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Abstract. Homology modeling is an effective technique in protein structure
prediction (PSP). However this technique suffers from poor initial target-
template alignments. To improve homology based PSP, we propose a scatter
search (SS) metaheuristic algorithm. SS is an evolutionary approach that is
based on a population of candidate solutions. These candidates undergo evo-
lutionary operations that combine search intensification and diversification over
a number of iterations. The metaheuristic optimizes the initial poor alignments
and uses fitness functions. We assess our algorithm on a number of proteins
whose structures are present in the Protein Data Bank and which have been used
in previous literature. Results obtained by our SS algorithm are compared with
other approaches. The 3D models predicted by our algorithm show improved
root mean standard deviations with respect to the native structures.
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1 Introduction

Proteins are considered to be large biological molecules that are composed of a specific
sequence of amino acids (AA). A protein is distinguished from another by the sequence
of AAs. These sequences of AAs fold and take three dimensional shapes (tertiary
structure) forming complex structures of proteins. The function of a protein is decided
by the structure of the protein and the way it folds after it gets transcribed [1]. Many
diseases in humans result from misfolded proteins; examples are Cystic Fibrosis and
Parkinson’s disease [2].

The protein Structure Prediction (PSP) problem refers to determining the 3D
conformation of proteins, given the initial sequence of AAs. Knowing their structure
allows designing drugs and implementing personalized medicine. Next generation
sequencing technologies have resulted in a huge explosion in genomic data and in the
number of protein sequences. This has led to a growing gap between protein sequences
and the structures discovered so far, thus encouraging the development of faster and
more effective methods. Accurate wet lab methods exist for the PSP. These techniques
are very time consuming and could still be error prone. Therefore, computational
methods for PSP constitute a significant alternative.

Computational determination of a protein’s 3D conformation is an intractable
problem [3]. Hence, heuristic approaches are needed and have been developed to tackle
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this problem. Computational methods could be categorized into three groups. Ab-Initio
methods predict protein structures using only their sequence of AAs, guided by energy
functions [4]. Protein Threading, or fold recognition, assumes a limited number of
distinct protein folds and uses fold libraries to map protein folds to sequences [5].
Homology modeling is highly based on previous knowledge. It determines the structure
of a target protein by using template protein structures [6]. Homology modeling pre-
dicts accurate models, provided that suitable template structures exist for the prediction.
The rationale for this approach is that protein structures are more conserved than their
respective sequences during evolution [7]. Homology protein modeling takes advan-
tage of this fact and aims to predict the structure of a certain target sequence using 3D
structures of known homologous proteins. Whenever the sequence similarity falls
below 25 %, homology modeling suffers from serious misalignments, resulting in poor
comparative models. Three heuristic approaches have been reported for homology
modeling: the Genetic Algorithm (GA) [8], Tabu Search (TS), and Particle Swarm
Optimization (PSO) [9].

In this paper we focus on homology modeling for predicting 3D protein structures.
We use, for the first time, the Scatter Search (SS) metaheuristic to explore the search
space for new and better target-template alignments. SS is used within the framework
of homology modeling by satisfying spatial restraints [10]. Experiments are conducted
using our proposed approach and the results are compared with results from previous
literature.

2SS on Homology Modeling

2.1 Preliminaries

In general, the steps for homology modeling start with a search for appropriate template
(s) (given the target sequence), aligning the target with the discovered templates,
proposing a 3D structure for the target sequence based on this alignment, and finally
evaluating the predicted model’s accuracy. To perform the first step, online search tools
are used to search for templates in databases of known protein structures. Popular
searching tools are BLAST [11] and FASTA [12]. After choosing appropriate template
structures, the next step is to perform pairwise or multiple sequence alignment between
the target and the template(s) [13]. After aligning the sequences, the actual building of
the model is done. One common technique used to build a model is ‘modeling by
satisfying spatial restraints’. Based on the target-template alignment, the latter tech-
nique constrains the possible structure for the target protein based on the restraints
extracted from the template structures taking into account their sequence similarity [6].
Stereochemical restraints are added to the extracted constraints, such as the lengths of
the bonds, their angles and molecular mechanics. Information from the two sources are
combined together into an objective function. The most probable comparative model is
suggested by optimizing this objective function.

The fitness functions used to guide the SS metaheuristic is the DOPE score [14] and
MODELLER [10] is employed to develop 3D models. DOPE stands for Discrete
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Optimized Protein Energy. It aims to obtain a global optimum value of a scoring
system, which would be a direct indication of a native structure for that particular
protein sequence. This is achieved through using Joint Probability Density Function of
the positions, in 3D space, for all the atoms present in the protein molecule. Details are
found in [14].

MODELLER is an automated comparative modeling tool for protein structure
prediction, whose aim is to find the most likely 3D conformation for a given target
sequence of amino acids. This process is initiated through the alignment of the target
sequence with at least one or more template sequence(s) of known structures. The 3D
comparative model of a sequence X of unknown structure is predicted by comparing it
with structure(s) of one or more close homologues. If there are more than one template
structure, then these structures are first compared with each other and spatial features
get extracted from them. After that, the extracted features are sent to the target
sequence, and hence a group of spatial restraints about the structure to-be- predicted is
obtained. The final predicted 3D model is optimized by maximizing the spatial restraint
satisfaction as much as possible. Details are found in [10].

Scatter Search (SS) is a population based evolutionary search strategy and has been
adapted for solving a number of intractable optimization problems [15]. Starting with
an initial random or controlled-random population, SS maintains a small population set,
the reference-set; then, the algorithm combines’ solutions and updates the reference-set.
The basic steps representing the template for Scatter Search are the following:

— Diversification-Generation Method: an initial population of candidate solutions are
created completely randomly or with controlled sampling;

— Solution-Improvement-Method;

— Reference-Set-Update-Method: a small group of candidate solutions are maintained
in the ‘reference set’. The best-quality and most-diverse solutions obtained after the
improvement phase get admitted to the reference set, hence allowing SS to combine
both properties of diversification and intensification;

— Subset-generation-method: subsets of candidate solutions of defined sizes are
created;

— Solution-Combination-Method: the subsets of candidate solutions get combined to
create new solutions.

In the next sections, we explain how the SS metaheuristic was adapted for the PSP
problem.

2.2 Solution Representation

Candidate solutions are represented by objects that refer to the target protein. For
practical purposes, they also contain the sequence for the template proteins. These
sequences are represented by arrays composed of single letter amino acid representa-
tions and gaps, which are manipulated by the SS algorithm.
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2.3 Diversification Generation Method (DGM)

This method creates an initial random population of candidate solutions, and enables
SS to explore wider ranges of the solution space. This method takes an input which is
an initial target-template alignment. The initial alignment is generated using a dynamic
programing algorithm for local sequence alignment, with affine gap penalties. Based on
this initial alignment, randomly generated alignments are created whose number is
specified by PSIZE (population size), which is set to 100. In generating the initial
population, the following rules are upheld: The length of the initial seed target-template
alignment is respected; the number of gaps within the sequence alignments (both in the
template and target) remain the same; the order of residues in which they appear in
the initial seed alignment is respected. Restricting the process to these rules ensures the
generation of feasible solutions. The DGM is called once at the beginning of the
algorithm.

2.4 Solution Improvement Method (SIM)

This method aims to improve the quality of the solutions produced by DGM or by the
solution combination method. For this purpose, we employ hill climbing for locally
improve the solutions. The improvement is done in two phases. First, the method takes
the target-template alignment and, using the template sequence, it reshuffles the gap
positions randomly. This is done by choosing the gap position and its length randomly.
This process is repeated 5 times. Each time the alignment is altered, the respective
comparative model is calculated by the program MODELLER and the obtained model
gets assessed by the DOPE function. Whenever the score of the new model is better
than the old one, the new alignment replaces the old one. If by the end of the specified
number of attempts no improvements are made, the original model is kept. The same
process is repeated in the second phase using the target sequence instead of the tem-
plate sequence.

2.5 Reference Set Creation Method (RSCM)

In this method, the initial reference set (RSet) is created. RSet is divided into two sets,
the high quality solution set, HORefSet, and the diverse solution set, DivRefSet. Usually
these two subsets contain equal number of solutions (|[RSet| = 20, |[HQRefSet| = 10 and
|DivRefSet| = 10). To create the RSet for the first time, the population resulting from the
SIM method is sorted from best to worst solution. After sorting, the first |HQRefSei|
solutions are chosen to form the HQRefSet. Concerning the DivRefSet, the set of most
diverse solutions are admitted to this set. The diversity of a candidate solution is
characterized as the Levenshtein distance (LD) between the sequence of the considered
candidate solution in the population and the solutions already present in the RSet. For
each candidate solution in the population, the LD between that solution and each of the
solutions present in the RSer is calculated and the minimum of these distances is
recorded for each solution. Then, the solutions with the maximum minimum-distance
are added to the DivRefSet.
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2.6 Subset Generation Method and Solution Combination
Method (SCM)

This Subset Generation Method generates subsets using the RSez. For computational
reasons, we limit this method in enumerating all the subsets of size two.

The SCM combines the information from the candidate solutions present in each
subset and gives rise to new solutions. Since we restricted subsets of size two, a
crossover operator is used, which crosses over information between two solution points
and gives rise to a new solution carrying information from both initial solutions. The
two target and template sequences from the two parents grouped together by the SGM
undergo crossover separately.

First, the two target sequences from the parent alignments are extracted. The
sequential gap indices for the two sequences are extracted into vectors. A location for
crossover is chosen among the gap indices where the vectors differ. The vector which
ends up with the smaller index gets combined with the vector starting with the larger
index. The resulting combined vector specifies the locations of the gaps in the child
target sequence. This entire procedure is repeated for the template sequence as well.
The respective homology model is built afterwards by MODELELR using the new
target-template sequences.

2.7 Reference Set Update Method (RSUM)

This method updates the reference set by using the population resulting from SCM.
New solutions are admitted to the RSET and replace an existing solution in either of the
two cases:

o If the considered solution’s fitness score is better than that of the worst Solution in
the HQRefSet, then it replaces it, and the updated HQRefSet is sorted again from
best to worst.

o If the solution considered is more diverse than the least diverse Solution in the
DivRefSet.

This entire process is repeated until all of the candidate solutions generated by the
SCM are considered.

3 Experimental Results and Discussion

3.1 Experimental Procedure

The proposed approach is tested by predicting the 3D conformations of proteins of
known structures that are stored in PDB. We compare our algorithm to three other
approaches (GA; TS; PSO) proposed in [8, 9] that fall under the same framework of
satisfying spatial restraints and using the same proteins. A total of eight target-template
protein pairs were used. In addition to this, we compare our approach to a pure ab-initio
approach [16] and a fragment based approach [17]. This is done by predicting the
structures of three proteins that were also used in their experiments.
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The results were assessed by calculating the root mean standard deviation (RMSD)
between the predicted structures and the native ones found in the protein data bank
(PDB). The RMSD values were calculated using PyMOL [18], which is also used to
visualize the predicted structures. The algorithm starts with 100 initial random popu-
lation of solutions. A reference set of size 20 was maintained throughout its execution.
Each solution was allowed five iterations of improvement in the solution improvement
phase. The termination criterion for the algorithm was that the reference set did not get
updated.

3.2 Comparison with GA, TS and PSO

We compared the effectiveness of SS with that of genetic algorithm (GA), tabu search
(TS), and particle swarm optimization (PSO). The comparison is based on the best
RMSD results of the algorithms. TS and PSO were only tested on two protein pairs,
hence the rest of the experiments were carried out by comparing our algorithm to the
GA. The results are summarized in Table 1. RMSD values for the first two cases, using
2CCY-1BBH and 2RHE-3HLA target-template protein pairs, indicate that
Tabu-Search and PSO perform poorly compared to GA and SS. Similar results were
obtained while modeling the protein 3HLA. TS and PSO resulted in poor RMSD
values, 15.209 and 15.24 respectively, whereas GA and SS maintained much lower
RMSDs, 7.579 and 5.791. Furthermore, for both proteins, SS led to lower RMSD
values than those of GA.

For the remaining proteins, SS produced better RMSD values than those of GA for
three cases out of the total six and a similar RMSD for one, while it failed on the
remaining two. The total count shows that SS yielded competitive results in compar-
ison with GA, TS, and PSO.

Table 1. RMSD values for 8 protein.

Target % %

Template Target length(AA) | identity | coverage | GA(A) | TS(A) | PSO(A) ss(A)
2CCY (5:A-128:A) 1BBH (5:A-131:A) 126 21.3% 97.0% 2362 | 3.048 | 3.762 1.752
2RHE (3-108) 3HLA (4:B-98:B) 94 2.4% 96.0% 7.579 | 15.209 | 15.24 5.791
1BOV (2:A-69:A) 1LTS (17:D-102:D) 85 4.4% 83.5% 8.579 N/A N/A 7.84
1PAZ (3-93) 1AAJ (21-105) 84 27.5% 84.7% 2.1 N/A N/A 1.339
1EGO (1-84) 1ABA (1-87) 86 16.9% | 100.0% 4.1 N/A N/A 4.164
2RHE (8-112) 3CD4 (2-100) 98 21.7% | 100.0% 6.5 N/A N/A 3.938
1FLB (15-86) 1HOM (7-57) 50 17.6% 75.0% 11 N/A N/A 5.02
9RNT (2-104) 25AR (7:A-91:A) 84 13.1% 88.5% 4.8 N/A N/A 5.472

3.3 Comparison with Ab-Initio Method and Fragment Based
Assembly Method

Further experiments were conducted by comparing our algorithm to a pure Ab-initio
based method proposed in [16], and to a fragment based assembly method proposed in
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[17]. The three methods compared in this section are based on entirely different
techniques, making the comparison difficult. The performance of these techniques is
directly related to the amount of information known about the predicted proteins. We
ran our algorithm on the three proteins that were tested in the other two methods. The
results are summarized in Table 2. To make this comparison as fair as possible, we
chose the worst hits returned by BLAST as template proteins, provided they are
evolutionary related to the target at least. Clearly, the results that the homology-based
PSP is a better choice made provided that enough information exists. This is supported
by the RMSD results for predicting 1CRN and 1UTG. To make things even more
difficult, the template chosen to predict the structure of 1ROP only covers 57 % of the
target protein sequence. This means that no spatial restraints could be extracted to
constrain the target structure’s prediction for the rest of the 43 %. Despite this, our
approach returned an RMSD value of 7.033 A, which is lower than 12.14 A resulting
by the pure ab-initio approach, and somewhat worse than the 5.43 A returned by the
fragment based approach.

Table 2. Comparison with ab-initio method and fragment based modelling.

Mansour et | Fragment based
Template Target % identity | % coverage al. (A) ss (A) ss(A)
1EDO(2-44) 1CRN(1-47) 51.0% 93.0% 9.01 8.05 0.952
1UTR(23:A-90:A) 1UTG(1-70) 57.0% 97.0% 14.78 12.34 1.71
4LCT(271:A-304:A) | 1ROP(1-63) 42.0% 57.0% 12.14 5.43 7.033

4 Conclusion

We have presented a homology based protein modeling using SS to predict the 3D
folds by satisfying spatial restraints. The heuristic was guided by assessing the resulting
structures using two scoring functions, GA341 and DOPE. Our algorithm was evalu-
ated by running it on 11 target-template protein pairs and the results were assessed by
measuring the RMSD errors between the native and predicted structures. Comparisons
were made between our results and those produced by 3 algorithms from previous
literature. Out of 8 protein pairs, our approach resulted in lower RMSD values in 5
cases. Furthermore, we compared our approach to a pure ab-initio and a fragment-
based assembly methods, by predicting 3 protein structures. Our algorithm was
superior in terms of RMSD values for the first two cases, and returned comparable
values in the third case.
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