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Abstract 
Scheduling of final exam usually results in conflicts and 
inconvenience. Conflicts occur when simultaneous exams 
are scheduled for the same student, and inconvenience to a 
student refers to consecutive exams or more than two 
exams on the same day. A good exam schedule should aim 
to minimize conflicts and the two inconvenience factors 
based on weight that are user-assigned to these three 
factors and subject to some constraints such as the number 
and capacities of classrooms. Scheduling final exams for 
large numbers of courses and students in universities is an 
intractable problem. In this work, we decompose the 
problem into three phases and propose simulated 
annealing algorithms for these phases. Hence, we refer to 
our solution methods as 3-phase simulated annealing 
(3PSA). We empirically compare 3PSA with a 4-phase 
clustering-based heuristic algorithm using realistic data. 
Our experimental results show that 3PSA produces good 
exam schedules, which are better than those of the 
clustering heuristic procedure. 
 
Keywords 
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INTRODUCTION 
Manual scheduling of final exams for large numbers of 
courses and students by a university’s Registrar’s Office 
invariably results in conflicts or inconvenience in the exam 
schedule of many students. Conflicts occur where 
simultaneous exams are scheduled for the same student, 
and inconvenience to a student refers to consecutive exams 
or more than two exams on the same day.  A good exam 
schedule would aim to minimize conflicts and the two 
inconvenience factors based on weights that are user-
assigned to these three factors. Such a schedule may also be 
subject to constraints, such as predefined number of days 
and limited-capacity classrooms. 
 
Several algorithms for solving the exam scheduling 
problem have been developed. These algorithms have been 
surveyed in [3,4,7]. Burke and Petrovic [3] classify existing 
algorithms into four types. One type is sequential methods 
that order exams and then assign them sequentially into 
valid time periods. Ordering is done by heuristics based on 
an estimation of how difficult it is to schedule the exams. 
Examples of sequential methods can be found in [1,6]. The 

second type of algorithms is cluster methods in which the 
set of exams is divided into groups/clusters based on hard 
constraints and then the clusters are assigned to time 
periods to satisfy soft constraints. Examples of cluster 
methods can be found in [5,12,14]. The third type of 
algorithms is contraint-based. In these algorithms, the 
problem is modelled as a set of variables (exams) to which 
resources (periods and rooms) have to be assigned to 
satisfy a number of constraints. Examples of these 
algorithms can be found in [2,8]. The fourth type of 
algorithms is meta-heuristic methods, which are based on 
genetic algorithms, simulated annealing, tabu search, and 
hybrid approaches. Examples of these algorithms can be 
found in [9,10,11,15,16].  
 
Previous work on exam scheduling has been based on a 
variety of problem models and solution approaches. We are 
interested in the solution approaches that are based on 
decomposing the problem into sub-problems or phases. In 
this work, we decompose the exam scheduling problem 
into three phases. In each phase, we address one or more 
constaints. Then, we solve each by a simulated annealing 
algorithm. Hence, our proposed method is referred to as 3-
phase simulated annealing (3PSA) method. We empirically 
compare 3PSA with an existing four-phase method that 
uses heuristics in each phase. Our results, which are based 
on realistic data, show that 3PSA produce better results in 
terms of the number of exam conflicts and inconvenient 
exams. 
 
The rest of the paper is organized as follows. Section 2 
presents the problem formulation used and a brief 
background on simulated annealing. Section 3 describes the 
proposed 3PSA algorithms.  Section 4 presents the 
empirical results. Section 5 contains our conclusions. 
 
BACKGROUND 
 
Exam Scheduling Problem 
Given that A exams are to be taken by students over B 
days, where E exam periods can be done per day, the exam 
scheduling problem consists of assigning A exams to Π 
(=B*E) exam periods, within specified classrooms. The 
objective is to minimize the conflict and the unfairness 
factors, which are: (i) The number of students having 
simultaneous exams, (ii) The number of students having 
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consecutive exams, and (iii) The number of students having 
two or more exams on the same day.  
 
In this work, we assume the following conditions and 
constraints: 

(i) The user should be provided with the flexibility 
of assigning weights to the three conflict and 
unfairness factors. 
(ii) A limited number of exam periods, Π, is 
predefined. 
(iii) A limited predefined number of classrooms, 
R, are available for exams. 
(iv) Room capacities (Ψ1, Ψ2, …, ΨR) are taken 
into consideration in assigning exams to rooms 
(second feasibility condition). Also, more than one 
exam can be assigned to the same room at the 
same time if they fit. 
(v) The last period of one day is considered to be 
consecutive to the first period of the next day. 

 
Scheduling problems can be represented by graphs. Let G 
(VG, EG) be a graph in which: vertex vi ∈ VG represents an 
exam to be scheduled and |VG| = A; vertex weight wi 
represents the number of students taking exam vi; edge e ∈ 
EG joining two vertices vi and vj represents the existence 
of students taking both exams vi and vj; weight of edge e, 
wij, represents the number of students taking both exams vi 
and vj.   
 
The exam scheduling problem can be expressed as a 
modified weighted-graph coloring problem, where we color 
the vertices of a graph using a specified maximum number 
of colors (exam periods), Π, such that the numbers of 
conflicting and unfair exams are minimized and the 
constraints (listed above) are satisfied. A solution to the 
exam-scheduling problem is henceforth denoted as the 
configuration C. Note that each color corresponds to an 
exam period and all vertices having the same color 
represent the exams that are assigned to the same period. 
 
Let c(v) be the color of vertex v, and  ξ = { c1,c2, . . .,cπ } 
be the set of ordered, available colors; that is, |ξ| = Π = 
maximum number of available colors, and (ci – ci-1) = 1 for 
i=2,3,…, Π. The conflicting and unfair exams are given by 
the following factors: 
(i) SSE, the total number of students having conflicting 

simultaneous exams. That is, SSE  = ∑wij  for  all i and 
j such that c(i) =c(j) 

(ii) SCE, the total number of students having consecutive 
exams.  That is, SCE  = ∑wij for all i and j such that 
|c(i)- c(j)| = 1. 

(iii) SME, the total number of students having two or more 
exams per day. That is, SME  = ∑wij for all i and j such 
that c(i) and c(j) refer to exam periods on the same day. 

(iv) ρik = 1 if the capacity of room i is exceeded in period k, 
i.e. if room i was assigned a larger number of students 
than Ψ i (capacity of room i); otherwise, it is equal to 

zero.      Hence, the inner summation in 

∑ ∑
Π≤≤ ≤≤k Ri

ik
1 1

ρ gives the total number of rooms 

violated in a period, whereas the outer summation 
gives the total number of rooms violated in all periods. 

 
Simulated Annealing 
Simulated annealing is based on ideas from physics and is 
analogous to the physical annealing of a solid [13]. To 
coerce some material into a low-energy state, it is heated 
and then cooled very slowly, allowing it to come to thermal 
equilibrium at each temperature. At each temperature in the 
cooling schedule, the Metropolis algorithm simulates the 
behavior of the system. 
 
The simulated annealing algorithm (SA) simulates the 
natural phenomenon by a search (perturbations) process in 
the solution space (energy landscape) optimizing some 
objective function, OF (energy). It starts with some initial 
solution at a high (artificial) temperature and then reduces 
the temperature gradually to a freezing point. Figure 1 
gives an outline of an SA algorithm 
 

Initial random configuration 
Determine initial temperature T(0); 
Determine freezing temperature Tf ; 
while (T(i) > Tf and not converged) do 
          repeat N times 

            perturb(); 
            if (∆OF ≤ 0 ) then 

                        update()        /* accept */ 
            else  

                        if (random() < e- ∆OF / T(i)) then  
                          update()        /*accept*/ 

                     else 
                              reject_purturbation(); 
 
     save_best_sofar(); 

         T(i) = θ * T(i); 
endwhile 
 

Figure 1. Outline of an SA algorithm. 
 

3-PHASE SIMULATED ANNEALING ALGORITHM 
Our phased-solution is based on decomposing the exam 
scheduling problem into three sub-problems or phases. In 
the first phase, the number of simultaneous exams, SSE, is 
minimized. In he second phase, the total sum of 
consecutive exams, SCE, and multiple exams per day, SME, 
are minimized. In the third phase, the objective is to assign 
the exams to the available rooms without exceeding room 
capacities.  
 
In the following subsections, we propose using simulated 
annealing (SA) algorithms for solving the three sub-
problems in the three phases. Hence, we refer to our 

  



approach as three-phase simulated annealing (3PSA) 
solution approach. 
 
Phase-1: Minimizing SSE  
In Phase-1, we assign the A exams to Π periods with the 
only objective of minimizing the number of simultaneous 
exams, SSE.  The input to this phase is the graph G with A 
vertices; each vertex represents an exam and each edge has 
a weight equal to the number of students enrolled in both 
adjacent exams.  We propose a simulated annealing 
algorithm SA-1 that aims to solve the Phase-1 sub-problem. 
 
The system to be coerced into a low-energy state in this 
phase is represented by the configuration C, which is 
implemented as an array of A elements.  Each element is 
given by a value c(i), which represents the period (color) to 
which an exam i is assigned.  The color-value of c(i) is 
some cj ∈ ξ.  The initial configuration is randomly 
generated.  That is, the color-value assigned to the A array 
elements are randomly selected from the set ξ.  The system 
energy in this phase is given by the objective function OF1 
= SSE.  In the annealing process, the configuration-system, 
C, goes through changes until it reaches a minimal or near-
minimal value for SSE at freezing temperature.  These 
changes take place over many iterations, in an SA 
algorithm, which are shown in Figure 1 in the outer while-
loop and the inner repeat-loop.  The outer loop determines 
the cooling schedule of the annealing process and the inner 
loop implements the major step in an SA algorithm, which 
is the Metropolis step. 
 
An iteration of the Metropolis step consists of a 
perturbation operation, an accept/reject criterion, and a 
thermal equilibrium condition.  Perturbation to the 
configuration C is done by randomly selecting an array 
element (with color ci) and assigning it another color cj 
(randomly-selected from ξ).  The acceptance criterion 
checks the change in OF1 due to the perturbation.  If the 
change decreases OF1 (down-hill move), the perturbation is 
accepted and C is updated.  However, if the perturbation 
causes OF1 to increase (up-hill move), it is accepted only 
with probability e- ∆OF1 / T(i) , where T(i) is the respective 
temperature value.  The advantage of this procedure is that 
the down-hill moves are always accepted and hence the 
objective function tends to be minimized.  Further, the 
controlled up-hill moves also prevent the evolving solution 
(configuration) from being prematurely trapped in a bad 
local minimum.  However, at very low (near-freezing) 
temperature values, T(i), up-hill moves are  no longer 
accepted.  This Metropolis step is repeated N = Π*A times 
at every temperature after which thermal equilibrium is 
considered to be reached. 
 
As for the cooling schedule, the initial temperature, T(0), is 
set to a value that yields a high initial acceptance 
probability of 0.93 for up-hill moves applied to the initial 
configuration.  The freezing temperature, Tf, is set to a 

value that makes this probability extremely small (2-30), so 
that only down-hill moves are allowed at this point.  The 
cooling schedule used in this work is simply given by 
T(i+1) = θ*T(i), with θ = 0.95.  The algorithm terminates 
when the freezing point is reached or when the best-so-far 
candidate solution does not improve for a number of 
temperature values, say 20, in the cold part of the annealing 
schedule. 
 
Phase-2: Minimizing SCE and SME 
The input of Phase-2 is the output of Phase-1, which is a 
graph of Π vertices: each vertex represents a block of 
exams that must be scheduled simultaneously (in the same 
period); each edge between a pair of vertices has a weight 
equal to the number of students participating in the exams 
of the adjacent blocks (corresponding to the pair of 
vertices).  In Phase-1, we color the A exams with Π colors.  
That is, we end up scheduling the A exams to Π logical 
periods.  In Phase-2, we aim to map the Π logical periods 
into Π actual periods, such that both SCE and SME are 
minimized.  That is, we aim to renumber / rearrange the Π 
blocks of exams so that they end up in suitable, actual 
periods.  We propose SA-2 algorithm for the Phase-2 sub-
problem. 
 
The configuration considered by SA-2 is an array of Π 
elements, where each element refers to the period to which 
a whole block of exams is assigned. SA-2 includes similar 
steps to those of SA-1. But the objective function to be 
minimized is the weighted sum OF2 = φ1 SCE + φ2 SME. In 
this work, we assume that minimizing consecutive exams 
and minimizing multiple exams per day are equally 
important (φ1=φ2=1). The perturbation operation is done by 
swapping randomly selected blocks of exams between 
periods. In SA-2, the Metropolis step is repeated N = Π2 
times at every temperature. Note that SA-2 does not change 
the exam blocks produced by SA-1. The output of SA-2 is a 
schedule of exams to actual periods (and days). 
 
Phase-3: Assigning Exams to Rooms 
The input to Phase-3 is an exam schedule with A elements, 
each is assigned to a specific exam period and is required to 
be assigned to a classroom. In this phase, we use SA-3 for 
assigning the exams in each period to the available rooms, 
such that no room exceeds its capacity. 
 
SA-3 is applied Π times to the exams in each of the Π 
periods. Every time, the configuration considered by SA-3 
is an array of records. Each record includes: an exam, the 
period to which the exam is assigned, and the classroom. In 
this array, the periods are the same for all exams and the 
rooms are to be determined in this phase. The size of the 
array is equal to the number of exams assigned in Phase-1 
to the particular period. The initial configuration is 
generated by randomly assigning rooms to exams and the 

  



objective  function is OF3 = .
1 1

∑ ∑
Π

= =k

R

i
ikρ  A  perturbation 

is done by randomly reassigning a room to a randomly 
selected exam/element in the array of records. At each 
temperature, perturbations are repeated (A*R/Π) times. 
Note that SA-3 does not alter the exam-period that has been 
assigned by SA-1 and SA-2. The outputs of the Π runs of 
SA-3 are then merged into an array of A records, each 
record includes: an exam, the assigned period, and the 
assigned room. This array represents the solution found by 
3PSA. 
 
EMPIRICAL RESULTS 
In this section, we present the results of 3PSA and compare 
them with those of manual scheduling and an existing four-
phase heuristic algorithm, referred to as FESP [14]. These 
algorithms are applied to real data of university exams 
obtained from five semesters. These data provide five 
subject problem instances, SP1-SP5, illustrated in Table 1. 
This table shows the number of exams (A), number of 
available classrooms (R), the number of students, and the 
total number of student enrolment for all exams-courses. 
 
The exam schedules produced by the algorithms are 
evaluated in terms of the five metrics: number of students 
having simultaneous exams (SSE), number of students 
having consecutive exams (SCE), number of students 
having two or more exams per day (SME), total number of 
rooms assigned with more students than their capacities 
over all exam periods, and execution time. We first apply 
the algorithms to the five subjects problems with a typical 
number of exam periods (at the university where data is 
obtained), namely Π = 32 periods for B = 8 days and E = 4 
periods per day. Then, we consider the results of the 
algorithms for tighter and more relaxed number of exam 
periods, specifically for Π = 20, 24, 28, 36, 40. All 
experiments were done on a PC with a Pentium III, 850 
MHz, and 512 MB RAM. 
 
Tables 2–6 give the results of the 3PSA and FESP and of 
manual scheduling for the five subject problems SP1–SP5. 
These results apply for a typical number of 32 exam 
periods (over 8 days). Tables 7–11 give the results of the 
four algorithms for different exam periods 20 ≤ Π ≤ 40 
(and different exam days). Table 12 gives the range of 

execution times of the implementation of the algorithms 
over the five problems. From these results, we infer the 
following findings: 

(a) 3PSA produces ‘good’ exam schedules. This 
finding is based on the low values obtained for 
SSE, SCE, and SME relative to the total number of 
students. 3PSA also manages to fit students in the 
available rooms except for SP2, SP4, and SP5 
where Π = 20 and 24. Further, 3PSA allows a 
reduction in the number of exam days while 
keeping the values of the first three metrics 
reasonable using the same number of rooms. In 
our examples, 3PSA allows a reduction of at least 
one day (i.e., from 32 to 28 periods).  

(b) 3PSA produces better solutions than FESP, and 
manual scheduling. This is true for all values 
recorded in Tables 2–6 except for SME of SP3. 
This is also true for of most the values recorded in 
Tables 7-11. In fact, the sum of SCE and SME  
values produced by 3PSA is smaller than that of 
FESP for all cases. Further, a shortcoming of 
FESP stands out in Table 11, where it fails to 
produce feasible solutions that fit the available 
classrooms for all six values of exam periods. 

(c) Table 12 shows that 3PSA and FESP are 
comparable in terms of execution times.  

(d) As expected, both algorithms, 3PSA and FESP, 
produce better results as Π increases and worse 
results as Π decreases. 

 
CONCLUSION 
We have presented simulated annealing algorithms for 
finding exam schedules after decomposing the problem into 
three phases. The resulting method is referred to as 3PSA. 
We have empirically evaluated 3PSA using realistic 
university data for five semesters. The experimental results 
demonstrate that 3PSA produces good exam schedules and 
allows a reduction in the number of exam days/periods and 
yet the number of students with unfair exam schedules is 
still reasonable. 
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Table 1.   Subject Problems 
Subject Problem A R # of Students # of Student 

Enrolments 

SP1 336 21 2456 9550 
SP2 357 21 2489 9735 
SP3 359 21 2512 10836 
SP4 426 21 3063 12275 
SP5 477 21 3115 12406 

 

Table 2. Results for Subject Problem SP1, Π = 32 

 SSE SCE SME 
# Rooms exceeding 

capacity 

3PSA 0 127 273 0 

FESP 0 221 286 0 

Manual 8 267 329 0 

 

Table 3. Results for Subject Problem SP2, Π = 32 

 SSE SCE SME 
# Rooms exceeding 

capacity 

3PSA 0 93 225 0 

FESP 0 183 264 0 

Manual 5 251 310 0 
 

Table 4. Results for Subject Problem SP3, Π = 32 

 SSE SCE SME 
# Rooms exceeding 

capacity 

3PSA 0 41 101 0 
FESP 0 67 98 0 

Manual 4 115 146 0 
 

Table 5. Results for Subject Problem SP4, Π = 32 

 SSE SCE SME 
# Rooms exceeding 

capacity 

3PSA 0 96 190 0 
FESP 0 242 368 0 

Manual 12 283 396 0 

 

  



Table 6. Results for Subject Problem SP5, Π = 32 

 SSE SCE SME 
# Rooms exceeding 

capacity 

3PSA 0 63 137 0 
FESP 0 100 157 2 

Manual 9 154 231 0 

 

Table 7. Results for subject problem SP1, 20 ≤ Π ≤ 40 
  20 24 28 32 36 40 

SSE 3PSA 7 2 0 0 0 0 

FESP 41 5 2 0 0 0 
SCE 

 
3PSA 282 219 149 127 89 79 

FESP 368 300 241 221 138 133 
SME 

 
3PSA 568 422 337 273 229 184 

FESP 577 466 374 286 221 181 
#Rooms exceeding 

capacity 
3PSA 0 0 0 0 0 0 

FESP 3 2 0 0 0 0 

 

Table 8. Results for subject problem SP2, 20 ≤ Π ≤ 40 
  20 24 28 32 36 40 

SSE 
 
 

3PSA 2 0 0 0 0 0 

FESP 22 1 1 0 0 0 
 

SCE 3PSA 240 170 118 93 72 55 

FESP 332 264 212 183 165 97 
 

SME 
3PSA 510 372 297 225 196 160 
FESP 526 422 344 264 216 168 

#Rooms exceeding 
capacity 

3PSA 3 1 0 0 0 0 

FESP 4 2 1 0 0 0 

 

  



Table 9. Results for subject problem SP3, 20 ≤ Π ≤ 40 
  20 24 28 32 36 40 

SSE 
3PSA 1 0 0 0 0 0 
FESP 5 1 0 0 0 0 

 
SCE 

3PSA 105 74 52 41 32 23 

FESP 136 106 77 67 54 49 
 

SME 
3PSA 219 169 122 101 78 61 

FESP 216 165 117 98 71 69 
#Rooms exceeding 

capacity 
3PSA 0 0 0 0 0 0 

FESP 2 0 0 0 0 0 

 
Table 10. Results for subject problem SP4, 20≤ Π ≤ 40 

  20 24 28 32 36 40 

SSE 3PSA 4 1 0 0 0 0 
FESP 32 8 3 0 0 0 

 
SCE 

3PSA 191 137 126 96 59 50 
FESP 431 304 250 242 162 152 

 
SME 

3PSA 395 283 270 190 171 125 

FESP 688 541 379 368 277 226 
#Rooms exceeding 

capacity 
3PSA 6 3 0 0 0 0 

FESP 7 2 1 0 0 0 
 
 

Table 11. Results for subject problem SP5, 20 ≤ Π ≤ 40 
  20 24 28 32 36 40 

SSE 3PSA 2 0 0 0 0 0 
FESP 9 1 0 0 0 0 

 
SCE 

3PSA 147 99 80 63 48 36 
FESP 195 130 118 100 64 51 

 
SME 

3PSA 287 246 185 137 123 110 
FESP 316 227 175 157 116 89 

#Rooms exceeding 
capacity 

3PSA 3 2 0 0 0 0 

FESP 5 2 3 2 2 1 
       

 
       Table 12. Range of execution times, in minutes 

 Execution time 
3PSA 2.6-3.8  

FESP 2.4 – 4.0 
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