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Abstract. Proteins are organic compounds made up of chains of amino acids 
that fold into complex 3-dimensional structures based on their chemical and 
physical properties. A protein is characterized by its 3D structure, which defines 
its biological function. Proteins fold into 3D structures in a way that leads to 
low-energy state. Predicting these structures is guided by the requirement of 
minimizing the energy value associated with the protein structure. However, the 
energy functions proposed so far by biophysicists and biochemists are still in 
the exploration phase and their usefulness has been demonstrated only indivi-
dually. Also, assigning equal weights to different terms in energy has not been 
well-supported. In this project, we carry out a computational evaluation of puta-
tive protein energy functions. Our findings show that the CHARMM energy 
model tends to be more appropriate for ab initio computational techniques that 
predict protein structures.  Also, we propose an approach based on a simulated 
annealing algorithm to find a better combination of energy terms, by assigning 
different weights to the terms, for the purpose of improving the capability of the 
computational prediction methods. 

Keywords: CHARMM, force field, protein structure prediction, simulated  
annealing. 

1 Introduction 

Proteins are organic compounds that are made up of combinations of amino acids and 
are of different types and roles in living organisms. Initially a protein is a linear chain 
of amino acids, ranging from a few tens up to thousands of amino acids. Proteins fold, 
under the influence of several chemical and physical factors, into their 3-dimensional 
structures which determine their biological functions and properties. Misfolding oc-
curs when the protein folds into a 3D structure that does not represent its correct na-
tive structure, which can lead to many diseases such as Alzheimer, several types of 
cancer, etc… [1]. Using computational methods for predicting the native structure of 
a protein from its primary sequence is an important and challenging task especially 
that this protein structure prediction (PSP) problem is computationally intractable. 
The protein’s sequence of amino acids defines a unique native fold which normally 
corresponds to a minimum energy value [2]. In theory, this free energy minimum can 
be computed from quantum mechanics and, thus, should help in predicting the struc-
ture from the sequence. In practice, the theoretical foundation of such functions has 
not been fully established and several energy functions have been proposed. 
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The energy function models proposed so far depend on a number of biophysical 
factors. Their usefulness has been relatively demonstrated by different researchers. 
But, previous work has also shown that the precision of these energy models is not 
well-established [3]. Also, no serious comparative evaluation of these energy func-
tions has been reported. Furthermore, limited work has been reported on the relative 
importance of the terms of the energy function; many decoys per protein, for a num-
ber of proteins, were generated from molecular dynamics trajectories and conforma-
tional search using the A-TASSER program minimizing the AMBER potential [4], 
[5].  

In this work, we carry out a computational comparison of important energy func-
tions that have appeared in the protein structure prediction literature in association 
with ab initio algorithms. We also design a simulated annealing algorithm for deriv-
ing values that should be used as weights for the energy terms based on the native 
structure knowledge on existing golden proteins in the ‘protein data bank’. The ulti-
mate goal is to yield better prediction of the tertiary structure of proteins. 

This paper is organized as follows. Section 2 presents our methodology. Section 3 
describes the energy models used for the comparative work. Section 4 explains the 
algorithm used for optimizing the weights of the energy terms. Section 5 presents the 
experimental results. Section 6 concludes the paper. 

2 Methodology 

The primary structure of a protein is a linear sequence of amino acids connected  
together via peptide bonds. Proteins fold due to hydrophobic effect, Vander Waals 
interactions, electrostatic forces, Hydrogen bonding, etc…. The protein structure pre-
diction (PSP) problem is intractable [6]. Hence, the main computational approaches 
are heuristics for finding good suboptimal solutions and can be classified as: Homol-
ogy modeling, threading, and ab initio methods [7]. For the latter methods, the only 
required input is the amino acid sequence whereas for the first two methods, data of 
previously predicted protein structures are used. 

Ab initio methods predict the 3D structure of proteins given their primary  
sequences without relying on protein databases. The underlying strategy is find the 
best possible structure based on a chosen energy function. Based on the laws of phys-
ics, the most stable structure is the one with the lowest possible energy. We have 
identified three energy models/force fields as the most recognized models for pure ab 
initio PSP methods: the CHARMM model [8], the LINUS energy function [9], and 
AMBER [10]. The different energy functions include different terms and make a  
variety of assumptions. But, the relative merits of these functions in guiding computa-
tional protein structure prediction methods have not been well-studied. In particular,  
a computational investigation of their applicability has not been carried out. We  
believe that conducting such an investigation will serve the PSP research community 
by providing guidelines regarding the applicability of the recognized force fields. 

Our methodology is based on the following steps and activities. We employ our re-
cently developed computational method for PSP, namely the adapted scatter search 
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metaheuristic [3], [11], as the basic platform for analyzing the behavior of the differ-
ent energy functions. The selected energy functions are simulated and incorporated 
into the scatter search algorithm to create different versions of the scatter search based 
program. Then, real-world proteins are selected from a protein databank. The impact 
of the energy functions will be evaluated by computing the widely used root mean 
square deviation (RMSD) of the target structure with respect to the reference/golden 
protein structure. Then, we computationally derive sub-optimal weights for the energy 
terms in order to further improve the prediction. Then, for the ‘winner’ energy func-
tion, we find alternative weights for its terms to replace the commonly-used equal 
weights. This is done by adapting a simulated annealing algorithm that aims to simul-
taneously minimize the energy values of several (golden) proteins whose structure is 
already known. 

3 Energy Functions/Models 

The stability of the three-dimensional structure for protein is determined by the intra-
molecular interactions and interactions with the external environment. The search for 
stable conformations of proteins is based on the minimum total energy of interaction. 
The three recognized energy models, which are selected for our experimental study, 
are described in the following subsections. 

3.1 CHARMM Energy Model 

The Chemistry at HARvard Molecular Mechanics (CHARMM) function [12] is based 
on the dihedral planes representation of proteins that can be defined by the degrees of 
freedom given by the torsion angles. There are four torsion angles present in each 
amino acid in a protein: phi φ, psi ψ, omega ω, and chi χ. Phi is the angle between the 
planes C-N-Cα and N-Cα-C, where N-Cα is the axis of rotation. This angle decides 
the distance of C-C of two amino acids. The chi angle is between the planes formed 
by the atoms of the side chains, and side chains can have as many as five chi angles. 
Fig. 1 shows a segment of a protein backbone. 
 

 

Fig. 1. Segment of a protein backbone with planes of bonds N-Cα and Cα-C, plane A and plane 
B, respectively 
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The CHARMM energy function is given by 



















−+

+









−+

−++−

+−+−=

waalsdervan ij

ij

ij

ij
ij

ticelectrosta ijro

ji

hydrogen ij

ij

ij

ij

dihedralsdihedralsimproper
o

angles

rr

r

qq

r

B

r

A

nKK

KbbKcE oob

6

6

12

12

1210

2
imp

2

bonds

2

4

4

))cos(1()(

))()( (

σσ
ε

επε

δχϕϕ

θθ

χ

θ

 

3.2 AMBER Energy Model 

The AMBER99 model is composed of several all-atom force fields. These fields in-
clude parameters for bonded potential energy terms (stretching, bending, and torsion) 
and nonbonded terms (charge and van der Waals). The original version was 
AMBER94, which was developed to improve on peptide backbone torsion parame-
ters; Kollman and co-workers used RESP charges derived from high-level ab initio 
calculations to parameterize energies [13]. The subsequent force field, denoted as 
AMBER99, is intended for use both with and without polarization effects [14]. 
AMBER99 includes the following terms: 

Vbounded = Kr (r − req )2
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The total energy includes the sum of all the potential fields and the polarization po-
tential energy added in AMBER99. In the first equation , three terms represent contri-
bution to the total energy from “bond stretching, bond angle bending, and torsion 
angle”, in the second one Vnonbonded is the sum of non-bonded energy as “van der 
Waals and electrostatic energies”. In the third equation, Vpol the polarization value is 
calculated for each pair of point charge and induced point dipole moment as μi and Ei 
is the electrostatic field at the ith atom generated by all other point charges qj. 
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3.3 LINUS Energy Model 

LINUS (Local Independently Nucleated Units of Structure) is an ab initio method for 
simulating the folding of a protein on the basis of simple physical principles. LINUS 
involves a Metropolis Monte Carlo procedure, represents a protein by including all its 
heavy atoms (i.e., non-hydrogen atoms). LINUS developed by Srinivasan and Rose in 
1995 is based on simple scoring function includes three components: hydrogen bond-
ing, scaled contacts, and backbone torsion. The hydrogen bonding and the hydrophob-
ic contact scores are calculated between pairs of atoms from residues. The contact 
energy is given by 

 Contact energy = maximum value x 1.0 −
dij
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(σ +1.4)2 −σ 2
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The scaled contact has both “Repulsive and attractive” terms. The repulsive term is 
implemented by rejecting conformations when the interatomic distance between any 
two atoms is less than the sum of their van der Waals radii. All pairwise interactions 
are evaluated except those involving carbonyl carbons and the attractive term is ap-
plied between the side chain pseudo-atoms. The total energy of the LINUS function 
scoring is given by the negative sum of the three preceding terms: hydrogen bonding, 
scaled contact, and backbone torsion [9]. 

4 Simulated Annealing Algorithm for Energy Terms’ Weights 

Simulated Annealing (SA) is a metaheuristic that deals with optimization problems 
with large search space to find near-optimal solutions. In this paper, simulated anneal-
ing is employed to assign appropriate weights to different energy terms.  SA aims to 
yield a good solution with a minimized objective function value. 

4.1 Algorithm Steps 

The outline of the SA algorithm is shown in Fig. 2 
 
 

Initialize Solution X and initial Temperature T 
while (T > Steady State Temperature  
                  and iteration < MAX_ITERATIONs) 
        for (NUMBER_OF_PERTURBATIONS) 
 Y = Perturb(X) 
 if (F(Y) < F(X) or e (-delta E/T) > random (0,1)) 
  X = Y 
 // end if 
 // end for 
 Update (T) 
// end while 

Fig. 2. Outline of the SA algorithm 
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4.2 Solution Representation 

Each energy term is given a random weight between 0 and 1, where the sum of 
weights must be 1 in any solution. The weight given to ES is called α, that to VW is 
called β, and to Torsion energy is δ. Thus, the obtained total energy for all solution is 
calculated according to the following formula: 
 
Eprotein = α.Golden-ESprotein +  β.Golden-VWprotein + δ.Golden-Torsionprotein 

4.3 Initial Solution 

The initial solution is randomly generated. α, β, and δ are randomly generated with 
values between 0 and 1, such that  α + β + δ = 1 and no single value falls below 1. 

4.4 Initial Temperature, Maximum Iterations, and Number of Perturbation 

Initial temperature is chosen as 400,000 and that of steady state is 15. The maximum 
number of iterations is chosen to be 200 with 3 perturbations in the ‘for’ loop of each 
iteration. 

4.5 Perturbation Method 

The implemented perturbation method alters the weights distribution among the ener-
gy terms. It either takes a certain percentage (0.1) from a target weight factor and 
distributes it to the other 2 weight factors or takes this percentage from two factors 
and adds it to the target third one. 

The method has 3 decisions to take randomly. The first one is which of the weight 
factors (α, β, and δ) to target (whether to take from or add to). The second decision is 
whether to take from the chosen factor or give it more energy. The third decision is 
how to distribute the amount of energy taken/given. 

For example, the algorithm may randomly first choose α as the target, then ran-
domly choose to take from it 0.1 of its value, and then randomly chooses to give 0.3 
of the amount to be taken from α to β and 0.7 to δ. 

4.6 Objective Function 

The objective function to be minimized is the following: 

∑  (Ei – AvgEi)
2,      for i=1 to n 

where n is the number of the selected proteins, Ei (defined in subsection 4.2) is the 
total energy obtained according to the weights distribution by α, β, and δ, and AvgEi is 
the average of the calculated energies, Ei for i=1..n, in the set of proteins according to 
weight distributions.  Effectively, we are minimizing the mean square deviation in 
the values of Ei over the n proteins as the values of the weights vary. 
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The SA metaheuristic algorithm enforces a lower bound of 0.1 for each of α, β, and 
δ in order not to prevent making any of the energy terms negligible. Thus, in any 
perturbed combination of values, the SA algorithm rejects any perturbation that yields 
weight values below 0.1. 

5 Experimental Results 

In this section, we demonstrate the performance of our proposed methods using the 3 
different energy models for generating native-like structures for the backbones of the 
three target proteins. 

5.1 Experimental Procedure for Energy Functions 

In our experiments, we use three subject proteins with known structures in PDB. Our 
reference PDB is the Brookhaven database [15]. The 3 proteins are: 1CRN 
(CRAMBIN) is Plant seed protein (46 AAs); 1ROP (ROP Protein) is Transcription 
Regulation (56 AAs); 1UTG (UTEROGLOBIN) is Steroid Binding (70 AAs).  

We run the scatter search program for predicting protein structures based on each 
of the three energy models. The results are evaluated by computing the target pro-
tein’s structural difference from the reference/golden protein. This is accomplished by 
calculating the root mean square deviation (RMSD), in Angstrom, of the Cα atoms of 
the two proteins [16]. 

5.2 Experimental Results for Energy Functions 

Table 1 gives the RMSD values by Scatter Search using the 3 types of potential ener-
gy function. These results show that CHARMM generates the lowest RMSD values 
for the 3 proteins. Also, the limited experiments reveal that the polarization term add-
ed in AMBER99 may not cause an improvement in the predicted protein structure. 
CHARMM also runs faster than AMBER and has comparable execution time to 
LINUS. 

Although the results in Table 1 demostrate a rather clear tendency in favor of 
CHARMM, this does not yield a final conclusion since the number of proteins that are 
used in the experiment is small. Future work should employ many proteins with vari-
ous sizes and functions in order to establish whether our result may vary with protein 
size and type. 

5.3 Experimental Procedure for Energy Weights 

In order to experiment with weights for energy terms, the real energy values have to 
be obtained. These are the golden energy values obtained from the data retrieved from 
the Protein Data Bank (PDB) file of each protein. The data are the 3D coordinates of 
atoms, torsion angles and amino acids. The total energy value of a protein is the sum 
of the terms of the CHARMM energy function.  
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Two sets of non-homologous proteins have been chosen, where each is made up of 
5 different proteins. The first set contains proteins each with less than 100 amino ac-
ids (AAs), whereas the second contains proteins with more than 100 AAs in each. We 
run the SA algorithm on the data obtained from each set of proteins to generate values 
for the weights of the energy terms. The variation in the weights is also plotted over 
the SA iterations until convergence. Finally, to give an indication of the validity of the 
weight results, we rerun the scatter search program of Mansour et al. [11] to predict 
the structure of a protein, by using the new weights, and compare the resulting RMSD 
with that of the structure produced by using equal weights for the energy terms. 

Table 1. Experimental results for SS on 3 energy functions 

Energy function 1CRN (46 AAs, 326 
atoms) 

1ROP(56 AAs, 420 
atoms) 

1UTG(70 AAs, 547 
atoms) 

 Time (min) RMSD Time (min) RMSD Time (min) RMSD 
CHARMM 964 9.39 1059 11.52 1182 13.56 
AMBER96 1140 11.80 1320 15.84 1800 16.21 
AMBER99 with 
Polarization 

3600 14.39 4200 16.04 5005 18.07 

LINUS 960 13.05 1005 15.22 1200 18.36 

5.4 Results for Energy Weights 

Results of SA for Proteins of Less than 100 Amino Acids. For proteins with less 
than 100 amino acids (1RPO, 1UBQ, 1CRN, 1ROP, and 1UTG), SA converged after 
20 iterations to the objective function value of 5.159x1015. The initial randomly gen-
erated solution was of objective function value of 2.178x1017. Fig. 3 shows the varia-
tions of α, β, and δ as a function of iterations of the SA. The values of the three 
weights at convergence are: α = 0.352; β = 0.105; δ = 0.543. 

 

Fig. 3. Variations of α, β, and δ (x10-1) as a function of iterations 
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Comparing the energy values obtained by using these weights with those obtained 
from the equal weights for the 1ROP protein show that the former ones (using the 
new weights) are lower. Equal weights (0.333) give the energy value of 1.125x106, 
whereas the obtained solution (with α, β, and δ values) gives the value of 426,072. 
Fig. 4 shows the values of ES, VW and Torsion energy terms as a function of itera-
tions and the corresponding values of α, β, and δ. 

After running the scatter search code, the obtained 1ROP protein structure has an 
RMSD with respect to the golden protein of 7 Angstrom in comparison with about 12 
Angstrom, obtained with equal weights [11]. 

 

Fig. 4. Variations of ES, VW and Torsion Energies for 1ROP (in 105 charge units) as a function 
of iterations 

Results of SA for Proteins of More Than 100 Amino Acids. For proteins with more 
than 100 amino acids (1AAJ, 1BP2, 1RPG, 1RRO, and 1YCC), SA converged after 
43 iterations to the objective function value of 1.457x1012. The initial randomly gen-
erated solution was of objective function value of 3.278x1013.  Fig. 5 shows the var-
iations of α, β, and δ as a function of iterations of the SA. The values of the three 
weights at convergence are:  α = 0.104; β = 0.108; δ = 0.788. 

Comparing the energy values obtained by using these weights with those obtained 
from the equal weights for the 1AAJ protein shows that the new weights yield lower 
values. Specifically, equal weights for all energy terms give the value of: 2.305x106. 
The obtained solution (with different α, β, and δ) gives the value of: 742,844. Fig. 6 
shows the values of ES, VW and Torsion energy terms as a function of iterations and 
the corresponding values of α, β, and δ. 

After running the Scatter Search code, the obtained 1AAJ protein structure has an 
RMSD with the golden of 5.84 Angstroms, which is a promising result. 

By inspecting the values of each of the 3 energy terms, it is clear that in the case of 
equal weights, the VW term used to dominate the energy function and, consequently, 
the resulting protein structure. The change in the weight values provides fairer shares 
to the other two terms and, thus, allows them to influence the evolution of the predicted 
structure. We also note that the relative weights are different for different protein sizes.  
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These results show that assigning equal weights to the energy terms does not yield 
the best possible protein structure prediction. But, more experiments are required to 
establish what weights should be assigned for what size-category of proteins. Also, it 
will be useful to apply our approach to other recognized energy functions. 

 

Fig. 5. Variations of α, β, and δ (x10-1) as function of iterations 

 

Fig. 6. Variations of ES, VW and Torsion Energies in 1AAJ (in 105 charge units) as a function 
of iterations 

6 Conclusions 

We have carried out a computational assessment of the ability of three recognized 
energy models for predicting the tertiary structure of proteins using a pure ab initio 
algorithm. We have also investigated the merit of assigning unequal weights to the 
terms included in energy functions employed for ab initio protein structure prediction. 

Our experimental results show that the CHARMM energy model tends to yield bet-
ter protein structures than the other two energy functions, next is AMBER without 



298 N. Mansour and H. Mohsen 

 

polarization, followed by LINUS and the polarization version of AMBER. We have 
also found that it is more favorable for computational protein prediction methods to 
assign unequal weights to the terms in the energy function.  As a result, we recom-
mend the following weight values for the CHARMM energy function: 0.1-0.3 for the 
electrostatic term, 0.1-0.2 for the Vander Waals term, and 0.6-0.8 for the Torsion 
term, when applied to small to medium size proteins. 

This work has established the merit of the proposed approach. Further work can 
focus on extending the experimental work to a larger number of protein sets that in-
clude proteins with different sizes and functions and on extending to other energy 
models. 

Acknowledgments. This work was partially supported by the Lebanese American 
University and Lebanon’s National Council for Scientific Research. We thank Mirvat 
Sibai for guidance on biology issues and acknowledge the coding support of Rachid 
Sayed. 

References 

1. Prusiner, S.B.: Prions. Proceedings of the National Academy of Sciences of the United 
States of America 95, 13363–13383 (1998) 

2. Anfinsen, C.B.: Principles that Govern the Folding of Proteins. Science, 181–187 (1973) 
3. Mansour, N., Kehyayan, C., Khachfe, H.: Scatter Search Algorithm for Protein Structure 

Prediction. Int. J. Bioinformatics Res. Appl. 5, 501–515 (2009) 
4. Wroblewska, L., Skolnick, J.: Can a Physics-Based, All-Atom Potential Find a Protein’s 

Native Structure Among Misfolded Structures. J. Comput. Chem. 28, 2059–2066 (2007) 
5. Wroblewska, L., Jagielska, A., Skolnick, J.: Development of a Physics-Based Force Field 

for the Scoring and Refinement of Protein Models. Biophysical J. 94, 3227–3240 (2008) 
6. Unger, R., Moult, J.: Genetic Algorithms for Protein Folding Simulations. J. Mol.  

Biol. 231, 75–81 (1993) 
7. Sikder, A.R., Zomaya, A.Y.: An Overview of Protein-Folding Techniques: Issues and 

Perspectives. Int. J. Bioinformatics Res. Appl. 1, 121–143 (2005) 
8. Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., 

Guvench, O., Lopes, P., Vorobyov, I., Mackerell Jr., A.D.: CHARMM General Force 
Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom 
Additive Biological Force Fields. J. Comput. Chem. 31, 671–690 (2009) 

9. Srinivasan, R., Fleming, P.J., Rose, G.D.: Ab Initio Protein Folding Using LINUS.  
Methods in Enzymology 383, 48–66 (2004) 

10. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spell-
meyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A Second Generation Force Field for 
the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 
5179–5197 (1995) 

11. Mansour, N., Ghalayini, I., Rizk, S., El Sibai, M.: Evolutionary Algorithm for Predicting 
All-Atom Protein Structure. In: Int. Conf. on Bioinformatics and Computational Biology, 
New Orleans (2011) 



 Computational Evaluation of Protein Energy Functions 299 

 

12. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: 
CHARMM: a Program for Macromolecular Energy, Minimization, and Dynamics Calcula-
tions. Journal of Computational Chemistry 4, 187–217 (1983) 

13. Kollman, P.A.: Advances and Continuing Challenges in Achieving Realistic and  
Predictive Simulations of the Properties of Organic and Biological Molecules. American 
Chemical Society (1996) 

14. Wang, J., Cieplak, P., Kollman, P.A.: How Well Does a Restrained Electrostatic Potential 
(RESP) Model Perform in Calculating Conformational Energies of Organic and Biological 
Molecules? J. Comp. Chem. 21, 1049–1074 (2000) 

15. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., 
Kennard, O., Shimanouchi, T., Tasumi, M.: The Protein Data Bank: a computer-based arc-
hival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977) 

16. Carugo, O., Pongor, S.: A Normalized Root-Mean-Square Distance for Comparing Protein 
Three-Dimensional Structures. Protein Sci. 10, 1470–1473 (2001) 


	Computational Evaluation of Protein Energy Functions
	1 Introduction
	2 Methodology
	3 Energy Functions/Models
	3.1 CHARMM Energy Model
	3.2 AMBER Energy Model
	3.3 LINUS Energy Model

	4 Simulated Annealing Algorithm for Energy Terms’ Weights
	4.1 Algorithm Steps
	4.2 Solution Representation
	4.3 Initial Solution
	4.4 Initial Temperature, Maximum Iterations, and Number of Perturbation
	4.5 Perturbation Method
	4.6 Objective Function

	5 Experimental Results
	5.1 Experimental Procedure for Energy Functions
	5.2 Experimental Results for Energy Functions
	5.3 Experimental Procedure for Energy Weights
	5.4 Results for Energy Weights

	6 Conclusions
	References




