Qb
109

<\ LEBANESE AMERICAN UNIVERSITY
SCHOOL OF ARTS AND SCIENCES

DIVISION OF COMPUTER SCIENCE
AND MATHEMATICS

Testing and Evaluating
Digital Signature Algorithms
in Principal Ideal Domains

Bilal Shebaro

Thesis Advisor: Dr. Ramzi A. Haraty

November 2005

Testing and Evaluating Digital Signature Algorithms
in Principal Ideal Domains

by
Bilal M. Shebaro

Submitted in Partial Fulfillment of the Requirements
for the Degree of Masters in Computer Science

Thesis Advisor: Dr. Ramzi A. Haraty

November 2005

Division of Computer Science and Mathematics
Lebanese American University
Beirut, Lebanon

LEBANESE AMERICAN UNIVERSITY

School of Arts and Sciences - Beirut Campus

Thesis approval Form (Annex I1I)

Student Name: /'/ é LD # /999 nc4 O

Thesis Title. . Testhing & [»&luti?_ZLjJ_ésLSﬁmﬁ‘L
P . 4 -n . .

Program : M S.

Division/Dept : w&&égz@ld

School : School of Arts and Sciences

v

Approved by:

Thesis Advisor:

Member
Member

Member

Date 285 /1, ./

(This document will constitute the first page of the Thesis)

s

7

To be signed by the student:

I grant to-the LEBANESE AMERICAN UNIVERSITY the right
to use this work, irrespective of any copyright, for the
University’s. own. purpose without cost to the University or to its
students, agents and employees. I further agree that the University
may reproduce and provide single copies of the work, in any
format other than in or from microforms, to the public for the cost
of reproduction.

TR =\

ABSTRACT

November 2005, Testing and Evaluating Digital Signature Algorithms in Princizzl
Ideal Domains

Digital signature is a mechanism designed to allow secure communication throuzh
an unsecure medium and can be traced in many applications where privacy is required.
The main purpose of this thesis is to extend some important and useful digital siz-
nature schemes from the domain of natural integers Z to two principal ideal domaizs
namely the domain of Gaussian integers Z[z] and the domain of the ring of polynomizais
over finite fields F[z]. This is accomplished by extending arithmetic needed for our
extensions to these domains. Each of RSA signature and ElGamal signature schemes is
extended to both the domain of Gaussian integers and the domain of polynomials over
finite fields: A description of these extensions is given along with algorithms, prooX,
numerical examples and computer programs. Moreover, we compare and evaluate the
classical and modified ElGamal and RSA algorithms by implementing and runnicg
them on a computer. We investigate the issues of complexity, efficiency and reliability
by running the programs with different sets of data. Comparisons will be done amorg
these different algorithms given the same data as input. In addition, implerhentation
of an attack algorithm will be presented. The attack algorithm consists of subroutines
used to crack signed messages. This is done by applying certain mathematical concepts
to find the private key. After finding the key, it will be easy to forge the signature. A
study will be done using the results of running the attack algorithm to compare the

security of the different classical and modified digital signature algorithms. Finally.

il

some of the advantages are pointed out.

The thesis consists of the following five chapters.

In chapter one, an introductory material to digital signatures with the basic
notions surrounding it is given as well as a general overview of cryptography and a

historical background related to digital signature. in order to motivate the digital

signature algorithms.

In chapter two, we introduce mathematical tools and concepts needed for the

digital signature schemes and mathematical concepts in the domain of natural integers
that are relevant to the digital signature algorithms. A survey of various techniques for
classical signature algorithms with the reference to their proofs is also given.

In chapter three, a comparitive study of ElGamal based digital signature al-
gorithm is done. We implement the classical and modified ElGamal digital signature
algorithms to compare and test their functionality, reliability and security. To test the
security of the algorithms we use a famous attack algorithm called Baby-Step-Giant
algorithm which works in the domain of natural integers. We enhance the Baby-Step-
Giant algorithm to work with the modified ElGamal digital signature algorithms.

In chapter four, a comparitive study of RSA based digital signature algorithm
is done. The classical and modified RSA algorithm is implemented to compare and
test their functionality, realiability and security. To test the security of the algorithms
we implement an attack algorithm to solve the integer factorization problem in Z, Z[4],
and F[z] . After factorization is found, the RSA problem could be solved by finding
the private key using the extended Euclidean algorithm.

We conclude this thesis in chapter five by stating some advantages of the ex-

tended schemes and giving some conclusions. Also, we pose some related problems for

future research.

et i i 8

.

TABLE OF CONTENTS

ABSTRACT . . .ot e i
151230 {67\ & (0 A v
ACKNOWLEDGMENTS . e et e vi
LISTOF FIGURES ... ceiie i iiciiiiieieieeeeee L R TR ix
LISTOF TABLES................. e e e X
CHAPTER 1. INTRODUCTION ...ttt 1
1.1 Digital Signatures Concepts 2
1.2 History of Digital Signatures 5
CHAPTER 2. MATHEMATICAL BACKGROUNDcoiiiiiiinn, 9
2.1 Arithmetics in The Domain of Natural Integers 9
2.2 Arithmetics in the Domain of Guassian Integers Z[¢]. 16
2.3 Arithmetics in the Domain of Polynomial Rings 32
CHAPTER 3. A COMPARATIVE STUDY OF ELGAMAL BASED DIGITAL
SIGNATURE ALGORITHMSo i 47
3.1 Classical And Modified ElGamal Signature 47
3.2 ElGamal Public-Key Scheme Attack 74
3.3 Testing and Evaluation 81
34 Conclusion v v v i e e e e e e e e 88
CHAPTER 4. A COMPARATIVE STUDY OF RSA BASED DIGITAL SIGNA-
TURE ALGORITHMS .o 90
4.1 Classical and Modified RSA Signature Scheme 90

4.2 RSA Signature Scheme in the Domain of Gaussian Integers, Z[i] 93

4.3 RSA Signature Scheme over Quotient Rings of Polynomials over Finite
Fields o e e e e e e e e e e e 100

4.4 RSA Signature Scheme Attack 0L 105

vii

4.5 Testing and Evaluation

4.6 Conclusion

CHAPTER 5.

" REFERENCESooiiiiiii i 121

LIST OF FIGURES

FIGURE 3.1: AVERAGE EXECUTION TIME FOR ELGAMAL
DIGITAL SIGNATURE

FIGURE 3.2: AVERAGE EXECUTION TIME FOR ELGAMAL
DIGITAL SIGNATURE

FIGURE 3.3: ATTACK TIME: EXHAUSTIVE SEARCH
ALGORITHM

FIGURE 3.4: ATTACK TIME: BABY-STEP GIANT-STEP
ALGORITHM

FIGURE 4.1: RUNNING TIME IN SECONDS: CLASSICAL RSA...108

FIGURE 4.2: RUNNING TIME IN SECONDS: GAUSSIAN
INTEGERS

FIGURE 4.3: RSA USING POLYNOMIALS WITH PRIME P=2
DIGITS

FIGURE 4.4: RSA USING POLYNOMIALS WITH PRIME P=101
DIGITS

FIGURE 4.5: ATTACK TIME IN SECONDS: CLASSICAL RSA....113

FIGURE 4.6: ATTACK TIME IN SECONDS: RSA ALGORITHMS
USING POLYNOMIALS

LIST OF TABLES

Table 4.1. Running time in seconds: Classical RSA

Table 4.2. Running time in seconds: Gaussian integers

Table 4.3. Running time in seconds: RSA using polynomials
Table 4.4. Attack time in seconds: Classical RSA

Table 4.5. Attack time in sec: RSA algorithms using polynomials

CHAPTER 1

INTRODUCTION

Cryptography is defined to be the art and the science of preparing coded or
protected communications intended to be intelligible only to the person possessing a
key. The word ”cryptography” is a combination of two Greek words, kryptos, which
means secret, and graphos, which means writing. Hence, cryptography is the process
or skill of communicating in secret writings (codes, or ciphers) or deciphering secret
writings. Also, cryptography refers to the use of codes to convert computerized data
so that only a specific recipient will be able to read it using a key (Encryption). In
cryptography we call an original text the real message or plaintext. Once the original
text has been encrypted (coded), the result is known as the ciphertext. The encryption
process usually involves a particular method to cipher origin texts called ”Encryption -
Algorithm”. To recover the original text from the ciphered one, we have to use a specific
unique inverse method to that of encryption process called ”Decryption Algorithm”.

Aciently, cryptography was the only tool that gives the ability to encrypt data,
and ensure that these data will be secret. So, cryptography was a secure box that gives
individuals the power to restore national and personal privacies. Now, with computers,
cryptography is important for more than just privacy, however. Cryptography protects
the world’s banking systems, commerce, communications over telephone lines, finan-
cial transactions, medical histories, choices of rental movies, and others. Hence, with
techhology, cryptography became one of the most essential part' of today’s information

system.

The most striking development in the history of cryptography came in 1976
when Diffie and Hellman published ”"New Directions in Cryptography”, [3]. This paper
introduced the revolution in the concept of public-key cryptography and also provided
a new and ingenious method overview of cryptography for key exchange. This method
is based on the intractability of discrete logarithm problems. Although the authors
had no practical realization of a public-key encryption scheme at the time, the idea was
clear and it generated extensive interests and activities in the world of cryptography. In
1978 three American computer scientists, Ronald L. Rivest, Adi Shamir, and Leonard
Adleman created the Rivest-Shamir-Adleman (RSA) system. The RSA scheme is based
on another hard mathematical problem, the intractability of factoring large integers.
This application of a hard mathematical problem to cryptography revitalized efforts to
find more efficient methods to factor integers. In the 1980s major advances in this area
was seen and the RSA system was widely used as a secure system. Another class of
powerful and practical public-key schemes was found by ElGamal in 1985. These are

also based on the discrete logarithm problem.

1.1 Digital Signatures Concepts

Digital signatures are strong tools applied in order to achieve the security services
of authentication (proof of identity of the sender), data integrity (detection of changes
to the message) and non-repudiation (prevention of denial of sending the information).
They are digital counterpart of handwritten signatures that can be transmitted over
a computer network. Only the sender can make the signature, but other people can

easily recognize as belonging to the sender. The sender produce a signature consisting
2

of a number associating a message (in digital form) with a secret key. This signature is
intended to be unique and it does not necessarily require that a message be encrypted
but must be verifiable. Digital signatures are based on mathematical theory and the
use of algorithms. They require that the holder of the signature has a two key system
for signing and verifying (one private and the other public). The private key should
only be available to the user to whom it belongs, and is used by the signing procedure
in order to sign the message. The signing procedure consists of a mathematical digital
signature generation algorithm, along with a method for formatting data into messages
which can be transformed into a tag called a signature. The public key may be available
to many users of the system, and is used by the verification procedure. The verification
procedure consists of a method to verify that a digital signature is authentic that’s to
say it really comes from the claimed sender (assuming only the sender knows the private
key corresponding to his public key) along with a method for recovering data from the
message in particular types. Digital signatures can also be used to testify that a public
key belongs to a particular person or entity. This is done by signing the combination of
the public key and the user’s identity by a trusted key. The public key and the user’s
identity are called certificates. The digital signature use the owner of the trusted key to
bind the identity of an entity to a public key, so that at some later time, other entities
can authenticate a public key without assistance from a trusted third party.

The most popular digital signature algorithms are based on certain mathematical
properties of the integers such as divisibility, congruencies, factorization, Euclidean
algorithm, discrete logarithms, residue systems, quadratic residues, and others. The

domain of integers share many similarities with other algebraic systems. The digital
3

signature algorithms can be modified to any principal ideal domain where the needed
properties can be fully described and efficiently implemented. Also, we show that these
new settings are carefully chosen so that the operations can be performed efficiently
and easily applied.

The digital signature schemes are operations combining primitives and other
techniques in cryptographic protocols. RSA signature, ElGamal signature, DSA signa-
ture, Rabin signature are example of signature schemes that are in use today. All of
them are public-key schemes with secret information to sign documents and public in-
formation to verify signatures. There are two main classes of digital signature schemes

which are the following:

1. Digital signature schemes with appendix : require the original message as input
to the verification algorithm. They are the most commonly used in practice and

rely on what we called cryptographic hash functions[24},[25].

2. Digital signature schemes with message recovery : do not require the original
message as input to the verification algorithm. In this case the original message

is retrieved (if the signature verifies) from the signature itself.

These classes of digital signature schemes are based on one-way functions which
we will now discuss. A one-way function is a function that is easy to compute in one
direction, but very difficult to compute going the other direction. By ”difficult”, we
mean that it would take millions of years to be computed. There are many functions
that seem to be one-way. For example, computing square roots in a finite field, factoring

in a finite field and calculating discrete logs in a finite field.
4

1.2 History of Digital Signatures

The concept of a digital signature was introduced in 1976 by Diffie and Hellman.
They published their landmark paper "New Directions in Cryptography” [3]. This
paper introduced the revolutionary concept of public-key cryptography, provided a new
and ingenious method for key exchange and outlined how the difficult problem of solving
discrete logarithms in finite fields could be used to develop public-key cryptography
which had clear potential for use in data networks. Diffie and Hellman suggested,
quite prophetically, that the ”one-way authentication” services offered by public-key
schemes would ultimately be of more importance to the business community than the
confidentiality services for which cryptography had tréditionally been used. In 1978,
three american scientists Ron Rivest, Adi Shamir and Leonard Adleman invented the
first practical and most successful public-key scheme, referred as RSA. This scheme
is based on the intractability of factoring large integers. RSA cryptosystem allowed
both encryption and the application of digital signatures. Other powerful and practical
public-key schemes soon followed including ElGamal technique in 1985 that is based on
the discrete logarithm problem. In 1991, the ISO IEC 9796 ”Information technology
security techniques digital signature scheme giving message recovery” was published by
the International Standards Organization as the first international standard for digital
signatures. It specifies a digital signature process (as the RSA for digital signatures
& others). In 1994, a mechanism based on ElGamal public-key scheme was developed
by the U.S. Government for the Digital Signature Standard. This mechanism is then

modified with the emphasis on RSA digital signatures to support the de facto standard
5

of financial institutions.
In 2001, ElKassar and Awad implemented El-Gamal public key cryptosystem in
the domain of gaussian integers[10]. In 2002, an investigation and comparison between

ElGamal public-key cryptosystem and its extension to the gaussian integers domain

was done by El-Kassar, see[28].

In 2003, the classical ElGamal cryptosystem and four modifications to it, namely,
the ElGamal cryptosystem in Z,, were presented in the domain of Gaussian integers,
Z[i], over finite fields, and over quotient rings of polynomials over finite fields,[16}. The
algorithms were implemented and their efficiency, reliability, and security were tested by
Haraty and El-Kassar [16]. Attack scenarios that directly aimed at solving the discrete
logarithm problem were built for these algorithms to utilize. Recently in 2004, E1Gamal
public-key cryptosystem using reducible polynomials over a finite field was presented
by ElKassar and Haraty [7]. Also in the same year, they presented the classical RSA
cryptosystem and two of its modifications, namely, the RSA cryptosystem in the domain
of Gaussian integers, Z[i], and over quotient rings of polynomials over finite fields[18].
They also built attack scenarios directly aimed at solving the factorization problem.
They observed that the Gaussian method is preferred since it is as secure as the classical
one but provides an extension to the message space and to the encryption exponent

range.

Cryptographic Hash Functions A cryptographic hash function or simply hash function

h is a mathematical function applied to a message. It maps binary input m in binary

strings of arbitrary length that will represent the whole message (large strings) to binary
6

output strings of some fixed bit length say n bits. This output which is denoted by
h(m) is called the hash value or message digest (generally smaller). By this operation,
the message to be signed is reduced to its hash value prior to signature generation. Not
the message itself but its hash value is signed, and this represents the digital signature.
When the data is received and the hash value is computed, this should match the
included hash value. Cryptographic hash functions are used in various contexts, but

their main role is in the provision of digital signatures for several reasons:

1. Public-key signing algorithms tend to be very slow, so taking the hash value of a
large message and signing the small resulting value is much more efficient than

simply signing the whole message.

2. If you want to add multiple signatures to a message without the use of hash

functions, the signed message would be many times the size of the original.

Choosing a good hash function is of most importance. There are basic require-
ments we have for a cryptographic hash function to use in the digital signature schemes
to be one-way and collision free. The concept of one-wayness with respect to hash
functions is that it is hard to invert, it means that, given a hash value H, it is com-
putationally infeasible to find some input m such that h(m) = H. A one-way hash
function converts an arbitrary-length message into a fixed-length hash. A strongly
collision-free hash function A is one for which it is computationally infeasible to find
any two messages m and m/ such that h(m) = h(m/). One of the challenges involved
with creating one-way hash functions is that they must operate on input data streams of

variable size. Every hash function should be defined in terms of a compression function
7

to deal with the variable length input problem. The hash function is public ; there is no
secrecy to the process. The security of a one-way hash function is in its one-wayness.
Only the hash value is signed. In this chapter we are going to describe a mechanism
that rely on cryptographic hash function which is ElGamal signature scheme in the do-
main of natural integer. ElGamal signature scheme depends on the discrete logarithm

problem and on Diffie-Hellman problem [4] and [22].

Redundancy Function An alternative to hashing is to use a redundancy function which

transforms the original message into a larger space. A redundancy function is often
used in digital signatures with message recovery. We are going to describe two sig-
nature schemes in the domain of natural integers that use a redundancy function and
provide digital signature with message recovery which are the RSA signature scheme
and the Rabin signature scheme. The RSA signature scheme depends on the integer
factorization problem and on RSA problem. The Rabin signature scheme depends also
on the integer factorization problem and on the square roots modulo composite n, see
[21] and [22] for instance.

Note that the signature schemes in the domain of natural integers will be referred
as classical digital signature schemes. Since these signature schemes are based on
the number theoretic structure and algebraic foundations, for a better understanding,
we are going to present some tools, basic concepts and important number theoretic

problems in the domain of natural integers that are relevant to these algorithms.

CHAPTER 2

MATHEMATICAL BACKGROUND

This chapter contains a short mathematical basic knowledge in the area of num-
ber theory and algebraic result in the domain of natural integers that are particularly
useful for the classical signature schemes described in this chapter. Mathematical proofs
and further background can be found in references [1],[27],and [20] for instance.

2.1 Arithmetics in The Domain of Natural Integers

Integer Arithmetic. We begin with a review of a simple but very useful theorem which

is the division algorithm theorem. The division algorithm of integers theorem is the

following.

Theorem 1 (Division algorithm in Z) If a and b are integers with b > 1, the ordinary
long division of a and b yields integers q (the quotient) and r (the remainder) such

that a = gb+ r, where 0 < r < b. Moreover, ¢ and r are unique.

Applying the division algorithm to any integer a and a nonzero integer b, we say
that b divides a just in case the remainder r is equal to zero. The integer that divides
an integer a and an integer b is called a common divisor of @ and b. The largest of
all common divisors of a and b is called the greatest common divisor of @ and 5. We
denote this ihteger by gcd(a, b) or (a,b). A basic tool to compute the greatest common
divisor of two positive integers is the Euclidean algorithm which is based on fhe fact
that if an integer d divides two integers a and b, it divides their remainder. Thus,

gcd(a,b) = ged(b, a mod b).

Algorithm 2 (Euclidean algorithm in Z) Given two positive integers a and b such
that a > b, the Euclidean algorithm consists of performing the sequence of divisions to .

produce a decreasing sequence of integers : Ty > Tg > T3...T GS the following :

a =bqy + 11 0<ri<bdb
b =rg+r O<ra<n
Th—2 = Th—1qx + Tk 0<rp <7Tp

Th—1 = TeQe+r +0
Now,
ged(a,b) = ged(b, 1) =....Tx

It follows that the last nonzero remainder Ty is the gcd(a,b).

An exceeding important property of the greatest common divisor of two integers
o and b is that it can be written in the form ap + bg where p and g are both integers.
The existence of such integers p and ¢ and how to find them is very useful later when
we consider the signature schemes. The algorithm for finding the values p and ¢ in

addition to the greatest common divisor of two integers can be stated as follow.

Algorithm 3 (Extended Fuclidean algorithm in Z) Let a,b be two integers and let

d = ged(a, b). The process to compute d and to compute the integers p and q such that

ap + bq = d is the following:

1. Seta;=a;a=b;z1=1;22=0;y1=0; 92 =1
10

2. Let ¢=a1/as.

3. Set a3 =a1 —qaz ; T3 =1 +qT2 ; Ys = Y1 + qY2.
4. Setay =ag;a2=0a3 ;21 =T2;T2=2T3;Y1 =Y2;Y2=Y3.
5. If as > 0 loop back to step 2.

6. If az; —by: > O return (d, p, q) = (a1, 21, —y1) else return (d, p, q) = (a1, —1,%1)-

Every random natural number p > 1 whose only divisors are &1 and =+ p is called
a prime number. If p is not prime number, it is a composite number. The number 1
is neither prime nor composite; it is a unit. Any odd prime of the form 4k + 1 can be

written as a sum of two squares. Some characteristics of prime numbers are.

1. p/aias......a, = p/a; for some .

2. Every positive integer n can be expressed as a product of nontrivial powers of
distinct primes n = p§*.ps2.....prrand up to a rearrangement of the factors, this

prime factorization is unique.

3. The number of primes is infinite.

Two numbers are relatively primes if their greatest common divisor is equal to
1. To determine the number of integers < n which are relatively prime to a number

n, we look for the Euler phi function named also totient function denoted by ¢(n)

where n > 1 and write ¢(n) = Y. 1. The totient function ¢(n) has the following
1<k<n
ged(k,n)=1
properties:

11

1. If pis a prime, then ¢(p) =p — 1.

2. If ged(m,n) = 1, then ¢(mn) = ¢(m)¢(n). This implies that the Euler phi

function is multiplicative.

3. If an integer n is expressed as a product of prime powers n = p$.p3*...py", the

1 1 1
value of ¢(n) =n(1 — =)(1 — —)....(1 — —) where p; #p; and 1 <4, j < k.
y4! D2 D,

1
In particular, if n = p* then ¢(n) = ¢(p*) = p*(1 — 5) =pF1(p—1).

Modular Arithmetic Let n be a positive integer. For a,b € Z we say that a is congruent

to b modulo n and write @ = b (mod n) <= n/(a — b). n is called the modulus of
the congruence and b is called the remainder or the residue of a modulo n. It is easy
to verify that = is an equivalence relation on Z and hence partitions Z into a set of n
disjoint equivalence classes which are [0], [1], [2],[n — 1]. The equivalency classes are
called residue classes. A complete set of representative for the residue classes is called
a complete residue system modulo n. One such system is Z, = {[0],[1],.....,[n — 1]},
denoted by {0,1,2,...n — 1} for simplicity. We define addition and multiplication on
Zn to be the same as ordinary addition and multiplication of integers, except that the
results are reduced modulo n. The set {ai, az,, an} is called a reduced residue mod
n if for every integer a such that ged(a,n) = 1 there is 4, 1 < 4 < h such that a = a;
(mod n). In other words, any set of #(n) integers which are all coprime to n and no
two of which are congruent modulo n form a reduced residue system.

Next, we consider the problem of solving the congruence az = b(mod n).

Let d = ged(a,n). If bt d, there is no solution to the congruence. If b/d, there

are d incongruent solutions. In particular, if d = gcd(e,n) = 1 and b = 1 there is
12

one solution. By one solution, we mean that the solution is congruent to every other
solution. This unique solution will be the multiplicative inverse of @ modulo n denoted .
by a¢~1. In turn, this is equivalent to say there exists a € Z, such that az+by =1 (mod
n). This equation can be}solved by the extended Euclidean algorithm to obtain the
inverse of integer @ molulo n. One simple way of calculating the multiplicative inverse
of @ modulo n is the extended Euclidean algorithm. If gcd(a,n) > 1 and b = 1, then
a has no inverse in Z,,. The computation of the inverse modulo n can also be done via

the Euler’s theorem which is stated below.

Theorem 4 (Euler’s theorem) Let n be a positive integer and a be an integer relatively

prime to n. Then, a®™ =1 (mod n).

In the special case where n = p is prime, every positive integer a less than p is

coprime to p, that is ¢(p) = p — 1. This lead us to the following theorem.

Theorem 5 (Fermat’s little theorem) Let p be a prime positive integer and a be an

integer such that ged(a,p) = 1. Then, a?~! =1 (mod p). Therefore, a? = a (mod p).
We turn now to establish a lemma that will be the base for Wilson’s theorem.

Lemma 6 Letp be a prime. The congruence z2 = 1 (mod p) has ezactly two solutions,

namely, z = %1 (mod p).
Theorem 7 (Wilson’s theorem) Let p be a prime. Then (p —1)! = —1 (mod p)

We end up with a result that can be derived from Wilson’s theorem.
13

Theorem 8 Let p be an odd prime. The congruence z* = —1 (mod p) is solvable if

and only if p=1 (mod 4).

The next logical step is to be able to solve simultaneous linear congruencies. A
fundamental tool for converting between a single congruence and a system of congru-

encies with smaller moduli is the Chinese remainder theorem.

Theorem 9 (Chinese remainder theorem (CRT)) Let ny,my,...nx denote k positive
integers that are relatively primes in pairs, that is to say, ged(ni,n;) = 1 for i # j.
Given the integers ay, Gz, ..., G, there is a solution o to the system such that for all 1,
1<i<k z9=a; (mod n;). Moreover, all such solutions are congruent to zo modulo

n where n = ny.na...Ng.

Recall that an integer @ modulo 7 is invertible modulo n if and only if (a,n) = 1.
The set of all invertible elements modulo n constitute the multiplicative group Z;. Z;,
= {a € Z, / gcd(a,n) = 1} where an element a € Z, is actually a residual class [a]
modulo n. If n is prime, then Z* = {a / 1 < a < n — 1}. The order of Z;, defined
to be the number of the elements in Z* and denoted by |Z}| is equal to the Euler Phi
function ¢(n). For n = p$'p3?...p%* the Euler Phi function is ¢(n) = (p — 1)p7* ™ (p2 —
Dp3**...(p; — 1)pf~" . The order of an element a € Z;, is the least positive integer ¢

such that a* = 1 (modn). If the order of @ € Z} is t, and a® = 1 (mod n), then ¢ divides

s. In particular, t|¢(n). If the order of an element o € Z; is ¢(n), then « is said to be

a generator of Z* or a primitive element of n. If Z; has a generator, then Z7 is said to

be cyclic.

Next, we list some of the properties of generators of Z;.
14

Z* has a generator if and only if n = 2,4, p* or 2p’, where p is an odd prime and

t > 1. In particular, if p is a prime, then Z has a generator.

. If o is a generator of Z, then Z* = {o* (modn) | 0 <7 < ¢(n) — 1}.

Suppose that o is a generator of Z*. Then, b = o (modn) is also a generator of

Z* if and only if ged(4, ¢(n)) = 1. It follows that if Z} is cyclic, then the number

of generators is ¢(¢(n)).

o € Z? is a generator of Z* if and only if a®™/? is not congruent to 1(mod n) for

each prime divisor p of ¢(n).

Note that finding a generator of a cyclic group is one of the difficult number
theoretic problems. Now, depending on the above properties of a generator, to find a
generator a of the cyclic group Z;, we proceed as follows. First we select an element
ain Z; with 2 < o < p—-2. Then, use the division algorithm to write the order
$(p) = p—1 as a product of distinct primes p;. If for every p:|p, app;il is not congruent

to 1 modulo p, then « is a generator of Z;. Otherwise, a is not a generator. This

statement is put in the following algorithm:
Algorithm 10 (Finding a generator o of Zy)
Select an integer a from [2,p — 2.
Write ¢(p) = p — 1 = p{'p5’...p¢"-

Fori=1tok

t_l.
3.1 Compute o Pi (modp).

—1
3.2 If o » (modp) is not congruent to 1(modp), then return to step 1.

4. Return with a as generator of Z.

2.2 Arithmetics in the Domain of Guassian Integers Z[g].

This section involves number theoretic properties extended from the domain of
natural integers to the domain of Gaussian integers, see [30].We can extend numerous

theoretic properties from the domain of natural integers to the domain of Gaussian

integers denoted by Z[s], which is the subring of the field of complex numbers C

consisting of all elements of the form @ + bi where a and b € Z.

Gaussian Integer Arithmetics The ring Z[7] is a commutative ring with unity and no

zero divisor (that is, if o and § are two Gaussian integers such that a # 0, we can’t
find 8 # 0 such that a3 = 0). Hence, Z[i] is an integral domain. An element p € Z[d]
is a unit in Z[i} if 4 posses a multiplicative inverse A € Z[i} such that uA = Ay = 1. The
units in Z[i] are 1, —1,%, —i. They divide each element in Z[:] and form a muliplicative
group called group of units and denoted by U(Z[4]). If there is an invertible element u
€ Z[i] such that 8 = pa, we say that 3 is associate to a denoted by 8 ~ . Hence, the
associates of a are a, —¢a, ta, —iq.

Let a be an element equal a + bi. We define the conjugate of a as @ = a — bt
and the norm of o, called also the Gaussian valuation, as the product of the number o
by its complex conjugate i.e §(a) = a @ = a® + b? = |a|?. The main properties of the

norm of Gaussian integers are defined in the following theorem.

Theorem 11 (Properties of the norm of Gaussian integers)
16

Multiplicativity : 6(aB) = 6(a)d(B) Va, 8 € Z[{]\{0}.
Positivity : §(a) = 1V nonzero o € Zli].
Units : §(a) = 1 <= a € U(Z[i]) = {£1, £:}.

Diwvisibility : If /B in Z[i] then 6(a)/8(B) in Z.

: 5(a)=0iﬁa=0.

If a ~ B then §(a) = 6(B).

When a Gaussian integer « is divided by any Gaussian integer 3, they are related

by an equation that we formulate as the following.

Theorem 12 (Division Algorithm in Z[i]) Given two Gaussian integers o, # 0.

Then, 3 q, r € Z[i] such that o = ¢B +r where r =0 or §(r) < §(B).
Note that the Gaussian integers ¢ and 7 are not unique.

Example 13 Toke o =5+4i and B =1—2i. Then, 5+ 4t = (=14 3i)(1 — 2) — ¢
where §(r) = 1 < §(8) = 5. Thus, the quotient is —1 + 3i and the remainder is —1.
Note that the quotient and the remainder obtained from the division algorithm in Zi]

are not unique. For instance,—4+1 = (—1-+1)(5+3¢)+(4—1) = (—=1)(5+3%)+ (1 +41)

We should mention that we can’t compare two Gaussian integers. In formulating
the division algorithm in Z[z], we seem to run into a problem that Zi] is not ordered.
However, we can simply use the ordering on their norms. For instance, this criteria 1s

used while finding the Euclidean greatest common divisor for Gaussian integers.
17

Definition 14 (Greatest common divisor in Z[i]) Suppose that a and 8 are two nonzero
Gaussian integers. There ezist a unique Gaussian integer vy called the greatest common .

divisor of o and 3, denoted ged(c, B) such that

1. v/a and v/B.

2. If \Ja and N/ then A/vy YA.

Example 15 Let o = 10+11i; 8=T+1 ; ged(a, B) = (104+118)(4+3)+ (T+15) (=5~

7i) = 1.

An efficient way to find the greatest common divisor (a, 8) of any two Gaussian
integers a and B is to make a repeated application of the division algorithm. This

process is called the Euclidean algorithm.

Algorithm 16 (FEuclidean algorithm in Z[i]) Given two Gaussian integers o and (3.
By a repeated application of the division algorithm, we obtain the follounng.
a = q B+ where §(r;) < 6(8).

B = qory + 12 where 6(ry) < §(r1).

Tneg = QuTn-1+ Tn where §(rp—1) < d(rn_2).
Tn-1=Gqn+1 T™n + 0.

The last nonzero remainder ., is the ged of a and 3.

In Zl[i). the Euclidean algorithm can be used to prove the following theorem.
18

Theorem 17 (Bezout identity)

Two Gaussian integers a and B not both equal to zero, have their greatest com-

mon diwvisor of the form ax + By for some x and y.

This is a result of applying the Euclidean algorithm backwards, and write the

ged as a linear combination. Both implementing the Euclidean algorithm in Z[4] and
going backward until the Bezout identity is found is commonly referred to as carrying
out the extended Euclidean algorithm. Note that the extended Euclidean algorithm in
Z[i] may also be used to compute v and 4 in the identity n = ged(a, B) = ya + upb.
Every nonzero nonunit Guassian integer § whose only divisors are the units and
the associates is called a Gaussian prime. If 8 is not Gaussian prime, it is a Gaussian
composite. Note that, if §(c) is prime in Z then o must be a prime in Z[i]. The
converse is not true. For example, 7 is prime in Z[i], but 6(7) is not prime in Z. Also,
not every prime in Z is prime in Z[i]. For example, 13 is prime in Z, but 13 is not

prime in Z[5]. 13 = (34 2i)(3 — 27). The following theorem characterizes primes in Z[3].
Theorem 18 (Types of Gaussian primes)

1. Gaussian prime and its associate of the form a =1 +1

2. T and II in Z[i] where p = 77 is an odd prime in Z of the form 4% + 1.

3. Odd primes of the form 4k + 3.

Note that the associate of a prime is also a prime, and the primes 7 and 7% are
not associates. Also, note that if a Gaussian integer o is a Gaussian prime, we can also

say it is irreducible in Z[i]. In other words, a Gaussian integer « is said to be irreducible
19

in Z[i] if 6(c) is prime in Z that is if o is a Gaussian prime.The Gaussian integer 2 is

not prime. The Gaussian integers 1+ 7 and 1 — ¢ are associate primes.

Example 19 §(1+2i) is prime in Z. Therefore, 1+ 2i is irreducible in Z[d]. 6(1 — 21)

is prime in Z. Therefore, 1 — 24 is irreducible in Z[i].
Gaussian integers obey a unique factorization theorem analog to that of integers.

Theorem 20 (Unique factorization in Z[i]) In the domain of Guassian integer, each
non-zero, non-unit element o can be factorized into a product of Gaussian primes.

a = f3,Bs....0, and this factorization is unique up to ordering and associates.

Congruencies in Z[i] Let o, 8 and v be Gaussian integers with # 0. If v/(a — B),

we say that a and 8 are congruent modulo v and we write a = 8 (mod 7). If (o —
B) is not divisible by 7, we say that a and § are incongruent modulo v and we write
a % B (mod 7). Let u be a unit in Z[z], then o = 8 (mod) if and only if a = 8 (mod
u7). Congruencies have many properties. Some properties that follow easily from the

definition are listed in the following theorem.

Theorem 21 (Congruence relation properties) Let o, B, n, i, A, v be any Gaussian

integers and let v # 0. Then, the congruence relations has the following properties:

1. a=p (mod) and n = p (mod v) => a+n= B+ p (mod 7).
2. a=p (modv) and n = p (mod v) => an = Bu (mod 7).

8. If X\ # 0 then a = B (mod) if and only if \a = AB (mod 7).
20

. a=f (mod v) and n = p (mod~y) = Aa-+ An = AB + Bu (mod 7).

. Ifa=p (mod v) and /vy then o = B (mod p).

. Ifa=p (mod v) and o = B (mod v) then a = § (modlem(y, v)).

. Aa = AB(mod «) if and only if o = B (mod v/(v, A)).

From the properties above, we deduce the following.

Corollary 22 (Congruence relation properties)

a. If (y,A) ~ 1 and Aa = A3 (mod 7) then a = B(mod 7).

b. If o = B(mod v,) and a = f(mod ;) then a = B(mod~;7,).

c. If a = B(mod) then (y,a) ~ (v, B).

The congruencies are networthy specially relating to the multiplicative property.

Theorem 23 Let o, B be in Z[i| and n # 0. Then,

1. af=1(mod n) iff (n,a) ~1 and (n, 3) ~ 1.

2. If aB = 1(mod 1) and (n,a) ~ 1 then 3 = 0(mod 7).

3. (n,a)~1iff 3B such that af = 1(mod n).

4. If X\ is prime and aff = 0(mod A) then a =0 or = 0(mod \).

Given integers a, 8 and 7 in Z[i] with 17 5% 0. Consider the linear, or a first degree

congruence ar = fB(modm). We say that two solutions, r; and r, , are congruent
21

solutions if r; = r(modm); otherwise the solutions are said to be incongruent. The
congruence is said to have a unique solution if a solution exists and is congruent to every
other solution. Note that if 7 = ro(modm) and 7 is a solution of the congruence then
r9 is also a solution. Now if ged(a,n) ~ 1 then the congruence azr = 1(modn) is
solvable and has a unique solution. Moreover, if (o,n) = <, where < is a non-unit,
then no such solution exists. Also, if (a,n) ~ 1 then the congruence az = S(modn) is

solvable and has a unique solution.

For example, the congruence (10 + 11¢)z = 1(mod 7 + ¢) can be solved applying
Bezout’s identity to express the GCD of 10 + 117 and 7 + 7 as the linear combination
1= (4+14)(10 + 114) + (=5 — 74)(7 +%). Hence, the solution is zg = 4 + 1.

Now if a, 8 and 7 are Gaussian integers with 7 # 0 and if v = (a,n), then
the congruence ar = $(modmn) is solvable iff y|3. The next theorem gives a complete

classification of the solutions of the general linear congruence.

Theorem 24 Let o, B and n be Gaussian integers withn # 0 and let v = (a,n). If the
congruence ax = (modn) is solvable, then there are 6() incongruent solutions modulo
B

1. The solutions are given by xo+ pg where g is the solution of %:c = —’;(od 27—) and
v

p ranges over a complete set of residues modulo .

We note that if o, 8, v and 1 are nonzero Gaussian integers, then the congruence

yax = vB(modyn) is equivalent to ar = B(modn), and if (v,n7) = 1 then yaz =

vB(mod yn) is equivalent to ax = S(mod7n).
22

For example, the congruence (1+3)z = 4(mod 2) is solved as follows: Let v = 1+1

B

and 2z = —(mod Z7—) is £ = 2 — 2i(mod 1 — 1). Hence, the solutions are
Y v Y

x1=x0+d1(g)=2—2i+0(1—i)=2—2i

x2=x0+d2(-3-)=2—2i+1(1—z')=3—3z'.

Let 7y, 79, --- , N, be r Gaussian integers that relatively prime in pairs and
let a1, as, ... , a, be any r Gaussian integers. Then the Chinese remainder theorem
states that the system of linear congruencies z = a;(mod”,), £ = az(modn,), ...,
and z = a,(mod7,) has a solution zp. Any two such solution are congruent modulo
n="m-"2--7-

For example, the Gaussian integer z with the least value of 6(z) satisfying the
three linear congruencies z = 3(mod 1+ 1), z = 1 + ¢(mod 2 + ¢), and z = 2(mod 3) is
z = —1.

Let 8 € Z[i], and let (8) = BZ[i] = Z[i]8 be the ideal generated by 8. Note
that for v and A in a ring Z[7], ¥ = A(mod) iff v — A € (B). Define A(B) to be
any complete set of distinct representatives from the cosets of (5) in Z[i]. We call
A(B) a complete residue system (mod). For any nonzero Gaussian 3 any complete
residue system modulo 3 has a finite number of elements, namely J(3). For example,
the complete residue system modulo 3 + 7 is the set {0,1,2,3,...,9}.

For any B € Z[i] we let the symbol ¢(5) to be the order of the quotient ring

Z[i)/ (B). El-Kassar [15] showed that for any two non-zero elements ~ and g of Z[i],
23

the complete residue system (mod /) is the set

{s+ry:s€ Aly),r e A(B)}.

q(B7) = ¢(B)a(v).

Example 25 Let <a> and < B> be the ideal generated by o =1+4 and B =2—1

respectively. Consider the cosets 0+ < a >, 1+ < a >, 24+ < a >. The coset
2+ <a>=(1+)(1—-0+<1+i>=<1+17>. Hence, 0+ <o >and 14+ < a >
are distinct and form a complete residue modulo «. Consider the cosets 0+ < 3 >,
I+ <B8>,2+ .5+ < B> Thecoset i+ < B >= 2+1)(2—1i)+ <2—17>=<
2—1 >. Hence 0+ < 8 > .44+ < B > are distinct and form a complete residue
modulo B . A(1+1) = {0,1} and A(2 — i) ={0,1,2,3,4}. The complete residue mod
(1+2)(2—1) = A(B+1) ={0,1+7,24+2¢,3+3¢,4+44,1,2+ 1,3+ 24,4+ 37, 5-+4i}. Also,
5 is not a prime in Z[i], because 5 = —i(1+ 2i) (2+1). Hence, the complete residue
system modulo B =5+ 5t = —i (1 +2¢) (2+1) (1 +4) is {0, 53, 2+ ¢, 2+ 61, 4+ 2¢,
4+7i,6+3i,6+8i,8+4:, 8+9, 1, 14+5¢, 3+, 3+6¢, 5+2¢, 5474, 7+ 32, 7+ 81,
9+4i,9+9%, 2,2+5¢, 441, 4+6:, 6+21, 6+ 71, 8+ 3¢, 8+ 82, 10+ 44, 10 + 94,
3,34+5t, 5414, 5+6¢, 7T+2, T4+7, 9431, 9+ 8¢, 11 + 42, 11 4+ 94, 4, 4+ 51, 6 +4,

6+ 64, 8+ 24, 8+ 7i, 10 + 33, 10 + 8, 12 + 44, 12 + 9%}.

J. T. Cross [2] describes the complete residue systems modulo Gaussian prime

powers for @ = 1+ 14, p = 4k + 3, and 7 as follows.

Theorem 26 Let o = 1+ 1 and p be a prime satisfying p = 3(mod 4). Let II be
24

the prime factor of an integer ¢ = 1 (mod 4). We can construct the complete residue

systems modulo 7", p", &*™, o™ as follow.

L Al@®) ={a+bi:0<a<2m—1,0<b<2m—1}.

AP ={a+b:0<a<2™ -1 0<b< 2™~ 1},
A ={a:0<a<¢" —1}.
AP ={a+bi:0<a<p"-1,0<b<p" —1}.

Example 27 Let 8 = (1+1)*. The complete residue system modulo (1 + i)* is {0, 4,
%, 30,1, 144, 1+2i, 1+3i,2, 244, 2+2, 2431, 3, 3+1, 3+2i, 3+ 3i}. The
complete residue systems modulo 7 is {0, ¢, 21, 33, 4¢, 5¢, 6i, 1, 1+, 1+ 2i, 1 + 34,
1442, 1450, 1464, 2,241, 24+2:, 24+3, 244,24 52, 2+ 62, 3, 3+ ¢, 3+ 21,
3+4+3i, 3+41,3+51,3+67,4,441,4+2¢,4+37,44+4%, 4+ 52,4+ 61,5, 5+1,
5+2i, 5+3i, 5+4i, 5+ 5i, 5+6i, 6, 6+1¢, 6+ 2i, 6+ 34, 6447, 64 5, 6 +6:}. The
complete residue system modulo (2+14)° is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}.

Note that using the results of J. T. Cross [2] and the results of El-Kassar [15],
any complete residue system modulo Gaussian prime integef can be constructed.

Let R(8) be those elements of A() that are relatively prime to 3; in other words
an element z of A(B) is in R(B) if and only if ged(z, 8) = 1. The set R(3) is called a
reduced residue system (mod). Since for any Gaussian 8 any complete residue system
modulo 3, A(B), has a finite number of elements, then the number of elements in any

reduced residue system modulo 5, R(f), is constant.
25

Example 28 Let 8 =5+5i = —i(1+ 2¢)(2+14) (1+1). The complete residue system
modulo B s {0, 5i, 2+1, 2+ 66, 4+2i, 4+ T4, 6+ 31, 6+ 8, 8+ 4i, 8+ 9, 1, 1 +5i,
3414, 3460, 5421, 5+Ti, T+36, T-+8i, 9+4i, 9-+9i, 2, 2+ 5, 441, 4+ 6i, 6+ 2i,
6+ 7i, 8+31, 8+ 8¢, 10+44, 10+ 97, 3, 3+5¢, 5+, 5+6¢, 7+ 24, T+ 7i, 9+ 3¢,
O+8, 11+4¢,11+94, 4,4+ 5¢, 6+, 6+6¢, 8+2¢, 8+ 74, 10+ 34, 10+ 8, 12 + 41,
12 + 9i}. Hence, the reduced residue modulo B is {1, 5+ 23, 7+ 31, 9+ 44, 2, 4 +71,

8+3i,10+4:, 3,541, 7+ 2i, 11+ 44, 4, 6 +14, 8+ 2, 10 + 3i}.

Theorem 29 Let v and B be any two non-zero elements of Z[i]. In [??] El-Kassar
showed that if s is in A(B) and r in A(B), then gcd(s+17v,7) =1 iff s € R(y). Also, if
ged(B,7v) = 1 and s € A(7), then the set R(B) = {s+rvy:r € A(B)} consists of distinct
residues (mod). Moreover, this collection is a complete residue system (modfB). If
s € R(B) then there exist 5 € R(B) such that 3s = 1(mod). Note also that if p is a

prime in Z[i], then % = 1(modp) iff = = £1(modp).

J. T. Cross [2] classified the reduced residue systems modulo Gaussian prime

powers for a« = 1+ 14, p = 4k + 3, and 7 as follows:
1. R(a™) ={a+bie€ A(a™):a # b(mod2)}.
2. R(p")={a+bteAlp"): (a,p) ~1or (bp)~1}.
3. R(rm™)={a€ A(r"™): (a,q) ~ 1}.

For example, the reduced residue system modulo (1+1)* is {4, 37, 1, 1+2i, 2+1,
2+ 3i, 3, 3+ 2i}. The reduced residue system modulo 7 is {0, ¢, 23, 3i, 44, 53, 64, 1,

144,142, 143, 1444, 1451, 146, 2, 2+4, 2+ 24, 2+ 34, 2-+ 44, 2+ 5i, 2+ 64, 3,
26

3+1,3+2{,34+3:,3+44,3+5%,3+6i,4,4+4,4+2¢,4+3,4+47, 4+ 51, 4+ 63, 5,
5+1,5+2¢, 5434, 5+ 41, 5+ 5i, 5+ 61, 6, 6+, 6+ 217, 6+ 3¢, 6+ 44, 6 + 57, 6 + 6}
The reduced residue system modulo (2 + i)z is{1,2,3,4,6,7,8,9, 11, 12, 13, 14, 16,
17, 18, 19, 21, 22, 23, 24}.

Now, we are going to consider the factor rings of the Domain of Gaussian inte-
gers. First, we will describe these rings, classify their equivalence classes and examine
their group of units. Then, we will classify the factor rings with primitive roots.

Let B be a Gaussian integer. The factor ring modulo 3 is the ring Z[i]/ (8). The
elements of this ring are the equivalence classes of the form [a+ 3] or (a+)+ (8). The
operations of the factor ring defined by [a] + [8] = [@+] and [a][8] = [aB]. Note that
the order of a factor ring modulo 8 is equal to the number of elements in a complete
residue system modulo 3.

Then from the above results obtained by J. T. Cross [2}, the factor ring modulo

prime powers can be constructed as follows:

1. Z[i}/ {(7™) ={[a] : 0 < a < ¢" —1}.

[AV]

. ZE)) ") ={le+bt]:0<a<p"—-1,0<b < p" —1}.

w

. Z[)/{e®) ={[a+bi]:0<a<2™—-1,0<b< 2™~ 1}.
1 Z[/(e® Ty ={la+bi]:0<a< 2™ —1,0<b< 2™ — 1}

Note that the order of the factor ring Z[i]/ (7™} is ¢™ , that of Z[4]/ (p™) is p*" ,
that of Z[1]/ (o®™) is 2%, and that of Z[i]/ (a®™*!) is 22™+!. In El-Kassar [15], it was

shown that for a Gaussian integer 5, Z[¢]/ (8) is of order ¢ (8) and for any two elements
27

B and v of Z[i] , the order of Z[i]/ (57) is the product of the order of Z[i]/ (8) by the
order of Z[i]/ ().

We note that Z[i]/ (8) is a finite ring with identity. and Z[i]/ (8) is a field
iff 8 is prime. Moreover, the units of the factor ring Z[i]/ (8) form a group under
multiplication, (Z[z]/ (5))*.

For simplicity, Z[i]/ (8) will be denoted by G and its group of units is denoted

by Gj. In Z[i]/ (B), [o] = [0] if and only if a = v(mod B), so we will identify G4 by a

complete residue system modulo . For example, when f = 1424, then Z[i]/ (1 + 2i) =

{[0], [1], [2], [3], [4]} = G1+2:- This ring is identified by Gi192; = {0, 1,2, 3,4}. Hence,

1. Go={a:0<a<qg-1}

. Gp={a+b:0<a<p-1,0<b<p—1}

. Gem={a:0<a<¢"—-1}.

. Gpr={a+b:0<a<p"-1,0<b<p*—1}.

c Gem={a+b:0<a<2"-1,0<b< 2™ — 1}

. Gemii={a+b:0<a< 2™ -1,0<b< 2™ — 1}

. Gy ={s+ry:s€Gy,r € Gg}, where v and [are non-zero elements of Z[i].

The group of units of Gg, G} is identified to be the reduced residue system
modulo 8. When f is a Gaussian prime, Gy is a field and G5 is the set of its nonzero

elements. Note that to determine the inverse d of v in G3 we solve the congruence
28

vz = 1 (mod B). For example, the inverse of 10 + 11¢ in G74; is 4 4+ 7. Then group of

units modulo prime powers can be constructed as follows:

. Gt ={a+bi € Gon : a # b(mod2)}.

G ={a € G (a,q) ~1}.
. Gy ={a+bi€Gp:(a,p)~1lor(bp)~1}.

. Gty ={s+ry:s € G} r € Gp}, where v and 3 are two non-zero elements of

Z[).
Example 30 G2‘1+z’)2 ={1,i} ; G?H%) ={0,1,2,3,4}

The order of the group of units modulo a Gaussian prime f is the number
of elements in any reduced residue system modulo 8, G, which is constant and is
denoted by ¢ (). Note that ¢ (5) is the extension of Euler’s ¢-function to the domain
of Gaussian integers. The value of ¢ (8) is obtained by using the fact that ¢ (8) is a

multiplicative function. J. T. Cross [2] and El-Kassar [15] described ¢ (8) as follows:
1. $la?) =2n — 2L,
2. ¢(m") =q""g—1).
3. ¢(p") =p™*(p* - 1).
4. ¢(vB) = é(v)9(B), where v and f are two non-zero elements of Z[i].
For example, the orders of the groups G, is

(11 + 2) = ¢(—(1 + 20)*) = ((1 + 2i)*) = 5°71(5 — 1) = 100.
29

That of G}_,; is
(4 — 4i) = ¢(ia®) = ¢(a®) = 2% — 2* = 16.
That of G3; is
$(27) = ¢(3%) = 3292(32 — 1) = 648.

In [2] and [15], J. T. Cross and El-Kassar determined the Structure of the group

of units of Gg as follows:

1. Gin = Zom-1 X Zgm-2 X Zy if n =2m.

2. Gin & Zom-1 X Zgm—1 X Zy if n =2m+ 1.
3. Gtn ™ Zp_ g1

4. G & Zynr X Zpn-1 X Zp2_y.

5. If (81, 8,) ~ 1, then Gj 5, = G5 X G

For example, the structure of the group of units G3s49,5580; 1S isomorphic to
’("1_'_1;)5 X Gzl-l-?i)z X G;_H- X G;g X G7+8i =y X Lo X Zy X Z20 X Z4 X Z3 X 43 X Zig X Zy19.
A Gaussian integer [is said to have a primitive root iff G} is cyclic. If 7y is a

generator of G} then we say that v is a primitive root for 8. J. T. Cross [2] showed

that any Gaussian integer 8 has a primitive root iff 8 is o?, o®, 7™, p, an™, or ap.

Example 31 G*; = {1, i} is cyclic with i being a generator. Also, GZ: = G5, = {1,
3, ¢, 2+ 1} is cyclic with ¢ being a generator. However, G; = G%, = {1, 3, 4, 3¢, 1 + 24,

2+1, 3+ 24, 2+ 3i} is not cyclic. To see this, one can verify that G} is the direct
30

product of the two subgroups {1, 1+ 2i} and {1, 3, i, 3i}. Finally, the group G% =1,

2,1,2i, 1+1%,1+2¢, 2+1, 2+ 2i} has 1+ ¢ as a generator.

In a similar manner to that in the domain of natural integers, we could find
generators of a cyclic group G} in the domain of Gaussian integers Z[i]. That is, with

some modifications to Z[i], algorithm (1) is used. That is, to find a generator 6 of the

3

cyclic group G,’,g, where £ is either o2, o2, 7™, p, an™, or ap, we proceed as follows. First

we select an element @ in G} with 6 # 1 and ¢(8). Then, we use the division algorithm
to write the order ¢(8) as a product of distinct primes p;. If for every p;|¢(5), the

#(B)
element 6 7 is not congruent to 1 modulo 8, then 6 is a generator of Gj. Otherwise,

6 is not a generator. This statement is put in the following algorithm:
Algorithm 32 (Finding a generator 6 of G})

1. Select an integer 0 # 1 and ¢(B) from G}.

2. Write ¢(8) = p{'p5*...p*-

3. Fori=1tok

#(8)
3.1 Compute § »i (mod f3).

2B)
3.2 If 6 »i (mod) is not congruent to 1(mod), then return to step 1.

4. Return with 0 as generator of G,.

Theorem 33 (Euler’s theorem in Z[i]) Let B be a Gaussian integer. For any Gaussian
integer o relatively prime to B, we have a®® = 1 (mod B) where ¢(B) is the Euler’s

phi function of the Gaussian integer (3.
31

A special case of Euler’s theorem for Gaussian integers is Fermat’s theorem for

Gaussian integers.

Theorem 34 (Fermat’s theorem in Z][i])

Let v be a Gaussian prime. For every Gaussian integer o such that (a,) =1,

we have a®™ =1 (mod).
Example 35 Lety=1+1 and o =2+1. Hence, o® = (2+i)! =1 (mod (1 +1)).

Theorem 36 (Wilson’s theorem in Z[i]) Let 5 be a Gaussian prime and let R(B) be

any reduced system modulo B. Then, I};I(B)a = —1 (mod B).
ac

Example 837 Toke f = 1+ 3i. Then, R(1 + 3¢) = {1,1 44,1 + 2i,4, 2i,3i} is the
reduced system modulo 1 + 3i. The product (1)(1 + 2)(1 + 2i)(¢)(2¢)(37) = —1 (mod

(1 + 34)).

2.3 Arithmetics in the Domain of Polynomial Rings

Let F be a field with g elements. By the ring of polynomials in variable z over F’

which is always written F[z], we mean the set of all formal expressions p(z) = ao+a,z+
Qpn_12"" ! + a,z™ where the coefficients a; are in F. a, is called the leading

coefficient of p(z). If a, = 1, the polynomial p(x) is called a monic polynomial. If
a, # 0, the degree of p(z) denoted by degp(z) is n. So, the degree of a polynomial p(z)
is the highest power of x that occurs in the expression p(z) with a nonzero coefficient.
If p(z) = ao then p(x) is of degree 0 and so it is called a constant polynomial in F'.
Note that every constant polynomial is a unit (invertible polynomial). We will state

some properties of the degree function.
32

Theorem 38 (Properties of the degree function).Let p(z), g(z) be polynomials in F|z|.

1. deg(p(z)q(z)) = degp(z) + degq(x)

2. Ifp(z)+q(x) # 0O then

deg(p(z) + q(z)) < maz(degp(z), degq(z))

Using the usual methods of algebra, we can perform arithmetic operations on

polynomials in Fz].

Definition 89 (Polynomials divisibility) Let f(z), g(z) € Flz] with g(z) # 0. We
say that g(z) divides f(z) in F[z], written as g(z)/f(z) iff 3 a polynomial a(z) € F|z]

such that f(z) = g(z).a(z). In this case, we call g(x) a factor or a divisor of f(x).

Note that, if f(z)/g(z) and g(z)/f(z)then f(z)and g(x) are called associates.

If f(z)/g(z) and g(z) 1 f(z) then the degree of f(x) is less than the degree of g(z).

Theorem 40 (Division algorithm for polynomials) Let g(z), h(z) be polynomials in
F(x] with h(z) # 0. The ordinary polynomial long division of g(x) by h(z) yields unique
polynomials q(z) and r(z) € Flx] called the quotient and the remainder such that

g9(z) = q(z)h(z) + r(z) r(z) =0 or degr(z) < degh(z).

Immediate applications of the Division algorithm for polynomials theorem allow

us to determine the following theorems.

Theorem 41 (Remainder theorem) Given a polynomial f(z) € F(z] and ¢ € F. There

exist a polynomial q(x) € Flz] such that f(z) = q(z)(z —c) + f(c).
33

Theorem 42 (Factor theorem) Given a polynomial f(xz) € Flz] and ¢ € F. Then,
z — ¢ diwvides f(z) iff f(c) =0, that is to say, c is a root of f(x). More generally, T —c

divides f(z) with remainder f(c).

Theorem 43 (Basis theorem) Let g(z) € Flz]. I = {f(z)g(z)/f(z) € Flz]} is an
ideal of Flz|, that is, I consists of all multiples of the fized polynomial g(z) by the

elements of Fz].

The polynomial ring F[z] has many properties in common with the integers.
More precisely, F[z] and Z are both Euclidean domains. Hence we can talk about the

greatest common divisor for polynomials.

Definition 44 (Greatest common divisors for polynomials) Given two nonzero poly-
nomials f(x) and g(z) in F[z]. There exist a unique monic polynomial d(z) called the

greatest common divisor of f(z) and g(x) and written gcd(f(z), g(x)) such that
1. d(z)/f(z) and d(z)/g(x).
2. If c(z)/f(z)and c(z)/g(z) for some c(x) € Fz], then c(z)/d(z).

Every pair of nonzero polynomials has a greatest common divisor. A simple way

to determine the greatest common divisor for polynomials is to make an analogy with

the Euclidean algorithm for integers and yielding the polynomial Euclidean algorithm.

Algorithm 45 (Polynomial Euclidean algorithm) Assume f(z) and g(z) are two nonzero

polynomials. We let r(z) be the remainder after division of f(z) by g(z). We denote

r(z) by r(z) = g(z) — a1(z). £ (z).-
34

By a repeated application of the division algorithm, we obtain the following.
9(z) = qi(z).f(z) + ri(z) where deg(r1(z)) < deg(f(z)).

r1(z) = g(z)r1(z) + o) where deg(rz(z)) < deg(ri(x)).

Tn-2(Z) = @n(T)Tn-1(2) + Tn(z) where deg(r,_1(z)) < deg(ra(z)).
Tn-1(Z) = gny1(Z)mm (z) + 0.
The last positive integer r,(z) in the sequence r1(x), ro(x), ... is the greatest com-

mon divisor of f(z) and g(z).

Since F[z] is a Euclidean domain, Bezout identity holds and is stated as follow.

Theorem 46 (Bezout identity)

Two polynomials f(z) and g(x) in Flz], not both equal to zero, have ged of the

form a(z) f(z) + b(z)g(z) for some a(zx),b(z) € Flx].

This is a result of applying the Euclidean algorithm backwards and writing the
ged as a linear combination. Both, implementing the polynomial Euclidean algorithm
and going backward until the Bezout identity is found, is commonly referred to as
carrying out the extended Euclidean algorithm. Note that, the extended polynomial
Euclidean algorithm may also be used to compute the coefficients a(z) and b(z) in the
identity d(z) = gcd(f(z), g(z)) = a(z) f(z) + b(z)g(z). Moreover, If d(z) = 1, then the
two polynomials f(z) and g(z) are said to be relatively prime or coprime.

Every polynomial g(z) € F[z] of degree m > 1 is said to be irreducible if it

cannot be written as a product of two polynomials in F[z] each having a positive degree
35

less than m. Note that every linear polynomial is irreducible over F. The only divisors
of the irreducible polynomial g(z) are polynomials of degree 0 (constant polynomials) -
and associates of g(z). Thus, given any polynomial f(z) in F[z], either g(z)/f(x) or
(9((z), f(z)) = 1. Irreducible polynomials are rather like the prime numbers. This

similarity allow us to determine the following theorem.

Theorem 47 Let p(x) be an irreducible polynomial in Flz). If p(z) divides r(x).s(x)

for r(z) and s(z) € F[z], then either p(z) divides r(z) or p(z) divides s(z).

For any polynomial f(z) there is a unique (up to order of factors) representation
of f(z) as a constant multiple of a product of monic irreducibles. This is called the
factorization of f(z). That is, given a polynomial f(z), 3 a scalar ¢ and monic irre-
ducible polynomials p,(z), ..., p-(z) such that f(z) = ap,(z)™p,(z)™....ps(z)™ where
a is the leading coefficient of f(z) and p;i(z),p, (z) are monic and irreducible in F[z],

my > 0,..mg > 0. This factorization is unique up to the order of the p;(z).

Quotient Rings and Modular Arithmetic over Polynomials Given a field F. Consider the

ring of polynomials F'[x] with coefficients in F" and a polynomial f(z) € F[z] of degree
n. Let < f(z) >= {f(z).h(z)/h(z) € F|z]} be the principal ideal generated by f(z).
We note that < f(z) >=< g(z) > where g(z) is a monic polynomial associate to f(z).
Hence, we restrict our attention to the case where f(z) is a monic polynomial. The
set Flz]/ < f(z) >= {g(z)+ < f(z) > / g(z) € Flz]} of all distinct cosets < f(z) >
is a ring in which addition and multiplication are defined and F[z]/ < f(z) > is a
commutative ring with identity. If f(z) is irreducible in F[z], Flz]/ < f(z) > is a

field. For simplity, we denote any coset h(z)+ < f(z) > by [h(z)] and [¢(z)] = [h(z)]
36

iff g(z) — h(z) = q(z).f(z) for some ¢(z) € Flz}. Also g(z) € < f(z) > iff [g(z)] = [0].

Given a field F. Let p(z) be a fixed polynomial over F' and a(z) and b(z)
€ Flz]. We say that a(z) is congruent to b(z) modulo p(z) and we write a(r) =
b(z) (mod p(z)) <= p(z)/ (a(z) - b(z)). If a(z), p(z) € Flz] then p(z)/a(z) iff
a(z) = 0 (mod p(x)). The relation of congruence modulo a fixed polynomial p(z) is
an equivalence relation. The set of equivalence classes of polynomials in F[z} modulo
p(z) will be denoted by Flz]/ < p(z) > . So, a(z) = b(z) (mod p(x)) is equivalent to
[a(z)] = [b(x)] in F[z]/ < p(z) >. Note that, if p(z) is a polynomial in F[z] such that
deg p(z) > 0 then V a(z) € F(z), the congruence class [a(z)] modulo p(z) contains
by the division algorithm a unique representative r(z) with degree r(z) < deg p(z)
or r(z) = 0. Moreover, for any polynomial a(z) in F[z] we have that [a(z)] = [r(z)]
in Flz]/ < p(z) >. It can be easily shown that all the properties of congruencies of
integers hold also for polynomials.

Each congruence class of any polynomial in F[z] have a set of distinct represen-

tative elements named complete residue system defined as the following.

Definition 48 (Complete residue system of polynomials) Let f(z) be a fized polyno-
mial in F[z] of degree n. The set of the polynomials in F|z] that are distinct with degree
less than n constitute the complete residue system of A(f(x)). This system can be de-

fined to be the set A(f(z)) = {ap+a1z+az%+....... 12"/ ag,aq, ,an—1 € F}.

Note that, all polynomials in the complete residue system modulo f(z) are in-
congruent and each polynomial in F[z] must be congruent to a polynomial in A(f(z)).

Also, we can define a set containing all polynomials of the complete residue system of a
37

fixed polynomial f(z) that are relatively primes to f(z). From the complete residue sys-
tem modulo A(f(z)), we can obtain another system called the reduced residue system

modulo f(z) which can be defined as follow.

Definition 49 (Reduced residue system of polynomials) The reduced residue system
of a polynomial f(x) of degree n is the set of polynomials belonging to the complete

residue system A(f(x)) and are relatively prime to .f(x). This set can be defined as
R((p(z)) = {g(z) € A(p(z)) : (f(z),9(z)) =1}

The order of the reduced residue system is ¢(p(x)) = p™ — 1 where n is the degree
of p(z). Let p(z) and g(z) be fixed polynomials in F[z]. We give some properties of
congruencies in polynomials

Theorem 50 Let a(z), b(z), c(z) and d(z) € Fz] where p(z) and q(z) are fized

polynomials in F|x].

1. Ifa(z) = b(z) (modp(z)) and q(z)/p(z), then a(z) =b(z) (mod q(z).)

. Ifa(z) = b(z) (modp(r)) and a(z) = b(z) (mod q(z)), then a(z) = b(z) mod

[p(z), g(z)].

3. Ifc(z).a(z) = c(x).b(z) (mod p(z)) then a(z) = b(z) mod(m%)-

. c(z).a(z) = c(z).b(z) mod (c(z).p(z)) iff a(z) = b(z) (mod p(z).)

To find a multiplicative inverse, we have two problems. The first is to decide
whether a multiplicative inverse exists. The second is to develop a technique for finding
it systematically. To address the first problem, we check if ged(a(z), p(z)) = 1. If so,

then the multiplicative inverse exists.

Definition 51 (Multiplicative inverse of a polynomial) Let a(z) be a polynomial in
Flz]. Define the multiplicative inverse of a(z) modulo p(z) to be a polynomial b(x) €
F(z] such that a(z).b(x) = 1 (mod p(x)). That is, the multiplicative inverse of [a(z)]

in F(z]/ < p(x) > is a congruence class [b(x)] such that [a(z)].[b(z)] =

Hence, every nonzero polynomial whose degree is less than the degree of p(z)
has a unique multiplicative inverse modulo p(z). A simple way to calculate the mul-
tiplicative inverse of a polynomial is the Euclidean algorithm for polynomials. We
can say therefore that if (a(z), p(x)) = 1, the equation a(z).b(z) = 1 (mod p(z)) has a
unique solution which is the multiplicative inverse of a(x) modulo p(z). The congruence
a(z).f(z) = b(z) (mod p(x)) where (a(z),p(z)) =1 has also a unique solution.

Next, we consider the general problem of solving the congruence a(z).f(z)

(mod p(z)) where p(x) is a fixed polynomial. If (a(z), p(z)) = d(x) then the congruence
a(z).f(z) = b(z) (mod p(z)) is solvable iff d(z)/b(x). To know the solutions for a

congruent relation use the following theorem.

Theorem 52 Let d(z) = (a(z),p(x)). The congruence a(z).f(z) = b(z)(mod p(z)) is

solvable iff d(x)/b(x). If the congruence is solvable then the incongruent solutions are

of the form f(z) = fo(z) + t(:z:)j—o—(—af2 where t(z) € A(d(z)) and fo(x) is a solution of

d(x)
az) _Wa) ple)
()" T d(z) d(z)

f(z
To avoid working with large polynomials, we can often choose a set of moduli
m;(z)} and perform the computation modulo each of the moduli

separately. Provided the moduli are pairwise relatively prime, ged(m;(z), m;(z)) = 1

for 1< ¢ < j <k, and the product m(z) = mq(x).ma(z)....m;(z) is sufficiently large.
39

We may be able to construct the answer from the separate results. The following

theorem, known as ” Chinese remainder theorem”, is helpful.

Theorem 53 (Chinese remainder theorem for polynomials over finite fields) Let m;(z), ma(z).
be pairwise relatively prime polynomials over a field F' and let a;(z), as(z),
F[z]. The system of congruencies f(z) = aj(z) (mod m;(z)), 1 < j < i, has a common

solution which is unique modulo the product m(z) = mi(z).ma(z)....m;i(z).

Example 54 Let us solve the system in Zs[z]

flz)=3z+1 (mod (2% +z +4))

flz)=22+3 (mod (23 + 222 + 3z + 1))

Since (z* +z+4, 2+ 202+ 3x + 1) = 1, let mi(z) = 22 + z + 4 and may(z) =
3 4+222+32+1. Thus, m(z) = (2 +z+4)(23+222+3z+1) = 5432 +423+ 222+ 3z+4.
miz) _ 3422243741 ; m(z)

ma (x) ma(z)
(z2+z+4)), we get by(z) = 3z+1. Solving

= z?+z+4. Solving —n&.bl (z) =1 (mod

Hence,

m1(z)

). 1 2) = 1 (mod (55 + 222 4 32+ 1),

ma(z)

we get by(z) = 22% + 7.
Hence, fo(z) = (234222 + 3z +1).(3x+1).(3z+1) + (222 +z) (22 +- 2+ 4) (2 +3)
= 42° + 4z* + 42% + 4z + 1 (mod m(z))

= 22% + 323 + 22 + 2z.

Example 55 Let f(z) = 222+ 2z + 1 in Zs[z]. f(z) is irreducible in Zs[z]. Applying
2

the above theorem , we have 5 = 4 quadratic residues and 4 quadratic nonresidues

of the polynomial f(z) in Zs[z].

Let h(z) be an irreducible polynomial in Z,[z] where p is an odd prime. To

determine whether any polynomial g(z) in the reduced residue system modulo h(z)
40

is a square or a quadratic residue of h(z) in Z,[z], we are in need of very important

theorems which are Euler’s theorem, Fermat theorem and Wilson theorem in the domain -

of polynomial rings.

Theorem 56 (Euler’s theorem for polynomials)
Let F be a field with finite elements, and let p(x) be an irreducible polynomial
of degree n. > 1. For every polynomial a(z) relatively prime to p(z), we have a(z)?®=)

= 1(mod p(x)), where ¢(p(x)) is the number of polynomials in R(p(z)).
A special case of the above theorem is the Fermat’s theorem for polynomials.

Theorem 57 (Fermat’s theorem for polynomials)
Let F be a finite field of order p. Let p(x) be an irreducible polynomial of degree

n in Flz]. For every polynomial a(x) not divisible by p(z), a(z)”"~' = 1 (mod p(z)).

Example 58 Let p(z) = 2°+1 in Zs[z]. Let a(z) = z+2. Hence, a(z)”" ! = (z+2)8

=1 (mod (z? + 1)).

Theorem 59 (Wilson’s theorem over polynomials)

Let p be an odd integer and let h(x) be an irreducible in Zy[z]. R(h(z)) is the

reduced residue system modulo h(x). Then, H f(z) = =1 (mod h(z)).
f(z)eR(h(x))

Finite Field. A finite field (also called a Galois field) is a finite set of elements together
with the description of two operations (addition and multiplication). The order of a
finite field is the number of field elements it contains. This number is always a prime

or a power of prime. It turns out that there is a finite field containing ¢ field elements
41

if and only if ¢ is a power of a prime number. The finite field containing q elements is
denoted by F;. The finite field of order p is the prime field F,,. It is the field of congruent -
classes modulo p where the p elements are the set of integers {0, 1,p — 1}. For every
prime p and every positive integer n, there is a finite field of order p™. In fact, in a
technical sense, there is essentially only one field with p™ elements since all fields of the
same order are isomorphic. By isomorphic we mean evidently, they are structurally
the same although the representation of their field elements may be different. Every
field of order p is isomorphic to Z,. Fj, will hence forth be identified with Z,. In every
finite field, there is a positive integer n such that the sum of one n times is equal to
zero. The minimal such n is called the characteristic of F' denoted by Char(F). For
any finite field F', char(F) is always prime number. The characteristic of F, is p where
g = p". Consequently, F, contains a copy of Z, .We say Z, is a subfield of F, or F, is
an extension field of Z,.Every subfield of F}, has order p™ for some m that is a positive
divisor of n. Conversely If m is a positive divisor of n then, there is exactly one subfield
of F' of order p™ An element a € Fj is in the subfield Fy= if and only if o*™ = a.

The most concrete way to represent the field F, where ¢ = p™ is to find an
irreducible polynomial g(z) € F, of degree n and this polynomial exists because it is
well known that for each n > 1, 3 a monic irreducible polynomial of degree n over Zy,.
In that case, it is plain to see by uniqueness that we must have F'q ~ Fy,[z]/ < g(z) > .
For example, 3 + z + 1 is irreducible over Fy, hence Fy ~ Fyfzr]/ < 2® +z+1 > .
F,[z]/ < g(z) > is a field for different reasons. Recall that all primes are maximal in a
Euclidean ring and that Fp[z] is Euclidean and also g(z) is irreducible in F,[z]. Thus,

the elements of a finite field F;, of order ¢ = p™ where p is a prime are represented
42

by polynomials in Z,[z] (the set of all polynomials over Z,) of degree less than n.
The finite field is exactly the set of all polynomials of degree 0 to » — 1 with the -
two field operations being addition and multiplication of polynomials modulo g(z) and
with modulo p integer arithmetic on the polynomial coefficients. More precisely, the
addition of two polynomials f(z) and k() is the usual addition of polynomials in
Z,[z] whereas the product f(z).h(z) can be formed by first multiplying f(z) and h(z)
as polynomials by ordinary method, and then taking the remainder after polynomial
division by g(x). The multiplicative inverses in the finite can be computed by using the
extended Euclidean algorithm for the polynomial ring Z,[z].We should note that since
Fy is the splitting field of % — z, we can get an irreducible monic polynomial of degree
n with coefficients in Z, by factoring the polynomial z¢ — z There are other efficient

algorithms for finding irreducible polynomials over finite fields.

Remark 60 (Conversion from finite field elements to integers and to binary num-
bers) Let F, be a finite field where ¢ = p™, p is a prime number and m > 1. Re-
call that Fy is isomorphic to Zp[z]/ < f(z) > where f(z) is an irreducible polyno-
mial of degree m over Z,. Let p(z) € Zy[z]/ < f(z) >, then p(z) can be written as
P(2) = am-18™" + am_2z™ %+ ...ap. Each coefficient a; € Z,, and all arithmetic oper-
ations are performed modulo f(x). Representing p(x) as an integer, it will be egquivalent
t0 Am—1D™! + Am-op™ 2 + ...ao. Representing p(x) as binary string, replace each a;
in the string (am-1.....a1a0) by [logyp]. The whole new bit string will represent the
polynomial p(x).

If F is a finite field of order ¢ = p", the non-zero elements of F, form a group
43

under multiplication called the multiplicative group of F, and denoted by Fy7. The
group of units FY consists of the nonzero elements of F' and forms a cyclic group under -
multiplication of order ¢—1. It follows that a? = a for all a € F*. Note that F* 2 Z »_;.
Then, there exists at least one element o of ™ called a generator (or a primitive
element) of F™* which has the same order of F*.Thus, F* =< a >= {e, o, o2,

If @ and b belong to a finite field of characteristic p, then (a + b)* = @'+ b for all
t > 0. Also, if G =< a > is a cyclic group of order n then G = < o* > iff gcd(k, n) = 1.
As a result, one can find all generators of the cyclic group F* given a generator a.The
elements o of F* with (k,p™ — 1) = 1 are the other generators. To find a generator o
of the cyclic group F} of order g — 1, we select an element o in Fy with o # 1. We use
the division algorithm to write iche order ¢ — 1 as a product of distinct primes p;. « is

q-—
a generator of F only if @ Pi 22 1 (mod (q — 1)) for every p; divisor of ¢ — 1,. This

statement is put in the following algorithm.
Algorithm 61 (Finding a generator o of FY)

Choose an integer a # 1 and choose ¢ — 1 from Fy.
Write ¢ — 1 = p'p3®....pek.

. Fori=1tok
g—1
Compute a Pi (mod q)
g—1
Ifa Pi 21 (mod q) then return to step 1.

. Return with a as a gehemtor of Fy.

44

In a similar manner, the above algorithm is applied to the ring of polynomials
over finite fields to find generators a(z) of the cyclic groups Z[z] = Z,[z]/ < h(z) >.
Note that, the order of Z[z] is ¢ = p™ — 1 where 7 is the degree of the monic irreducible

polynomial h(z). Hence the algorithm would be as follow.
Algorithm 62 (Finding a generator a(z) of Z,[z])

1. Select a polynomial a(z) # 1 from Z3[x]

2. Writep® —1=p7'p3*.....p¢¢.

3. Fori=1tok
p"—1
Compute a(z) Pi (modh(x))
-1
Ifa(z) Pi 22 1(mod h(z)) in Zy[z], then return to step 1.

4. Return with a(z) as a generator of Zy[z].

To find the structure of the group of units U(F[z]/ < h(z >) where h(z) is
a reducible polynomial in F[z], the next theorem shows that it is enough to find the

structure of the group of units U(F'[z]/ < g(z)™ > where g(z) is irreducible over F.

Lemma 63 Ifh(z) = hi(z)™ .he(z)™....h1(z)™ where all hi(z) are distinct irreducible
Fle] Pl P

< hi(z)™ > < hy(z)™ > < hy(z)mr >

polynomials in F(z], then Flz]/ < h(z) > =
Since the group of units of a direct sum of rings is the direct product of the group of units

of the factors, then U(F[z]/ < h(z) >) & U(&) X U(Flz])

< hp(z)™r >

From the above lemma, we deduce the following.
45

Lemma 64 Let F' be a finite field with order p™, where p is an odd prime. Let h(z)
be a reducible polynomial. If U(F[z]/ < h(z) >) is cyclic then h(z) is a power of an -

irreducible polynomial g(x) in Flz].

The structure of the irreducible polynomial g(z) such that g(z) = h(z)™, where

h(z) is a reducible polynomial, is illustrated in the following theorem.

Theorem 65 If F' is a finite field of order p™, where p is an odd prime, and g(z) an
irreducible polynomial over F(z]. In case U(F|z]/ < g(z)™) is cyclic and m > 1 then

the degree of g(x) is equal to 1 and the field F is isomorphic to Z,.

We can show that, if the degree of g(z) is equal to 1 and m > 1 then h(z) will be

the square of the irreducible polynomial g(x). Moreover, we can show that, if a is a root
Fla] o _Kl=]
<glx)™> <gm>’

of the irreducible polynomial g(z) such that ¥ = F(a) then

We conclude this chapter by a theorem that state the conditions for the group

of units U(F[z]/ < h(z >) to be cyclic

Theorem 66 Let F be a finite field with order p™, where p is an odd prime.

U(F[z]/ < h(z) >) is cyclic iff

. , Fla] \ o
1. h(z) is irreducible and U << Y (a:)) = Zpm 1.

2. h(z) = g(z)* where g(z) is linear and U(Fle]

—— | =2 Zpn_ .
< h(z) >) o1 X Zp

46

CHAPTER 3

A COMPARATIVE STUDY OF ELGAMAL BASED DIGITAL

SIGNATURE ALGORITHMS

In this chapter, we compare and evaluate the classical and modified ElGamal
algorithms by implementing and running them on a computer. We investigate the
issues of complexity, efficiency and reliability by running the programs with different
sets of data. Moreover, comparisons will be done among these different algorithms
given the same data as input. In addition, implementation of an attack algorithm will
be presented. The attack algorithm consists of subroutines used to verify the signed
messages. This is done by applying certain mathematical concepts to find the private
key of the signed message. After finding the key, it will be easy to sign the message.
A study will be done using the results of running the attack algorithm to compare the
security of the different classical and modified signature scheme algorithms.

3.1 Classical And Modified ElGamal Signature

Classical FlGamal Signature Scheme The classical ElGamal signature scheme is one of

the most popular and widely used signature scheme. It is described in the setting of
the multiplicative group Z; of the field Z,, the field of integers modulo a prime integer
p. Let p be a large odd prime integer and let Z, = {0,1,2,3,...,p — 1}. Then Z, is
a ring under addition and multiplication modulo p. Since p is prime, Z, is actually a
field under these operations. Moreover, the multiplicative group of the ring of integers

modulo p, Z* = {1,2,3,...,p— 1}, is a cyclic group generated by some generator § # 1

whose order is equal to p — 1. That is, every element of Z, is a power of 6. Note that
47

Z, is a complete residue system modulo p and Z7 is a reduced residue system modulo
.

The key is generated as follows.First generate a large random prime p, and a
generator 6 of Z7. Then, choose randomly an integer a, 1 < a < p— 2, and compute
y = 0%(modp). The public-key is (p,8,6%) and the private-key is a. The signature is
generated as follows. First, hash the message then compute the hash value f = h(m)
where b is a hash function.Generate a random secret integer &, such that 1 <k < p—2
with ged(k,p — 1) = 1. Compute r = 6° (modp) and compute k~! (mod(p — 1)).
Then,compute s = k~{h(m) — a.r} (mod(p — 1)). Entity A then sends m and the
signature (r, s).

The signature is validated as follows.Obtain A’s authentic public key (p, 8, 6%)
and verify that 1 < r < p—1.Hash the message m and obtain the hash value f = h(m).
Then, compute v; = y"r*(modp) and vy = 6™ (mod p).Accept the signature only if
vy = vs.

The following algorithms show the functionality of the ElGamal signature :

Algorithm 67 (Key generation for ElGamal classical signature).
Entity A should do the following:
1- Generate a large random prime p and generator 0 of Zs,.
2-.Select a random integer a, 1 <a<p-— 2.
3- Compute y = 6*(mod p)

4- A’s public key is (p, 0,0%); A’s private key is a.

The following algorithm shows how entity A signs a message m for B.
48

Algorithm 68 (ElGamal classical signature).
Entity A should do the following:

1- Select a random secret integer k, 1 < k < p — 2 such that ged(k,p—1) = 1.

2- Represent the message as an integer m in the range {0,1,...,p — 1}.
3- Compute r = 6* (mod p).

4- Compute k= (mod(p — 1)).

5-Compute s = k~*{h(m) — a.r} (mod(p — 1)).

6- A’s signature for m is the pair (r, s).

The following algorithm shows how entity B verify that the message m is from

Algorithm 69 (ElGamal classical signature verification).
B should do the following:
1-Obtain A’s authentic public key (p, 0, 6%).
2- Make sure that 1 <r <p-—1.
3- Compute v; = y"r*(modp) .
4- Compute h(m) and v, = 6™ (mod p).

5-Accept the signature only if v, = vs.

Example 70 In order to generate the public-key, entity A selects the prime p = 367
and finds a generator 8 = 272 of Z3s;. Then, A chooses the private-key a = 141 and
computes 6% = 272'! = 295(mod 367). Therefore, A’s public-key is (p = 367,0 =

272,0% = 295) and A’s private-key is a = 141.
49

To sign the message m = 214 chosen from Zssg, for simplicity , we take h(m) =
m so that h is the identity function. Then, f = h(214) = 214. Selects a random integer -

k = 43 and computes

r = 272% = 330(mod 367)

Also, k7! is obtained from

43.k! = 1(mod 366).

Hence,

k=t = 349.

Then,

s = 349{214 — (141).(330)} = 106(mod 366)

Thus, A’s signature for 214 is then (r = 330, s = 106)
To validate the signature , B make sure that 1 < r < 366. then, obtain the

hashed message h(m) = m =214. Finally,B computes

vy = 295%%.330% = 182(mod 367)

and

vy = 27221 = 182 (mod 367).

Since v; = vy, the signature is accepted.
50

Computer Program: (* We create a computer program with mathematica to
illustrate the classical ElGamal signature*)

(*Key generation™)

FindGenerator[p] := (¢ =p - 1;

j = FactorInteger[¢]; z = {};

Do[z = Append] z, j[[i]][[1]]], {i, 1, Lengthl[j]}};

flag = 0; While[flag == 0,0= Random/(Integer, {2, p - 1}];
flag = 1;

Do[If[PowerMod[f, ¢/z[[i]], p] == 1, flag = 0; Break][]], {
i, 1, Length[z]}]};

Print["6= ",0];

a = Random|Integer, { 2, ¢ - 1}};

fa = PowerMod|d, a, p|;)

(*Signature generation™)

Signaturep_] = (k = 2;

While[GCD[k,¢] # 1, k = Random[Integer, {2, ¢ - 1}]];
r = PowerMod[6, k, p|; hm = m;

k1 = PowerMod[k, -1, ¢];

s = Mod[k1*(hm - r*a),®];

Print["r=", 1, "s=", s])

(*Signature Verification*)

Verification[p_| := (vl = Mod[PowerMod[fa, r, p]*PowerMod]r, s, p], p;
51

hm = m; v2 = PowerMod[¢, hm, p|;

Print["vl=", v1, " v2= ", v2];

If[vl == v2, Print["accc"], Print["not acc"]])

The classical ElGamal signature scheme, described in the setting of the multi-
plicative group Z;, can be easily generalized to work in any finite cyclic group G. The
security of the generalized ElGamal encryption scheme is based on the intractability
of the discrete logarithm problem in the group G. The group G should be carefully
chosen so that the group operations in G should be relatively easy to apply for efficiency
and the discrete logarithm problem in G should be computationally infeasible for the
security of the protocol that uses the ElGamal signature scheme.

Menezes [22] mentioned that some of the groups that appear to meet the above
criteria, of which the first three have received the most attention, are the multiplicative
group Z; of the integers modulo a prime p, the multiplicative group F3. of the finite
field Fom of characteristic two, the group of points on an elliptic curve over a finite
field, the multiplicative group Fy of the finite field F, where ¢ = p™, p is a prime, the
group of units Z, where n is a composite integer, the Jacobian of a hyperelliptic curve
defined over a finite field, and the class group of an imaginary number field.

For any of the above cases used to generalize ElGamal signature scheme, the
following procedures are followed: To generate the public-key, entity A should select an
appropriate cyclic group G of order n, with generator 8. Assuming that G is written
multiplicatively, a random integer a, 1 < a < n — 1, is selected and the group element
6% is computed. A’s public-key is (6,y = 6°), together with a description of how to

multiply elements in G. A’s private-key is a. To sign a message m in the cyclic group
52

G, entity A selects a random integer k£, 1 < k£ < n — 1,with ged(k, #(n)) = 1 and
compute 7 = 6° (modn) and k7! (mod #(n)). Then,compute s = k~{h(m) — a.r}
(mod ¢(n)).Finally, A sends m and the signature (r,s) to entity B. To validate the
signature, B make sure that r € U(Z,) .Then, obtain the hash value f = h(m).Finally,
B computes v; = y"r*(modn) and v, = 6™ (modn).Accept the signature only if
v = Uy

Next, we describe the modifications of ElGamal signature scheme in Z,, where
n is a composite integer, the domain of Gaussian integers Z[i], and the domain of the

rings of polynomials over finite fields F[z].

ElGamal Signature in Z,. In this scheme, the group G selected is Z*, where n is not

necessarily a prime. Since ElGamal signature scheme depends on the fact that the
group selected is cyclic, it is important to know the positive integers n for which the
multiplicative group Z of integer modulo n is cyclic. Although the ring Z, modulo a
composite integer is not a field, it is well known, that the multiplicative group Z* is
cyclic if and only if n is either 2, 4, p*, or 2p*, where p is an odd prime and ¢ > 1, see
[20]. The order of Z} is ¢(n) = (p — 1)p*~1, where ¢(n) is Euler phi function. We note
that if 6 is a generator of Z, then Z: = {6*| 0 < i < é(n) — 1} and b = 6*(mod n) is
also a generator of Z* if and only if (£, ¢(n)) = 1.

To describe the generalized scheme used in the above operation, three algorithms
describing the modified ElGamal method restricted to the multiplicative group Z* are

needed.

To generate the public and private-keys, entity A should use the following algo-
53

rithm:

Algorithm 71 (Key generation for ElGamal signature in Z,.)

1. Generate a large random odd prime p and a positive integer t.

2. Compute the composite integer n (n = p* or n = 2p*) and the integer ¢(n) =

(p—1)p 1.

3. Find a generator 8 of the cyclic multiplicative group of integers modulo n, Z} =

{610 <4 < ¢(n) — 1}
4. Select a random integer a, 2 < a < ¢(n) — 1.
5. Compute y = 6%*(modn).
6. A's public-key is (n, 0, %).
7. A's private-key is a.

Note that the integer a in step 4 is chosen to be between 2 and ¢(n) — 1 since a

is a power of the generator ¢ of Z;.

To sign a message m in Z,, the complete residue system modulo n, Entity A

should use the following algorithm:

Algorithm 72 (ElGamal signature in Z,.)

1. Represent a message as an integer m in the range {1,...,n — 1}.

2. Select a random integer k, 2 < k < ¢(n) — 1 such that gcd(k, #(n)) = 1.
54

To sign the message m = 7 chosen from Zysg18, for simplicity , we take h(m) = m
s0 that h is the identity function.Then, f = h(7) = 7. Selects a random integer k =5

and computes

r = 13° = 13751 (mod 18818)

Also, k7! is obtained from

5.k7! = 1(mod(¢(18818) = 9312)).

Hence,

k! = 3725

Then,

s = 3725{7 — (4246).(13751)} = 3625(mod 9312)

Thus, A’s signature for 7 is then (r = 13751, s = 3625)
To validate the signature , B make sure that 7 € U(Z{sq13)- then, obtain the

hashed message h(m) = m =7. Finally,B computes

vy = 15135371 1375112 = 9305(mod 18818)

and

vy = 137 = 9305 (mod 18818).

Since v1 = vq, the signature is accepted.
56

Note that there are 18817 values for m you can choose from the complete residue

system modulo 18818, Zigs1s-

Computer Program: (* We create a computer program with mathematica to
illustrate the modified ElGamal signature in Z,, *)

(*Key generation®)

FindGeneratorPower[p_] := (¢ =p~2 - p;

j = FactorInteger|[¢]; z = {};

Dolz = Append[z, j[[i]][[1]]], {i, 1, Length[j]}];

flag = 0;

While[flag == 0, § = 2;

While[Mod[f, 2] == 0 || Mod[8, p] == 0,

6 = Random/Integer, { 2, 2 p~2 - 1}]];

flag = 1;

Do[If[PowerMod[d, ¢/z[[i]], 2p~2] == 1, flag = 0; Break[]], {i, 1, Length[z]}]];
Print["0= ",6];

a = Random|Integer, {2, ¢ - 1}];

fa = PowerMod[f, a, 2 p~2])

(*Signature generation®)

SignaturePower[p | := (k = 5; While[GCDIk, ¢] # 1,
k = Random[Integer, {2, ¢ - 1}]];

r = PowerMod[4, k, 2 p~2];

hm = m; kl = POWGI'MOd[k, '1) ¢]7
o7

s = Mod[k1*(hm - r*a), ¢]; Print["r=", r, " s=", s])

(*Signature Verification*)

VerificationPower[p_] := (

vl = Mo‘d[PowerMod[fa, 1, 2 p~2]*PowerMod]r, s, 2 p~2], 2p~2];
hm = m; v2 = PowerMod[f, hm, 2p~2};

Print["vl=", v1, " v2=", v2|; If[vl == v2, Print["accc"], Print["not acc"]])

ElGamal Signature in the Domain of Gaussian Integers El-kassar et al. [5] extended

ElGamal signature from the domain of integers to the domain of Gaussian integers as
follows: First, a Gaussian prime 3 is chosen. Let Gg be a complete residue system
modulo 3. Then, G is a field under addition and multiplication modulo the Gaussian
integer . If 8 = m, where ¢ = 77 is prime integer of the form 4k + 1, then G =
{a:0<a<qg~1} = Z, see [2]. This choice will be excluded since the calculations
will be identical to those of the classical case. Hence, 3 is chosen to be a large prime
integer p of the form 4k +3sothat Gg={a+:0<a<p—-1,0<b<p—1}, see
[2]. The number of elements in Gg is p* and in Gf, its multiplicative group of units, is
#(8) = p® — 1. Hence, the cyclic group used in the extended ElGamal signature has
an order larger than the square of that used in the classical ElGamal signature with
no additional efforts required for finding the prime p. Now, a generator of 6 of Gp is
chosen. Note that there are ¢(p? — 1) generators in G- A random positive integer a is
then chosen so that the public key is (p, 8,8%). Since a is a power of 8, then a must be
less than the order of the group power G which is p? — 1. This power, a, is the private

key. To sign a message, first hash the message to obtain the hash value f = h(m) .Then,
58

select a random secret integer k, such that 1 < k < p? — 2 with ged(k,p? — 1) = 1 and
compute 7 = 6" (modp) .Notethat risin Gg={a+bi:0<a<p-1,0<b<p—1}.
Next, compute k! (mod(p? ~ 1)) and s = k~1{h(m) — a.k} (mod(p® — 1)). Also,
compute 6 = r*(mod 3) . Send the message m and the signature (r, 6, s).

To validate the signature ,obtain the authentic public key (p, 6,6%) and verify
that 7 € Gj.Hash the message m and obtain the hash value f = h(m). Compute
vy = 0r*(mod §) and compute vy = 6"™ (mod B).Accept the signature only if v, = v,.

We note that the reduction modulo a Gaussian integer requires computational
procedures that are more involved than those used in the reduction modulo an integer.
However, since § was chosen to be a prime integer p = 4k + 3, then the reduction
modulo 8 do not require computational procedures that are different from those used
for the integers. In fact, to reduce a + b modulo 3, we find ¢,d with0 < c¢,d <p—1
such that ¢ = a(mod p) and d = b(mod p). Then c+di € G and c+di = a+bi(mod f3).

Hence, the reduction modulo 8 in Z[¢] is done using integer reductions.

Algorithm 75 (Key generation for ElGamal Gaussian signature).

Entity A should do the following:

1- Generate a large random Gaussian prime integer B of the formp = 4.k +
3,where p is a prime integer.

2-Find a generator § of the multiplicative group Gj.

3- Select a random integer a, 1 < a < p? — 2.

4- Compute y = 6°(mod f)

5- A’s public key is (53, 6,0%); A’s private key is a.
59

The following algorithm shows how entity A signs a message m for B.

Algorithm 76 (ElGamal Gaussian signature).
Entity A. should do the following:
1- Select a random secret integer k, 1 < k < p? — 2 such that ged(k,p*> — 1) = 1.
2- Represent the message as an integer m and compute h(m). V
8- Compute r = 6% (mod p).
4- Compute k™ (mod(p? — 1)).
5-Compute s = k~*{h(m) — a.k} (mod(p? —1)).
6-Compute 6 = r*(modp) .

7- A’s signature for m is the triplet (r, s, 9).

The following algorithm shows how entity B verify that the message m is from

A.

Algorithm 77 (ElGamal Gaussian signature verification).
B should do the following:
1-Obtain A’s authentic public key (p,0,6%).
2- Make sure that T € G}, otherwise reject the signature.
3- Compute vy = dr*(mod) .
4- Compute h(m) and v, = "™ (mod B).

5-Accept the signature only if v; = vs.

Example 78 In order to generate the public-key, entity A selects the Gaussian prime

p = 479 and finds a generator § = 398+ 3271 of Gj;9. Then, A chooses the private-key
60

a = 21506 and computes 8° = (398 + 327:)?15% = 461 + 372i(mod 479). Therefore,
A’s public-key is (p = 479,0 = 398 + 327¢,0% = 461 + 372i) and A’s private-key is
a = 21506.

To sign the message m = 214 ;, calculate f = h(214) = 214. Selects a random

integer k = 13 and computes
r = (398 + 3274)'® = 416 + 447i(mod 479)

Also, k™! is obtained from

13.k7! = 1(mod(479% — 1)).

Hence,

k™! = 70597.

Then,

s = 70597{214 — (13).(21506) } = 172652(mod (479% — 1))

Thus, A’s signature for 214 is then (r = 416 + 447, s = 172652)
To validate the signature , B make sure that r € G,y then, obtain the hashed

message h(m) =m =214. Finally,B computes
vy = (416 + 4474)*72%52 (461 + 372i)"® = 296 + 335i(mod 479)

and

vy = (398 + 3274)%* = 296 + 335¢ (mod 479).
61

Since v1 = vy, the signature is accepted.

Computer Program: (* We create a computer program with mathematica to

illustrate the modified ElGamal signature in Z[z] *)

(*Key generation®)

FindGeneratorGaussian[p_] := (¢ =p~2 - 1;

j = FactorInteger[¢]; z = {};

Doz = Append|z, j{[il][[1]]}, {i, 1, Lengthj}}];

flag = 0;

While[flag == 0,

6 = Random[Integer, {2, p - 1}] +I*Random|Integer, {2, p - 1}];

flag = 1;

DolIf[PowerMod[6, ¢/z[[i]], p] == 1, flag = 0; Break{]], {i, 1, Length[z]}]};

Print["0=", 6];

a = Random|[Integer, {2,¢ -1}];

fa = PowerMod[d, a, pl;)

(*Signature generation*)

SignatureGaussian[p | := (k =13; While[GCD[k, ¢] # 1; k = Random[Integer,
{2,¢- 1}]};

Print["k= ", k]; r = PowerMod[#, k, p|;

k1 = PowerMod[k, -1,4];

Print["k1= ", k1}; hm = m;

s :Nlod[kl*(hm - k*a)7¢];
62

6 = PowerMod[r, a, p];

Print["signature ", r, " ", s," ", §];)
(*SignatureVerification*)
VerificationGaussian|[p_].:= (vl = Mod[@*PowerMod]r, s, p], pl;

hm = m; v2 =PowerMod[d, hm, p];
Print["vl=",v1, "v2=", v2];
If[vl ==v2, Print["accc"], Print["not acc"]])

The following are some of the advantages of ElGamal signature scheme in Z[z].
Using arithmetics in the domain of Gaussian integers Z[i], ElGamal signature scheme
was extended to Z[¢]. The computational procedures in the new setting were described
and the advantages of the new scheme were pointed out. The following are some of
these advantages. First, generating a prime p in both the classical and the modified
method requires the same amount of effort. However, the cyclic group Z; has p — 1
elements; while the cyclic group G has p*> — 1. Second, the choice for the power a in
the classical method is from 1 to p — 1, while the choice of this power in the modified
method is from 1 to p? —1. Hence, the modified method provide more security since
the security of ElGamal scheme depends on the discrete logarithm. Also, the number
of elements that can be chosen to represent the hash of the message is more than the -
square of that used in the classical case. The computations involved in the modified
method do not require computational procedures that are different from those used in

the classical method.
63

ElGamal Signature over Finite Fields The generalized ElGamal signature in the set-

ting of a finite field Fy, where ¢ = p™ for an odd prime integer p and a positive .
integer n, is based on working with the quotient ring Z,[z]/ (h(z)), where h(z) is
an irreducible polynomial over Z,[z]. We extend the ElGamal signature to the set-
ting of a finite field. It is well known that Z,[z]/ (h(z)) is a field whose elements
are the congruence classes modulo A(z) of polynomials in Z,[z] with degree less than
n. We identify this field by the complete residue system A(h(z)) = {ao + a12 +
e+ @n1™ Y | @g, a1, -, Gne1 € Zp[z]}. Note that Z,[z]/ (h(z)) is of order p™ and
its nonzero elements form a cyclic group denoted by U(Z,[z]/ (h(z))). The order of
U(Zplz]/ (h(z))) is ¢(h(z)) = p* — 1. Let 6(z) be a generator of the cyclic group
U(Zy[z]/ (h(z))). The elements in U(Z,[z]/ (h(z))) can be written as a power of the

generator a(z). Hence, U(Z,[z]/ (h(z))) = {e, 0(x), 8(x)?, ..., 0(x)?" 1}

Algorithm 79 (Key generation for ElGamal signature over finite fields).

Entity A should do the following:

1- Selecting an odd prime p and generating a monic irreducible polynomial h(z)
of degree n in Z,|x].

2-Finding a generator 8(z) of the multiplicative group U(Z,[z]/ (h(x))).

3- Selecting a random integer a, 1 < a < ¢(h(z)) — 1.

4- Computing y(z) = 6(x)*(mod h(zx))

5- Publishing (p, h(x),0(z)) as public key and keeping a as private key.

The following algorithm shows how entity A signs a message m for B.

Algorithm 80 (Signature generation of ElGamal signature over finite fields).
64

Entity A should do the following:

1- Represent the message as a polynomial m(z) .

2- Select a random secret integerk, 1 < k < ¢(h(x))—1 such that gcd(k, p(h(z))=1.
3- Compute h(m(z)).

4- Compute r(z) = 0(z)* (mod h(z)).

5- Compute k™' (mod ¢(h(z))).

6-Compute s = k~{h(m(z)) — a.k} (mod ¢(h(z))).

7-Compute 6(z) = r(z)*(mod h(z)) .

8- Send (r(z), s, (x)) to B.

The following algorithm shows how entity B verify that the message m is from

A

Algorithm 81 (Signature verification of ElGamal signature over finite fields).
B should do the following:
1-Obtain A’s authentic public key .
2- Make sure that m(z) € U(Z,[z]/ (h(x))), otherwise reject the signature.
8- Compute vy(z) = §(z)r(z)*®@ (mod h(z)) .
4- Compute h(m(z)) and va(z) = 8(z) ™) (mod h(z)).

5-Accept the signature only if vi(z) = va(z).

Example 82 (with small parameters). Consider the polynomial f(z) = z° + 3z + 2
which is irreducible over Zs. Hence the quotient ring Zs[z]/ < z3 + 3z + 2 > is a finite
field of order 5° = 125, and where multiplication is performed modulo the irreducible

polynomial f(x). So Zs[z]/ < z° + 3z +2 > —{0} is of order 124 and one of the
65

generators is the polynomial a(x) = 3z% + 3z + 2. In order to generate the public
key, entity A selects the private key a = 46 and computes y(z) = (32 + 3z +2)% =
4z%+3z+3 (mod f(x)) in Zs[z]. Therefore, A’s public key is (5,2°+3z+2,3z%+ 3z +
2,42%+3z+3). To sign a message m(z) = 4, suppose the hash algorithm is the identity
(for simplicity). Afterwards, A selects k = 11 with gcd(5,124) = 1 and computes
r(z) = (32% + 3z + 2)! = 22+ z+ 3 (mod f(z)). Also k™ is obtained from 11k~1 =1
(mod 124). Hence, k™' =T79. Then, A computes s = 79{4— (46).(11)} (mod 124) = 22
and 0(z) = (2% + z + 3)%® = 2z .Finally, A sends the signature to B. To validate
the signature, B first makes sure that r(z) € U(Zs[z]/ < f(z) >). Then, B calculate
h(4) = 4 (supposing h identity function). Finally, B computes vy = (2z)(3z%+ 3z +2)*
= 22+ 3z 4+ 4.and v = (32% + 3z + 2)* = 2% + 3z + 4. Since v; = v, the signature is

accepted.

Computer Program: (* We create a computer program with mathematica to

illustrate the modified ElGamal signature over finite fields*)
(*Key generation™)
FindGeneratorPolyirr[p_, n_] := (h = IrreduciblePolynomial[x, p, nJ;
Print["h=", h];¢ = p~n - 1; Print{"¢=",4];
j = FactorInteger|¢];
z={};
Do[z = Append[z, [l][[1]]], {i, 1, Length[j]}];

flag = 0;
66

While[flag == 0, § = 0; Do[f = 6§ + Random[Integer, { 1, p- 1}]*x"1, {i, 0, n -

1};

While[PolynomialGCD[8, h] # 1, 6 = 0;

Do[f= 6+ Random[Integer, {0, 1}}*x"i, {i, 0, n - 1}];

flag = 1;

Dol[If[PolynomialPowerMod[d, ¢/z[[i]], {h, p}] == 1, flag = 0; Break[]], {i, 1,
Length[z]}]];

Print["generator is =", 6]; a = Random/[Integer, {2, ¢ - 1}};
fa = PolynomialPowerMod[d, a, {h, p}]);

(* Signature generation®*)

SignaturePolyirr[p_, n_]:= (k = 2;

While[GCD[k,4] # 1, k = Random|[Integer, {2, ¢ - 1}]];
hm = m; r = PolynomialPowerMod|[f, k, {h, p}};

k1= PowerMod[k, -1, ¢];

s = Mod[k1*(hm - k*a), ¢];

§ = PolynomialPowerMod[r, a, {h, p}];
Print["signature is ", r, " ", s, "", 0])

(* Signature Verification*)

VerificationPolyirr[p_, n_| := (If[Polynomial GCDJr, h] == 1,

vl = PolynomialMod[PolynomialPowerMod]r, s, {h, p}]*d, {h, p}]];
hm = m; v2 = PolynomialPowerMod[d, hm, {h, p}];

Print[v1, "", v2]; If[vl == v2, Print["accc"], Print["not acc"]])
67

Using the arithmetics in the domain of polynomial rings, ElGamal signature
scheme was extended from the domain of natural integers Z to the ring of polynomials -
over finite fields, Z,[z]/ < f(z) > and f(z) is an irreducible polynomial over Z,[z]
of degree n, uéing the required arithmetics for this extension. The computational
procedures in the new setting were described and the advantages of the new scheme
were pointed out. The following are some of the advantages. First, The classic group
Z7 has p elements, and the cyclic group (Zp[z]/ < f(z) >)* has p™ —1. Second, the
choice for the power a in the classical method is from 1 to p — 1, while the choice of
this power in the extended method is from 1 to p™ — 1. Hence, the extended method
provides more security since the security of ElGamal signature scheme depends on the
discrete logarithm. Also, the number of elements that can hash the message m is more
than the n®® power of that used in the classical case. Moreover, note that finding an
irreducible polynomial in Z,[z] is not an easy problem. From this point of view, in the
next section , ElGamal signature scheme in the ring of polynomials will be modified

over quotient rings where p(z) is not provided to be irreducible.

ElGamal Signature over Quotient Rings of Polynomials The ElGamal public-key sig-

nature is also extended in the setting of the cyclic group of the finite quotient ring
Z,|z]/ (f(z)), where p is an odd prime, and f(z) is a reducible polynomial of degree
n over Z,[z], see [7]. In this case the ring Z,[z]/ (f(x)) is not a field. But according
to ElGamal public-key signature scheme, we are only interested in the cyclic groups of

units of such rings. Hence, throughout this section we are dealing with any quotient

ring Z,[z]/ (f(z)) of order p", where p is an odd prime and n is the degree of the
68

reducible polynomial f(z). Using the characterization of the structure of the group
unit of Z,[z]/ (f(z)) given in [29], El-Kassar et Haraty [11] obtained a characterization
of all primes p and polynomials f(z) for which Z,[z]/ (f(z)) is cyclic. Two partic-
ular cases of interest are as follows. For any finite field F' of order ¢ = p™, where
p is an odd prime integer, the group of units U(F[z]/ < f(z) >) is cyclic and iso-

morphic to Z,_; if and only if f(z) is linear. Also, U(F[z]/ < f(z) >) is cyclic and

isomorphic to Z,_; x Z, if and only if f(z) = h(z)?, where h(z) is linear. Hence,

we conclude that in order for the group of units U(Z,[z]/ (h(z))) to be cyclic, h(z)
must be irreducible or a square power of only one linear irreducible polynomial. That
is, h(z) = hi(z)?, where hi(z) = ax + b. This means that U(Z,[z]/ ((az + b)?)) is
cyclic. Moreover, we have that Z,[z]/ ((az + b)?) = Z,[z]/(z?). Hence, we can say
that the extension of the ElGamal scheme in this case applies to the group of units
of the ring Z,[z]/ (x?), of order ¢(z?) = p* — p. We note that a polynomial f(z) in
Z,[z] belongs to the cyclic group U(Z,[x]/ (z?)) if and only if (f(z),z) = 1. This is
equivalent to saying that z does not divide f(z), where f(z) is a linear polynomial.

Hence, U(Zp[z]/ (z®)) = {c+dz|1<c<p-1,0<d<p-1}.

Algorithm 83 (Key generation for ElGamal signature over polynomials).

Entity A should do the following:

1- Selecting an odd prime p and a reducible polynomial f(z) of degree n in Z,[x]
as a square of a linear polynomial.

2- Computing ¢(z?) = p? — p.

3-Finding a generator 6(z) of the multiplicative group U(Z,[z]/ (z?)). Therefore,
69

U(Z,ls1/ (&%) = {e,0(), 6()?, .. 8z},
4- Selecting a random integer a, 1 < a < ¢(x?) — 1.
5- Computing y(z) = 6(x)*(mod z?)
6- Publishing (p, h(z), 0(x)) as public key and keeping a as private key.

To generate a signature of a message, entity A should do the following.

Algorithm 84 (Signature generation of ElGamal signature over polynomials).

Entity A should do the following:

1- Represent the message as a polynomial m(z) .

2- Select a random secret integer k, 1 <k < p(p—1) — 1 such that ged(k, p(p —
1)) =1.

3- Compute h(m(z)).

4- Compute r(x) = 0(z)* (mod z?).

5- Compute k! (mod(p? — p)).

6-Compute s = k™ {h(m(z)) — a.k} (mod(p? — p)).

7-Compute §(z) = r(z)*(mod z?) .

8- Send (r(zx), s, 6(x)) to B.

The following algorithm shows how entity B verify that the message m is from

A.

Algorithm 85 (Signature verification of ElGamal signature over polynomials).

B should do the following:
1-Obtain A’s authentic public key (p, f(x), 0(z), y(z))

2- Make sure that r(z) € U(Z,[z]/ (z?)), otherwise reject the signature.
70

3- Compute v,(z) = 6(z)r(z)*(mod z?) .
4- Compute h(m(z)) and vo(z) = 6(z)*™®) (mod z?).

5-Accept the signature only if v1(z) = va(x).

Example 86 To generate public and private keys, entity A selects the primep = 3 and
the polynomial f(z) = 1+2°. Since f(z) is reducible over Zs[z], then Zs[z]/ < f(z) >
= Z3lz])/ < 22 >, U(Zs[z]/ < 2* >={1,2,1+ 2,2 + 2,1 + 22,2 + 2z} and ¢(z?) =
3(3 —1) = 6. Entity A chooses the generator a(z) = 2 + 2z of U(Zs3[z]/ < 2* > .and
chooses a = 5. Then, A computes y(z) = [a(z)]* = (22+2)° = 1+x. Hence, A’s public
key is (3, 22, 2z + 2) and A’s private key is a = 5. To sign the message m(z) = 2
€ U(Zs[z]/ < 2? >), assume that h(m(z)) = m(z) (for simplicity h is the identity
function). Thus h(2) = 2. Afterwards, A selects a random integer k = 5 with ged(5 ,
p*—p) = 1 and computes 7(z) = (2z+2)% (mod z?) = z+2. Hence, computing the value
of 6(z), A obtains §(z) = (z+2)° (mod z?) = 2z +2 over Zz|z]. Also, k™! is obtained
from 5k~1 = 1 (mod (p* —p)). Hence, k™' = 5. Then, A computes s = 5{2 — (5).(5)}
(mod 6) =5 . Thus, A’s signature for m(z) is then (r(z) = z+2,s = 5,8(z) = 22+2).
To validate the signature, for sure 2 € U(Zs|z]/ < x? >). Then, B computes the hashed
message h(2) = 2 (for simplicity h is the identity function). Finally, B computes v(x)
= (22 + 2)(z + 2)%(mod z?) = 1 + 2z and vo(z) = (2 +2)? (modz?) = 1+ 2z. Since

vi1(z) = va(x), the signature is accepted.

Computer Program: (* We create a computer program with mathematica to
illustrate the modified ElGamal signature over quotient rings of polynomials over finite

field *)
71

(*Key generation*)

FindGeneratorPoly[p_] := (¢ = p(p - 1); j = FactorInteger[¢]; z = {};
Dofz = Append(z, j([]{[1]}}, {i, 1, Length{i}};

flag = 0;

While[flag == 0,

0 = Random[Integer, {1, p - 1}] -+ x* Random/[Integer, {1, p - 1}};

flag = 1;

Do[If[PolynomialPowerMod[0,¢/z[[i]], { x~2, p}] == 1, flag = 0; Break[}], {i, 1,
Length(z]}]];

Print["6=", 6];

a = Random|Integer, {2, ¢- 1}];

fa = PolynomialPowerMod[f, a, { x~2, p}]);

(* Signature generation®)

SignaturePoly[p_] := (k = 3; While[GCD[k, ¢} # 1, k = Random[Integer, {2,
o- 1}};

hm = m;r= PolynomialPowerMod[f, k, {x"2, p}};

k1 = PowerModlk, -1,9];

s = Mod[k1*(hm - k*a), ¢];

§ = PolynomialPowerMod]r, a, {x"~2, p}|; Print["signature is ", r, "", s, "", 6])

(* Signature Verification®)

VerificationPoly[p] := (

vl = PolynomialMod[PolynomialPowerMod]r, s, {x"2, p}|*d, {x"2, p}};

hm = m;

v2 = PolynomialPowerMod|[f, hm, {x~2, p}|;
Print[vl, "", v2];

Iffvl == v2, Print["acc"], Print["not acc"]});

Conclusion 87 The extended ElGamal signature over quotient rings of polynomials
over finite fields is described using the same arithmetics in polynomial rings over finite
fields Z,|z]/ < g(z) > where p is an odd prime and n is the degree of g(z). This exten-
ston is prefered to the previous one because the polynomial g(x) need not to be irreducible
over Zy[z]. In this case, g(x) is a square power of a linear irreducible polynomial. That
is g(z) = h(z)?, where h(z) = ax + b. Hence, we deduce that U(Z,[z]/ < (az + b)? >)

is cyclic and Z,[z]/ < (az + b)* >= Z,[z]/ < z® > . The computational procedures

in the new setting were described and the advantages of the new scheme were pointed
out. The following are some of these advantages. First, generating a prime p in both
the classical and the extended methods requires the same amount of effort. However,
if p of the form 4k + 3, we use the extended ElGamal signature scheme in the domain
of Gaussian integers modulo Gaussian primes B = p. Otherwise, that is to say, if p
is of the form 4k + 1, we use the extended ElGamal signature scheme in the rings of
polynomials over finite fields. But, finding irreducible polynomials in finite fields is not
an easy problem. Hence, if one cannot find an irreducible polynomial h(x), he could use
the extended ElGamal signature scheme over quotient rings of polynomials over finite -
fields, Z,[z]/ < x? > instead of using the extended ElGamal signature scheme over poly-
nomial rings over finite fields. However, the cyclic group Z; has p — 1 elements, while

the cyclic group (Z3[x]/ < x* >) which is the same as the group U(Z,[z]/ < 2* >) has
73

p? — p elements. Second, the choice for the power a in the classical method is from 2

to p— 1. While the choice of this power in the extended method over polynomial is from -
2 to p? — p — 1. Hence, the extended method provides more security since the security
of ElGamal scheme depends on the discrete logarithm. Also, the number of elements
that can be chosen to represent the message m is more than the square power of that
used in the classical case. Third, the computations involved in the extended method
in Z,[z]/ < 2? > do not require computational procedures that are different from those
used in the extended method Z,[x]/ < f(x) >. Hence, the efforts for finding a generator

for Z,[z] and Z,[z]/ < z* > are the same.

3.2 ElGamal Public-Key Scheme Attack

In order to attack any protocol that uses ElGamal signature scheme we have to
solve the discrete logarithm problem. There are many algorithms for solving the discrete
logarithm problem, see [22]. The security of ElGamal signature scheme depends on the
intractability of the discrete logarithm problem. In the following, we describe some of
the algorithms for solving the discrete logarithm problem in the general setting of a
finite cyclic group G of order n generated by a. The discrete logarithm of an element
B in G to the base «, denoted log,B, is the unique integer z, such that § = o*, where
0<z<n-1

The groups considered in this chapter are:

1. The multiplicative group Z;;of the integers modulo a prime p.

2. The multiplicative group Gj; of the Gaussian integers modulo a prime 3.
74

3. The group of units Z,, where n is a composite integer of the form 2p’.

4. The multiplicative group F™of a finite field F.

5. The group of units of the quotient ring Z,[z]/ < z* > .

Given a generator «a of a finite cyclic group G of order n and an element 8 in
G, the discrete logarithm problem is the problem finding the unique integer z,0 <
z < n — 1, such that given 3 = a®. The known algorithms for solving the discrete
logarithm problem are: exhaustive search, the baby-step giant-step algorithm, Pollard’s
rho algorithm, Pohlig-Hellman algorithm, and the index-calculus algorithms. The first
three algorithms work in arbitrary groups. The baby-step giant-step algorithm is a
time-memory trade-off of exhaustive search. Pollard’s rho algorithm is a randomized
algorithm. It requires a negligible amount of storage and has the same expected running
time as the baby-step giant-step algorithm. The Pohlig-Hellman algorithm works in
arbitrary groups but is especially efficient if the order of the group has only small prime
factors. The index-calculus algorithms are efficient only in certain groups. Detailed
descriptions and references of these algorithms can be found in [22].

In the following we describe the exhaustive search and the baby-step giant-step
algorithms. These algorithms will be used in section 4 to evaluate the various versions

of ElGamal digital signatures.

Exhaustive Search An obvious algorithm for the discrete logarithm problem is to suc-

cessively compute o®,al, 2, ... until 3 is obtained. If n is the order of «, the exhaustive

search takes O(n) multiplications, and is therefore inefficient if n is large (i.e., in cases
75

of cryptographic interest). However, it can be used to compare the various ElGamal

based digital signatures having small parameters. The algorithm is as follows:

Algorithm 88 FExhaustive Search

INPUT: a generator « of a cyclic group G of order n, and an element 8 € G.

QUTPUT: the discrete logarithm z = log, B.

1. Set k=0.
2. Set f=coF. If B=zx° then return k.

3. Set k=k+1, then return with new k; 0 < k <n — 1, until § = x* is reached.

Example 89 Let p =11. § = 2 is a generator of Zy, of order p — 1 = 10.Consider

B =10=2°. Applying the Ezhaustive Search algorithm,og, 10(mod 11) is computed

as follows.

1. Setk=0.
2. Compute f=60°=20=1+#£10

3. Set k = 1 and compute B = 0 = 2! = 2 #£ 10.Keep on computing 6 for

k=0,1,2.... until 10 is reached. This yields the following table:

k 01

gk =28 |12

4. When k = 5,60% = 10. Therefore, B = 6°, i.e., the discrete logarithm log, 10 = 5.
2
76

Ezample 90 Let p = 3. 0 = 2 + 2i is a generator of G} of order p> — 1 =
8.Consider f = 2 = (2+2i)*. Applying the Exhaustive Search algorithm,log, o; 2(mod
1s computed as follows.

. Set k=0.

. Compute B=6"=(2+2))°=1+#£2.

. Set k = 1 and compute 8 = 6% = (2 + 2i)' = 2 + 2i # 2.Keep on computing §*

for K =0,1,2.... until 2 is reached.This yields the following table:

k 1 2 3

0k = (2 4 23)* 24+2i | 20| 2414

Example 91 1. 4. When k =4, 0% = 2.Therefore, B = 6%, i.e., the discrete loga-

mthm]'Og2-|—2i 2 =4,

Baby-step Giant-step Algorithm Let n be the order of a generator a and let m = [\/n],

the smallest integer greater than or equal to y/n. The baby-step giant-step algorithm is
based on the following observation. Suppose that 8 = o®. Writing z = km + j, where
0 < k, j < m, we have that o® = o*™a’ and hence S(a™™)* = o?. This suggests the

following algorithm for determining z = log, 5.

Algorithm 92 Baby — step giant — step algorithm for finding discrete logarithms
INPUT: a, a generator of a cyclic group G of order n, and an element p € G.

OUTPUT: the discrete logarithm x = log, B, where = oF.

1. Setm = [y/n].

2. For0<j<m, find &/ and construct a table with entries (j, o).
3. Sort this table by second component.
4. Find a=™ and set v = (3.

5. Fork from 0 to m — 1 do the following:

5.1 If y = o’ then return (x = km+ j). Else, set y=v.a™™.

This algorithm requires storage for O(y/n) group elements. To construct the
table, O(y/n) multiplications and O(y/nlgn) comparisons to sort are required. Step
5 takes O(y/n) multiplications and O(y/n) table look-ups. Assuming that a group
multiplication requires more time than logn comparisons, we have that the running
time of Baby-step giant-step algorithm is O(y/n) group multiplications.

Note that the performance can be improved by restricted exponents a special
form. Usually, exponents having small Hamming weight are used. The Hamming
weight of an integer is the number of ones in its binary representation. The following

is an example of a modified Baby-step giant-step attack for Gaussian integers.

Example 93 (Baby — step giant — step algorithm for logarithms in Zi3)
Let p = 13. The element o = 2 is a generator of Zis, of ordern =p—1=12.
Consider B = 9 = 28. Applying the Baby-step giant-step algerithm; log,9 (med 13)-is

computed as follows.

1. Setm = [\/ﬁ—l =4.

2. Construct a table whose entries are (j, o?(modp)) for 0 < j < 4:
78

i 01 2 3
2% 1 2 4 8

4. Compute a™! = 271 (mod 13) = 7 and then compute o™ = 74(mod 13) = 9.

5. Next, v = ﬁa“mk(mod 13) for k = 0,1,2,... is computed until a value in the

second row of the above table is obtained. This yields the following table:

E 0 1 2

v 9 3 1
When k = 2, v = 1 is the first value of v appearing in the second row of the table

in step 4 corresponding to 3 = 0. Finally, x = km+j =2x4+0 = 8. Therefore,

B =a?, ie., the discrete logarithm log, 9 = 8.

Example 94 (Baby — step giant — step algorithm for logarithms in G%)
Let p=T7. The element o = 2 + 61 is a generator of G%, of ordern =p?> — 1 =
48. Consider § = 1+ 67 = (2 + 6i)*2. Applying the Baby-step giant-step algorithm,

logy,6: 1 + 67 (mod7) is computed as follows.

1. Setm=f\/48 =17.

2. Construct a table whose entries are (j, o’(modp)) for0 < j < 7:

j 0 1 2 3 4 5 6 7
3.
(2+6i) 1 2+6: 3+30 2+37 40 4+¢ 245 2+
4. This table can be sorted by second component using the linear order < defined by
a+bi Xc+diiff(a<c)or(a=candb<d). The table becomes:

j 4 07 3 6 1 2 5

(246iY 4i 1 243 243i 245 246 3+3i 4+i
79

5. Compute o~ ! = (2 + 64)"}(mod7) = 6 + 3¢ and then compute ™™

31)7(mod 7) = 6 + 4i.

. Nezxt, v = Ba™™*(mod 11) for k = 0,1,2,... is computed until a value in the
second Tow of the above table is obtained. This yields the following table:

kE 0 1 2 3

v 14+6¢ 3+91 & 2462

When k = 3, v = 2 + 61 is the first value of y appearing in the second row of the
table in step 4 corresponding to j = 1. Finally, t = km+j =3 x 7+ 1 = 22.

Therefore, B = a2, i.e., the discrete logarithm log,.e; 1 + 6i = 22.

Computer Program: (* We create a computer program with mathematica to
illustrate the Baby — step giant — step algorithm *)

Timingn = p\2 - 1;

m = Ceiling[Sqrt[n]];

t1 = Array[t11, {2, m}|;

MatrixForm[t1];

Dolt1[[1, j]] =] - 1; t1[[2, j]] = PowerMod[e, j - 1, p]:

(*Print[ts1[[L, 1], "", t1[[2, J)]*) » {i; 1, m}l;

MatrixForm[t1]; ai = PowerMod|e, -1, p;

am = PowerMod[ai, m, p};

While[e£0 && 1 < m,

ami = PowerMod[am, i, p];

v = Mod[f*ami, pl; (*Print[i, "", 7]*) ;

Do[If[y == t1[[2, k]],

e = 0; j= t1{[1, k]J; (*Print["j = ", j]; Print["y =", 7]*) ;
h = 2; Break[]],

{k, 1, m};i=i+ 1] Print["i =",i-1]; a= (i- 1)*m + j])

3.3 Testing and Evaluation

In this section, we compare and evaluate the different classical and modified
digital signatures schemes by showing the implementation of the algorithms with their
running results. Also, we test the security of the algorithms by implementing different
attack algorithms to forge the signature. All this is done using Mathematica 5.0 as a

programming language and a centrino acer computer with 1.5 GHZ CPU and 256 MB

DDRAM.

ElGamal based Algorithms Using Mathematica 5.0 functions and an additional abstract

algebra library, we have written programs for the following algorithms:

1. Classical ElGamal.

2. Classical ElGamal with n of the form 2p*.

3. ElGamal with Gaussian numbers.

4. ElGamal with irreducible polynomials.

5. ElGamal with reducible polynomials.
81

The various procedures were compared as follows.

a~-A total of 25 runs of the various algorithms were conducted. In each run, a -
20-digit random prime integer p of the form 4%k + 3 was generated.

b-The same prime p was used for all algorithms.

c-For each method a public key was generated by finding a generator 8, a random
integer a, and computing 6°.

d-Using the public key (6, 6%), the same message m = 12345678 was signed by
all algorithms to obtain the signature (r, s, ¢).

e-The verification algorithms were then used to verify the signature.

f-All algorithms used the built-in Mathematica functions for modular arithmatic
and for finding powers modulo an integer, Gaussian integer or a polynomial over Z,.

g-The running times of the algorithm (Key generation, signature, verification)
for each method were recorded.

Note that the cyclic groups used, and their corresponding orders, are:
1. Classical ElGamal: Z; of order p.
2. Classical ElGamal with n of the form 2p? : Z* of order p? — p.
3. ElGamal with Gaussian integers: G} of order p* — 1.
4. ElGamal with reducible polynomials: U(Z,[z]/ < 2% >) of order p? — p.
5. ElGamal with irreducible polynomials: U(Z,[z]/ < 2%+ az+b >) of order p? — 1.

Except for the classical ElGamal in the setting of the cyclic group Zy, all cyclic

groups used have comparable sizes. Hence, we expect the algorithms in the first case
82

to be much faster. A different prime p having 40 digits could have been used for that
case; but this would have been equivalent to case 2.

After running the programs, it was clear that these programs have applied the
ElGamal signature scheme in the correct way. All the programs have generated a public
and private key with different mathematical concepts. Then a message is signed using
the signature scheme and is sent to a verification procedure which verify the signature.

Figure 3.1 shows the average execution time of 25 runs of the various algorithms.

ElGamal Based Digital Signature

i Key
l W Signature
'O Verification

Figure 3.1: Average execution time for ElGamal Digital Signature

Comparing these algorithms, we observe the following:
a- All programs are reliable; they can sign and verify any signature.

b- The complexity for each of the algorithms is O(n?).
83

c- The reducible polynomial signature scheme is reliable but took more time to
generate a key and to sign a message. This does not mean that it is inefficient because
it is more secure than the other algorithms. This will be shown later in the attack
section. Also, these algorithms can be made more efficient by modifying the built-in

Mathematica functions to take advantage of the arithmetic modulo z2.

d- The irreducible polynomial program in the setting Z,[z]/ < z® + az + b >

worked well but requires more time. The signature and verification execution time for
the irreducible polynomial scheme is slightly more than that of the reducible case. This

is due to the additional computations needed for the arithmetic modulo the polynomial

2+ ax + 0.

e-The key generation time for the irreducible polynomial scheme is considerably
more than that of the other methods. This is due to the fact that an irreducible
polynomial must be generated before a generator § is found. On average, it took about

0.4 sec to generate a quadratic irreducible polynomial for a 20-digit prime number.

Note that in Figure 3.1, the time of generating the irreducible polynomial is
not included. Figure 3.2, shows the average execution time if the time of finding an

irreducible polynomial is included in the key generating algorithm.
84

ElGamal Based Digital Signature

@ Key
M Signature

1 Verification

Figure 3.2: Average execution time for ElGamal Digital Signature

From these results, we can conclude that:

a- The time for generating the key depends on finding the generator § and not
the prime p. The time for generating a prime number is negligible. The average time
needed for generating a 100-digit (recommended size) random prime is approximately

0.1 sec.

b- It took more time to find the key in the case of polynomials. This will not

be a problem if common system-wide parameters are used. In such a case, all entities

may elect to use the same cyclic group G and generator ¢. Also, once a generator ¢

for a given prime p is found, all other generators can be easily obtained.

¢- The time needed to sign and to verify the signature for the classical, modified
2p* and Gaussian is better than the time needed for the polynomials. However, the -
time is very reasonable even for larger primes.

d- Overall, the Gaussian integers methods performed very well. The algorithms

can be made more efficient by modifying Mathematica built-in functions to take ad-

vantage of the arithmetic modulo the Gaussian prime p of the form 4k + 3.

e- The key generation time in the case of Gaussian integers is less than that of
the modified 2p* method. This is due to the fact that the number of generators in 521
which is ¢(p(p— 1)), is almost always more than the number of generators in G, which
is ¢(p? — 1). In fact, among the first 200,000 primes, there are only 7 primes p of the
form 4k + 3 for which ¢(p? — 1) > ¢(p(p — 1)).

£-The reducible polynomial method is little slower but provide more security.

The irreducible polynomial method is not recommended since it is as secure as the

reducible case but requires more time especially in finding the key.

Attack Algorithm In order to attack any protocol that uses ElGamal signature scheme

we have to solve the discrete logarithm problem. We enhanced the Ezhaustive search

and Baby — step giant — step algorithms to work with the modified algorithms.

To test the security of the algorithms, we implemented and applied the attack
schemes to the classical and modified signature algorithms. The ElGamal algorithm
using irreducible polynomials was not tested since the attack time would be equivalent
to that of the reducible polynomial case. For the exhaustive search algorithm, a random

3-digit prime p of the form 4k + 3 was generated and a public key was obtained for each
86

the four methods using the same prime. The average time it took to break the key for

a total of 25 runs are shown in figure 3.3.

Exhaustive Search

Time in Sec

Glassical 2pit Gaussian Reducible
Poly.

Figure 3.3: Attack Time: Exhaustive Search Algorithm

Attacking the ElGamal schemes using Baby-step giant-step algorithm, a random
4-digit prime p of the form 4k + 3 was generated and a public key was obtained for each
the four methods using the same prime. The average time it took to break the key for
a total of 25 runs are shown in figure 4.

After running these attack algorithms, we observed the following:

a- All the attack programs are reliable so that they can forge any message by

finding the private key.

b- The 2p* algorithm is stronger than the classical algorithm because we have

an unknown power t.

c- The Gaussian algorithm is stronger than the classical algorithm. The attack
87

algorithm for Gaussian integers required more time than that of the 2p? algorithm.
d- The most difficult algorithm to attack is in the polynomial domain. This is
due to the fact that mathematically it is complex and needs considerable computing

time to perform arithmetic modulo a given polynomial.

Baby-step Giant-step Algorithm

20
18
16
14
12
10

Time in Sec

O N A O o»®

Glassical 2pit Gaussian Reducible Poly.

Figure 3.4: Attack Time: Baby-Step Giant-Step Algorithm

3.4 Conclusion

In this work, we presented the classic E1Gamal signature scheme and four modi-
fications to it, namely, the ElGamal signature scheme in Z,,, in the domain of Gaussian
integers, Z[1], over finite fields, and over quotient rings of polynomials over finite fields.
We implemented these algorithms and tested their éfﬁciency, reliability, and security.

The results obtained showed that all the algorithms applied the ElGamal signature

scheme correctly and generated public and private key using different mathematical
88

concepts. Messages were then signed using the signature scheme and were sent to a
verification procedure which verify the signature.

We also built attack scenarios directly aimed at solving the discrete logarithm
problem that these algorithms utilize. We modified the Baby-step Giant-step algorithm
to handle the modified algorithms. We observed that the classical ElGamal scheme is
the weakest to attack and one of the modified methods should be used. The ElGamal
scheme in the multiplicative group Z*, where n = 2p?, is the easiest to apply and the
weakest among the modified method. The ElGamal sc'heme in the domain of Gaussian
is superior to that of Z since it requires less time to generate a key, about the same
time to sign and verify a signature, and is more secure. The ElGamal scheme in the
setting of a finite field has a disadvantage in finding an irreducible polynomial. The re-
ducible polynomial scheme was the most challenging to attack due to the mathematical

complexity of arithmetic modulo a polynomial.

89

CHAPTER 4
A COMPARATIVE STUDY OF RSA BASED DIGITAL SIGNATURE

ALGORITHMS

In this chapter, we compare and evaluate the classical and modified RSA algo-
rithms. We investigate the issues of complexity, efficiency and reliability by running
the programs with different sets of data. Moreover, these different algorithms will be
‘compared. In addition, implementation of an attack algorithm will be presented.This is
done by applying certain mathematical concepts to find the Aprivate key . After finding
the key, it will be easy to sign the message. A study will be done using the results
of running the attack algorithm to compare the security of the classical and modified
signature scheme algorithms.

4.1 Classical and Modified RSA Signature Scheme

The classical and modified RSA signature schemes are described in this section.
Algorithms and examples are given. These algorithms will be implemented to evaluate

and compare the various methods in section 5.

Classical RSA Signature Scheme In RSA signature scheme, entity A generates the

public-key by first generating two large random odd primes p and ¢, each roughly of
the same size, and computing the modulus n = pg and Euler phi-function ¢(n) =

(p~1)(g—1), see [22]. Entity A then selects the exponent e to be any random integer

in the interval (1, @(n)) such that ged(e, ¢(n)) = 1. Using the extended Euclidean

algorithm for integers, entity A finds the exponent d which is the unique integer (1, $(n))
90

relatively prime to ¢(n) such that ed = 1(mod ¢(n)). Hence, the public-key is the pair

(n, e), and A’s private-key is the triplet (p, g, d).

The signature is generated by A as follows. First, entity A computes the redun-
dancy function of the message m which is m = R(m) such that R(m) € Z,, and also

computes

= m%(modn)

Finally, A sends the signature s to entity B.
The signature is validated by B as follows. B obtains A’s authentic public key

(n, e), computes

~

m = s*(modn)
and rejects the signature if m ¢ Mg (image of R). Finally, B recovers m by computing
R~Y(m).
Algorithm 95 RSA Signature Scheme:
1. Find two large primes p and g and compute their product n = pq.
. Find an integer d that is relatively prime to ¢(n) = (p — 1)(¢ — 1).
Compute e from ed = 1(mod ¢(n)).
. Broadcast the public key (n, €).

Compute the redundancy function of the message m which is m = R(m) such

6. Sign the message m using the private-key by applying the rule s = m?(mod n).

7. The receiver validate the signature using the rule m = s*(modn).

Example 96 In order to generate the public-key, entity A selects the primes p =
852225047 and g = 603309029 and then computes the modulus n = pq = 514155065595049363
and the Euler phi-function ¢(n) = (p — 1)(¢ — 1) = 514155064139515288. Next, A se-
lects the exponent e = 231814262079216429 and uses the extended Fuclidean algorithm

for integers to find the exponent d = 387883402970610381 so that ed = 1(mod ¢(n)).

Now, the public-key is the pair
(n = 514155065595049363, e = 231814262079216429)
and A's private-key is the triplet
(p = 852225047, ¢ = 603309029, d = 387883402970610381).

To sign the message m = 1101100100111 ,for simplicity, take R(m) = m so that
R is the identity function. Then, m = R(1101100100111) = 1101100100111. A com-
putes s = m?(mod n) = 1101100100111387883402970610381 1,7 514155065595049363) =
502534570854711493 and sends the signature 502534570854711493 to B. B obtains

A’s authentic public key (514155065595049363, 231814262079216429), computes m =

§° (mod n) = 502534570854711493231814262079216429 (1 5,7 514155065595049363) = 110110010011

and computes m = R™'(m) = m = 1101100100111.

Computer Program: (* We create a computer program with mathematica to

illustrate the classical RSA signature®)
92

(*Key generation*)

Generatek[l |:=(p=1q9=1;

While[Mod[p, 4] == 1 || Mod|q, 4] == 1,

p = IDigitPrime[l]; q = IDigitPrimell]];

n = p*q; ¢= (p- 1)(q- 1);

e = ¢; While[GCDle, ¢| # 1,

e = Random| Integer, {1, ¢ - 1}]];

d = PowerMod(e, -1, ¢]; Print["the public key is (n=", n, ", e=", e, ")"])
(*Signature generation*)

GenerateS[l_] := (ml = m; s = PowerMod[ml, d, n];
Print[" the signature is (s=", s, ")"])

(*Signature verification*)

VeriS{l_] := (u = {};

Do[u = Append[u, i, {i, n - 1}];

ms = PowerMod]s, e, n};

If MemberQ[u, ms], Print["acc"]]; Print["ms=", ms])

4.2 RSA Signature Scheme in the Domain of Gaussian Integers, Z[i]

In this section, we proceed to the extension of RSA signature scheme from the

domain of natural integers to the domain of Gaussian integers using the arithmetic in

Z[i]. In this process, we have used the mathematical material concerning Gaussian

integers presented in chapter 2. Algorithms, examples, and computer programs illus-

trating this extended method are given. Moreover, as the classical RSA signature, the
93

RSA signature algorithm requires a redundancy function.

Choice of Gaussian Primes The Gaussian primes choosen in the Gaussian signatures

could not be choosen randomely. There are two choices for the Gaussian prime 8 to

select. B = 7 where 17 is a prime integer of the form 4k + 1 and 8 = p where p is a

prime integer of the form 4k + 3. Therefore, we have three cases for the composite 7.

where 1 = 5,5,

st case : B; = m,and By = mp where ¢ = m7T; = 4k, + land ¢ = mo7y =
4kz + 1 are prime integers. Then, due to El-Kassar [15], the complete residue system
modulo 7 = 3,5, is of the form G, = {a + B, : aef; : a € Gpand b € Gg,} where
Gg, ={a:1<a<q—1} and Gg, = {b:1 < b < gy — 1}. But the reduced residue
system modulo 7 has the order ¢;q, —1 which will be similar to working in the classical
case (case of integers). So, it will be neglected.

2nd case : ; = mand B, = p, where ¢, = mymy, = 4k; + 1 and p = 4k, + 3
are prime integers. Then, the factorization problem of the composite Gaussian integer
p = B15, which has the form a + bi could be easily solved by finding ged(a, b) which
will be equal to p. Therefore, this case will be also neglected.

3rd Case : 8, = pyand By = p, where p; = 4k; + 3 and p; = 4k, + 3 are prime
integers. Then, due to El-Kassar [15], the complete residue system modulo n = 3,3, is
of the form G, = {r+sB; : 7 e Gz,and S € Gg,} where G5, = {a+bi:1<a,b<p —1}
and Gg, ={c+di:1<¢c,d<py—1}.

The following theorem determine the the number of elements in G, where 7 is

a composite integer.
94

Theorem 97 Let n = .8, be a composite Gaussian integer where 3, = 4k; + 3 and

By = 4ky + 3. Then, the complete residue system modulo 1 is the set of Gaussian

integers G = {A+71: 0 < A< pip2 — 1,0 < v < pypp — 1}

For the proof of the theorem, see [15].

Thus, the number of elements in G, is ¢(n) = (p1p2)? and the number of the

invertible elements in the reduced residue system modulo 7, G} is ¢(n) = (p?p3 —

1)(p2p3 — 1).

Description of the Gaussian signature scheme In RS A signature scheme, entity A gen-

erates the public-key by first generating two large random Gaussian primes 3, v and
computes 77 = (7. Next, entity A computes ¢(n) = #(8)¢(y) = (6° - 1)(v* — 1),
where ¢(n) is Euler phi-function in Z[¢], see [2]. It selects a random integer e such that
1 < e < ¢(n) and e is relatively prime to ¢(n). Then, entity A finds the unique integer
d such that 1 < d < ¢(n) and d is relatively prime to ¢(n) such that ed = 1(mod ¢(n)).

A’s public-key is

(n, e)

and A’s private-key is

B8, v, d).

Represent the message as a number p chosen from the complete residue system
modulo 7, G, = {a+bil0 < a < fy—1,0 < b < By — 1}.After computing the
redundancy function of the message x which is 7 = R(u),A computes the signature

s = Ii%(mod 1) and sends it to B. To verify the signature sent by A, B gets A’s public
95

key (n,), computes the message representative 11 as iz = s°(mod 7) and finally applies
verification process to 1z to recover u.

We note that the message space is enlarged so that its order is the square of
that of the classical case. Also, the range for the public exponent e is enlarged by more
than the square of that of the classical case.

In the following we provide three algorithms describing the RSA signature
scheme over the domain of Gaussian integers. First, entity A generates the public

and private keys by doing the following.
Algorithm 98 (Key generation for the RSA Gaussian signature)

1. Generating two distinct large random Gaussian primes o and B, each roughly the

same size.
2. Computing n = of8 and ¢(n) = (a® — 1)(B* - 1).
3. Selecting a random integer e, 1 < e < ¢(n) such that gcd(e, ¢(n)) = 1.

4. Computing the multiplicative inverse d of e such that ed = 1(mod ¢) using the

extended Euclidean algorithm over the domain of Gaussian integers.
5. Publishing the pair (n,e) as the public key, and keeping d as the private key.
To generate a signature of a message,.entity A should do the following,.
Algorithm 99 (Signature generation of RSA Gaussian signature)

1. Represent the message as p chosen from the complete residue system modulo 7,

G,.

2. Compute i = R(u) where i € G,,.
8. Compute s = i (modn).
4. Output s as the signature to B.
To verify the signature of the message u, entity B should do the following.

Algorithm 100 (Signature verification of RSA Gaussian signature)

~

Obtain A’s authentic public key (n,e) .

2. Recover i = s¢(mod n).

3. Verify that 1 € Mg , otherwise reject the signature.
4. Recover p= R™().

Example 101 (RSA Gaussian Signature Scheme with Small Parameters)
Public-Key Generation: Let 8 = 91939 and v = 69383 be two Gaussian primes
of the form 4k + 3. Compute the product n = B~ = 6379003637 and $(n) = (919392 —
1)(69383% —1) = 40691687387592447360. Entity A chooses e = 25600002082007742863
such that ged(e, #(n)) =1 and 1 < e < ¢(n). Using the extended Euclidean algorithm
for integers, A finds d = 33899823343652452847 such that ed = 1(mod ¢(n)). Hence,

A’s public-key is the pair
(n = 6379003637, e = 25600002082007742863)

and A's private-key is the triplet

(B = 91939,y = 69383, d = 33899823343652452847).
97

Signature Generation: To sign the message p = 320177 + 147:, for simplicity,

take R(u) = u so that R is the identity function so n = R(320177+147¢) = 320177+ 1474

. Afterwards, A computes

ﬁd — (320177 +1 47i)33899823343652452847

®
i

3059266386 + 5412724259i(mod 6379003637)

Finally, A sends the signature to B.
Signature Verification :To validate the signature, B obtains first A’s authentic

public key (n = 6379003637, e = 25600002082007742863). Then, B computes

= 5°(modn) = 3059266386 -+ 5412724259;25600002082007742863 (1 ,16379003637)

=

= 320177 4 147:

Finally, B computes u = R™'(i) = 320177 + 1477 .

Computer Program: (* We create a computer program with mathematica to

illustrate the modified RSA signature in Z[i] *)

(*Key generation®)

GeneratekGaussian[l |:=(a=1;8=1;
While[Mod[a, 4] == 1 || Mod] 8, 4] == 1,
a = IDigitPrime[1]; 8 = IDigitPrime][l]];

n=a*f ¢ =(a"2-1) (6°2-1);
98

e = ¢; While[GCDle,¢] # 1,

e = Random([Integer, {1,¢ - 1}]];

d = PowerMod]e, -1, ¢]; Print["the

public kéy is(n=",n," e="¢)]

(*Signature generation®)

GenerateSGaussian[l] := (ml = m;

s = PowerMod[m1, d, n}; Print["the signature is (
s=",s,")"])

(*Signature verification*)

VeriSGaussian[l] := (ms = PowerMod[s, e, 7]; Print["ms=", ms])

Conclusion 102 Using the well known and arithmetics in the domain of Gaussian in-
tegers Z[1], the RSA signature scheme in the domain of natural integers was extended to
Z[i]. The computational properties in the new setting were described and the advantages
of the new scheme were pointed out. The following are some of the advantages. First,
generating the odd primes p and g of RSA signature in the domain of natural integers
and in the domain of Gaussian integers requires the same amount of effort. However,
the complete residue system Z, has pq elements, while the complete residue system G,
has 0(pq) elements. If p and q are of the form 4k + 3, 6(pq) = p?q®. If p is of the form
4k+3 and q is of the form 4k +1, 6(pq) = p?q. If p and q are of the form 4k +1, which
is similar to the classical method, 6(pq) = pq. Hence, one of the two primes p and q
should be of the form 4k + 3. Therefore, we deduce that the extended RSA over the

domain Z[i] provides an extension to the range of chosen messages, which make trials
99

more complicated. Second, note that the Euler phi function in the domain of natural
integers is ¢(n) = (p — 1)(q — 1), while the extended Euler phi function in the domain
of Gaussian integers is ¢(pw) = (p* —1)(qg— 1) or ¢(p,p,) = (p? —1)(p? — 1) where 7 is
a Gaussian integer that divides a prime integer ¢ = 4k + 1 such that ©7 = q, and the
prime integer p = 4k+3 are the Gaussian primes. Hence RSA signature scheme in the
domain of Gaussian integers is much better than that in the domain of natural integers
if we choose at least one of the Gaussian primes p and q of the formp = 4k + 3. In
this case, the value of ¢(n) is larger than that in the domain of natural integers by a
multiple of (p+1)(q+ 1) times. Thus, the trials for finding the private key d will be too
complicated. Fourth, the value of the public key e could be large enough to make solving
the RSA problem more complicated. Finally, we note that the computations involved
in the modified method do not require computational procedures that are different from

those used in the classical method.

4.3 RSA Signature Scheme over Quotient Rings of Polynomials over Finite Fields

Let p be a prime number and let h(z) and g(z) be two distinct irreducible
polynomials in Z,[z], the domain of polynomials over the finite field Z,, where h(z) is
of degree s and g(z) is of degree r. Let f(z) = h(z)g(z). The polynomials A(x) and g(z)
should be selected so that factoring f(z) = h(z)g(z) is computationally infeasible. The
quotient ring Zp[z]/ (f(z)) is finite of order p”, where n = r + s is the degree of f(x).
It is well known that the quotient ring Z,[z]/ (f(z)) is the direct sum of Z,[z]/ (g(z))

and Z,[z]/ (h(z)), that is

Zplz] . Zyplx]
{g(z)) ~ (R(x))

Zylzl/ {f(z)) =

100

Its group of units U(Z,[z]/ (f(x))) is the direct product of groups of units U(Z,[z]/ (g(x)))

and U(Z,[z]/ (h(z))), that is

U@kl @) 20 (g) < v (7).

Zya] and —Zﬁ are fi-

(h(z)) {9(x))

nite fields of order p° and p", respectively. Hence, the groups U(Z,[z]/ (g(z))) and

Since h(z) and g(z) are irreducible, the quotient rings

U(Zy[z]/ (h(z))) are cyclic with orders ¢(h(z)) = p* — 1 and ¢(g(z)) = p" — 1, respec-
tively, so that ¢(f(z)) = (p° — 1)(p" — 1). We provide the algorithms of the extended
RSA signature over polynomials. First, entity A generates the public and private keys

by doing the following.
Algorithm 103 (Key generation for RSA signature over polynomials)

1. Generating an odd prime p two distinct monic irreducible polynomials f(z) an

g(z) over Z,.
. Computing h(z) = f(z).g(x)
. Computing the order of U(Z,[z]/ < h(z) >) which is ¢(h(z)) = (p” — 1)(p° — 1)
. Selecting a random integer e where 1 < e < ¢(h(z)) such that ged(e, p(h(z))) = 1

. Using the Euclidean algorithm for integers to find the unique multiplicative in-

verse d of e with respect to ¢(h(z)) such that 1 < d < ¢(h(z)) and e.d = 1(mod

¢(h(z)))

. Publishing the key (p, h(x), e) and keeping d as private key.
101

To generate a signature on a message, entity A should do the following.

Algorithm 104 (Signature generation of RSA signature over polynomials)

1. Represent the message as a polynomial m(z) in the complete residue system mod-

ulo f(z) in Z,[x].

2. Compute m(z) = R(m(z)), as a polynomial in the complete residue system modulo

h(z) in Zy[z].
3. Use the private key d to compute s(z) = (m(z))?*(mod h(z)).
4. Output s(z) as signature of m(x).

To verify the signature s(z) and recover the real message m(z), entity B should

do the following.

Algorithm 105 (Signature verification of RSA over polynomials)

1. Obtain A’s public key (p, h(z),e).

2. Compute m(z) = ¢ (mod h(z)).

3. Verify that m(z) € Mg, otherwise reject the signature.

4. Recover m(z) = R™(m(z)) where R™! is the inverse of the Redundancy function.

Example 106 (RSA Signature Scheme over Polynomials with small parameters)

Public-Key Generation: Let p = 389. Entity A chooses the two irreducible

polynomials h(z) = z® + 376z + 43 and g(z) = z® + 38422 + 3z + 10 in Zsgo[z].
102

Reducing the polynomial f(x) = h(z).g(z) in Zsgo[z] and computing ¢(f(z)), A gets
f(z) = ° + 371z + 1112® + 14522 + 388z + 41 and ¢(f(z)) = (389° —1)(389% —
1) = 8907280505760.Fntity A then chooses the integer e = 95561135039 such that
ged(e, ¢(f(z)) = 1 and 1 < e < ¢(f(z)). Using the extended Euclidean algorithm

for integers, A finds d = 5878808345759 satisfying ed = 1(mod ¢(f(z))). Hence, A’s

public-key is
(p = 389, f(z) = z° + 371z* + 11123 + 14522 + 388z + 41, e = 95561135039).
and A’s private-key is
(d = 5878808345759, g(z) = z° + 384z® + 3z + 10, h(z) = 22 + 376z + 43).

Signature Generation: Choose m(z) = 1+ 3z + 22 and assume that the redun-
dancy function is the identity function (for simplicity). Thus, m(z) = 1+ 3z + 2% .

Afterwards, A computes

s(x) — m(:r)d — (1 +3$+$2)5878808345759

172z* + 8623 + 26522 + 59z + 177(mod f(x))

and sends s(x) to B.

Signature Verification: To validate the signature, B computes

= s(z)° = (1722* + 862> + 26522 + 59z + 177)95561135039

3
&

1+ 3z + z*(mod f(z)).

So, m(z) =1+ 3z + z*> € Mg. Hence, m(z) = R™}(1 + 3z + 2?) = 1 + 3z + 22.
103

Computer Program: (* We create a computer program with mathematica to

illustrate the RSA signature over quotient rings of polynomials over finite field *)

(*Key generation*)

GeneratekPoly[l_ | = (p = 101;

rl = Random[Integer, {21, 30}];

f = IrreduciblePolynomial[x, p, r1];

r2 = Random[Integer, {21, 30}];

g = IrreduciblePolynomial[x, p, r2[;
Print["f=", f, "g=", g];

h = PolynomialMod[Expand[f*g], p];
Print["p=", p, " h=", hj;

¢= (p°rl - 1)(p"r2 - 1); Print["¢=", ¢];

e =¢;

While[GCDJ e, ¢] #1, e = Random[Integer, {1, ¢ - 1}]];
d = PowerMod[e, -1,¢];

Print["the public key is (p=", p, ",h=", h,
o=t e, "))

(*Signature generation*)

GenerateSPoly[l] := (ml = m;

s = PolynomialPowerMod[m1, d, {h, p}J;
Print["the signature is (s=", s, ")"])

(*Signature verification*)

VeriSPoly[1_] := (ms = PolynomialPowerMod]s, e, {h, p}];

Print["ms=", ms])

4.4 RSA Signature Scheme Attack

The security of the RSA signature scheme is based on the intractability of both
the integer factorization problem and the RSA problem. Various attack schemes have
been studied in the literature as well as appropriate measures to counteract these
threats. Given the public-key, to forge the signature, a passive adversary must solve
the RSA problem. There is no known efficient algorithm for this problem. One possi-
ble approach which an adversary could employ is to find the private key. In order to
attack any protocol that uses the RSA signature scheme by finding its private key, the
factorization problem must be solved first. After factorization, the RSA problem could
be solved by computing the value of Euler phi-function, and then finding the private
exponent d using the extended Euclidean algorithm for integers. Once d is found, the
signature can be forged.

On the other hand, if the classical method is used and an adversary could
somehow compute d, then n can efficiently be factored as follows, see [22]. Since
ed = 1(mod ¢(n)), there is an integer k such that ed — 1 = k¢(n). Hence, by Euler
theorem, a®*~! = 1(modn) for all a such that ged(a,n) = 1. Write ed — 1 = 2°¢, where
t is an odd integer. It can be shown that a2t is not congruent to either =1 modulo
n for at least half of all integers a with ged(a,n) = 1. If a is such an integer, then a
non-trivial factor of n is ged(a® 't — 1,n). This shows that in the classical case, the

RSA problem and the integer factorization problem are computationally equivalent. It
105

1s not known if this remains true for the modified schemes.

In the next section we evaluate the various RSA signature schemes by recovering -
the private key using the software package Mathematica. We illustrate the attack

schemes in the following example.

Example 107 (Attacking the RSA signature scheme). Assume that the public key is:
(n = 221806263006661919, ¢ = 39786855994835377). To find the private key, we use
the built-in Mathematica functions FactorInteger and PowerMod. The prime factors
p and q are obtained from the output of FactorInteger(221806263006661919] which is
{{315841909, 1}, {702269891,1}}. Hence, p = 315841909 and q = 702269891. Next, we
calculate p(n) = (p—1)(g—1) = (315841909—1)(702269891—1) = 404098131692231616.
The exponent d = 279550294187496277 is the output of Power M od[39786855994835377, —1, 40«

The private key is (p = 315841909, ¢ = 702269891, d = 279550294187496277).

4.5 Testing and Evaluation

In this section, we compare and evaluate the different classical and modified
signature schemes by showing the implementation of the signature schemes’a lgorithms
with their running results. Also, we test the security of the algorithms by implementing
different attack algorithms. All this is done using Mathematica 5.0 as a programming
language and an acer computer with Intel Pentium M715 processor, 1.5 GHZ CPU and

256 MB DDRAM.

RSA based Algorithms Using Mathematica 5.0 functions and an additional abstract

algebra library, we have written programs for the following algorithms:
106

1. Classical RSA.
2. RSA with Gaussian integers.
3. RSA with polynomials over a finite field.

After running the programs, it was clear that these programs ha;\/e épplied the
RSA signature scheme in the correct way. All the programs have generated a public
and private key with different mathematical concepts. Then a message is signed using
the signature scheme and is sent to a verification procedure which returned the original
message. .

The classical and Gaussian schemes were tested using the same public-key. The
average running time of several runs using 50, 100, 200, 250 and 300-digit primes are
given in tables 4.1 and 4.2. The public-key was generated by randomly selecting odd
integers having a given number of digits and of the form 4k + 3. The odd integers-were
tested for primality using the built-in Mathematica function PrimeQ until a prime is

found.

Table 4.1. Running time in seconds: Classical RSA

Size of primes Classical RSA
Public-Key | Signature | Verification

50 — digit 0.1341 0.002 0.006

100 — digit | 1.3801 0.011 0.0151

200 — digit 4.2913 0.0471 0.0851

250 — digit 5.7312 0.0923 0.1374

300 — digit 7.3706 0.144 0.2074
8 -
7
6
5 —e— Public-Key

§ 4 —m— Signature

3 - Verification
2
1
0 - i A

100-digit 200-digit 250-digit 300-digit
Prime Digits

50-digit

Figure 4.1: Running time in seconds: Classical RSA

108

Table 4.2. Running time in seconds: Gaussian integers.

Size of primes RSA with Gaussian integers
Public-Key | Signature | Verification
50 — digit 0.1341 0.0912 0.097
100 — degit 1.3801 0.025 0.032
200 — digit 4.2913 0.1101 0.1513
250 — digit 5.7312 0.1883 0.2595
300 — digit 7.3706 0.3035 0.4238
8 +
7+
6 +
5+ —e— Public-Key
;,'3 41 ' —=— Signature |
3+ i —— Verification’
2
0 L

50- 100- 200- 250- 300-
digit digit digit digit digit

Size of Primes

Figure 4.2: Running time in seconds: Gaussian integers

109

To evaluate RSA algorithms using polynomials, we ran programs for various

values of the prime p and degree of the irreducible polynomials. The average running -

time of several runs are listed in table 4.3. The public-key was generated using the

built-in Mathematica function IrreduciblePolynomial[x,p,d].

Table 4.3. Running time in seconds: RSA using polynomials.

RSA Using polynomials

Prime p | Degree d Public-Key | Signature | Verification
p=2 2<d<10 |0.0331 0.0161 0.0331

21<d<30(1.7188 0.9222 1.6863

50 < d <60 | 15.6215 8.8147 17.211
p=101 |2<d<10 |1.429 0.3365 0.4305

11<d<20|8992 3.1823 5.53

21 £d <30 45.1559 13.792 14.21275

—e—Public-Key

—m— Signature

-z~ Verification

...".._..T_

2=d=10 21=d=30 50=d=60

Figure 4.3:RSA using polynomials with prime p=2 digits

—e— PublicKey |

—=— Signature |

- Verification |

2=d=10 11=d=20 21=d=30

Figure 4.4: RSA using polynomials with prime p=101 digits

111

Comparing these algorithms, we conclude the following:

1. All programs are reliable; they can sign ,verify and return any message.

2. The running time for the signature/verification algorithms is negligible in
the classical and Gaussian cases. In the polynomial case the tjme for the signa-
ture/verification algorithms becomes significant for large primes and irreducible poly-
nomials with large degree.

3. The complexity for the three programs depends on the complexity of gen-
erating the public-key. Thus, the classical and Gaussian algorithms are equivalent
since their public-key generation algorithms are identical when restricting the choice of
primes to those of the form 4k + 3. The Gaussian method is therefore recommended
since the modified method provides an extension to the message space and the public
exponent range.

4. The public-key generation algorithm using polynomials requires the search for
irreducible polynomials. The Mathematica built-in algorithm for generating irreducible
polynomials appears to be inefficient as p becomes very large and the degree of the

polynomial increases.

Attack Algorithm In order to attack any protocol that uses the RSA public key signature

scheme by finding its private key, the factorization problem must be solved first. To test
the security of the algorithms, we implemented attack schemes applied to the classical
and modified signature scheme algorithms. For the classical and Gaussian algorithms,

we generated a public key using primes of various sizes. The attack was conducted
112

using the Mathematica built-in function FactorInteger to recover the prime factors.
The Euler phi-function was then computed. Finally, the private exponent was obtained.

The average running time of several runs are listed in table 4.

Table 4.4. Attack time in seconds: Classical RSA.

Classical RSA
Digitsof p & g | 20 22 24 26 30
Time 1.406 | 4.3983 | 26.3238 | 65.0656 | 94.245

sec

——'ﬁmeiE

0 10 20 30 40
Digitsof p & q

Figure 4.5: Attack time in seconds: Classical RSA

For the RSA algorithms using polynomials, we generated a public-key using
a prime p of various sizes and irreducible polynomials f(z) and g(z) of different

degrees d. The attack was conducted by factoring f(z) using the built-in function
113

Factor|[f, mod ulus— > p| to recover the irreducible factors. The Euler phi-function
was then computed. Finally, the private exponent was obtained. The average running -
time of several runs are listed in table 4.5.

Table 4.5. Attack time in seconds: RSA algorithms using polynomials.

RSA algorithms using polynomials

Digits of p 5 5

Degreed [10<d<11[|12<d<13

Time

10=d=11| 12=d=13| 5=d=6 | 2=d=3
5 5 10 22

degree and prime

Figure 4.6: Attack Time in seconds: RSA algorithms using polynomials
After running these attack algorithms, we observed the following:

1. All the attack programs are reliable so that they can forge any message by
114

finding the private key.

2. Attacking the classical and Gaussian RSA algorithms is easy if we are dealing
with small prime numbers. However, when it comes to 100-digit prime numbers or
higher, it needs about many computers working in parallel processing to compute the
prime factorization of the multiplication of two 100-digit prime numbers.

3. Attacking the RSA polynomial algorithm becomes more difficult as the size

of p or the degree of the irreducible polynomials become larger.

4.6 Conclusion

In this work, we presented the classic RSA signature scheme and two of its mod-
ifications, namely, the RSA signature scheme in the domain of Gaussian integers, Z[i],
and over quotient rings of polynomials over finite fields. We implemented these algo-
rithms and tested their efficiency, reliability, and security. The results obtained showed
that all the algorithms applied the RSA signature scheme correctly and generated pub-
lic and private key using different mathematical concepts. Messages were then signed
using the signature scheme and were sent in encrypted form to a verification procedure
which validated the signature and returned the original messages.

We also built attack scenarios directly aimed at solving the factorization prob-
lem. We modified the RSA attack algorithm to handle the modified algorithms.We
observed that the Gaussian method is preferred since it is as secure as the classical one

but provides an extension to the message space and to the signature exponent range.

115

CHAPTER 5

CONCLUSION

In this thesis we attempt to describe the concept of digital signatures ,the cove-
nient mathematical techniques that securize and fasten the algorithms (redundancy
functions and hash functions) and the mathematical background issues. Moreover,
we extend some of the most practical and applied digital signature algorithms which
are ElGamal signature and RSA signature from the domain of natural integers to the
domain of géussian integers and also to the domain of the rings of polynomials over
finite fields. An overview of the prerequisite math involved in cryptog‘raphjc applica-
tions is done. In addition, the mathematical issues in the domain of gaussian integers
and the domain of polynomial rings over finite fields are also examined.Having done
this, we explored the problems and insecurities involved in their use in addition to the
advantages and disadvantages with respect to the classical signatures.

In chapter three,we presented the classic ElGamal signature scheme and four
modifications to it, namely, the ElGamal signature scheme in Z,, in the domain of
Gaussian integers, Z[i], over finite fields, and over quotient rings of polynomials over
finite flelds. We implemented these algorithms and tested their efficiency, reliability,
and security. The results obtained showed that all the algorithms applied the E1Gamal
signature scheme correctly and generated public and private key using different mathe-
matical concepts. Messages were then signed using the signature scheme and were sent
to a verification procedure which verify the signature.

We also built attack scenarios directly aimed at solving the discrete logarithm
116

problem that these algorithms utilize. We modified the Baby-step Giant-step algorithm
to handle the modified algorithms. We observed that the classical ElGamal scheme is .
the weakest to attack and one of the modified methods should be used. The ElGamal
scheme in the multiplicative group Z*, where n = 2p?, is the easiest to apply and the
weakest among the modified method. The ElGamal scheme in the domain of Gaussian
is superior to that of Z* since it requires less time to generate a key, about the same
time to sign and verify a signature, and is more secure. The ElGamal scheme in the
setting of a finite field has a disadvantage in finding an irreducible polynomial. The
reducible polynomial scheme was the most challenging to attack due to the mathemat-
ical complexity of arithmetic modulo a polynomial. Finally we found that the time
for generating the key depends on finding the generator # and not the prime p. The
time for generating a prime number is negligible. The average time need for generating
a 100-digit (recommended size) random prime is approximately 0.1 sec. Also it took
more time to find the key in the case of polynomials. This will not be a problem if
common system-wide parameters are used. In such a case, all entities may elect to use
the same cyclic group G and generator ¢. Also, once a generator ¢ for a given prime

p is found, all other generators can be easily obtained. Moreover, the time needed to

sign and to verify the signature for the classical, modified 2p* and Gaussian is better

than the time needed for the polynomials. However, the time is very reasonable even
for larger primes. Overall, the Gaussian integers methods performed very well. The
algorithms can be made more efficient by modifying Mathematica built-in functions
to take advantage of the arithmetic modulo the Gaussian prime p of the form 4k + 3.

The key generation time in the case of Gaussian integers is less than that of the modi-
117

fied 2p° method. This is due to the fact that the number of generators in 25,2, which

is ¢(p(p — 1)), is almost always more than the number of generators in G}, which is

¢(p? —1). In fact, among the first 200, 000 primes, there are only 7 primes p of the form

4k + 3 for which ¢(p? — 1) > ¢(p(p — 1)). Finally, the reducible polynomial method is
little slower but provide more security. The irreducible polynomial method is not rec-
ommended since it is as secure as the reducible case but requires more time especially
in finding the key.

In chapter four, a comparitive study of RSA based digital signature algorithm
is done. Using the well known and arithmetics in the domain of Gaussian integers
Z[i], the RSA signature scheme in the domain of natural integers was extended to Z[z].
The computational properties in the new setting were described and the advantages of
the new scheme were pointed out. The following are some of the advantages. First,
generating the odd primes p and ¢ of RSA signature in the domain of natural integers
and in the domain of Gaussian integers requires the same amount of effort. However,
the complete residue system Z, has pq elements, while the complete residue system G,
has J(pq) elements. If p and ¢ are of the form 4k + 3, d(pg) = p2¢®. If p is of the form
4k + 3 and q is of the form 4k + 1, §(pq) = p%q. If p and ¢ are of the form 4k + 1,
which is similar to the classical method, §(pg) = pg. Hence, one of the two primes p
and ¢ should be of the form 4% + 3. Therefore, we deduce that the extended RSA over
the domain Z[i] provides an extension to the range of chosen messages, which make
trials more complicated. Second, note that the Euler phi function in the domain of

natural integers is ¢(n) = (p — 1)(¢ — 1), while the extended Euler phi function in the

domain of Gaussian integers is ¢(pm) = (p* — 1)(¢ — 1) or é(p,p,) = (¥? — 1)(p2 — 1)
118

where 7 is a Gaussian integer that divides a prime integer ¢ = 4k +1 such that 77 = ¢,
and the prime integer p = 4k + 3 are the Gaussian primes. Hence RSA signature
scheme in the domain of Gaussian integers is much better than that in the domain
of natural integers if we choose at least one of the Gaussian primes p and ¢ of the
form p = 4k + 3. In this case, the value of ¢(n) is larger than that in the domain of
natural integers by a multiple of (p + 1)(¢g + 1) times. Thus, the trials for finding the
private key d will be too complicated. Fourth, the value of the public key e could be
large enough to make solving the RSA problem more complicated. Finally, we note
that the computations involved in the modified method do not require computational
procedures that are different from those used in the classical method. For the RSA
algorithms using polynomials, we generated a public-key using a prime p of various
sizes and irreducible polynomials f(z) and g(z) of different degrees d. The attack was
conducted by factoring f(z) using the built-in function Factor{f, mod ulus— > p] to
recover the irreducible factors. The Euler phi-function was then computed. Finally,
the private exponent was obtained.After running the attack algorithms, we observed
that all the attack programs are reliable so that they can forge any message by finding
the private key. Attacking the classical and Gaussian RSA algorithms is easy if we are
dealing with small prime numbers. However, when it comes to 100-digit prime numbers
or higher, it needs about many computers working in parallel processing to compute
the prime factorization of the multiplication of two 100-digit prime numbers. As a
conclusion, attacking the RSA polynomial algorithm becomes more difficult as the size

of p or the degree of the irreducible polynomials become larger.

119

As for future work, we plan to compare and evaluate the efficiency of the modified
algorithms using very large numbers by using parallel computing techniques. We plan
to run the programs in parallel on many computers and split the complex mathematical
calculations between these computers. We plan to write a function that is capable of
finding any random irreducible equation with respect to a specific prime number p. We
also plan to apply the modified algorithms in many fields such as communications and

network security.

120

REFERENCES

(1] Awad, Y. Applications of Number Theory to Cryptography, M.S. Thesis,
Beirut Arab University, 2001.

[2]Cross, J. T. The Eulerts ¢ — function in the Gaussian Integers, American
Mathematics Monthly 90, pp. 518-528, 1983.

[3] Diffie, W. and Hellman, M. E. New Directions in Cryptography, IEEE
Transaction on Information Theory, IT-22, pp. 472-492, 1978.

| [4] ElGamal, T. A Public key cryptosystem and a signature scheme based on
discrete logarithms, IEEE Transactions on Information Theory IT-31, pp. 469-472,
1985.

[5] ElGamal,” A public key cryptosystem and a signature sheme based on discree
logarithms”, IEEE Transactions on Information Theory IT-31 (1985), 469-472.

[6] El-Kassar, A. N., Haraty, Ramzi, FlGamal Public — Key Cryptosystem
in Multiplicative Groups of Quotient Rings of Polynomials over Finite Fields,
Journal of Computer Science and Information Systems, ConSIS Vol. 2, pp. 63-77,
2005.

[7] El-Kassar, A. N., Ramzi A. Haraty, ElGamal Public — Key Cryptosystem
Using Reducible Polynomials Over a Finite Field, Proceedings of the 13th Interna-
tional Conference on Intelligent & Adaptive Systems and Software Engineering (IASSE-
2004), pp. 189-194, 2004.

[8] El-Kassar, A. N., Ramzi Haraty, and Yehia Awad. Modified RSA in the
121

Domains of Gaussian Integers and Polynomials over Finite Fields. Proceedings of
the International Conference on Computer Science, Software Engineering, Information
Technology, e-Business, and Applications (CSITeA’04). Cairo, Egypt, 2004.

[9] El-Kassar, A. N., Haraty, Ramzi, Awad,Yehia, Rabin Public—Key Cryptosystem
in Rings of Polynomials over Finite Fields, Proceedings of the International Confer-
ence on Computer Science, Software Engineering, Information Technology, e-Business,
and Applications (CSITeA’04). Cairo, Egypt, 2004.

[10] El-Kassar, A. N., Mohamed Rizk, N. M. Mirza, Y. A. Awad, “ElGamal
Public-Key Cryptosystem in the domain of Gaussian Integers” International Jour-

nal of Applied Mathematics, Vol. 7, no. 4, pp. 405-412, 2001.

[11] El-Kassar, A. N., Chihadi H., and Zentout D. Quotient rings of polynomials
over finite fields with cyclic group of units, Proceedings of the International Conference
on Research Trends in Science and Technology, pp. 257-266, 2002.

[12] El-Kassar, A. N., and Haraty, Ramzi. ElGamal publickey cryptosystem us-
ing reducible polynomials over a finite field, Proceedings of the ISCA 13th International

Conference on Intelligent and Adaptive Systems and Software Engineering, ISCA 2004,

Nice, France, 189-194, 2004.

[13] El-Kassar, A.N., Modified RSA in the Domain of Gaussian Integers. Pro-
ceedings of the 14th International Conference on Intelligent and Adaptive Systems and
Software Engineering (IASSE-2005). Toronto, Canada. July 2005

[14] El-Kassar, A. N.; Rizk, Mohamed; Mirza, N. M.; Awad, Y. A., El-Gamal

public key cryptosystem in the domain of Gaussian integers, Int. J. Appl. Math. 7
122

(2001), no. 4, 405-412.

[15] El-Kassar A.N.,Doctorate Dissertation, University of Southwestern,Louisiana,1991.

[16] Haraty, R, Otrok,H., El-Kassar A.N., A Comparative Study of ElGamal
Based Cryptographic Algorithms”, Proceedings of the Sixth International Conference
on Enterprise Information Systems (ICEIS 2004) vol. 3 , pp. 79-84, 2004.

[17] Haraty, R., El-Kassar, A. N., Otrok, H., Attacking ElGamal Based Cryptographic
Algorithms Using Pollardls Rho Algorithm, Proceedings of the ACS/IEEE Interna-
tional Conference on Computer Systems and Applications (AICCSA 2005). Cairo,
Egypt. January 2005.

[18] Haraty, Ramzi, Hadi Otrok, A. N. El-Kassar, A Comparative Study of RSA
Based Cryptographic Algorithms”, Proceedings of the Sixth International Conference
on Enterprise Information Systems (ICEILS 2004) vol. 3 , pp. 79-84, 2004.

[19] ISO/IEC 9796, ”Information Technology-Security Techniques -Digital Sig-
nature Scheme Giving Message Recovery”, International Organization for Standardiza-
tion,1991.

[20] Kenneth, A. R. Elementary Number Theory and its Applications, AT&T
Bell Laboratories in Murray Hill, New Jersey, 1988.

[21] Kojok,B., El-Kassar A.N., Raad, F., Elgamal Signature Scheme In The
Domain Of Gaussian Integers, the Proceedings of the International Conference on Re-
search Trends in Science and Technology, RTST 2002, Lebanese American University,
Beirut Lebanon, 275-282, (2002).

[22] Menezes, A. J., Van Oorshot, and Vanstone, P. C. S. A. Handbook of

Applied Cryptography, CRC press, 1997.
123

[23] Otrok, H. Security Testing and Ewvaluation of Cryptographic Algorithms,
M.S. Thesis, Lebanese American University, June 2003.

[24] Prencil B., Covaerts R., Vandewall J., "Information Authentication: Hash
functions and Digital Signatures”, 1996.

[25] Preneel B., ” Cryptographic hash functions”, European transactions on Telecom-
munications,5, 431 - 448,1994.

[26] Rivest, R., Shamir A.,and Aldeman, L., A Method for Obtaining Digital
Signatures and PublicK ey Cryptosystems, Communications of the ACM 21, pp. 120-
126, 1978.

[27] Raad, F. Digital Signatures Algorithms and Cryptography Based on Finite
Groups, M.S. Thesis, Beirut Arab University, 2002.

[28] Rizk, M, El-Kassar, A. N., and Mirza, N., Investigation And Comparison Be-
tween Elgamal Public-Key Cryptosystem And Its Extension To The Gaussian Integers
Domain, First International Conference on Current Issues in Business and Information
Technology.

[29] Smith J. L. and Gallian, J. A. FactoringFiniteFactorRings, Mathematics

Magazine 58: pp. 93-95, 1985.

124

