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Abstract

Our daily lives are getting more and more dependent on data centers and distributed storage systems in general,
whether at the business or at the personal level. With the advent of fog computing, personal mobile devices in a given
geographical area may also comprise a very dynamic distributed storage system. These paradigm changes call for the
urgent need of devising efficient and reliable failure recovery mechanisms in dynamic scenarios where failures become
more likely and nodes join and leave the network more frequently. Redundancy schemes in distributed storage systems
have become essential for providing reliability given the fact of frequent node failures. In this work, we address the
problem of multiple failure recovery with dynamic scenarios using the fractional repetition code as a redundancy scheme.
The fractional repetition (FR) code is a class of regenerating codes that concatenates a maximum distance separable
code (MDS) with an inner fractional repetition code where data is split into several blocks then replicated and multiple
replicas of each block are stored on various system nodes. We formulate the problem as an integer linear programming
problem and extend it to account for three dynamic scenarios of newly arriving blocks, nodes, and variable priority
blocks allocation. The contribution of this paper is four-fold: i. we generate an optimized block distribution scheme that
minimizes the total system repair cost of all dependent and independent multiple node failure scenarios; ii. we address the
practical scenario of having newly arriving blocks and allocate those blocks to existing nodes without any modification
to the original on-node block distribution; iii. we consider new-comer nodes and generate an updated optimized block
distribution; iv. we consider optimized storage and recovery of blocks with varying priority using variable fractional
repetition codes. The four problems are modeled using incidence matrices and solved heuristically. We present a range
of results for our proposed algorithms in several scenarios to assess the effectiveness of the solution approaches that are
shown to generate results close to optimal.

Keywords: Distributed storage systems, fractional repetition codes, failure recovery, genetic algorithms, multiple
failures, heuristic optimization

1. Introduction systems are due to outbreak of at least two nodes. An
availability study performed at two large high-performance

Achieving high reliability in distributed storage sys- computing sites showed that around 23,000 different-cause
tems at a reasonable cost can be a challenge due to the  fajlyres were recorded on more than 20 different systems
fact that they are built from a large number of commodity over a period of nine years[3]. Distributed storage sys-
devices which undergo frequent failures. Real patterns of  {qp, recovery from multiple failures has become critical
failures in data centers show that correlated failures are as especially that large business enterprises highly depend
common as single-node failures in data centers [I} 2]. In a on these systems and any interruptions might cause huge
general failure study [1] on Google’s main storage infras- losses. Moreover, fog computing is introduced recently
tructure revealed that 37% of node failures in distributed  {, pave computing, communication, and storage closer to
the user and thus provide better privacy and improved
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islam.kabani@bau.edu.1b (Islam ElKabani) of edge devices and especially personal mobile devices.




Redundancy schemes that are used to tolerate failures
and improve reliability, constitute either replicating the
data blocks on the system, or reserving additional infor-
mation to reconstruct the lost data, as in erasure-coded
distributed systems [5], [6].

We apply in this paper a family of regenerating erasure
codes that provide exact and uncoded repair where a sur-
viving node reads the exact amount of data it needs to send
to a replacement node without any processing. These are
the Fractional Repetition (FR) codes that provide a low
complexity repair process [15]. We propose a solution for
multiple node failures by implementing FR codes using a
heuristic algorithm based on natural evolution.

Our work in this paper extends on our preliminary
work in [7] by focusing on dynamic operations in address-
ing multiple node failures to account for practical scenar-
ios including: i. optimization of storage allocation un-
der dynamic environments of newly arriving data blocks
to the system; ii. optimization of storage allocation with
newly added storage nodes; iii. generating an effective
block distribution scheme among the nodes by accounting
for varying priorities of data blocks. The problems are
modeled and solved using the concept of incidence matri-
ces where all available nodes in the network can be se-
lected as helper nodes to any failed node. The proposed
heuristic algorithms generate optimized block distribution
schemes for the system that minimize total system multi-
ple failure recovery costs, taking into consideration depen-
dent and independent node failures under various dynamic
scenarios. Our algorithms also provide a full system recov-
ery plan together with an optimized repair order pattern.
The performance of the suggested algorithms is demon-
strated through simulation results by varying node and
block system parameters. Our main contributions are: i.
generating an optimized block distribution scheme for fail-
ure recovery under all possibilities of dependent and inde-
pendent multiple node failures (hereinafter, referred to as
Multiple Failure Recovery (MFR) problem); ii. optimiz-
ing storage allocation subject to the arrival of new data
blocks (hereinafter, referred to as Multiple Failure Recov-
ery with New-comer Blocks (MFR-NB) problem); iii. op-
timizing storage allocation subject to the addition of new
storage nodes (hereinafter, referred to as Multiple Failure
Recovery with New-comer Nodes (MFR-NN) problem); iv.
generating an optimized block distribution scheme among
the nodes by accounting to varying priorities among data
blocks (hereinafter, referred to as Multiple Failure Recov-
ery with Variable Priority Files (MFR-VPF) problem).

This paper is organized as follows: overview on regen-
erating codes is presented in Section 2; related work is re-
viewed in Section 3; system model and formulation of the
main problem together with its three dynamic extensions
are presented in Sections 4 and 5 respectively. In Section
6, we discuss solution methodology of the proposed al-
gorithms. Several simulation scenarios are presented and
studied in Section 7. Finally, we conclude in Section 8.

2. Overview on Regenerating Codes

In order to cope with failures, data centers introduce
redundancy to the system, which may be either in the
form of replication or erasure coding. Replication, or rep-
etition, is the simplest scheme where identical copies of
the same data object are kept by system nodes. Whereas
in erasure coding, each object is divided into k fragments
and re-coded into n fragments which are stored separately,
where n>k. The key property of erasure codes is that the
original object can be reconstructed from any % fragments
(where the combined size for the k fragments is equal to
the original object size) [4].

With n-way replication, the system can tolerate up to
n-1 disk failures with 1/n storage efficiency, while erasure
codes (those of which are Maximum Distance Separable
codes) can tolerate the same number of disk failures with
a much better storage efficiency. However, during recov-
ery, classic erasure codes provide this optimal storage on
the cost of high network and disk usage [8]. The cause
of this high network traffic is that regenerating one of the
stored blocks requires downloading an amount of informa-
tion equal to the original data. Advanced erasure codes
that optimize repair bandwidth, disk I/O overhead in the
repair, and other metrics have been designed to replace
classic erasure codes and be applied in distributed storage
systems.

Of these advanced erasure codes, we state regenerating
codes that form a basis for fractional repetition codes. Re-
generating codes provide trade-off points between commu-
nication and storage costs. These codes constitute min-
imum storage regenerating (MSR) codes that minimize
the amount of data stored per node, and minimum band-
width regenerating (MBR) codes that optimize the repair
bandwidth[9]. This class of codes is characterized by un-
coded repair and growth property where new nodes are
added to increase availability of popular data. This of-
fers efficient and low-complexity distributed repair that
requires minimum bandwidth, minimum disk reads and
no computations. A class of MBR codes, the fractional
repetition (FR) code, is designed and suited for large scale
distributed systems that are intended to provide ubiqui-
tous and pervasive presence of data for applications that
demand high availability and to serve mobile users. The
failure of parity nodes in such systems is a frequent event
that should be considered along with arrival of new nodes.
It should be stated that this code offers exact repair of a
failed node [16].

In this work, we apply FR codes and propose a heuristic
solution for the problem of multiple failure recovery.

3. Related Work

There are several research publications that address the
problem of failure recovery using erasure coding and these
can be broadly classified into: i. designing erasure codes
based on mathematical models as in [11]-[18]; ii. proposing



recovery approaches that implement such codes as in [23]-
[27]. Erasure codes in [I1]-[I3] are being designed to opti-
mize performance in distributed storage systems in terms
of storage space, reliability and recovery cost. Regenerat-
ing erasure codes that were introduced earlier in section 2
were proposed in [I4] as a new paradigm in coding that
achieves minimum bandwidth requirements. In case of a
node failure, they require a helper node to read all its data
and generate a linear combination of them to send it to the
newcomer node. A special class of regenerating codes is
the class of FR codes that allow exact uncoded repair,
where a helper node reads only one of its stored packets
and sends it to the newcomer node without processing.
Different constructions of FR codes are presented in lit-
erature and these constitute deterministic constructions
based on regular graphs and Steiner systems. [I5] present
FR constructions based on regular graphs for single node
failures for all possible feasible system parameters. For the
multiple failure case, where the repetition factor is more
than two, constructions based on Steiner systems are pro-
posed. Rouayheb et al. also provide a new definition of
capacity for distributed storage systems, called Fractional
Repetition capacity. Upper bounds on this capacity are
also described in [I5] while a precise expression remains
an open problem. Other constructions presented in [I7]
utilize combinatorial designs and present explicit heuristic
constructions of FR codes. In 2015, Silberstein et al. in-
troduced a new class of FR codes called FR batch (FRB)
codes that allow for uncoded efficient exact repairs and
load balancing performed by several users in parallel. An
FRB code is a combination of an FR code and a uniform
combinatorial batch code so it combines the properties of
batch codes and FR codes simultaneously. These are the
first codes for DSS that allow uncoded efficient exact re-
pairs and load balancing [20]. A randomized construction
of FR codes is proposed in [16] where the balls and bins
probabilistic model was used as a ground for construction.
Those probabilistic constructions provided more flexibil-
ity in terms of possible system parameters compared to
the deterministic constructions in [I5]. We notice that
different design considerations were assumed in different
code constructions that are in turn based on mathematical
models that mostly provide random access repair without
optimizing for recovery cost.

As for the recovery approaches, Xu et al. presented in
[23] a recent recovery scheme based on the concept of min-
imizing the number of disk reads considering only single-
disk failure recovery. Authors in [21] formulated the repair
problem in a large-scale stream data analysis environment
as an optimization problem to select backup sites. The
work addressed single and multiple failure recovery where
failed applications are recovered automatically in a timely
fashion, taking heterogeneity and other factors into ac-
count. In [22], the authors formulated a specific repair
problem for RAID-6-coded distributed storage systems as
an optimization problem using EVENODD codes with bal-
anced disk reads. Of the studies that tackled multiple

failure recovery problem, we state that of Kermarrec et
al. that addressed simultaneous repair of multiple fail-
ures by proposing coordinated regenerating codes that al-
low devices to control simultaneous repairs. Each of the
t failed devices contacts a set of non-failed devices and
then coordinates with the other ¢-1 failed devices where
closed form expressions of optimized quantities of infor-
mation to be transferred between these devices is derived
[26]. Similar to regenerating codes by Dimakis et al. in
[14], these codes achieve the optimal tradeoff between stor-
age and repair bandwidth. Li et al. proposed a new
design of erasure codes referred to as Beehive, that can
tolerate and recover lost blocks from correlated failures
in batches while consuming the optimal network transfer
with optimized storage overhead [27]. Another study in
[24] presented a mutually cooperative recovery mechanism
for multi-loss recovery where authors focused on minimiz-
ing maintenance bandwidth. Yu in [25] presented a new
version of FR codes, irregular FR codes that account for
different storage capacities of nodes, different communi-
cation costs, and different number of packets per coded
block. Yu used hypergraphs in the presented irregular FR,
code construction where helper nodes were selected from
a limited set of given nodes. These codes implemented
an advanced version of regenerating erasure codes that
achieve minimum bandwidth requirements and good ex-
ecution time performance.

To the best of our knowledge, the failure recovery ap-
proaches proposed in literature did not account for prac-
tical scenarios of new block and node arrivals or even the
possibility of having data blocks of different priority lev-
els. Our work addresses multiple node failures in these
three different dynamic environments. The MFR-NB and
MFR-NN problems consider the practical scenarios of hav-
ing new blocks and/or new nodes. Our work constitutes
tolerating new blocks on the current system nodes without
varying the optimal allocation of current blocks, and allow-
ing for network extensions via adding nodes and arrang-
ing their optimized load configuration again without in-
terrupting the current optimal allocation. The MFR-VPF
problem is a new implementation of VFR codes where
different repetition degrees are assigned for more popular
blocks.

4. System Model

We consider a distributed storage system (n, k, d)
where n is the total number of storage nodes labeled by
No,Ny,...,N,_1, the total number of nodes contacted to
retrieve a file is denoted by k<n, and the number of nodes
contacted by a replacement node during node repair is
d>k [15]. Figure la depicts a distributed storage system
architecture where multiple storage nodes are connected
through top of rack (TOR) switches that are in turn con-
nected to aggregation switches (A/S) via fiber optic cables.
TOR switching is a proposed network design in data cen-
ters to reduce cabling complexity where network switches



are placed on every rack in the data center and all stor-
age/computing nodes placed on this rack connect to them.
Aggregation switches then connect all top of rack switches
using few cables. Whenever one or more storage nodes
fail, they are being replaced by newcomer node(s) that re-
trieve the lost blocks from other existing storage nodes in
the system that are referred to as helper nodes.
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Figure 1: System model

Different transmission bandwidths and topologies are
considered for the underlying networked environment that
connects different storage nodes leading to different com-
munication costs among the different nodes. Figure 1b
depicts the communication cost matrix C that represents
the retrieval cost per byte cos from any helper node « in
the system to any newcomer node 3. c,g is evaluated as:

V?
Cagz{ 0

Let the variable cog ; denote the cost for retrieving
block j of size s; from a helper node o to newcomer node
B, where cap,; = cap X 5j . Let the variable f denote the
number of failed nodes and v denote the set of failed nodes.
vy € Y where Y is the set of all possible sets of combina-
tions of f node failures. Let the redundancy scheme used in
the system be an FR code of repetition factor p. FR codes
consist of a concatenation of an outer maximum distance
separable (MDS) code and an inner fractional repetition
code.

First, a file of size k packets is encoded using a (6; k)

v ERT

if a=p (1)

MDS code such that any k& out of 8 packets can recover
the whole file(MDS property). Then 6 distinct packets
are replicated p times and distributed on n storage nodes
where each coded packet is replicated on distinct nodes.
The stored file can be decoded by the user by contacting
any k nodes out of the n nodes and this is achieved by
the MDS property of the outer code. A new node can be
constructed to repair a failed node by contacting a specific
set of d nodes for repair depending on the contents of the
failed node. d also represents the minimum node storage
capacity expressed in packets [I5]. Table 1 lists and defines
key notations that are further explained in section 5.

Table 1: Key Notation

Parameter | Definition
n number of nodes in the distributed
storage system
k minimum number of blocks needed
to recover a file in MDS code
d number of nodes contacted for repair of a
specific node
0 original number of blocks to be
distributed on the system
1) repetition degree of FR code
C communication cost matrix
B or B;; | block distribution matrix
cc recovery cost of a specific set of blocks
distributed on specific nodes in the NN
problem variant
01465 set of blocks with higher and lower
priorities
p1&ps different repetition factors
Q@ helper node
I3 newcomer node
RCopt optimized recovery cost
Tij boolean indicating the presence of block j
on node i
Taj boolean indicating the presence of block j
on a helper node «
s; size of block j
SC total storage capacity of a node
Cap cost per byte of retrieving data from helper
node a to newcomer node 3
CaB.j cost of retrieving block j from helper node o
to newcomer node 3
Caj cost of retrieving block j from helper node «
to any newcomer node
f number of failed nodes
Yy set of failed nodes
RC.,y multiple failure recovery cost for one
possible combination of f failed nodes
Y set of all possible sets of combinations of
multiple node failures
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Figure 2: (a) An FR code with repetition degree p =2. A file consist-
ing of k=2 packets is encoded using (3,2) MDS code. (b) 6 =3 distinct
encoded packets are replicated and distributed on n=3 nodes.

Figure 2 shows an example of a two-packet file encoded
using (3, 2) MDS code that generates three packets from
the two input packets. The three output packets are dis-
tributed and replicated on three different nodes. If node
1 fails then it can be recovered by downloading packet 1
from node 3 and packet 2 from node 2 in parallel.

Consider a {0, 1}- incidence matrix B of dimension n
x 6 defined by:

_J 1, ifblock j € node i
Bi; _{ 0, otherwise (2)

that represents a fractional repetition code. Rows repre-
sent storage nodes (n) and columns represent blocks (6).
These FR codes will be used in modeling the MFR, MFR-
NB, and MFR~NN problems. As for the MFR-VPF prob-
lem, a new modification of FR codes inferred from [2§]
will be used; where higher priority blocks will be asso-
ciated with higher repetition degrees. The variable frac-
tional repetition (VFR) code is defined using two different
repetition factors {p1, p2}. Note that if p; = po then VFR
codes are identical to regular FR codes.

To illustrate more the operation of VFR codes, a VFR
code for a (6, 2, 3) distributed storage system is depicted
in Figure 3. A file of M = 4 packets (M, ..., My4) needs to
be stored on the system. After a (7, 4) systematic MDS
code, we obtain 3 parity packets Ps, Ps, Pr. Each system-
atic packet is then repeated 3 times, and each parity packet
has a repetition degree of 2; i.e., p1 = 3,p2 = 2. When a
node fails, regeneration can be preceded by downloading
one packet each from a specific set of d = 3 nodes.

Assuming different communication link costs, we model
and solve the four multiple failure recovery problems under
various practical failure scenarios using incidence matrices.

5. Problem Formulation

We start with a numerical example to better illustrate
the main multiple failure recovery problem that is depicted
in system model section above. Mathematical formulation

ackets
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Figure 3: A VFR code with p1 = 3, p2 = 2 for a (6, 2, 3) distributed
storage system

of the main problem and its three dynamic variants will
follow.

5.1. Numerical Example

Consider a distributed system with 6 nodes such that
an encoded data object with 4 distinct blocks is to be
stored. Assume that the system can tolerate 2 node fail-
ures for a repetition factor of 3. Each block will be repli-
cated on three different nodes and each node will store two
distinct blocks.

An initial random block assignment matrix B where
rows correspond to nodes and columns correspond to blocks
together with a given communication cost matrix C is gen-
erated below. The cost matrix associates with every node
a generic retrieval cost per byte from another node. For
different block sizes, block retrieval costs are calculated
accordingly. Link transmission speeds, cabling, 1/O disk
access and network load are examples of factors that can
affect the communication cost between two nodes.

01 1 0

1 0 0 1

1100

B = 01 01

1 01 0

0 0 1 1
ny nNg N3 Ng N5 Ng
nn /(0 7 3 5 4 2
ng| 7 0 9 2 3 6
o= 39 0 4 9 8
ng| 5 2 4 0 2 3
ns| 4 3 9 2 0 1
nge\2 6 8 3 1 0

For all possible two-node failure patterns, we first check
the cases where nodes have at least one block in com-
mon thus we name them dependent. In such cases, the
order of recovery affects the failure recovery cost unless
the common lost block has its replica available on two
helper nodes. In other words, the number of failing nodes
f should satisfy the condition f < p/2 to be possible to re-
cover them in parallel even if they have blocks in common.
In Figure 4, we sketch the classification flowchart that de-
termines whether parallel or sequential retrieval can take
place.
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Figure 4: Node failure classification flowchart

Assume in our example that nodes 2 and 4 fail simulta-
neously. Since they have block 4 in common which cannot
be retrieved for both failed nodes in parallel due to the
fact that no two helper nodes with replicas of block 4 are
available. If both nodes were to use node 6 as a helper
node for block 4 retrieval, then the total recovery cost to
fully recover both nodes would be cs59 + cg2 + c3; + c6; =
3+3+4+6 = 16, assuming blocks of same size. Moreover,
if node 2 was to be retrieved before node 4 and later used
as a helper node to node 4 then the two-node recovery cost
would be 15. Whereas, if node 4 blocks were retrieved be-
fore node 2 blocks then the recovery cost for both nodes
would be 12. The order of recovery of nodes (ORN) would
be then ORN = [4 2].

The total system recovery cost would be the cost of re-
covering all two-node failures by selecting the optimized re-
covery pattern order as described above. All independent
node failures will be recovered in parallel while dependent
failure scenarios would be tested for node recovery order
and the order with minimum cost would be selected. For
the above block distribution matrix B, the total 2-node
failure recovery cost with all failure combinations would
be

RCiot = RC12min + RC13min + RC1amin + RC15min
+RC16min + RC23min + RCoumin + RCo5min
+RC2%min + RC34min + RC35min + RC36min

+RCu5min + RCa6min + RC56min =
100+184+11494+94174+124+15+94 18 4+ 16+
16 + 10+ 10 +9 = 189.

(3)

However, if we consider the optimized block distribu-
tion matrix Bj,;, given as:

Bmin =

O == OO
— O~ Rk OO
—_ -0 O O
OO O =

then the total recovery cost for all 2-node failure scenarios
would be 171. Hence, there should be a wise distribution
of blocks among nodes so that the system recovery cost
would be minimized.

As for the case of new-comer blocks, once a block ar-
rives, it is replicated p times and split among the nodes
in an optimal way such that the original optimized block
distribution matrix and the recovery plan are not changed.
The new block locations are added on top of the optimized
MFR problem plan as shown next in the re-optimized
block assignment matrix By,,.

001 11
1 0 0 1 1
, |0 1 0 1 1
ot ™71 1 0 0 O
1 01 00
01 1 00
given new retrieval costs cog’ = (3 1 4 8 9 8).

Next, we will propose the general problem formulation
for the main multiple failure recovery problem followed by
the proposed variations that are to be explained subsec-
tions 5.3,5.4, and 5.5 respectively.

5.2. Multiple Failure Recovery (MFR) Problem

We need to minimize the total communication cost re-
sulting from retrieving the lost blocks of the failed node
from specific helper nodes taking into consideration differ-
ent combinations of node failures. We assume cost from
helper node « to any new comer node 3 depends only on
parameters specific to node «; therefore, in the sequel, we
replace cap,; by ca,; to denote cost of retrieving block j
from helper node « to any given newcomer node. The
retrieval cost for every possible combination is:

n (2
RC, = min E min  cq T - To; (4
YTyt (i) At L a2y T i (4)
1=l agy
ey

The multiple failure recovery cost for the whole system

is then
RCopt = Y RC,, (5)
Vv, €Y
subject to
n
> wiy=p V block j (6)
i=1
0
inj =d V node i (1)
j=1
0
Zsj < SC V node i (8)
j=1



The total system retrieval cost RC in (5) is to be min-
imized. Thus we are required to solve for a block assign-
ment matrix B that minimizes this value knowing that it
constitutes the sum of single block retrieval costs per node
taking into consideration all possible orders of retrieval.
That is f! permutations of « for failed nodes in case of
dependent nodes, and an additional cost evaluated for the
case of parallel retrieval for independent nodes, then we
select the plan with minimum cost for each combination.
Moreover, we generalize the total cost value to handle all
possible multiple node failure scenarios. The helper node
o holds a retrieval block j that satisfies ¢, ; minimal. Note
that the helper node « is one of the nodes that have block
j in common with the failed node i where a boolean vari-
able z;; € {0,1} is used to indicate that node i holds block
J (zaj & x;ij # 0 where i # j). We should minimize the
objective function value RC subject to the constraints (6)
to (8) that the block assignment matrix should satisfy for
feasibility. Constraint (6) sets the limit on the total num-
ber of replicas per block on all nodes, constraint (7) sets
the limit on the total number of blocks that can be stored
on any given node, and constraint (8) sets the limit on
the total storage size per node to be below a given storage
capacity (SC). s; is the size associated with every block j
and SC is the total storage capacity of each node in the
system.

5.3. Multiple Failure Recovery under New Block (MFR-
NB) Arrivals

As for the practical case of new block arrivals, the MFR,
problem cost is modified to include the new block retrieval
costs for new comer blocks and will be evaluated as:

> RC, (9)

Vyy €Y

RC,

opt =

where

RC/, =RC, +

n 0’
: D3 , (10)
min min Ca,j * Tij " Taj
y=1,2,...,(f141) 4 . a=1,2,...,n
i=1 j=0+1 ag¢y

i€y
given 6’ is an integer such that 6’ — 6 is the number of
new-comer blocks.

When a new comer block arrives, it is replicated p times
and split among the nodes in an optimized way where
the previously optimized block distribution matrix and the
original recovery plan are not altered. The new block lo-
cations are added on top of the optimized MFR problem
plan.

5.4. Multiple Failure Recovery under New Node (MFR-
NN) Arrivals

As for the practical setting of new nodes entering the
system, new rows will be added to the optimized block

assignment matrix and specific entries of optimal matrix
columns will be modified. Modifications depend on the lo-
cation of blocks in the newly arriving nodes (represented
by rows) together with the corresponding column recov-
ery cost (CC) of specific blocks (represented by columns)
generated as follows:

CCmrr-NN = »  CC,, (11)
Vv, €Y
n+n'
= i i gz (12
CCoy = gty 2 i G iy eg (12)
e o

where n/ is an integer that represents the number of new-
comer nodes.

5.5. Multiple Failure Recovery with Variable Priority Files
(MFR-VPF)

As for the case of variable priority files, the problem
constitutes assigning blocks on nodes with variable repeti-
tion degrees based on priority. The objective function will
be that of (4). However, constraint (6) is substituted by
constraints (13) and (14).

dowii=p (13)
=1

VI

n
i=1
JEO2
where 6, represents the set of blocks with higher priority
that should be replicated p; times, and 65 represents the

set of blocks with less priority that should be replicated po
times, such that p; > ps and 6 = 6, + 05.

The four failure recovery problems are integer linear
programming problems (ILPs) and cannot be solved op-
timally in polynomial time for large network sizes since
they are NP-hard problems. As an example, if the storage
network consists of no more than 10 nodes and let’s say
it takes one week to get an optimal solution of our ILP
(averaged result over 100 runs), then if there are 10 ~ 20
storage nodes, it roughly needs more than one month to
solve our ILP optimally (brute force) O(2"). This moti-
vates proposing and implementing a heuristic solution that
can get an estimation of the minimum system repair cost
within few minutes when there are more than 50 storage
nodes.

The next section presents the heuristic approach we
used to tackle the problems.



6. Genetic Algorithm Based Solution and Imple-
mentation

Our implementation methodology constitutes of de-
signing a self-cross-over genetic algorithm that initially
distributes blocks on nodes randomly. The algorithm then
searches within the feasible solution space by redistribut-
ing blocks and generating an optimized distribution scheme
[30,B1I]. A description of the major GA steps that we used
in the main failure recovery problem is shown next.

1. Represent the problem variable domain as a chromo-
some of a fixed length, choose the size of a chromo-
some population N, the crossover probability p. and
the mutation probability p,,.

2. Define a fitness function to measure the performance,
or fitness, of an individual chromosome in the prob-
lem domain. The fitness function establishes the ba-
sis for selecting chromosomes that will be mated dur-
ing reproduction.

3. Randomly generate an initial population of chromo-
somes of size N: x1,Z2,..,TN.

4. Calculate the fitness of each individual chromosome:
f(xl)a f(ZQ)a o0y f(xN)

5. Select a pair of chromosomes for mating from the
current population. Parent chromosomes are selected
with a probability related to their fitness. Highly fit
chromosomes have a higher probability of being se-
lected for mating than less fit chromosomes.

6. Create a pair of offspring chromosomes by applying
the genetic operators: crossover and mutation.

7. Place the created offspring chromosomes in the new
population.

8. Repeat Step 5 until the size of the new chromosome
population becomes equal to the size of the initial
population, N.

9. Replace the initial (parent) chromosome population
with the new (offspring) population.

10. Go to Step 4, and repeat the process until the ter-
mination criterion is satisfied.

First, a chromosome is modeled to represent a binary
block assignment matrix generated using different permu-
tations and satisfying the repetition factor, blocks per node,
and storage constraints (6), (7) and (8) respectively. Thus
every chromosome represents a feasible solution. Note that
feasible chromosomes are generated by a separate method
called by the main GA. An example of a chromosome rep-
resentation for the values (n=4, d=3, =6, p=2) is [0 0 1
01111000101011010110 0] where the nx8
block assignment matrix is transformed to a single (nx8,
1) row matrix. Second, an initial population is generated
for reproduction after carrying out the chromosome en-
coding phase. Population size p is pre-specified and the
population will include p chromosomes that are generated
at random using a constructive method that generates a
feasible allocation scheme. Using the above-specified en-
coding scheme, we can generate feasible block allocation

matrices from one another by exchanging rows within a
single matrix to ensure that the number of blocks per
node constraint together with the storage are constraint
not violated. This enforces a self-cross-over scheme in our
genetic algorithm. The conventional cross-over technique
will yield an in-feasible new chromosome that does not sat-
isfy the FR code constraints (6) and (7) in our model. To
help keep up the best chromosome in every generation, we
used elitism in our implementation, where the best individ-
uals of the current generation are transferred to the next
generation to improve the GA performance. Moreover,
we used mutation to maintain diversity in the population
together with making sure that the achieved solution is
not a local optima, we used mutation. Mutation is a ge-
netic operator that alters one or more gene values in a
chromosome from its initial state. Every chromosome or
individual is associated with a fitness function equivalent
to the optimization problem objective function defined in
(4) and calculated using algorithmic steps of Algorithm 1.

In Algorithm 1, we use a nested loop that checks all
combinations of node failures based on a given number of
failed nodes. For each combination, the algorithm should
first check whether the failing nodes are dependent that is
they have any blocks in common. If so is the case; then the
failure recovery cost should be generated and treated in a
different way than that for independent nodes which can
be retrieved in parallel. After checking for dependency,
the algorithm will call a function that generates permuta-
tions to check the best order of retrieving failed nodes if it
happened they were dependent. If not, the recovery cost
is calculated by implementing a nested loop that mimics
the operation of the double summation to evaluate the fit-
ness. Inside the inner loop of the algorithm we check for
the failed node and the blocks it holds, then we check all
nodes that can be candidates to help in retrieving each
block. Out of the candidate nodes for each lost block, we
choose the one that minimizes the recovery cost and gener-
ate a list of all helper nodes. This list is then to be used by
the main algorithm to prepare the recovery plan matrix.

Algorithm 2 accounts for newcomer blocks and gener-
ates a post-optimized recovery plan with the best possi-
ble distribution of newcomer blocks on the system nodes.
First, the optimal chromosome output from the genetic
algorithm of the main MFR problem is passed as a two-
dimensional array parameter together with its fitness value
to the Matlab function implementing Algorithm 2. Then
using a loop we start assigning the newcomer blocks and
their replicas on nodes by augmenting the optimal block
assignment matrix passed as an argument, and then we
calculate the fitness by adding on top of the optimized
fitness value. After a specified number of generations we
then select the chromosome with the best new fitness and
update the fitness value together with the previous block
assignment matrix and recovery plan.

Algorithm 3 accounts for newcomer nodes and gener-
ates a post-optimized recovery plan with the best possi-
ble reallocation of on-system blocks on current and new



Algorithm 1 Fitness Function Calculation

Algorithm 2 Newcomer Blocks Allocation

1: function CALCULATEFITNESS (n x 6 matrix ) >
where the matrix is a feasible chromosome representing
binary block allocation scheme

: for w =1, while w < %,w—k—k do
3: Let v be the set of failed nodes
Check whether failed nodes are dependent using
steps in Figure 4

>

5: if nodes are independent then

6: go to 9

7 else if go to 18 then

8: end if

9: for every block j belongs to failed node i do

10: Check for all nodes « such that node a has
a replica of block j

11: Select the node o with minimum retrieval
Cost Cap,j

12: Assign « as one of the helper nodes for failed
node i and save it in recovery plan matrix

13: Update node i retrieval cost value to
23‘:1 a:{ngnn Ca,j " Tij " Taj

agy
14: Update recovery plan to include helper

nodes for recovering all blocks j of node i
15: end for

16: Update total retrieval cost value for the failed
nodes in set ~y

17: Update system recovery plan for next failure
scenario

18: V permutations P(v,) of array

19: Calculate retrieval cost for failed node i using

0 .

Zj:l a:l,;l,'.l.l.r}ncX%'y

20: Remove i from set of failed nodes v Repeat till
y = f! and update the retrieval cost for the specific
permutation that constitutes a recovery order

21: From set of all permutations select the one as-
sociated with the minimum recovery cost of dependent
nodes

22: Update total system recovery cost for all cases
of multiple node failures

23: end for

24: end function

Caj " Tij " Taj

nodes. It is a greedy algorithm that also uses the optimal
distribution generated earlier for the main recovery prob-
lem. It modifies and extends it to account for new comer
nodes and solve the MFR-NN problem. A loop is used to
allocate different blocks on the newcomer nodes by aug-
menting the matrix with rows instead of columns. Then
costs are computed column-wise to determine which blocks
to extract from current allocation and assign to newcomer
nodes based on the minimum recovery cost criteria.
Finally, the algorithm that handles the MFR-VPF prob-
lem constitutes of modifying the feasible solution space
used in Algorithm 1. The modification is in the function

1: function ALLOCATENB (optimized allocation
scheme)
j=1
while j <number of newcomer blocks do
Replicate block j , p times
Distribute replicas of j by augmenting the opti-
mal block assignment matrix that was generated based
on best fitness using steps 3 to 10
forwzl,w<%,w++do
Let v be the set of failed nodes
Check if any of the failed nodes v are de-

pendent using steps in Figure 4

9: Check for all nodes o that have a replica of
block j present in failed node

10: Select the node a with minimum retrieval
cost cq,j

11: Assign « as one of the helper nodes and

update recovery plan matrix and retrieval cost to

s min

- Caj " Tij * Taj
j=1 a=1,2,...,na¢y J J J

12: Update recovery plan to recover all blocks j
of node i and the total retrieval cost in set + accord-
ingly

13: end for

14: Calculate retrieval cost for failed node i using
Zj:l a:l,%?.i.,nnaé'y Canj * Tij = Taj

15: Select the chromosome associated with the min-
imum total recovery cost

16: Calculate the fitness of the newly augmented
column for different multiple failure scenarios

17: Update the value of the optimized fitness

18: Select chromosomes with best fitness

19: Apply cross-over and mutation operations only
on augmented columns of chromosomes with best fit-
ness

20: After 20 or more generations, select the best

chromosome that has minimal retrieval cost and up-
date the original optimized block allocation scheme
together with the optimized recovery plan to account
for the newcomers

21: ]++

22: end while

23: end function

generating feasible binary block assignment matrices that
satisfy constraints (13) and (14) instead of constraint (6)
to get feasible candidate solutions, and then generating an
optimized one.

7. Simulation Results and Analysis

The results of our implementation for different cases of
multiple node failures are presented in this section. The
machine employed for simulation is a Lenovo laptop with



Algorithm 3 Newcomer Nodes Allocation

1: function ALLOCATENN allocation
scheme)

2: for £k = 1, k <number of newcomer nodes, k++
do

3: Distribute d blocks on node k£ randomly and
augment them to the given optimized allocation ma-
trix

4: For all blocks j of the d blocks present on the
newcomer node k

5: Select the corresponding column j for all cur-
rent nodes

6: Check which set of p nodes best suits for allo-
cating block j based on column cost value of (12)

Repeat 4 to 6 for all d blocks present on node k

8: Calculate the new fitness value based on the

(optimized

sum of all minimum column costs
9: Select chromosomes with best fitness
10: Apply cross over and mutation operations only
on augmented rows of chromosomes with best fitness
11: After a specific number of generations select the

optimal chromosome and update the originally opti-
mized block allocation scheme together with the opti-
mal recovery plan to account for the newcomers

12: end for

13: end function

an Intel (R) Core i7 CPU running at 2 GHz with 8 GB
RAM. The operating system is Windows 7, and the com-
puter is a 64-bit machine.

The simulation programs were written in MATLAB.
For more than 20 storage nodes, simulation was done on
an eight-node Linux Beowulf cluster, all running Linux
Cent OS 5.5, 3.4 GHz Intel Core i7 processor, and 8 GB
RAM. We used simulations to test our proposed solutions
on large number of nodes under different set of parameters
to explore the feasibility, practicality and efficiency prior to
embarking on real test bed implementations. FR codes are
modeled as incidence matrices and thus we chose Matlab
for our simulations as it is originally designed for matrix
operations.

It is noteworthy to state that the heuristic simulation
results shown in Figures 8 and 9 are calculated as the av-
erage cost of 20 runs for each value of n ; i.e. a total of
200 runs for each figure and then normalized by the max-
imum average cost in each generation for fair comparison.
In the figure we denote “normalized optimized fitness” to
represent the optimized fitness cost divided by the value
of the maximum average fitness for all generations. “Nor-
malized average fitness” refers to the average cost of each
generation divided by the maximum average fitness for all
generations.

The first result shown in Figure 5 is for the case of a
system with 25 storage nodes and 50 distinct blocks being
replicated three times for a total of 150 blocks (6 = 50, p

= 3) and to be distributed on the 25-node system in an op-
timized scheme for multiple failure recovery. The conver-
gence curve of the optimized repair cost is shown together
with the average cost for each generation. This example
handles 2-node failure scenarios. The average cost is eval-
uated over 50 individuals. As observed, mutation occurs
in the fifth and again in the fourteenth generation. This
explains why the average fitness increased after decreas-
ing. In Figure 6, we consider system parameters of n = 50
nodes, 8 = 100 blocks and repetition factor p = 3.

N T T T T T T T T

\: : : : —& —normalized optimized fitness
* Lo : —+ —normalized average fitness
DQB"""':"\"':'/"T'_R\' ...... e : i : .g !
0.96
k7]
=]
]
5 0.94
o
[E)
[N
Eng
w
=
@
D 9 T T T -
bl TSN E : : : 5 :
: " TG = & 0 8O- BB —& T
DBE 1 i 1 1 1 1 i 1 1
0 2 4 =3 a 10 12 14 16 18 20

Generation

Figure 5: Average and minimum system repair cost for n=25, §=50,
p=3
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Figure 6: Average and minimum system repair cost for n=>50, 6=100,
p=3

We notice from Figure 5 and Figure 6 that the average
fitness evaluated over 50 individuals for each population
set decreases in every generation except in the case of a
mutation. This illustrates the fact that better solutions are
being generated in newer populations. Moreover, we ob-



serve that the optimized system repair cost; i.e. optimized
fitness, decreases till it converges to a minimal value.

To avoid being stuck in a local optima, we ty to increase
the mutation rate and re-run the algorithm.
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Figure 7: Average and minimum system repair cost for n=25, §=>50,
p=7

It is noteworthy to state that the optimized solution
is achieved as early as the sixth generation for n = 25
nodes (Figure 5) and at the seventh generation when n is
increased to 50 nodes (Figure 6). That shows the quick
convergence of the algorithm even when we increase the
number of nodes and blocks. Also in Figure 7 when we
consider the case of increasing the number of tolerated
failures, early convergence at the sixth generation is still
achieved.
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Figure 8: Minimal heuristic versus brute-force post-optimal system
repair cost for different network sizes for the MFR-NB problem

We next compare the minimum system repair cost of
our heuristic implementation for the MFR-NB and MFR-
NN problems respectively to that of the optimal brute
force implementation for different network sizes and this
is shown in Figure 8 and Figure 9 respectively. The differ-

11

ence between the heuristic and optimal solutions for the
tested scenarios is calculated at most as 1% for the MFR-
NB problem and 4% for the MFR-NN problem. This in-
dicates that our results are near optimal for the selected
parameters.

07 T T T T T T T T T T
heuristic
optirnal

0sr B

06F

04r 4

03r b

Marmalized Systermn Cost

02F ~

o1f .

o 20 30 40 &0 BOFO

Metwork Size n

80 90 100

Figure 9: Minimal post-optimal brute-force vs. heuristic system
repair cost for different network sizes for the MFR-NN problem
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Figure 10: Normalized optimal recovery cost for n=20, § = 50, FR
(P = 4)7 VFR(p1: 4, P2 = 3)

Figure 10 shows simulation results for the recovery
problems implementing FR and VFR codes respectively
for the same cost matrix. The chosen parameters for sim-
ulation were 20 storage nodes and 50 different blocks. For
the case of FR code, all blocks were replicated 4 times.
Whereas, for the case of VFR code, 20 of the blocks were
replicated 4 times and 30 were replicated 3 times. This
shows a significant difference in cost where VFR costs can
achieve same availability for specific blocks obviously with
less costs. Upon recovery, the search space for the candi-
date helper blocks in the system where VFR code is imple-
mented as a redundancy scheme, proved to include more
options for recovery with lower cost than the search space



in a system where FR code is implemented.
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Figure 11: Normalized optimal recovery cost for n=20, § = 125,
FR(p = 3), VFR(p1= 5, p2 = 2)

As for Figure 11, we vary the parameters of the system,
and consider distributing more blocks with different rep-
etition factors. Simulation results show that VFR codes
can be efficient in failure recovery cost-wise even when we
doubled the number of blocks and increased the repetition
factor for blocks with higher priority only.
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Figure 12: Minimum system recovery cost using different approaches,
0=30,p=2

We next compare the minimum system repair cost us-
ing our approach with that of the MDS-IFR code in [25]
and that of the regenerating code that can achieve an op-
timized tradeoff between system storage cost and system
repair cost for different network sizes, also presented in
[25].

We used a confidence interval of 95% to find the margin
of error that was calculated using the formula Z,,, x (£),
where Z, /5 is the confidence coefficient and a is the con-
fidence level, o is the standard deviation, and n is the
sample size. The corresponding value in the z statistic ta-
ble that matches a confidence interval of 95% and is used
happens to be 1.96.

12

For small storage networks, from Figure 12, it can be
seen that minimum system repair cost that can be achieved
using our proposed approach is reduced by at least by 20%
compared to the simple regenerating code used in [25]. As
for MDS-TFR, we are at least 5% better in reduction of sys-
tem cost but our work goes beyond the basic problem of
failure recovery and includes multiple dynamic scenarios
that yields this work more practical. We considered in-
cremental changes rather than full re-optimization of the
whole system and showed that results stay close to optimal
with much less processing.
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Figure 13: Average time to generate optimized minimum system cost
for different number of storage nodes for two node failures

To gain more understanding about the performance re-
garding the complexity issue, we vary the parameters n, 6
and p. We then increase the network size and measure its
running time for different cases of multiple failure recov-
ery problems. In Figure 13, we show the average time to
generate the optimized solutions for the case of two node
failures. The elapsed time for generating an optimized so-
lution is around 1.8 seconds for a system with 10 nodes, 10
seconds for 25 nodes, and 34 seconds for 50 nodes. This
value goes up to around 13 minutes for distributed sys-
tems as large as 200 nodes. In Figure 14, we present the
average times needed to generate optimized solutions to
account for multiple node failures. It is worth noting that
this time reflects the running time to generate an initial
configuration of the whole system and this is done only
once.

In fact, a general formula that relates complexity to the
genetic algorithm parameters evaluates the complexity as

P x G x O(Fitness)

15
x {P. x O(Crossover) + P,,, x O(Mutation)} (15)
where P is the population size; G is the number of

generations; P. is the crossover probability; and Py, is

the mutation probability.

For two node failures, the fitness function is roughly of



order O(%) and for a larger number of failures in the
recovery problem and its variants, the complexity will be
of higher order due to the fact that we are considering
different combinations of node failures. However, the main
algorithm will be run only once for the initial configuration
and then all dynamic scenarios are updated on the first run
basis avoiding high complexity.
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Figure 14: Average time to generate optimized minimum system cost
for different number of storage nodes in multiple failure scenario with
p>3

Eventhough the complexity maybe considered theoret-
ically high, if the configuration was to be done only in the
preprocessing phase that would take place in a reasonable
time. As the aim is to recover from failures, we will con-
sider further enhancement to achieve better complexity.

8. Conclusions and Future Work

In this work, we addressed the problem of multiple
failure recovery by designing and implementing an algo-
rithmic approach that allocates blocks on nodes in a way
to minimize the total system repair cost in case of mul-
tiple node failures. Moreover, we considered very com-
mon and dynamic scenarios that constitute the arrival of
new blocks, new nodes, and variable priority files in a dis-
tributed storage system. Our solution used FR codes to
provide a simple repair mechanism that minimizes the re-
pair and communication costs. The four problems were
formulated using incidence matrices and solved heuristi-
cally using genetic algorithms for all cases of multiple node
failures. For the main problem with different system pa-
rameters considered, simulation results achieved fast con-
vergence. As for the three dynamic settings, we demon-
strated the effectiveness of the proposed mechanism by
performing several runs considering different parameters
and the obtained experimental results were shown to be
close to optimal.

The novelty of the proposed solution approaches is in
its ease of practical implementation where post-optimal
storage allocation is achieved without the need to redis-
tribute actual residing blocks. The work in this research
holds several branches for further study. A first possible
option is to extend the theoretical framework and per-
form testbed implementation. In fact demands cannot
be predicted theoretically, while in practice they are ac-
cessible to some certain extent. Other benefits of experi-
menting large-scale tests of the prototype system is that it
can capture many practical aspects including real network
bandwidth fluctuation and transmission delay, real cache
server performance characteristics such as disk read/write
speed and other issues including control plane overhead,
error handling and etc. A full scale test of the system
helps understand both the potential and limitations of the
theoretical model and design schemes under various sce-
narios. A second possible extension is to try to enhance
the model to include privacy and security issues on top of
repair bandwidth, reliability, availability, scalability and
computational complexity. Finally, a major and signifi-
cant extension of this work that we are currently address-
ing is to customize the proposed models and mechanisms
to apply to fog scenarios including personal mobile devices
collectively acting as a small distributed storage system.
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