the goal of the OUFO
protocol is to ensure that a broadcast transaction (BT) should always occur after an
update transaction (U) of the data in the server database (U - BT); that means the
order of these transactions is the most important (Lam, 2000). Data inconsistency
occurs when an update transaction is processed in the server database during a
broadcast transaction of the data. In this case, the broadcast transaction would come

before the update transaction (BT - U).

2.7.2 Data inconsistency resolution

On the server side, to resolve the data inconsistency occurrence between the update
transaction and the broadcast transaction, data in the server database is re-
broadcasted. By re-broadcasting a data item, the updated value of the data item will be
included in the last BT. Thus, the order of the transactions is reversed: (BT > U)

becomes (U = BT).

On the mobile client side, when a mobile transaction composed of a set of

ordered read operations is processed, the read operations will be started in sequence.
The executing operation will access a data item if the latter is received from a
broadcast transaction. If a data item has already been read by a read operation and
were re-broadcasted by the server, the MT will be restarted from the read operation

requesting that data item.

Consequently, The OUFO protocol reduces the data inconsistency between the
update transaction and the broadcast transaction of the data by re-broadcasting the
data and preserving the order U - BT, which provides the last updated values of the

data items to the mobile client transactions.

2.8 PRO-MOTION

In mobile databases, the frequent disconnections of the clients, due to limited battery
power and the expense of the wireless network connection, constitute a big challenge
for the continuity of a transaction processing. An infrastructure for transaction
processing called PRO-MOTION was proposed in a mobile environment (Mazumdar,
1999). PRO-MOTION permits a transaction to continue execution while a client or a
mobile host (MH) is disconnected from the server database.

A compact is an object encapsulating replicated or cached data. ‘PRO-
MOTION uses compacts to achieve the goal of a transient process of a transaction.
When a mobile host requests data from the server, the data is cached in the form of
compacts composed of obligations, methods, consistency rules, data, and state

information as shown in figure 2.5:

e-specific

thods

: e | o ' R jﬁéngistéﬁcy '

State Information

Figure 2.5 Compacts as objects (Mazumdar, 1999)

17

On the server and the client sides, there are agents dealing with the
communication between the server database and the MH. On the server side, the
mobility manager helps in continuing the process of a transaction in case a client
disconnects directly after sending its transaction message to the server. On the client
or mobile host side, the compact agent handles the compacts stored in the MH and
controls the execution of transactions.

A compact is created by the compact manager (front-end of the server)
including the data itself and all related control and status information. The compact is
stored in a compact store before it is transmitted to the MH. Once it is received by a
MH, a compact is saved in a compact registry for tracking its status. A compact is
deleted from the compact registry and stored when it is needed neither by the MH nor
by the server. With this infrastructure, a transaction can continue execution even if the

client is disconnected from the server.

2.9 Policy-based management for distributed systems

Large-scale distributed systems need security and management for the large number
of data objects that they contain. The management system has to be automated in
order to diminish the cost of turning off the whole system in case there is a cha.nge in
requirements. The management behaviour is represented by a set of policies which
control the access on the data objects and provide levels of security for the distributed
systems. A policy can be applied to a group of people with the same access rights for
a group of data objects. Thus, a policy is not defined for a single data object but for a

group of data objects to organize a large-scale distributed system (Lupu, 1999).

18

2.9.1 Domains

Objects in a large system can be divided into groups, called domains, according to
different characteristics such as their types and functionalities. Domains help the
management system to define a policy and provide authority to a group of objects. A
domain can be a part of another domain and is called a subdomain of the latter. A
component in a subdomain B of a domain A is not considered a direct member of A
but an indirect member of A. An overlap is when a component exists in more than one
domain in the same time. For example, a component E exists in both domains B and C

so there is an overlap between B and C as shown in figure 2.6:

Sub-Domalne and Overlepping Domains Domein Hiaratohy (without
o R rember objeots)

Figure 2.6 Domains (Lupu, 1999)

A policy, applying to a domain, is also applied to its subdomain. So, in figure

2.6, if a policy is applied to domain B is also applied to its subdomains D and E. If a

19

policy is not applied to a specific object anymore, the object is removed from its
domain without any change in the policy itself. Thus, policies, being applied to the
level of domains of objects, make the management system simple to handle in large

distributed system.
2.9.2 Policies

Because distributed systems need management, policies are made to provide security
and control the access on data objects contained in these systems. There are two types
of policies to identify management behaviour: Authorization policies and obligation
policies. Authorization policies provide access control to a group of objects. The
access to objects can be either authorized by positive authorization policies or
unauthorized by negative authorization policies. Obligation policies identify the
actions that should or should not be done to a set of data objects. Thus, the obligation
policies can be positive or negative. All policies have a high abstraction level in large
distributed systems because they prdvide authorizations and obligations to objects
through the level of domains.

The subject of a policy is defined as an agent or a manager to whom the
previously mentioned policies are applied. The target of a policy is the data object on
which a policy performs an action.

The action is what an authorization or obligation policy performs to control
the access or provide obligations on data objects. A policy may contain a set of

sequential actions to perform.

20

2.9.3 Roles

Managers or agents are organized to fit into manager positions or domains which
comprise a set of policies that defines the authorizations and obligations of each
position. A role is defined as a manager position with the group of all policies
identifying the privileges for that manager position. Figure 2.7 represents the structure

of a management role.

Figure 2.7 Management roles (Lupu, 1999)

2.9.4 Conflicts

Conflicts occur when policies with opposite signs have subjects, targets and actions in
common, i.e. an overlap occur between the subjects, targets and actions as shown in

figure 2.8. In this case, the conflicts are called modality conflicts.

21

R O e A

" me

Figure 2.8 Overlap between subjects, targets, and actions (Lupu, 1999)

A solution to resolve a conflict is to give higher priority to negative policies
over positive policies. In fact, when.a conflict is detected, subjects are forbidden to
perform any operation on objects because precedence is given to negative policies
over positive ones. In this way, all conflicts are resolved while security is provided in

distributed systems but a lack of flexibility exists.
2.10 Peer database management system

In the database technology, studies have been made on database mobility in order to
develop coordinating mobile databases. Coordination between databases is a very
important issue especially on the network where database disconnections are frequent.
In addition, locations of databases can change leading to a problem in accessing these
databases when there is a user request for data. Therefore, a Peer Database -

Management System (PDBMS) is proposed to resolve these problems (Fausto, 2004).
2.10.1 PDBMS characteristics

PDBMS is a self-reliant database system and has a small size which makes it easy to

carry. Also, PDBMS is independent of any platform and can connect with other

22

databases in order to answer queries and data requests. It runs on a peer-to-peer

networking model which faces problems concerning the mobility or lack of

availability of other databases.

2.10.2 Interest groups and acquaintances

Database coordination is proposed as a solution to the problems of the peer-to-peer
databases (Fausto, 2004). It consists of two main concepts which are interest groups
and acquaintances. An interest group is composed of a group of nodes about certain
topics in a form of a tree where the root is the most general node and as one goes
down to the children the nodes become more specific. An example of an interest

group is shown in figure 2.9:

. Alitopics

. Mo Publestons . Compuers

 Books

Figure 2.9 Interest group hierarchy (Fausto, 2004)

An acquaintance is a node that is known by another node. If a node is an
acquaintance for another node, it is not necessary that the latter is also an
acquaintance for the former. If a node has an acquaintance, it is called an acquainted

node for the latter.

23

Chapter 3

Scalable Asynchronous Cache Consistency.vsemy

Scheme

For mobile computing environment, there are two types of cache consistency
maintenance algorithms: stateless and stateful. In the stateless approach, the server is
not informed about the client’s cache content so it periodically broadcasts a data

invalidation report (IR) to all mobile users (MUs). In such algorithms, mobile support

CcUEEREEY

station (MSS) does not maintain any state information about its mobile user caches .

(MUCs), thus allowing simple database management for the server cache (SC) but
poor scalability and ability to support user disconnectedness and mobility. On the
other hand, the stateful approach is used with large database systems at the cost of
complex server database management. The communication in these approaches is
reliable between MUs and the mobile support station (MSS) for IR broadcast, which
means an MU has to send back an acknowledgement for each IR received from the
server broadcast. Thus, if a mobile user is disconnected, it does not receive any IR
broadcast and the server, which does not get any acknowledgement, has to resend the
IR again.

This chapter describes a novel cache consistency maintenance algorithm,
called Scalable Asynchronous Cache Consistency Scheme (SACCS), which combines
the positive features of both stateless and stateful approaches (Wang, 2003). Under
unreliable communication environments, SACCS provides small stale cache hit

probability; A stale cache hit for a data entry occurs at a connected MU when the MU

24

misses the IR of the data entry and when the update time for the data entry is during
its TTL (time-to-live period).

The scalable asynchronous cache consistency scheme (SACCS) was proposed
to maintain the mobile user cache (MUC) consistency for systems with read-only
transactions. Maintaining minimum state information, SACCS has the positive
features of both the stateless and stateful approaches. The advantage of SACCS over
the asynchronous stateful algorithm, where the mobile support station (MSS) has to
identify all data objects for every MUC, is that the MSS needs to recognize only the
valid state of MUC data objects in SACCS. On the other hand, the advantage of
SACCS over the stateless approach is that in SACCS, the server does not need to
periodically broadcast IRs to all MUs, thus reducing the number of IR messages sent
through the network. In addition, the broadcast channel efficiency progresses in
SACCS, which has uncertain and ID-only states in MUC in order to handle sleep-

wakeup patterns (or disconnection-reconnection patterns) and mobility of all MUs.

3.1 SACCS Key Features

SACCS consists of four key. features which make it a highly efficient, scalable and
low complexity algorithm. Flag bits are used at SC and MUC, an ID is used for every
data entry in MUC after its invalidation. All valid data entries in MUC become in an
uncertain state when an MU reconnects (or wakes up), and each cached data entry has
a TTL (time-to-live).

When an MU retrieves a data object from the MSS, the flag bit in SC is set so
the MSS has to broadcast the IR to all MUs. On the other hand, if the flag bit is not

set, the MSS does not have to send an IR to the MUs. In this case, bandwidth

25

utilization is reduced by avoiding unnecessary IRs. When a data entry in an MUC
becomes invalid, it is removed and only its ID is kept (set to ID-only state), making
the management of sleep-wakeup pattern simple. When an MU wakes up, all valid
data items in its cache are set to uncertain state. TTL is estimated by an MSS for each
data item depending on its update history. If the last update time of a data item added
to its TLL equals to the current time, the data item is set to an uncertain state. This
process helps in preventing a stale data object from being accessed in an MUC for a

long time due to an incorrect IR arrival to the MU (IR loss).
3.2 Data Structures and Communication Messages

The SACCS uses a data structuré in SC composed of dx,tx,Ix,fx where dx represents
the data object, tx the last update time for the data object, Ix the estimated time-to-live
(TTL) and fx a flag bit (Wang, 2003).

| The data structure in MUC is composed of dx,tsx,lix,sx where tsx is the time
stamp indicating the last update time for the cached data object dx, lix is an associated
TTL and sx a two-bit flag representing four data entry states: 0 (valid dx), 1 (uncertain
dx), 2 (uncertain dx with a waiting query), and 3 (ID-only state) (Wang, 2003). The

movement of a data entry from one state to another is shown in figure 3.1:

26

Figure 3.1 Cache entry state diagram (Wang, 2003)

An MSS and its MUs communicate with each other by exchanging messages.
Incorporating the data structures mentioned previously, the communication messages
between the MSS and all the MUs are described in table 3.1:

Table 3.1 Communication messages in SACCS (Wang, 2003)

S { . v":_fdghasbeeﬁupdatedtad‘ ;A
| B o servers e "Eﬁi.:attlmai: T -'
A' "Vdam(m,d;i, l;m;,) S | MUs | broadeast vahd éa!a o’bject d, W‘lﬁ‘!
o | ::';updatenmev'; 2,andTTL~Z,, |
| _ IR@|MSS | 7;-}';.ﬁ"mémaﬁn&'cacheddawmahd
Confirmation(z,b,,t) |[MSS | MUs | indicating d, is valid if ta, = £ |
L e essociwed T |
Query{m) MU | ?qusry for datanbjectdﬁ
Uncertain(w,tsg} | MSS | verifying if d,. in uncertain state |
| | ‘ _mﬂmpdate_ﬁme tsisvalid

[MSSMain() {
For MS8 recieves amcssage ,
IF(R w@ﬂaryﬁ;! message)
fetch data entty x. from the database
broadeast Vdafm(&d ix, tx) maHWs
IF(f—0 -
setf,— I

IF(It stnmﬁm{iu, ts,J m&ssage)
fetehéaiamﬁy x ﬁnmthsdatabase
hmaﬁcast Cenf mmﬁm(ﬁ:, Ex,!) m all MUS o
ELSE
hmadcast Vé’aﬁxa af lﬂ t;) i:oallMUs
fF{fx“"‘ﬂ} R
setﬁ 1) ST .. ,
IF(R i Up@mﬁt& x;#;-’ msessagﬁ ﬁ'amﬁrewgma}sewer}
updatcﬁwdatahaseentrymthmx a:d,=dy andt, =6
@datctfw T“I‘L mﬁlﬂmlastupdm mterval andnldTTL
m(f{,’“l)
bmdcastm{x) tea]lMUsandmset fx-{i

Figure 3.2 MSSMain() pseudocode (Wang, 2003)

The MSSMain(), whose pseudocode is presented in the figure above, describes
how the MSS deals with the update of data items by the original server and the

queries sent by the MUs. In the MSSMain() procedure, if the MSS receives a request

for a data item from an MU, it gets the data entry from its database and broadcasts it
to all MUs. If the flag of the data entry is O, then it is set to 1. When the message
received from an MU is an uncertain message for a data item, a comparison is done
between the time stamps of the data item in MSS and in the MU. If the time stamps
are of equal values (i.. the uncertain data item is valid), then the MSS broadcasts a
confirmation message concerning this data item or else it broadcasts a valid data item.
If the flag of the data entry is O then it is set to 1. In addition, if a data item is sent in

an update message by the original server to MSS, then the data item is updated in the

29

MSS database with a new estimated TTL. In this case, if the flag of the data entry is 1,

then an invalidation report for this data entry is broadcast to all MUs and the flag is

reset to 0.

30

MUMain() { - i
- For MU mmeves amessage o
IF (It is a Regquest fmfdx)
AR (d, is valid in cache list) -
“answer the request with' cache(i data abgec;t a!x
move the entry into cache listhead
ELSE IF (d isn uncertain state) -
. v.‘-r-x,g&}messagewms ,
addmsmquwamnghst Y
seta, =2 and move theentry into c:ache hst head,
ELSE IF (the entry. x is m—-fmiy entry n cas:he)
. : e SS)

| IF(Itm Vdasalw, &, Ly t) ©
IF (a: 1sm;:1uery wamng lxst)
éx

- ¥F (IDx tsm qugrywamnghst}
- answer. thsmquestwuh&
dﬁletedandse&%-% :
IF(MU wakes up from the sleep state) :
set all valid {a= 0} entry into uﬁcartam state{ = I)
!F{TheTTLexﬂu*esfarmy =)y
sot the valid entry & into uncertain state (s=1}

}

Figure 3.3 MUMain() pseudocode (Wang, 2003)

31

The MUMain(), whose pseudocode is presented in the figure above, describes
how the MU deals its own queries and broadcast messages. In the MUMain()
procedure, when the message received is a request for a data item, the data in the
cache is checked; if it is valid, the request is answered immediately and the data entry
is moved to the head of the cache list. If it is in an uncertain state, the MU s¢nds an
uncertain message to MSS. If it has ID-only entry in the MU cache, a request message
for that data entry is sent to the MSS. When the message received is a valid data
(Vdata) message, if there is a request for that data item, it is answered and the data
item is cached. If the data item is in an uncertain state, it is refreshed. If the data is an
ID-only entry, the data item is saved as a valid data in the MU cache. When an IR
message for a data entry is received, the data entry is removed from the MU cache
and ID-only entry is kept. When the message received is a confirmation message for a
data entry, a comparison is made between the time stamps of the data in MSS and
MU. If their values are equal then the data entry is refreshed in the MU cache or else
the data entry is removed and set into ID-only state. In addition, when an MU wakes
up, all the data entries in its cache are set into an uncertain state. And when the TTL

of any valid data entry in the MU cache expires, the data is set into an uncertain state.

3.5 MUC consistency maintenance and efficiency in SACCS

The MUC consistency is maintained in SACCS by the use of a flag bit for each data
entry. If an MU retrieves a data entry from MSS, the flag is set to 1, indicating that
this data entry is found in a certain MU. In this case, whenever MSS receives an
update message for that data entry, it broadcasts a corresponding IR to all MUs and

the flag bit is reset to 0. When an IR for a data is broadcasted, the data is set to ID-

32

only state or invalidated in a connected MU. If the MU is disconnected, it does not
receive any IR. When it gets reconnected, all the data items in its cache are set to an
uncertain state. In this way, SACCS preserves cache consistency between MSS and
MUs.

In addition, SACCS is a scalable and efficient cache consistency algorithm. In
fact, the associated flag bit with each data object helps in reducing the number of IRs
to broadcast. When a data is updated in MSS, IR for the data with a flag bit set to 1

only is to be broadcasted. Thus, the bandwidth consumption is reduced.

3.6 Additional techniques

The SACCS described in the previous chapter, is a scalable and efficient cache
consistency maintenance algorithm, which maintains data consistency between SC
and MUCs. The cache replacement algorithm adopted in SACCS to manage the
" mobile user caches is the LRU (Least Recently Used) also described in the previous
chapter.
Different cache replacement algorithms are proposed in order to show their

impact on SACCS. Additional cache replacement algorithms used are the following:

» LFU — Least Frequently Used

» MFU - Most Frequently Used

» MRU - Most Recently Used

» FIFO - First In First Out

Each of these cache replacement algorithms will be described to show how it
works when used with SACCS. A simulation of SACCS is done with every algorithm

and the variation of the movement of an accessed data object in the mobile user cache

33

list is shown in the simulation code. In fact, with the LRU algorithm used, the data
entry at the cache list tail is removed to make space for new cached data entries if the
cache is full. And when a data entry is accessed or hit, it is moved to the head of the
cache list. Thus, the performance of the system is affected by the difference in the

number of data hits in the cache list and in other results discussed later.

3.6.1 LFU (Least Frequently Used)

The LFU is defined as the following: when a mobile user cache is full, the least
frequently used data object is removed to make space for a new cached data object. In
the case where LFU is used with SACCS, the number of accesses for each data entry
in the mobile user cache list is counted. The data entry with the minimum number of

-accesses is moved to the tail of the list.
3.6.2 MFU (Most Frequently Used)

The MFU is defined as the following: when a mobile user cache is full, the most
frequently used data object is removed to make space for a new cached data object. In
the case where the MFU is used with SACCS, the number of accesses for each data
_entry in the mobile user cache list is counted. The data entry with the maximum

number of accesses is moved to the tail of the list.

34

3.6.3 MRU (Most Recently Used)

The MRU is defined as the following: when a mobile user cache is full, the most
recently used data object is removed to make space for a new cached data object.
When the MRU is used with SACCS, a data object is moved to the tail of the cache

list when it is hit or newly cached.

3.6.4 FIFO (First In First Out)

The FIFO is that the first data entry stored in a mobile user cache is removed to make
space for a new cached data item if the cache is full. When the FIFO is used with
SACCS, the oldest data entry exists at the tail of the mobile user cache list. In fact,
whenever a new data item is cached, it is added at the head of the cache list if the

cache is not full.
3.7 MUC Management

When the SACCS is used with one of the proposed cache replacement algorithms,
data entries are removed from the tail of the list to make space for new entries cached
if the mobile user cache is full. Only data entries with no awaiting queries can be
removed from the fail of the list when needed. Data objects with uncertain or ID-only
state are refreshed in their original places in the cache list.

A simulation of SACCS is made, using each of the previous cache
replacement algorithms showing their impact on the results of SACCS and the

performance of the system. Statistical results are presented in order to show the

35

advantages and disadvantages of each of these cache replacement algorithms when

used with SACCS.

Chapter 4

Experimental Results

The simulation of SACCS is running under fixed parameters and conditions such as
fixed number of documents exchanged and mobile users, fixed mobile cache sizes,
specified periods of time, etc for each of LRU, which is the based cache replacement
algorithm for SACCS mobile user cache management, and the proposed cache
replacement algorithms: LFU, MRU, MFU, and FIFO. Using these cache replacement
algorithms with SACCS affects the system performance with different factors such as
the simulation results of the caché miss ratio, the total miss, the total hit in MUCs and
the delay of data during certain periods of time. A comparison between the cache
replacement algorithms results on SACCS is done to show the advantages and
disadvantages of every cache replacement algorithm used. The statistical results
obtained are based on eight simulation time units with an interval of 50000 microsec
of simulation time. The simulétion results of the LRU, LFU, MFU, MRU, and FIFO -

are found respectively in the appendixes A-1, A-2, A-3, A-4, and A-5.

4.1 Cache Miss Ratio

The cache miss ratio is the ratio of the number of unfound data items in the cache
over the number of all requested data. The cache miss ratio simulation results are
presented in figure 4.1, where the statistical results of each cache replacement

algorithm miss ratio versus specific periods of simulation time are shown.

37

——LRU
—s—LFU
—— MRU
—— MFU
—x— FIFO

. Miss Ratio

Figure 4.1 Miss ratio versus simulation time

Among all the cache replacement algorithms, it is shown that the FIFO has the
lowest miss ratio with the average of 0.69053, while the MFU has the highest miss
ratio with average of 0.750494. With the SACCS, the first in first out replacement
strategy ensures the highest cache hit ratio (i.e. the lowest cache miss ratio) among the
other strategies so it handles the mobile users’ queries for data faster than the other
strategies. Thus, using the FIFO with SACCS improves the performance of the system

because it has a lower miss ratio result than the based LRU with a miss ratio average

0f 0.696047.

38

4.2 Total Delay

The total delay is defined as the period of time between the time the request is issued
and the time the result is received by the mobile user application. The total delay
simulation results are presented in figure 4.2, where the statistical results of each

cache replacement algorithm total delay time versus specific periods of simulation

time are shown.

12000
5, 10000 + ——LRU
§ 8000 4 —a—LFU ||
— ; —— MRUJ
f» 80001 ——MFU |
4000 —»—FIFO|

2000

Figure 4.2 Total delay versus simulation time

Among all the cache replacement algorithms, it 1s shown that the FIFO has the

lowest total delay with the total average of 14893.7, while the MFU has the highest
total delay with the total average of 21953. When used with the SACCS, the first in
first out replacement strategy ensures the lowest period of delay time between a
request and its answer among the other strategies because of different factors. The
miss ratio is one of the factors that affects the delay time. When a requested data is

invalid or not found in the mobile user cache, it is time-consuming for the MU to get

39

the data from the server. And in this case, the FIFO is previously shown to have the

lowest miss ratio among other replacement algorithms, which makes the total delay
lower. Thus, using the FIFO with SACCS improves the performance of the system
because it has a lower total delay result than the based LRU with a total delay average

of 15590.5.

4.3 Total Hit

The total hit is defined as the number of data items hit or accessed in the mobile user
cache. The total hit simulation results are presented in figure 4.3, where the statistical
results of each cache replacement algorithm total hit versus specific periods of

simulation time are shown.

2500

2000
, ——LRU
£ 1500 3 —=—LFU |
s . —a—MRU
2 1000 - —x—MFU
: —%—FIF
500 . °
> $ S &
ST S S
Time

Figure 4.3 Total hit versus simulation time

Among all the cache replacement algorithms, it is shown that the FIFO has the

highest total hit with the total average of 5184, while the MFU has the lowest total hit

40

with the total average of 4166. The total hit affects the system performance because it
affects the delay time of a user request for data and the network traffic. In fact, as the
number of data hit gets higher, users’ queries are answered more quickly because
fetching the data from the user cache is much faster than getting it from the server
database. And the network traffic is reduced because the number of users’ requests for
data from the server database is lower as the data hit in the users’ caches is higher.
Consequently, using the FIFO with SACCS improves the performance of the system
because it has a higher total hit result than the based LRU with a total hit average of

5091.

4.4 Total Miss

The total miss is defined as the number of data items invalid or missed in the mobile
user cache. The total miss simulation results are presented in figure 4.4, where the
statistical results of each cache replacement algorithm total miss versus specific

periods of simulation time are shown.

41

—o—LRU
& —aLFU
=
= —a—MRU
2 —x—MFU
—x—FIFO

Figure 4.4 Total miss versus simulation time

Among all the cache replacement algorithms, it is shown that the FIFO has the
lowest total miss with the total average of 11565, while the MFU has the highest total
miss with the total average of 12522. Because the total miss factor is inversely
proportional to the total hit factor, the performance of the system is reduced as the
total miss gets higher. In fact, when a requested data is missed in the user cache, a
delay exists for the data should be brought from the server database through the
network to the user. A data miss costs the system a delay time and additional network
use. Consequently, using the FIFO with SACCS improves the performance of the

system because it has a lower total miss result than the based LRU with a total miss

average of 11656.

42

4.5 Performance Evaluation

As already shown in the previous charts of cache miss ratio, total delay, total hit, and
total miss, the FIFO has the best results among the cache replacement algorithms:
LRU, LFU, MRU, and MFU. The FIFO has the lowest miss ratio, the lowest total
delay, the highest total hit, and the lowest total miss among all proposed replacement
algorithms. All these factors affect the system performance of SACCS by affecting
the speed of handling the users’ requests for data and the network traffic. Thus, the
system performance of SACCS with the based cache replacement algorithm LRU can

be improved by using the FIFO for MUC management instead of the LRU.

43

Chapter 5

Conclusion and Future Work

Mobile computing is one of the most important technologies in the computér field.
Data caching is imposed when data is exchanged between the mobile users and the
server in order to improve the performance of the system. Maintaining cache
consistency is one of the major problems arising in mobile computing. A cache
consistency maintenance algorithm called Scalable Asynchronous Cache Consistency
Scheme (SACCS), gathering both stateless and stateful approaches, was proposed
with the Least-Recently-Used (LRU) replacement algorithm to manage mobile user
caches. A detailed description for the SACCS is done.

In this work, different cache replacement algorithms are proposed to be used
with SACCS and compared with the LRU already used. The impact of the proposed
cache replacement algoritbms LFU, MRU, MFU, and FIFO on the system
performance is studied. A simulation of SACCS with each of these algorithms is
done, producing results evaluating the system performance. The simulation results,
such as the miss ratio, total delay, total hit, and total miss are compared showing the
variation of the performance of the system. Statistical results point out the advantages
and disadvantages of each proposed cache replacement algorithm compared to the
based LRU.

As a result, the FIFO used with SACCS is shown to be the cache replacement
algorithm with the best simulation results compared to all the cache replacement
algorithms used. The FIFO has the lowest miss ratio, the lowest total delay time, the

highest total hit, and the lowest total miss. In this case, the system performance of

44

SACCS is improved when the FIFO is used instead of the based LRU for MUC -
management.

In future work, the performance of the system of SACCS can be improved in
different ways. The MSS cache management algorithm can be enhanced to transfer
data effectively and answer the users’ request for data more quickly. Also the data
consistency between the server and the mobile users could be ensured by combining
the SACCS with one of the proposed cache invalidation schemes. A further study
should be made to choose which cache invalidation scheme combined with the
SACCS leads to more satisfactory results concerning system performance and other
system factors. A simulation of the combination of the two schemes could be made to
show and compare the new results of SACCS with the old ones. In addition, a further
study could be made for the IR management in SACCS and how it could be improved
in order to have better bandwidth utilization an& ensure data consistency with a better
system performance. Finally, the SACCS can also be enhanced to be used for read-

write systems.

45

References

Mazumdar, S.Mazumdar and P.K.Chrysanthis (1999). Achieving Consistency in
Mobile Databases through Localization in PRO-MOTION. [Online].
Available: ' _
http://www.csse.monash.edu.au/projects/MobileComponents/mdds99/published/

02810082.pdf

Hou, Hou, W.C., C.F. Wang, and M. Su (2005). Composing Optimal Invalidation
Reports for Mobile Databases. Journal of Digital Information Management, 3
No.2, 126-132.

Seetha, A.J.Seetha and A Kannan (2001). Maintaining data consistency in mobile
database broadcasts. [Online]. Available:
http://www.gisdevelopment.net/technology/mobilemapping/techmp001pf.htm

Qi Lu, Q.M. Satyanarayanan (1995). Improving Data Consistency in Mobile
Computing Using Isolation-Only Transactions. [Online]. Available:
http://www.cs.cmu.edu/~coda/docdir/hotos95-iot.pdf

Wang, Z. Wang, S.K.Das, H.Che and M.Kumar (2003). Scalable Asynchronous Cache
Consistency Scheme (SACCS) for Mobile Environments. [Online]. Available:
http://www .cse.uta.edu/research/publications/Downloads/CSE-2003-9.pdf

Chrysanthis, P.K.Chrysanthis and E.Pitoura (2000). Mobile and Wireless Database
Access for Pervasive Computing. [Online]. Available:
hitp://www.cs.uoi.gr/~pitoura/icde00-tutorial.ppt

Lam, K-Y.Lam, E.Chan, H-W .Leung and M-W.Au (2000). Broadcasting Consistent
Data to Mobile Clients with Local Cache. [Online}. Available:
http://'www.cs.cityu.edu.hk/~rtmm/comad2000.pdf

Yao, J-F.Yao and M.Dunham (1998, August). Caching Management of Mobile
DBMS. [Online]. Available: http://engr.smu.edu/~mhd/pubs/99/icae.doc

Kumar, V.Kumar (2006). Mobile Database Systems. [Online]. Available:
http://www.sice.umke.edu/~kumarv/co-tutorial.ppt

Caol, G.Cao (2002). Adaptive Power-Aware Cache Management for Mobile
Computing Systems. [Online]. Available:
http://www2002.0org/CDROM/poster/88.pdf

Wu, K-L.Wu, P.S.Yu and M-S.Chen (1996). Energy-Efficient Caching for Wireless
Mobile Computing. [Online]. Available:
http://www.doi.ieeecomputersociety.org/10.1109/ICDE.1996.492181

46

Chuang, P-J.Chuang and Ch-Y.Hsu (2004). An Efficient Cache Invalidation Strategy
in Mobile Environments. [Online]. Available:
http://www.doi.ieeecomputersociety.org/10.1109/AINA 2004.1283799

Cao2, G.Cao (2002). On Improving the Performance of Cache Invalidation in Mobile
Environments. [Online]. Available:
http://www.doi.ieeecomputersociety.org/10.1109/PERSER.2004.16

Kahol, A,Kahol, S.Khunara, S.K.S.Gupta and P.K.Srimani (2001, July). 4 Strategy to
Manage Cache Consistency in a Disconnected Distributed Environment.
[Online]. Available:
hitp://www.doi.ieeecomputersociety.org/10.1109/71.940744

Fausto, F.Giunchiglia and 1.Zaihrayeu (2004). Coordinating Mobile Databases.
[Online]. Available:
http://www.p2pkm.org/2004/Camera Ready/1568938498.pdf

Choo, Choo (2001). Unix And C/C++ Runtime Memory Management For
Programmers. [Online]. Available:
http://users.actcom.co.il/~choo/lupg/tutorials/unix-memory/unix-memory.html

Lupu, E.C.Lupu and M.Sloman (1999, November). Conflicts in Policy-Based
Distributed Systems Management. [Online]. Available:
http://www.doc.ic.ac.uk/~mss/emil/tse.pdf

Barr, R.Barr (1999, March). Mobile distributed systems. [Online]. Available:
hitp://www.rimonbarr.com/repositiry/cs714/mobile.ppt

Kilgore, R.A Kilgore (2002). M ULTI-LANGUAGE, OPENSOURCE MODELING
USING THE MICROSOFT .NET ARCHITECTURE. [Online]. Available:
http://www.informs-sim.org/wsc02papers/080.pdf

Dobbs, Dr. Dobbs (2006). Source Code. C/C++ Journal. [Online}]. Available:
ftp://66.77.27.238/sourcecode/cuj/

Yin, L.Yin, G.Cao and Y.Cai (2006). A Generalized Target-Driven Cache
Replacement Policy for Mobile Environments. [Online]. Available:
http://www.cs.iastate.edu/~yingcai/GCP.pdf

47

Appendix SACCS Simulation Results

A-1 LRU Simultin esults

Figﬁre Al LRU Simulaﬁon Oﬁtpuf

48

A-2 LFU Simulation Results

Figure A.2 LFU Simulation Output

49

A-3 MFU Simulation Results

Figure A.3 MFU Simulation Output

A-4 MRU Simulation Results

Figure A.4 MRU Simulation Output

51

A-5 FIFO Simulation Results

Figure A.5 FIFO Simulation Output

52

