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Optimized Device Centric Aggregation Mechanisms for
Mobile Devices with Multiple Wireless Interfaces

Sanaa Sharafeddine®*, Karim Jahed®, Marwan Fawaz®

% Department of Computer Science and Mathematics, Lebanese American University
(LAU), Beirut, Lebanon

Abstract

Wireless broadband technologies and services are witnessing exponential
growth to meet the demands of mobile users. State-of-the-art wireless networks
are evolving with enhancements spanning all protocol layers and all network
components from radio access to core network nodes. This has been coupled
with a tremendous transformation of end user mobile devices towards multi-
purpose smartphones and tablets with multi-core processing power, extendable
memory storage, large battery capacity, and support for a wide range of wireless
connectivity options. A standard smartphone currently can support short range
Bluetooth and WiFi-Direct connectivity, local area WiFi connectivity, and long
range 2G/3G/4G mobile connectivity. This naturally provides opportunities for
data aggregation utilizing multiple wireless interfaces simultaneously to enhance
device and network performance. In this work, we present the design, implemen-
tation, and testing of optimized device-centric data aggregation mechanisms for
both file downloading and video streaming applications. The main novelty of
the proposed mechanisms is their device-centric design that makes them practi-
cal and feasible without any changes to wireless standards; moreover, they are
scalable to support any number of wireless interfaces whereas previous related
work has dealt with devices having two interfaces only. To demonstrate the
effectiveness of the proposed mechanisms in terms of performance gains and
practical feasibility, we develop an experimental testbed using Android devices
and perform extensive testing for several network scenarios.

Keywords: Bandwidth aggregation, heterogeneous networks, traffic offloading,
WiFi-cellular inter-operation, multi-homed devices, WiFi/cellular
inter-operation
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1. Introduction

Global mobile data traffic grew more than 60% in 2014 exceeding 2.5 ex-
abytes per month [I]. By 2018, the annual demand for Internet traffic is expected
to exceed 1.5 zettabytes, with nearly half of it generated by mobile devices.
This trend is expected to continue supported by advances in wireless broad-
band technologies, smartphone devices, and mobile applications. This growth
is putting mobile operators under immense pressure to handle the demands
without negatively impacting the quality experienced by their subscribers. As
a result, cellular operators are upgrading their network infrastructure based
on advanced LTE/LTE-A features standardized in new 3GPP releases. Car-
rier aggregation (CA) is brought forward as one of the most efficient features
of LTE-Advanced to cope with the rapid increase of mobile data traffic. Car-
rier aggregation may provide an overall bandwidth of 100 MHz by aggregating
up to five component carriers and thus may lead to five-fold bit rates; this
makes it specially attractive to LTE operators with non-contiguous spectrum
blocks [2, [3]. Actual drive testing confirmed the dramatic improvement of bit
rates due to CA functionality [2]. Dual connectivity is introduced to extend car-
rier aggregation by allowing one device to utilize the radio resources of a small
cell and a macro cell simultaneously; this leads to improved end user through-
put and mobility support [4]. High acquisition costs of licensed spectrum pose,
however, a major challenge to network operators in improving their network
performance and thus 3GPP proposed utilizing unlicensed bands using license
assisted access to achieve significant gains. The challenges in the coexistence of
LTE-Unlicensed and unlicensed systems such as WiFi in unlicensed bands are
still not resolved [5]. This high demand for significant bit rate improvements
has also triggered serious efforts to initiate standardization activities for the
next generation 5G cellular technology with plans for 5G deployments starting
in 2020.

Additional key enhancement techniques include heterogeneous network in-
tegration and operation with bandwidth or link aggregation [6l [7, 8]. This can
lead to significant performance gains as it benefits from the wide area cover-
age of cellular systems, the dense deployments of IEEE802.11x WiFi access
points, and the high end capabilities of end-user mobile devices (smartphones
and tablets). 3GPP techniques include access network discovery and selection
(ANDSF) mechanisms to mobile devices with aim to offload data from cellular
to WiFi; in addition to activities focused on tight integration through which
WiFi access points will be connected to cellular core network elements that
facilitates smooth mobility and multiple connectivity; this is evolving to radio
access network (RAN) level integration that will allow dynamic RAN-based co-
ordinated resource management between both networks. A major complexity
is that WiFi access points need to be controlled either by cellular operators or
their partners that is not easy to achieve taking into account the existing WiFi
landscape with diverse and ad hoc deployments [9] [10].

In this work, we propose a set of dynamic self-adaptive device-centric al-
gorithms for link aggregation in heterogeneous wireless networks customized
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to emerging use cases with multiple wireless interfaces and to both file down-
loading and video streaming mobile applications. The novelty of the proposed
mechanisms is their seamless operation with respect to the available wireless
networks (e.g., WiFi and 3G /4G cellular) without the need for any proxy server
deployment, network assistance, or protocol stack modifications. Yet, we show
that they optimized performance by utilizing the multiple interfaces effectively
taking into account the application’s quality of service requirements. We focus
on link aggregation instead of link selection as it has the potential to provide
significant gains to mobile users which in turn can be mapped to performance
gains to the network operators. To our knowledge, this is the first work that con-
siders full device-centric link aggregation over more than two wireless interfaces
and with support to both real-time and elastic traffic types; the practical moti-
vation for considering multiple interfaces is based on recent advances in content
distribution with device-to-device cooperation among users in close proximity
with respect to each other, e.g., see [I1], 12]. This paper builds on our previous
work [13], where we have discussed device-centric link aggregation for two wire-
less interfaces only, with focus mainly on file downloading applications. The
main contributions of this work include i) proposing practical dynamic self-
adaptive and fully device-centric link aggregation mechanisms, ii) supporting
multiple (N > 2) wireless interfaces, iii) supporting elastic and stream-type
traffic, and iv) developing appropriate testbeds that implement the proposed
algorithms and show optimized performance with two and more wireless inter-
faces.

In order to test the performance of the proposed algorithms, we follow an
experimental methodology based on testbed development and performance eval-
uation for an extensive set of scenarios with various network and design param-
eters. We believe that demonstrating the feasibility of practical implementation
on standard Android-based smartphones and demonstrating notable gains un-
der realistic operational conditions are additional novel contributions of this
work; this helps bridge the gap between theoretical derivations and algorithmic
design on one hand, and engineering implementation on the other hand.

Section [2] presents related literature and highlights the main contributions
of our work as compared to existing work. Section [3| presents the system model
details and the general link aggregation framework. Section [ explains in details
the proposed link aggregation algorithms for use cases with two interfaces and
multiple interfaces covering both elastic file downloading applications and on-
demand video streaming applications. The testbed design and implementation is
then discussed in Section[5] with results and analysis summarized in Section[6]for
a wide range of scenarios with various network and design parameters. Finally,
conclusions are drawn in Section

2. Related Literature

In the last few years, literature proposes different techniques to jointly uti-
lize co-existing heterogeneous networks. These can be broadly classified into:
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i. network-level techniques that aim at optimizing resources between both net-
works with network-level coordination and multiuser traffic steering [14} @, [10]
15l [T6]; ii. device-level techniques that aim at optimizing the performance of
each device without network level coordination. Due to technical and business
challenges of realizing network-assisted heterogeneous network integration in
practice, we focus on device-level techniques for effectively utilizing co-existing
networks. Research efforts in this direction make use of existing WiFi and cel-
lular interfaces to download content faster either by dynamically selecting the
interface that has better quality (known as link selection) [I7), I8, 19] or by
dynamically splitting traffic over both interfaces proportionally to the quality
of each interface (known as link aggregation, bandwidth aggregation, or traffic
splitting) [20] 21, 22] 23]. Currently, state-of-the-art smartphones do not take
advantage of the coexistence of WiFi and cellular interfaces; only one interface
can be active at a time, with priority normally given to WiFi irrespective of link
qualities. Most proposed techniques require modifications, or at least some sort
of support, at the already-mature layers of the network protocol stack [24] 25].
In addition, many require the deployment of a proxy server between mobile de-
vices and destination Internet servers; in these approaches, the traffic is routed
through an intermediate proxy server that implements the proposed bandwidth
aggregation support, and that communicates with the destination servers, e.g.,
see [26]. Proxy-based solutions, however, entail redundant traffic, increase to
the end-to-end delay, and congestion situations, which can negatively impact the
users’ quality-of-service. Some other work requires customized end-to-end com-
munication session including sender and receiver sides and thus cannot be used
readily with existing content servers. In [27], the authors propose an energy-
aware bandwidth aggregation framework for video over heterogeneous wireless
networks. This work considers only two radio access networks (e.g. LTE and
WiFi) and requires the deployment of a complete framework where working
modules need to be implemented at both sender and receiver sides.

There are few works that assume traffic scheduling takes place in the mobile
device without a proxy server and without any network support/modification;
however, they require the implementation of link estimation modules to obtain
weights for dividing the traffic dynamically between both interfaces, [20, 28] [7,
29, 22, 19]. For example, in [7], the authors present an interesting approach
for bandwidth aggregation systems with two options for link quality estimation:
either using multiple legacy servers that are geometrically dispersed or using
an own deployed server to estimate the WiFi and cellular link qualities. The
estimates are then used to determine packet distribution weights over the two
interfaces in order to maximize throughput. In [22], the authors propose a dy-
namic link aggregation scheme for file downloading with continuous link quality
estimation based on received data; sequential and parallel implementations are
studied using NS-3 network simulations. In [I9], the authors present a novel
hybrid approach where users take network selection decisions based on partial
network assistance via adaptive network-level parameters in addition to locally
available information related to quality and needs; they demonstrate perfor-
mance gains using simulations for different traffic classes. In [30], the authors
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propose user-centric multihoming with LTE and WiFi connectivity. They con-
sider two strategies, a simple one that splits traffic according to the peak rate of
each interface without any knowledge about the current system load, and a sec-
ond one that takes into consideration current load information as broadcasted
by the network operator. The authors show that the network-assisted approach
achieves better performance than the one based on network peak rates. Both
approaches, however, evaluate the proportion of the file that has to be down-
loaded on each interface at the beginning of the transfer without accounting for
any network changes that may occur and the actual bit rates.

The novelty of this work as compared to existing literature is that we con-
sider fully device-centric link aggregation mechanisms over more than two wire-
less interfaces. Our algorithms are self-adaptive and dynamic with respect to the
effective bit rate that is received by each supported wireless interface. We pro-
posed algorithms that are customized to file-downloading as well as streaming
applications and validated the practicality and performance gains of those algo-
rithms by developing appropriate experimental testbeds with realistic scenarios.
In the case of two wireless interfaces, we developed a mobile application that
implements the algorithms and evaluates their performance for file downloading
and video streaming over cellular and WiFi networks. In the case of devices
with more than two wireless interfaces, we developed an emulator that down-
loads and streams actual content from existing servers using multiple interfaces.
The bit rates of the interfaces follow measured traces of wireless connections in
order to provide as realistic scenarios as can be.

3. System model

Given a mobile device equipped with multiple wireless interfaces, our goal
is to develop optimized device-centric link aggregation mechanisms that effi-
ciently utilize all interfaces over heterogeneous networks to enhance the quality
of service for accessing content from origin servers over the Internet. The system
model is depicted in Fig.[lp that shows a device equipped with multiple wireless
interfaces (I1, Io, ... I,) that are simultaneously used to to receive content from
a given server, Fig.[Ib shows an example using WiFi and cellular link interfaces.

Cellular

Figure 1: System model (a) Multiple interfaces; (b) Cellular/WiFi link aggregation.

Current mobile devices only support limited number of wireless interfaces
but the work with multiple interfaces can be readily applied in a fog network
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scenario composed of a cluster of devices, in proximity to each other with very
high device-to-device short range bit rates. Devices within the cluster jointly
utilize all their wireless interfaces to help one device download content with
higher quality (see Fig. [2)) [311 [32].

WiFi
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Fog network

Figure 2: System model example with link aggregration across a cluster of devices cooperating
to download content to a given device.

Link aggregation aims to bond the bit rates of multiple wireless interfaces
to emulate one super interface capable of delivering superior quality-of-service
under varying network conditions. Boosting the network throughput is one of
many gains of link aggregation; however, other use cases include energy con-
sumption by minimizing wireless interface activity duration, fault-tolerance by
ensuring that a backup interface is always available in case of failure, and load
balancing by distributing traffic across multiple heterogeneous networks.

We chose to build our framework on top of the HTTP protocol rather than
as a lower-layer service for two reasons. First, using HTTP facilitates a design
that does not require any modification to the server hosts, network nodes, or
client protocol stack. The only assumption we pose is for the content server to
support the HTTP “Partial GET (206)” method; this assumption is satisfied by
default on most web servers as “Partial GET” requests are essential to support
resuming downloads. The “Partial GET” request adds a “Range“ header field to
the client’s request and, thus, allows the client to retrieve a subset of the content
on the server rather than the whole data [33]. The second reason is its popularity
for mobile services; an increasingly large number of mobile applications now
utilize HTTP for connections with cloud services, due to the variety of features
the HTTP protocol supports and its simple stateless operation.

In this work, we differentiate between two broad categories of network ser-
vices depending on the users’ interaction with the application servers. The first
category includes content that needs to be fully fetched from the server before it
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Figure 3: Proposed link aggregation framework implementation modules for mobile devices.

can be put into use such as file downloads and database queries. The second cat-
egory includes streaming content, where the user can actively engage with the
content while it is being downloaded from the server; one example is video-on-
demand streaming where the user is playing the video while subsequent frames
are still being downloaded. Differentiating between these two service classes
is important due to their varying quality requirements. From a user point of
view, the most important metric when dealing with file downloads is download
time; the sooner the content is fully fetched the sooner it can be put into use.
On the other hand, the most important metric when dealing with streaming
content is buffering time, which can lead to stalls that negatively impact the
user’s experience.

We propose a general architecture for device-centric link aggregation that can
be tailored to varying service classes and that can be fully realized in practice
using state-of-the-art wireless technologies and mobile devices. A key distin-
guishing novelty of the proposed architecture is its device-centric property and
the capability to achieve significant gains without requiring any changes to the
server side and without requiring any support from the network operators side.
The proposed framework architecture is shown in Fig. B] and is composed of
five main modules:

Request handler: This module acts as an interface between the application
layer and the data aggregation intelligence at the mobile device.

Data aggregation scheduler: The scheduler implements the scheduling al-
gorithm intelligence that is responsible for the optimized distribution of
requested data over several available wireless interfaces. The scheduler
monitors the quality metrics related to the various wireless interfaces,
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queries the server for general information about the content (e.g., total
content size and service type), and makes real-time decisions on which
data chunks should be downloaded over which interface based on the pro-
posed scheduling algorithms (see Section |4 for more details).

Download manager: The download manager is responsible for building the
partial get requests for the chunks supplied by the scheduler, and to feed
them to the appropriate download threads.

Download thread: Each download thread is bound to a single network inter-
face. All download threads run simultaneously and execute HT'TP GET
requests supplied by the download manager. The downloaded data is then
passed on to the assembler.

Assembler: The assembler receives downloaded chunks from the various down-
load threads in parallel, and re-orders them to generate the complete data
stream to be accessed by the end user.

In terms of performance requirements, the proposed framework aims at max-
imizing the total download rate or, equivalently, minimizing the total download
time by utilizing multiple interfaces as efficiently as possible. The optimal so-
lution is to download the content in equal time durations over all interfaces in
parallel [2I]. Given K interfaces, the instantaneous combined bit rate can then
be represented as follows:

K
Riotar(t, At) = > Ri(t, At), (1)

k=1

where Riotal(t, At) is the total download rate in time slot ¢ of duration At, and
Ry (t, At) is the download rate on interface k(k € 1,2,..., K). The amount of
data downloaded per interface D can be related to the slot duration as follows:

Dy = Ry.(t,At) - At (2)

The total download time Tiqta for a given content size of N bytes will vary
depending on the transmission rates over the wireless interfaces during the down-
load period; yet, its value will always be less than or equal to the time required
to download the content on one of the interfaces alone. In general, the total
download time can be expressed as follows:

S
Tiorar(t, A) = > (At +V4), (3)

s=1

where S is the total number of slots needed to download the content, s is the
slot index, and V; is the overhead delay per slot due to HT'TP request-response
round trip time (RTT) delay and lower layer protocol overheads (e.g., TCP
congestion control or MAC layer retransmission mechanisms). In general, the
total number of slots S varies depending on the content size, the slot duration,
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and the interfaces’ bit rates. The total effective download bit rate can then be
calculated as follows:
Reﬁ = N/Ttotal (4)

4. Proposed Link Aggregation Mechanisms

In this section, we present the details of the proposed device-centric link
aggregation mechanisms, with the first part focused on the file downloading
service class and the second part focused on the video streaming service class.

4.1. Link Aggregation for File Download Service Class

Typically, a file download process begins when a client issues an HT'TP GET
request specifying the file path. If the file is available, the server would reply
with an HTTP OK response with the file content attached to the message body.
At the TCP level, the server would start streaming the file content in sequential
packets starting with byte 0 till byte N — 1 for a file of length N bytes. A
key idea behind the proposed framework is to utilize the Range header field
of the HTTP Partial GET request to simultaneously download different parts
of the data stream over multiple wireless interfaces. The segments are then
re-assembled to correctly reconstruct the content for delivery to the application
layer. The main algorithmic challenge here is to determine how the file should
be partitioned and distributed between all interfaces to maximize performance
efficiency.

The simplest solution is to divide the file into K equal segments to be dis-
tributed over the K interfaces in parallel. However, this approach would lead
to favorable outcome only when all interfaces have similar bit rates, since other-
wise the faster interfaces would become idle waiting for the slower interfaces to
finish downloading their assigned parts. Intuitively, one can see that an optimal
solution always utilizes all interfaces to their full bit rate potential throughout
the download session. Another solution would be to assign each interface a
portion of the content that is proportional to its estimated average bit rate in
order to balance the download time durations on average, e.g., this is assumed
in previous related works with two interfaces [20], [7]. Even though this leads
to enhanced download bit rate, it can deviate from the optimal solution for
scenarios with high bit rate fluctuations around the mean over time, e.g., in
network scenarios with varying load and mobility. Moreover, this requires con-
tinuous estimation and monitoring of the average bit rate leading to increased
complexity and computational overhead.

In this section, we divide the content into two subsections: one focused on
heterogeneous network scenarios with two wireless interfaces only (e.g., WiFi
and cellular) and the second focused on the more general network scenario with
K wireless interfaces. Results with discussions and insights are then presented
in Section [Gl
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Figure 4: Example of the proposed link aggregation algorithm for file downloading with two
interfaces, e.g., WiF1i interface and cellular interface.

4.1.1. File Download with Two Wireless Interfaces

For the special case of two wireless network interfaces and for file downloads
(i.e., non streaming services), we propose an optimized link aggregation algo-
rithm that is fully device-centric and does not require estimation of link-quality
metrics. Our approach is based on downloading the file at the same time on
both interfaces, each from one end of the file in opposite directions. For in-
stance, for a WiFi/cellular scenario, the WiFi interface will start the download
from byte 0 going up while the cellular interface will start the download in
the reverse direction from byte N — 1 going down (see Fig. a for an example
schematic). The download on both interfaces is interrupted the moment the
assembler in the device detects that they downloaded a common byte; at this
point, we are certain that all the data have been downloaded and the assembler
can fully reconstruct the file. It is clear that the point at which both interfaces
meet in the download progress defines the optimal dynamic partitioning of the
data into two parts during that download session. Moreover, since both inter-
faces downloaded the data continuously using their best-effort bit rate without
interruption, the file is downloaded in nearly minimum time.

In practice, implementing this strategy on a mobile device is challenging
due to the fact that the HTTP standard does not support streaming the data
in reverse. Since our goal is to design a fully device-centric approach without
any modifications to the content server, we solve this problem by segmenting
the data stream into reasonably-sized chunks. This way one interface starts
downloading chunks from the beginning of the stream while the other downloads
chunks from the end of the stream (see Fig. b for an example where the data
stream is divided into 512-byte chunks). The only complexity that arises from
this method is determining a suitable chunk size. A small chunk size leads to
a delay and processing overhead from the HTTP requests which can lead to
an increase in download time. On the other hand, a chunk size that is large
might negatively affect the optimality of the download time as one interface can
become idle (after all the chunks have been requested) while the slower interface

10
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is still completing the download of its last chunk. The proposed link aggregation
strategy is summarized in Algorithm

In this section, we present an optimized algorithm for file download over
K interfaces regardless of the varying network conditions per interface (see
Algorithm [2f for the details). It is important to note that Algorithm [1| cannot
be applied to cases with K > 2 interfaces, since it cannot be known apriori
how much data will be downloaded on each interface due to the device centric
approach and the varying network conditions over time.

The basic idea of the proposed algorithm is to assign the efficient interfaces
that become idle to assist the slower interfaces in downloading their allocated
chunks. Consider an example with three interfaces I, Is, and I5. Initially, the
file is divided into three parts, each of length N/3, where N is the length of the
file in bytes. The scheduler then assigns one part to each interface. Unless the
interfaces have identical bit rates, at least one interface would eventually finish
downloading its part and become idle while waiting for other parts to finish
downloading.

Algorithm 1 Link aggregation algorithm for file downloading using two wireless
interfaces.

1: Given: Two interface I; and I
2: Given file size N bytes
3: procedure TWOIFACESSCHED(N, chunksize)

4 start =0
5: end = N — chunksize
6: while start < end do
7 if IsIdle(I;) then
8 if start >= end then
9: start = end — 1
10: end if
11: Schedule(Iy,[start, start + chunksize))
12: start = start + chunksize + 1
13: end if
14:
15: if IsIdle(I;) then
16: if end <= start then
17: end = start + 1
18: end if
19: Schedule(Iy,[end, end + chunksize])
20: end = end — chunksize — 1
21: end if
22: end while

23: end procedure

11
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4.1.2. File Download with Multiple Wireless Interfaces

Fig. shows a scenario where I3 finishes first while I; and Iy are lagging
behind. Rather than waiting, I3 is assigned to assist the slowest interface (I3 in
Fig. ) For that, the scheduler will further divide I;’s remaining part into two
equal-length subparts. Let the division point in the stream be byte i. Then, as
shown in Fig. Bb, I; would continue downloading its part but only up to byte ¢
while I3 will start downloading the second subpart starting at byte ¢ 4+ 1. This
process continues until all the file has been downloaded (see Fig.s [k and [B).
Ignoring the HTTP request/response RTT delays and lower protocol delays,
this solution is guaranteed to lead to a download time that is close to optimal.
In Section [5] we present implementation ideas to minimize the impact of the
HTTP request/response RTT delay on overall download time.

3 11 12 13
— == I
0 N-1
k) I L3 12
— B~
0 : N-1
. 11 12 13

0 N-1

Figure 5: Example of the proposed link aggregation algorithm for file downloading with K
interfaces, assuming K = 3 (red, green, and yellow colors reflect the data downloaded on
interfaces I3, I2, and I1, respectively).

4.2. Link Aggregation for Video Streaming Service Class

For multimedia services such as video streaming, the total download time
is not the most important metric in evaluating the quality of service. From
the user’s point of view, what matters is for the video to start playing as soon
as possible and for the playback to be smooth and lag-free. In fact, if we use
the multi-interface file download algorithm presented in the previous section for
video streaming, we would not be utilizing the full potential of all interfaces to
improve the quality of service although the total download time would remain

12



Algorithm 2 Link aggregation algorithm for file downloading using K wireless
interfaces.

1: Given K interfaces I, 1 <k < K

2: Given file size N bytes

3: procedure NIFACESSCHED(N, K)

4 plength = N/K

5 for k=1to K do

6 chunk = [plength x (k — 1), plength x k — 1]
7: Schedule(Iy,chunk)

8 end for

9:

10: while not Allldle() do

11: for k=1to K do

12: if IsIdle(/y) then

13: j = GetSlowestInterface()
14: [S, 6} = GetPart(Ij)

15: m=|(s+e)/2]

16: chunky = [s, m]

17: chunksy = [m +1,€]

18: Schedule(/; chunk’l)

19: Schedule([k,chunkg)

20: end if

21: end for

22: end while

23: end procedure

minimum. This is since some interfaces would be downloading parts of the file
that are not essential to ensure continuous playback in the very near future;
video frames that reside at the beginning of the stream must be prioritized over
frames that belong to the end of the stream.

340 A scheduling algorithm optimized for video streaming would focus first on
downloading the content parts that contain the subsequent frames essential for
non-interrupted playback. In general, the design of link aggregation algorithms
for video streaming applications is challenging due to the strict quality of service
requirements of video traffic. The following are some challenges that need to be

us  taken into account during the design process:

e At the beginning of the download session, the scheduler does not have any
performance metrics to use in choosing the correct interfaces to download
the first few video chunks needed to launch the video playback.

e At some point during the download session, a slow interface could be

350 available while faster ones could be busy. If the scheduler chose to assign
a chunk to the slow interface, it might lead to stalls in the video playback

in the near future. On the other hand, if the scheduler chose to postpone

13
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scheduling the chunk, the slow interface would sit idle rather than being
fully utilized.

e Several factors heavily affect the bit rate in wireless networks including
mobility, interference, and load. Therefore, it is common for the bit rate to
fluctuate notably even in static scenarios. While at some point the sched-
uler might have chosen the fastest interface to download a video chunk,
the interface’s performance might easily drop while still downloading that
chunk leading to stall events.

One possible link aggregation strategy would be to segment the video stream
into several reasonably-sized chunks. The scheduler would then assign the next
chunk in the stream, sequentially, to the first available interface without per-
forming any link quality estimation; this continues till all chunks have been
downloaded. Similar to the file downloading case, the chunk size would then be
an important parameter to be optimized since small sizes can lead to request-
response overhead delays and large sizes can lead to lower effective download
rate and higher underflow time intervals, which would impact negatively the
video’s quality of experience. Since the scheduler does not have prior knowl-
edge of the capability of each interface and since link conditions vary over time,
an urgently-needed chunk could easily be assigned to an under-performing in-
terface; in this case, the video would stall although subsequent chunks might
have been already downloaded.

Therefore, we propose a dynamic device-centric link aggregation algorithm
for video streaming that is based on real-time estimation of the effective down-
load bit rate over the various available wireless interfaces using available perfor-
mance metrics, which are logged over time; the link quality prediction accuracy
is more likely to be accurate over reasonably short time intervals. To this end,
we divide the streaming process into S time slots of fixed length At. The length
of the time slot is set to the initial buffering time, which corresponds to a short
wait time that the user is willing to tolerate before the playback starts. We
design a new mechanism that assigns to each interface a chunk size that is pro-
portional to its estimated link quality (see Algorithm [3|for the details). At the
start of the download session, the scheduler does not posses any link quality
knowledge. To avoid delaying the video playback, we opt not to perform any
pre-download link quality estimation. Rather, we chose to assign the first chunk
of fixed predetermined length to all interfaces. The first chunk size is chosen to
be small enough not to cause too much redundant data to be downloaded. Hav-
ing a smooth start during a video streaming session is directly linked to better
perceived quality of experience by end users. An example of the proposed link
aggregation mechanism for video streaming is shown in Fig. [6]

Whenever an interface finishes downloading a chunk, the scheduler will eval-
uate its performance during the past time interval based on locally logged infor-
mation, which includes downloaded data size and download time duration. The
scheduler would then calculate the size of the next chunk to assign to interface
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Figure 6: Example of the proposed link aggregation algorithm for video streaming with K
interfaces, assuming K = 3 (red, green, and yellow colors reflect the data downloaded on
interfaces I3, I2, and I1, respectively).

k during time slot t as follows:
Li(t) = Qu(t — 1) - At, (5)

where Q(t —1) is the measured bit rate of interface k during time slot ¢t — 1 and
At is the time slot duration. The interface starts downloading the chunk but
may not receive it completely in A; time due to possible decrease in its current
bit rate. In this case, a faster interface will join in to help in downloading the
remaining data of the assigned chunk.

5. Testbed Implementation

Since the current generation of mobile devices (smartphones, tablets) typ-
ically supports only two long range interfaces (3G/4G cellular and WiF1i), our
testbed implementation on Android smartphones is limited to the link aggre-
gation algorithms with two interfaces supporting both file downloading and
video streaming applications. To evaluate the performance in scenarios with
more than two interfaces, we implemented an emulator to test the proposed
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Algorithm 3 Link aggregation algorithm for video streaming using K wireless
interfaces.

1: Given K interfaces I, 1 <k < K

2: Given file size N bytes

3: Given slot duration At

4: procedure NIFACESSTREAMINGSCHED (N, K, At)

5: of fset =0

6: for k to K do

7: chunk = [of fset, 256000)

8: Schedule(I,chunk)

9: end for

10: of fset = of fset + 256001

11:

12: while not Allldle() do

13: for k to K do

14: if IsIdle(I;) then

15: pr = GetPerformance(k)
16: size = pg - At

17: chunk = [of fset, size]

18: Schedule(I,chunk)

19: of fset = of fset + size + 1
20: end if
21: end for
22: end while

23: end procedure

algorithms on an arbitrary number of interfaces, while still mimicking real-life
practical settings. For both implementations, the system architecture follows
the general design shown in Fig. [3]

5.1. Implementation on Android Devices with Two Interfaces

We designed and implemented a two-interface link aggregation mobile appli-
cation for Android devices with complete device-centric operation on standard
smartphones. The authors in [28] attempted to implement a device-centric link
aggregation mobile application for Android devices; however, they developed an
application that runs on an Android emulator on a virtual machine with support
to two WiFi interfaces via two network cards connected to the machine and,
thus, their implementation does not support WiFi/cellular link aggregation on
smartphones.

Our mobile application takes an HTTP URL address as input and executes
the algorithms presented in Section [4] to download/stream the content simulta-
neously over both WiFi and cellular interfaces. The application processes one
HTTP request for a given content from a web server at a time. Upon receiv-
ing a request, the first step is to query the server for the content parameters.
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The most important parameters are the “Content-length” and “Content-type”
header fields, which specify the data size and its type, respectively. Using the
type information, the application decides whether to download the content us-
ing the file downloading or video streaming algorithms. For video streaming
services, extra header fields such as the duration, number of frames, and frame
rate are also parsed from the file headers. Fig. [7]shows two selected screenshots
from the developed mobile application during a video streaming session with
the proposed WiFi/cellular link aggregation.
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Figure 7: Screenshots from the developed Android mobile application for WiFi/cellular link
aggregation. (a) Video streaming view showing video player in addition to total size, elapsed
time, and download speed on each interface in addition to aggregation; (b) Report showing
download rate variations over the total download duration in addition to summary statistics.

The scheduler takes care of dividing the data stream into chunks depending
on the algorithm implementation (fixed chunk sizes for file downloading appli-
cations, fixed or variable chunk sizes for video streaming applications). The
scheduler monitors the state of two download threads each with a socket bound
to one of the interfaces (WiFi and cellular). Whenever an interface is idle, the
scheduler feeds it one chunk to download. For file downloading, the scheduler
always chooses the first unprocessed chunk in the chunks list for download over
the WiFi thread, whereas the last unprocessed chunk is chosen for download
over the cellular thread. The downloaded data is continuously supplied to the
assembler, which takes care of reconstructing the data stream in correct order for
file downloading and playing the video frames in real time for video streaming.
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The application takes any HTTP URL and either downloads or streams
the content, while using both interfaces according to the details discussed in
Section @] The most challenging part in the implementation was overcoming
Android’s networking policy that allows only one interface to be active at a
time with priority given always to WiFi when both networks are available and
active. Eventually, we were able to force-enable both interfaces simultaneously
through an undocumented function that raises the mobile interface for a short
period of time while WiFi is still active. A simple timer calls this function
every period of time to keep the mobile interface up. Having both interfaces
up, we added a new route to the HT'TP server through the mobile interface by
modifying the device’s routing table.

Next, two download threads are launched, one for each interface. A socket in
each thread will bind the IP address of its respective interface. Any communica-
tion through that socket will go through that specific interface. The download
threads share a single chunk list. The threads will iteratively consume chunks
from the list in the order specified by the proposed link aggregation mechanism.
When a chunk is downloaded, it is queued for assembly. For file downloading,
the assembler thread polls downloaded chunks from the queue and writes them
to a file in the correct order. For video streaming, Android’s default video view
connects over HT'TP to a local proxy running on the device. The proxy fetches
the video headers and feeds them to the video view. The download over both
threads then proceeds normally. In this case, however, the assembler writes the
downloaded chunks to the local proxy that will tunnel them to the video view
rather than writing them into a file.

A main performance setback is HTTP request/response RTT overhead as-
sociated with the frequent per-chunk HTTP requests issued by the download
threads. A 100 MB file would need around 390 chunks to fully download using
a chunk size of 512 KB. Suppose the link latency is around 100 ms, then the
total overhead would be around 100 x 390 = 39000 ms or 39 seconds. This
overhead will notably diminish the benefits of link aggregation over two inter-
faces. We addressed this problem using the following implementation: rather
than maintaining a single HTTP connection with the server, each download
thread maintains two concurrent and persistent HTTP connections. At any
time, the thread would be downloading a certain chunk through one “main”
connection and ready to issue GET requests over the second “supplementary”
connection. The scheduler, already monitoring the download progress of each
interface, would assign the next chunk to the interface right before it finishes
downloading the current chunk. When the chunk is received by the download
thread, its GET request is issued over the supplementary connection but the
body of the response is not read until the current chunk finishes downloading.

5.2. Emulator Implementation for Mobile Devices with Multiple Interfaces

To evaluate the performance of the proposed multiple-interfaces link aggre-
gation algorithms, we implemented an emulator that will mimic the behavior
of a mobile device with multiple wireless interfaces. The idea is to have the
content hosted, locally, on the same machine running the emulator in order to

18



485

490

495

500

505

510

515

520

525

530

exploit the high bandwidth provided by the local loop-back interface. Through
this, we gain access to a network link between the emulator and the web server
that is bounded only by the hard-disk’s read speed.

The emulator is supplied as input a configuration file describing each of the
7virtual” interfaces. The description includes the interface name in addition
to the bit rate profile over time. Given the file or video HTTP URL (hosted
locally), the emulator proceeds with the download using the scheduling mech-
anisms presented in Section for file downloading and in Section for
video streaming. Just like the Android implementation version, the emulator
would launch a download thread for each of the K interfaces, and the scheduler
would again feed the chunks to the download thread according to the schedul-
ing algorithm in effect. Moreover, an assembler thread would also be running
in parallel to receive the downloaded chunks from the download threads and
reconstruct the data stream. The only difference here is that the download rate
of each download thread (read rate from the network socket), is intentionally
throttled to mimic the download behavior of a real wireless interface as defined
in the configuration file.

After each network-read operation, each download thread will update its own
(throttled) bit rate. The emulator supports two modes for bit rate emulation:
arbitrary or measured. In arbitrary mode, a download thread bound to a virtual
interface k will always update its rate using an arbitrary value picked from the
range [avg, —devy, avg, +devy] where avg,, and devy, are the average bit rate and
deviation around it for interface k, respectively, as supplied in the configuration
file. On the other hand, in measured mode, each interface will update its bit
rate from a sequential list of actual measured instantaneous bit rates; these
have been obtained by running typical download sessions on a smartphone and
recording the instantaneous bit rate over time.

The emulator facilitates the evaluation of the proposed link aggregation algo-
rithms in a controlled environment, which is necessary for reliable comparisons
between different design options. We have validated the accuracy of our emu-
lator design by comparing its performance against the Android based testbed
implementation using experiments with two wireless interfaces. To this end, we
measure the download time for a number of files of varying lengths downloaded
using each interface alone, and downloaded via both interfaces jointly using the
algorithms described in Section [ with a fixed chunk size of 128 KB. During
each download session, the instantaneous bit rate values of each interface are
continuously recorded. We then ran the same experiments on the emulator using
the recorded bit rate values from the testbed runs. We summarize the results
in Table [l

It can be seen that the download times obtained using the emulator are very
close to the download times recorded using the testbed on the device for all cases,
with error percentage less than 0.5%. We can also note that the aggregated bit
rate measured when downloading over both interfaces is nearly equal to the sum
of the bit rates of the individual interfaces; this clearly demonstrates the effec-
tiveness of the proposed link aggregation algorithms and their implementation
under realistic operational conditions.
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Table 1: Download time on the device versus the emulator.

File size (MB) | Interface(s) Average rate (KB/s) | Device time (s) | Emulator time (s) | Error (%)
WiFi 351.9 149 148 0.006

50 Cellular 1191.6 44 40 0.09
WiFi 4 Cellular | 1417.0 37 35 0.05
WiFi 351.9 298 296 0.006

100 Cellular 1018.0 103 103 0
WiFi 4 Cellular | 1476.9 71 70 0.014
WiFi 353.7 593 579 0.023

200 Cellular 1048.6 200 195 0.025
WiFi + Cellular | 1344.3 156 154 0.012
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6. Experimental Results and Analysis

We ran extensive experiments and recorded various performance metrics,
that include network-related metrics such as download bit rates (WiFi alone,
cellular alone, and combined WiFi/3G) in addition to user-centric metrics such
as download time, download effective rate, startup delay, and buffer underflow
time, as applicable. For results with two wireless interfaces, we used our testbed
implementation on an Android smartphone; for results with multiple wireless
interfaces, we used our emulator implementation with measured bit rate traces.

There are a number of software solutions that download data over multi-
threaded applications in order to boost the download speed. Our proposed
mechanisms can certainly benefit from those solutions and lead to yet better
performance. Multi-threaded solutions, however, are always constrained by the
available bandwidth of the current wireless interface that is being used by the
application and not benefiting from co-existing wireless technologies supported
by the same device. We consider DAP [34] and ADM [35] as two example
software solutions for mulit-threaded file downloading and compare their per-
formance as opposed to benefiting from multiple interfaces. In Table[2] we show
the average download time of a 512 MB file over three consecutive downloads
when using each of the example applications and our approach (denoted as M-
HetNet). We downloaded a 512 MB file using 15 Mbps WiFi link using one,
two, four, and eight threads in ADM and DAP. We compare the resulting down-
load time to using one, two, four, and eight interfaces if available. Despite the
fact that additional interfaces have considerably lower bit rates, adding more
interfaces lead to better results in terms of reducing the total download time.
The multi-threaded software solutions achieved slight improvements when the
number of threads increased from two to four. No further improvements are
recorded upon increasing the number of threads to eight. In the case of multi-
ple interfaces, significant improvements are attained with the addition of new
interfaces even much slower interfaces. With eight interfaces, the download time
dropped to around 100 seconds while both of DAP and ADM had a download
time of around 300 seconds each.
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Table 2: Download time in seconds of 512 MB file using ADM, DAP and M-HetNet.

threads/interfacés 2 4 8
ADM 411 305 301 306
DAP 309 314 304 300
M-HetNet 312 208 135 102

| Bit rate of |1 =15 | L =751 =75,1,=5|1s=5,1 = |
added in- 31 =3, I3
terface(s) =15
(Mbps)

6.1. Results for File Downloading with Two Interfaces

Fig. [8(a) presents measurement results for the download time in seconds
for downloading a file from a remote web server as a function of the file size;
the experiment was conducted by downloading each file over cellular 3G alone,
over WiFi alone, and with WiFi/3G link aggregation (denoted as combined
in the figure). Fig. b) presents the instantaneous bit rate variation over a
selected 60 s download duration for the WiFi interface alone, 3G interface alone,
and aggregated WiFi/3G. These results demonstrate the effectiveness of the
proposed link aggregation mechanism with significant performance gains, e.g.,
for a file size of 50 MB, the download time is 150 s over 3G alone, 125 s over
WiF1i alone, and reduced to 60 s with WiFi/cellular link aggregation.
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Figure 8: (a) Total file download time measurements with 3G cellular, WiFi, and combined
WiFi/cellular link aggregation as a function of the file size. Chunk size is set to 1024 KB. (b)
Measured instantaneous bit rates in KB/s during download duration of 60 s each with WiFi
interface alone, 3G interface alone, and WiFi/3G link aggregation.

We would like to emphasize the following observations on the performance
of the proposed algorithm: i. it is fully device centric as gains are achieved
with only a mobile application running at the device level, and without any link
quality estimation, server modification, or network level support; ii. it is self
adaptive with the individual bit rate variations over time; iii. the WiFi/cellular
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Figure 9: (a) Measured video startup delay while streaming the three video files over WiFi
alone, 3G alone, and combined WiFi/3G (link aggregation) (b) Measured video underflow
delay while streaming the three video files over WiFi alone, 3G alone, and combined WiFi/3G
(link aggregation).

combined bit rate is not simply equal to the sum of the bit rates on the individual
interfaces due to variations from lower layer protocols that are transparent to
our implementation; iv. the obtained per-device gains map to direct network
level gains due to the achieved traffic ofloading and load balancing between the
cellular and WiFi networks.

6.2. Results for Video Streaming with Two Interfaces

In this section, we present experimental performance results for video stream-
ing with WiFi/cellular link aggregation. We experiment with three video files
encoded at different bit rates with different sizes (Video 1: 40 MB, Video 2:
54 MB, Video 3: 67 MB). We collect measurements on the video stratup delay
and buffer underflow. Startup delay represents the buffering time needed be-
fore playback starts while buffer underflow represents the time when the video
player reads from an empty buffer causing the video to stall until more data
arrives. Fig. [0[a) shows the video startup delay untill 5 s of the video content
have been downloaded; after which, the video play back will be initiated. As
expected, the video that is encoded at a higher rate requires more time to fill
5 s into the playback buffer in the device. Fig. |§|(b) shows the total underflow
time for each of the three video files. These results demonstrate the gains of the
proposed WiFi/cellular link aggregation algorithm in enhancing the quality of
experience for video streaming applications; the gains are significant in terms
of both reduction of startup delay and buffer underflow.

6.3. Results for File Downloading with Multiple Interfaces

To analyze the performance of the proposed multi-interface link aggregation
mechanism for file downloading described in Section we downloaded a
100 MB file using up to 10 interfaces and recorded the aggregated bit rate
and total download time. First, we configured the interfaces to use the same
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Figure 10: Throughput and download time for a 100MB file using up to 10 interfaces with
similar bit rates.

instantaneous bit rate logs measured from download sessions over the same
WiFi connection. The average bit rate of the measured connection was around
240 KB/s. As shown in Fig. the aggregated throughput is growing in a
linear fashion with the number of interfaces. Moreover, the download time, as
shown in Fig. is decreasing at a constant rate as we increase the number
of interfaces.

In order to evaluate the applicability of our algorithm to wireless interfaces
with varying bit rates, we measured and logged the instantaneous bit rate of 10
wireless connections with different network quality conditions. The average bit
rate of each measured connection is summarized in Table [3]| Moreover, the bit
rate traces for interfaces I; and I> are shown, as examples, in Fig. where Iy
is varying more arbitrarily over time compared to I5.

Table 3: Average bit rates of 10 interfaces used in the emulator.

Interface Il .[2 I3 I4 I5 IG I7 Ig Ig

I

Bit rate average (KB/s) | 1018 | 328 | 943 | 1153 | 750 | 240 | 255 | 118 | 78

135

620

We ran a series of experiments, each time adding the next interface in Table[3]
to the download session, while recording the total effective bit rate and download
time. That is, when the experiment requires K interfaces, we use the rate
traces for interfaces Iy, I, ..., I from Table As a benchmark, we compare
our algorithm against the case where the file is divided into equal chunks over
all the interfaces.

Fig. [I2D] shows that the download time using the equal-chunks algorithm
is very unpredictable; the trend of the download time depends on whether we
are adding a faster or slower interface to the available pool of interfaces, since
fast interfaces would not be utilized after fetching their assigned chunks and
would stay idle while waiting for the slower interfaces to finish. Our algorithm
eliminates this problem by allowing the efficient interfaces that become idle
to assist the lagging ones. Optimally, we expect that adding a new interface
to the download session will lower the download time by a percentage that is
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Figure 11: Bit rate traces of interfaces I1 and Is over a given time window.

proportional to its bit rate. More specifically, given a file of length IV bytes and
given K interfaces, the total download time can be estimated as follows:

B N
Z?:l Ry,

where Ry, is the average bit rate in KB/s of interface Ij,. Fig. shows that our
multi-interface link aggregation algorithm for file downloading behaves close-to-
optimal with throughput and download time improving proportional to each
added interface quality. The download time constantly decreased as we added
more interfaces to the session, till the computational and processing overhead
exceeded the bit rate boost provided by the extra interfaces; this overhead is
associated with activities such as managing and monitoring the interfaces, cal-
culating chunk sizes, and executing the implemented link aggregation algorithm.

T(I1, I, ..., I (6)

6.4. Results for Video Streaming with Multiple Interfaces

The multi-interface link aggregation algorithm for video streaming requires
link quality estimation. Whenever an interface is idle, the scheduler uses logged
performance metrics to calculate a bit rate estimate for the next time slot. Using
the estimated bit rate, the scheduler then calculates the size of the chunk that
must be assigned to the interface based on a fixed time slot duration At. We
calculate the bit rate estimate by dividing the size of the total data streamed
over the total time elapsed since the beginning of the streaming session over the
given interface; this value is updated at the end of every chunk download.

For our video streaming experiments, we chose two video files trans-coded
from the same video source but at two different resolutions: 2K (2560x1440) and
4K (3840x2160). The parameters of the two video files are shown in Table [4]
The video startup delay is defined as the time needed till a given duration (initial
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Figure 12: Effective bitrate and download time for a 100MB file using up to 10 interfaces with
different bitrates

Table 4: Properties of the video files used for testing.

. . . Video
File Size (MB) | Format | Duration (s) Codec | Resolution | Bit rate (kbps) | Frame rate (fps)
2k.mp4 (2K) | 100 MP4 96 H264 2560x1440 8722 29
4k.mp4 (4K) | 225 MP4 96 H264 3840x2160 19474 29

645

650

655

660

Table 5: Average bitrates of the 5 interfaces

Interface
Bitrate (KB/s)

I
535

I
231

I3
118

14
85

I5
64

buffering) of the video content has been downloaded to the device, after which,
the video playing will be initiated. The underflow time corresponds to the total
time the video player is reading from an empty buffer, which is an indicator
of video stalling events and, thus, an indicator of end-user perceived quality of
experience [36].

To better capture the performance when slower interfaces are available, we
run experiments using five interfaces with average bit rates given in Table |5| in
addition to experiments with the higher quality 10 interfaces from Table [3| In
addition, we vary a wide range of parameters to capture their impact on perfor-
mance; this provided useful insights on the potential gains of link aggregation
in heterogeneous wireless networks.

Fig. [13] and Fig. [14] present the startup delay in msec versus the number of
jointly utilized wireless interfaces for different design parameters. Results show
that startup delay can be high for high quality video with relatively long initial
buffering requirement (see Fig. a)), whereas it decreases significantly for
video content with lower resolution (see Fig. [L3|(b)). In addition, the bit rate
quality characteristics of the available wireless interfaces impact performance
notably as shown in the comparisons between three sets of interface parameters
in Fig. As interface quality improves, startup delay significantly reduces

25




665

670

20000 20000

B buffer=1s @ Video 4K
16000 buffer=5s 16000 B Video 2K
E E
% 12000 7 % 12000 7
E 7 E -
3 % 7 s D ow
g 8000 g % g 8000 % % %
5 / .k e
@ % / @ / / %
% % B B
4000 Z é 4000 Z é é
0 % _ . A 1R U
1 2 3 4 5 1 2 3 4 5
Number of interfaces Number of interfaces
(a) (b)
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Figure 14: (a) Startup delay versus number of interfaces with different interface bit rates
(Video: 4K; Initial buffering: 5 sec; At = 2 sec; Interfaces 1: from Table [5f Interfaces 2: All
same trace with average 251 KB/s). (b) Startup delay versus number of interfaces (Video:
4K; Initial buffering: 5 sec; At = 2 sec; Interfaces: from Table.

leading to improved quality of experience.

Both figures also demonstrate the gains of utilizing multiple interfaces on
performance; the more interfaces, the better, however, there is a limit after
which steady state performance is achieved. This indicates that in practice,
utilizing a few interfaces can lead to most of the possible gain. In case there are
more interfaces available, then one can implement interface selection intelligence
to choose the best subset while balancing tradeoff between performance gains
and complexity or cost implications.

Fig.|15|and Fig.[16|present the obtained results for the video buffer underflow
parameters in seconds as a function of the number of jointly utilized wireless
interfaces with the proposed link aggregation algorithm. Similar performance
trends as for the startup delay results can be observed. For example, for the
4K video, the total buffer underflow is reduced from around 280 sec to around
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100 sec when using four interfaces instead of one (see Fig. a)), and it goes
down to around 5 sec for the 2K video (see Fig. [I5(b)); similar performance
improvement is also achieved for the 4K video when three high rate interfaces
are used as shown in Fig. [I6(b). Finally, comparing Fig. [I5(a) to Fig. [16[a),
one can quantify the impact of the slot duration (At) on performance, where it
is shown that for this case At = 2 sec achieves better results than At =5 sec.
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Figure 15: (a) Total buffer underflow time versus number of interfaces (Video: 4K; Initial

buffering: 5 sec; At = 2 sec; Interfaces: from Table. (b) Total buffer underflow time versus
number of interfaces (Video: 2K; Initial buffering: 5 sec; At = 2 sec; Interfaces: from Table|5).
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Figure 16: (a) Total buffer underflow time versus number of interfaces (Video: 4K; Initial
buffering: 5 sec; At = 5 sec; Interfaces: from Table. (b) Total buffer underflow time versus
number of interfaces (Video: 4K; Initial buffering: 5 sec; At = 2 sec; Interfaces: from Table(3).

The total underflow time is an accumulation of all the pause durations that
took place during the complete video streaming session. In order to analyze
the pause durations in more detail, we present in Fig. the probability that
the pause duration is bigger than the value given on the x-axis in seconds;
this corresponds to the complementary cumulative distribution function of the
pause duration. In this figure, we also compare the performance of our proposed
algorithm to the following streaming strategies: i. one interface and, thus, no
link aggregation; ii. link aggregation with fixed video chunk size equal to 256 KB;
iii. link aggregation with fixed video chunk size equal to 1024 KB. These results
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demonstrate the superiority of the device-centric dynamic algorithm proposed
in this work for video streaming applications; e.g., the probability of a pause
duration above 3 sec is 0 for our algorithm, compared to 77% for using one
interface and 29% for fixed chunks with size 1024 KB.

100
B One interface
90 Dynamic chunks
80 i Fixed - 256KB
@ Fixed - 1024KB
= 70
S
:'? 60
S 50
S 40
[=]
P =
a- 30
20
10
0 2

0.5 1 1.5 2 25 3 35 4 45 5
Pause duration (s)

Figure 17: Probability of pause duration more than x seconds using the proposed algorithm
(dynamic chunks) versus no link aggregation (one interface) and link aggregation with fixed
chunk sizes (Video: 2K; Initial buffering: 5 sec; At = 2 sec; Interfaces: from Table.

7. Conclusions

In this work, we presented the design and implementation of optimized device
centric link aggregation mechanisms for mobile devices with multiple wireless
interfaces. The proposed mechanisms are customized to two different classes
of mobile applications, elastic file downloading and real-time video streaming.
Moreover, they apply to scenarios with two or more wireless interfaces at the mo-
bile device, reflecting emerging use cases with high end smartphones/tablets or
clusters of devices cooperating to download a given content. The novelty of the
proposed mechanisms is the seamless operation without the need for centralized
link quality estimation, networking protocol stack changes, proxy server imple-
mentation, or support from the cellular base stations or WiF1i access points. We
presented detailed performance evaluation using a developed Android mobile
application for use cases with two interfaces (WiFi/cellular link aggregation)
and using an accurate emulator for use cases with more than two interfaces.
The results for both file downloading and video streaming demonstrate the ef-
fectiveness of the proposed mechanisms in terms of bit rate enhancement, delay
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reduction, and quality of service improvement. Moreover, they demonstrate the
feasibility of realizing these gains in state-of-the-art smartphones under realistic
operational device constraints and network conditions.
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