. '
- &

Implementation of a Regression Test Selection
Technique for C+ + Software

By
RANIA M. HAJJAR

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

Thesis Advisor: DR. NASH’AT MANSOUR

Computer Science Program
LEBANESE AMERICAN UNIVERSITY

Beirut, Lebanon

June 2001

LEBANESE AMERICAN UNIVERSITY

GRADUATE STUDIES

We hereby approve the project of
Rania M. Hajjar

candidate for the Master of Science degree* in Computer Science.

Approved by Dr. Nash’at Mansour Signatures Redacted

Associate Professor of Computer Science

Signatures Redacted
Dr. Ramzi Haraty

Assistant Professor of Computer Science

Date: July 4, 2001

*We also certify that written approval has been
obtained for any proprietary material contained
therein.

i

_ﬂi %?y‘ ..z)mr jﬁfﬁﬂr ﬂ-ﬂdlr m!‘f‘;ﬂi‘

Table of Contents

CHAPTER 1: INTRODUCTIONcciiiiiiissiisiinssinssssssiassissssasssssssissssisstassrssssassssassssnsssssssanss |

CHAPTER 2: REGRESSION TEST SELECTION FOR OBJECT-ORIENTED SOFTWARE.. 6

2.1 B A G R I < i T v o e s S o R v Ve st 6
2.2 REGRESSION TESTING tonieteete e ieseessemesssssssenssssssssmnsssnsssssssssnnsssssnsssnnssnsses 6
2.3 REGRESSION TESTING OBJECT-ORIENTED SOFTWAREccoviivveieriesierimssnnsnnnes 8

CHAPTER 3: DESCRIPTION OF REGRESSION TEST SELECTION TECHNIQUE 11

3.1 N TR L LMW GBI . i i i v i o A S A 11
3.2 INTERPROCEDURAL CONTROL FLOW GRAPHS ..ot sise e 11
3.3 CODE IS TRUMENTATION vt or s avsarin s 18 daava s i viasinaia s 12
34 THEOVERALL APPROATH .ocoiiiiiiiiiicicestceiissaseeseesesssasnsssessssssssssasssssssnsssssnees 13
3.5 A REGRESSION TEST SELECTION ALGORITHM ..coovvvvviiirieeerssssssssssssssssssnssss 15

CHAPTER 4: DESIGN OF THE IMPLEMENTED TECHNIQUEcccccnincnmmnnnmmnnnennnee 18

4.1 T RO T R E AR o k- e b iwndes o bt v s S T T L s e U SRR 19
4.2 STRUCTURE TYPE, CONSTANT AND VARIABLE DEFINITIONS .ovvviverinsireerenns 19
4.3 DETAILED FUNCTIONS DESIGN oo ovvvvvueesesssssssessserrsssnsssssssrssssssnmmssesssnsssnssssss 21

CHAPTER 5: EXPERIMENTAL RESULTS.....coiccimmmmmsimmsnmsissssissssassrsssssssssassssasssasassass SF
CHAPTER 6: CONCLUSION........ccimsmmssnmimmrnmssssnssssnsrsrsssssssnnsssssssessssssssnsssssrssssssssssaassnnnssese 0

APPENDIX: IMPLEMENTATION DETAILS........cccccoiimmmmmmsimsmisimsnmsssssisssssssssssasss G0

A. CREATION OF THE CONTROL FLOW GRAPHccvviivivrasmnmisrsrssssmmssssssssssssssssnnns 6l
B FHES PORMAT: oo ssommnes e aeb s I s bbb SRt Ay
B. FILE SPECIFICATIONS AND RIULES ..cuvtvvmcervssersssnssssssrssssnsssssssssssmesssmsssmmmnsmsssnnns 6l

v

List of Figures

Figure 3.5.1. Algorithm for test selection for object-oriented sofiware. 18
Figure 4.1. Structure chart of the SelectTest program. 19
Figure 5.1. {a) Actual code for the base version of the Elevator application. 3!
Figure 5.1. (b) ICFG for the base version of the Elevator application. 32
Figure 5.1. (¢) Input file containing ICFG information for the based version of the
Elevator application. 33
Figure 5.1. (d) Actual code for the modified version of the Elevator application. 34
Figure 5.1. (e) ICFG for the modified version of the Elevator application. 35
Figure 5.1. (f) Input file containing ICFG information for the modified version of the
Elevator application. 36
Figure 5.1, (g) Test history information table for Elevator application. 37
Figure 5.1. (h) Tesi(s) selected to be reexecuted on the modified version of the
Elevator application. 37
Figure 5.2. (a) Actual code for the base version of the Time application. 39
Figure 5.2. (b) ICFG for the base version of the Time application. 40
Figure 5.2. (¢) Input file containing ICFG information for the base version of the
Time application. 41
Figure 5.2. (d) Actual code for the modified version of the Time application. 42
Figure 5.2. (e) ICFG for the modified version of the Time application. 43
Figure 5.2. (f) Input file containing ICFG information for the modified version of the
Time application. 44
Figure 5.2. (g) Test history information table for Time application. 45
Figure 5.2. (h) Test(s) selected to be reexecuted on the modified version of the Time
application, 45
Figure 5.3. (a) Actual code for the base version of the Publication application. 48
Figure 5.3. (b) ICFG for the base version of the Publication application. 49
Figure 5.3. (c) Input file containing ICFG information for the base version of the
Publication application, 50
Figure 5.3. (d) Actual code for the modified version of the Publication application. 52
Figure 5.3. (¢) ICFG for the modified version of the Publication application. 53
Figure 5.3. (f) Input file containing ICFG information for the modified version of the
Publication application, 54
Figure 5.3. (g) Test history information table for Publication application. 35
Figure 5.3. (h) Test(s) selected to be reexecuted on the modified version of the
Publication application. 55

Acknowledgements

Above all I would like to express my gratitude to God whom I owe

everything I achieve.

I would like to thank Dr. Nash’at Mansour, my advisor, for giving me the
necessary guides and advises through my project. Also, I would like to thank
Dr. Ramzi Haraty, my second reader, for taking the time to read my project

and for his precious comments.

I greatly thank the chairman of the Natural Science Division at LAU, Dr.

Ahmad Kabbani, for the support and encouraging he always offer.

Special thank to my family, especially my mother whose love and support
kept me going on to complete my higher education; my father who
supported and encouraged me in all my study period; my grand-mother for
her unceasing prayers and my two sisters Rima and Rola for standing by me

throughout all my studies and bearing with me in hard times.

vi

ABSTRACT

by

Rania M. Hajjar

Regression testing is an important but expensive software maintenance
activity performed with the aim of providing confidence in modified
software. Regression test selection techniques reduce the cost of regression
testing by selecting tests for a modified program from a previously existing
test suite. Many researchers have addressed the regresion test selection
problem for procedural language software, but few have addressed the

problem for object-oriented software.

We present an implementation and experimental evaluation of a technique
proposed by Rothermel, Harrold, and Dedhia. This technique is a regression
test selection technique for object-oriented C+ + software. The technique
constructs graph representation for software, and uses these graphs to select
tests, from the original test suite, that execute code that has been changed for
the new version of the software. The technique is strictly code based, and
requires no assumptions about the approach used to specify or test the
software initially. The technique applies to applications programs that use
modified classes. The results indicate that the implemented technique can

reduce the number of regression tests that must be run.

vii

Chapter 1: Introduction

Software maintenance activities can account for as much as two-thirds of the
overall cost of software production. One necessary activity, regression
testing, is performed on modified software to provide confidence that the
software behaves correctly and that modifications have not adversely
impacted the software’s quality. Regression testing plays an integral role in
maintaining the quality of subsequent releases of software as that software
undergoes maintenance. An important difference between regression testing
and development testing is that during regression testing, an established suite
of tests may be available for use. By reusing such test suites to retest modified
programs testers can reduce the effort required to perform that testing,
However, test suites can be large, and the time and effort required to rerun
all tests in an existing test suite may be expensive. In such cases, testing
efforts must be restricted to a subset of the test suite. The problem of
choosing an appropriate subset of an existing test suite is the regression test
selection problem; a technique for solving this problem is a regression test

selection technique.

Few researchers have addressed the regression test selection problem for
object-oriented software (e.g., [2, 4, 11, 12]); even though it is known that the
emphasis on code reuse in the object-oriented paradigm both increases the
cost of regression testing, and provides greater potential for obtaining savings
by using regression test selection techniques. When a class is modified, the
modification may impact every applications program that uses that class and
every class derived from that class; ideally, every such program and derived

class should be retested. The object-oriented paradigm also raises different

concerns for regression test selection algorithms. For example, because most
classes consist of small interacting methods, regression test selection
techniques for object-oriented software must function on interacting

routines, that is, at the interprocedural level.

M. Lee, A. J. Offut, and R. T. Alexander, in reference [7], developed a
technology to identify potential impacts for object-oriented software before
making a change. Software testers can use it to find which areas are impacted
by changes during regression testing, enabling them to focus only on those

areas and still feel confident about the quality of the software.

Lee J. White, in reference [15], has determined ways to improve both the
design and maintenance of OO-systems, including testing and regression
testing. A construction of a firewall is done to enclose the set of modules that
have been changed and thus must be retested. The firewall 1s an imaginary
boundary that limits the amount of retesting for modified software
containing possible regression errors introduced during modification. This
procedure also involves the selection or development of test data for
regression testing of this change. As long as unit and integration testing are

reliable, it is shown that the firewall regression tests are also reliable.

S. Elbaum, D. Gable and G. Rothermel, in reference [1], design an empirical
study that allowed them to manipulate and measure various potential sources
of variation and prioritization techniques. Test case prioritization techniques
assist with test suite reuse by helping testers order their test cases such that
those with higher priority, according to some criterion, are executed earlier

than those with lower priority.

M. Winter, in reference [14], introduces the class message diagram, a new
diagram for object-oriented software combining the behavioral and structural

aspects influencing integration and regression testing.

D. Kung, J. Gao, and P. Hsia, in reference [13], proposed the following
methods: change analysis to identify affected components; retest strategy
generation to produce a cost-effective class test order; test case reuse,
modification and generation; regression test plan implementation to retest

the modified program.

G. Rothermel, M. Harrold, and J. Dedhia, in reference [13], presented a
regression test selection technique that addresses the regression test selection
problem for C+ + software. The technique constructs control flow
representations for classes and programs that use classes; it uses those
representations to select tests, from an existing test suite, that execute code

that has been changed for a new version of the software.

In reference [12], Rohermel and Harrold presented algorithms for selecting
regression tests for C+ + software based on walks of program dependence
graphs. The algorithm presented in reference [12], like the presented
algorithms here, apply to C+ + applications programs, classes, and derived
classes. Construction of program dependence graphs, however, is more
expensive than construction of control flow graphs, thus the algorithm

presented here is more efficient than those of reference [12].

In reference [4] and [2], Kung et al. and Hisia et al. present a technique for

selecting regression tests for class testing. Their approach is based on the

concept of firewalls defined originally by Leung and White for procedural
software [8, 9, 13]. Their technique, called ORD technique, constructs an
object relation diagram (ORD) that describes static relationship among
classes. The ORD technique instruments code to report the classes that are
exercised by test cases. The ORD technique and the presented technique are
similar in that they both select all tests associated with some set of code
components, and the association of tests with code components is
determined dynamically through instrumentation. The primary difference
between the techniques is the granularity at which they consider
components. The ORD technique selects all tests associated with classes
within the firewall; it performs no further analysis within classes and
methods to attach test to entities at a finer granularity. Not all of those tests
necessarily execute changed code, or code that accesses changed data objects.
Whereas, the presented technique is more precise than the ORD technique,

as it will be shown subsequently.

The presented technique has several advantages. It can be fully automated, it
operates interprocedurally, and it performs test selection for C+ +
applications programs, classes, and derived classes. The technique handles
both structural and nonstructural program modifications and processes
multiple modifications with a single application of the algorithm. The
approach selects tests that may now execute new or modified code, and tests
that formerly executed code that has been deleted from the original program.
The technique selects tests using information gathered by code analysis but
without requiring software specifications, and it is independent of the

approach used to generate tests initially for programs and classes.

The next chapter provides an explanation of the regression testing selection
for object-oriented software. Chapter 3 describes the basic algorithm for
selecting regression tests for modified C+ + applications programs. Chapter
4 provides the design of the implemented technique. Chapter 5 describes
empirical studies and results in which the technique is applied on three C+ +

applications software. Finally, chapter 6 presents conclusions.

Chapter 2: Regression Test Selection for Object-
Oriented Software

2.1 Background

The following notation is used throughout this report. Let P be a method, class,
or program, let P’ be a modified version of P, and S and §" be the specifications

for P and P, respectively. Let T be a set of tests (a test suite) created to test P.

2.2 Regression Testing

Previous research on regression testing has addressed many topics, including test
environments and automation, capture playback mechanisms, test suite
management [4], program size reduction, and regression testability. Most recent
research on regression testing, however, concerns selective retest techniques [6,

9,11, 16].

Selective retest techniques reduce the cost of regression testing by reusing
existing tests, and identifying portions of the modified program or its
specification that should be tested. Selective retest techniques differ from the
retest all technique, which runs all tests in the existing test suite. Leung and
White [10] show that a selective retest technique is more economical than retest
all technique only if the cost of selecting a reduced subset of tests is less than the

cost of running the tests that the selective retest techniques omits.

A typical selective retest technique proceeds as follows:
1. Select T € T, a set of tests to execute on P,

2. Test P’ with T", establishing P”’s correctness with respect to T".
6

3. If necessary, create T”, a set of new functional or structural tests for P’.
4. Test P’ with T”, establishing P”’s correctness with respect to T”.

5. Create T"”, a new test suite and test history for P, from T, T, and T".

In performing these steps, a selective retest technique addresses several
problems. Step 1 involves the regression test selection problem: the problem of
selecting a subset T” of T with which to test P’. This problem includes the
subproblem of identifying tests in T that are obsolete for P’. Test t is obsolete
for P’ if t specifies input to P’ that, according to 8, is invalid for P’, or t specifies
an invalid input-output relation for P’. Step 3 addresses the coverage
identification problem: the problem of identifying portions of P* or §’ that
require additional testing, Step 2 and 4 address the test suite execution problem:
the problem of efficiently executing tests and checking test results for
correctness. Step 5 addresses the test suite maintenance problem: the problem of
updating and storing test information. Although each of these problems is
significant, this project restricts its contents to the regression test selection
problem. Furthermore, it restricts its contents to code based regression test

selection techniques, which rely on analysis of P and P’ to select tests.

There are two distinguishable phases of regression testing: a preliminary phase
and a critical phase. The preliminary phase begins after the release of some
version of the software; during this phase, programmers enhance and correct
the software. When corrections are complete, the critical phase of regression
testing begins; during this phase regression testing is the dominating activity,
and its time is limited by the deadline for product release. It is in the critical

phase that cost minimization is most important for regression testing.

Regression testing techniques can exploit these phases. For example, a technique
that requires test history and program analysis during the critical phase can
achieve a lower critical phase cost by gathering that information during the

preliminary phase.

There are various ways in which this two-phase process may fit into the overall
software maintenance process. A big bang process performs all modifications,
and when these are complete proceeds with regression testing. An incremental
process performs regression testing at intervals throughout the maintenance life
cycle, with each testing session aimed at the product in its current state of
evolution. Preliminary phases are typically shorter for the incremental model
than for the big bang model; however, for both models, both phases exist and

can be exploited.

2.3 Regression Testing Object-Oriented Software

Object-oriented languages raises interesting concerns for regression testing. To
test object-oriented software properly, we require a technique for testing classes.
Class testing approaches typically invoke sequences of methods in varying
orders, and after each sequence, verify that the resulting state of the object

manipulated by the methods is correct.

The object-oriented paradigm provides new applications for selective retest
algorithms. When we modify a class, we must retest the class, and classes
derived from that class. Moreover, although encapsulation should reduce the
likelihood that object-oriented code modules will interact inappropriately, it is

still the case that tests run on applications programs may reveal faults in

methods that were not revealed by tests of the individual methods. Thus, if we
want to be sure that we have rerun all existing tests that may expose errorsin a
modified class (i.e., select a safe test) we must consider all applications programs
that use the modified class. Whether retesting applications programs, classes, or
derived classes, we can benefit by applying selective retest algorithms to existing

Ltest suites.

To perform class testing, we require a driver that invokes a sequence of
methods. A typical class test driver first performs “setup” chores, calling
constructor routines and/or other methods. Next, the driver invokes the
sequence of methods under test. Finally, the driver invokes an “oracle” method
that verifies that objects have attained proper states. Code-based selective retest
methods must be able to distinguish between drivers, setup, routines, and
methods actually under test, and select only the tests that are relevant to

changes in methods under test.

When we modify a class, we must retest the class and classes derived from that
class. Unfortunately, it has been shown that a function that has been adequately
tested in isolation may not be adequately tested in combination with other
functions. Thus, it is advisable to also test applications programs that use the
modified class. In practice, of course, it may be impractical or impossible to
retest all such applications programs; nevertheless, we need to be aware of the
consequences of this impracticality, and we may wish to reduce the associated
risks by regression testing those applications programs that can economically be

tested.

10

Object-oriented programs employ polymorphism and dynamic binding to a
degree beyond that of procedural programs. In an object-oriented program a
method invocation can be bound at run-time to a number of methods. For a
given calls, we cannot always determine statically the method to which it will
be bound. Selective retest methods that rely on static analysis must provide

mechanisms for coping with this uncertainty.

Chapter 3: Description of Regression Test Selection
Technique

3.1 Control Flow Graph

A control flow graph (CFG) for method P contains a node for each simple or
conditional statement in P; edges between nodes represent the flow of control
between statements. In a graph, the statement node that are drawn as ellipses,
represent simple statements. Predicate nodes, drawn as rectangle, represent
conditional statements. Branches, drawn as labeled edges leaving predicate
nodes, represent control paths taken when the predicate evaluates to the value
of the edge label. Statement and predicate nodes are labeled to indicate the
statements in P to which they correspond. To label nodes, statement numbers
can be used in the control flow graph; however, the actual code of the
associated statements could also serve as labels. For simplicity, switch
statements are represented in CFGs as nested if-else statements; under this
assumption, every CFG node has either one unlabeled out-edge or two out-
edges labeled “T” and “F”. A unique entry node, labeled with a statement
number, and a unique exit node, labeled “X”, represents entry to and exit from
P, respectively. Declarations and initialization statements, when represent, are
also represented as nodes. The time and space required to construct and store a
CFG for method P is linear in the number of simple and conditional statements

in P.

3.2 Interprocedural Control Flow Graphs

A CFEG encodes control flow information for a single method. To encode

control flow for a group of interacting methods, that have a single entry point,
11

12

such as a group of methods that constitute an entire program, we use an
interprocedural control flow graph (ICFG). An ICFG for program P contains a
control flow graph for each method in P, with each call site in P represented as
a pair of nodes called call and return nodes. Each call node is connected to the
entry node of the called method by a call edge, and each exit node is connected

to the return node of the calling method by a return edge.

3.3 Code Instrumentation

Let P be a program with ICFG G. we can instrument P such that when the
instrumented version of P is executed with test t, it records a branch trace that
consists of the branches taken during that execution. We can use this branch
trace information to determine which edges in G were traversed when t was
executed: an edge (n1, n2) in G is traversed by test t if, when P is executed with t,
the statements associated with n: and n: are executed sequentially at least once
during the execution. We call the information thus determined an edge trace for
t on P. An edge trace for t on P has size linear in the number of edges in G, and

can be represented by a bit vector.

Given test suite for P, we construct a test history for P with respect to T by
gathering edge trace information for each test in T and representing it such that
for each edge (n1,n2) in G, the test history records the tests that traverse (n1,nz).
This representation requires O(e | T |) bits, where e is the number of edges in G

and | T| is the number of tests in T.

13

3.4 The Overall Approach

Two assumptions are made. First assumption is that T contains no obsolete
tests, either because it contained none initially, as in purely corrective
maintenance, or because it has been removed. This assumption is reasonable
because it is required for regression testing of any form: if test obsolescence
cannot be determined then test correctness cannot be judged. Second
assumption is that each test in T terminated when run on P, and produced its
specified output. This assumption too is reasonable, because if any tests violate
it (as in practice they may, because software is often released with known bugs)
these tests are known, and can be removed from T prior to performing
regression test selection and then reincluded in T” following the selection

phase.

The goal of this approach is to identify tests in T that execute changed code
with respect to P and P’. In other words, to identify tests in T that (1) execute
code that is new or modified for P’ or (2) executed code in P that is no longer
present in P". To formalize the notion of these tests, a definition is given to an
execution trace for test t on P to consist of the sequence of statements in P that
are executed when P is executed with t. Two execution traces are equivalent if
they have the same lengths and if, when their elements are compared from first
to last, the text representing the pairs of corresponding elements is
lexicographically equivalent. Two text strings are lexicographically equivalent
if their text, ignoring extra white space characters when not contained in
character constants, is identical. Test t is modification traversing for P and P’ if

its execution traces from P and P’ are nonequivalent.

14

In general, it may be extremely expensive to compare execution traces, and an
algorithm that attempted it would be required to run all tests in T on P’
(which the presented approach is trying to avoid) in order to obtain their
traces and select a subset of T. We can take advantage, however, from the
mapping between execution traces and paths in ICFGs obtained by replacing
each statement in the execution trace by its corresponding ICFG node (or
equivalently, by the text of the statement associated with that node) to ensure
selection of tests that are modification traversing. The proposed algorithm
synchronously traverses ICFG paths that begin with the entry node of G and
G, looking for pairs of nodes N and N’ whose associated statements are not
lexicographically equivalent. When such a pair is found, a test history
information is used, obtained through the TestsOnEdge function to select all
tests known to have reached N. This traversal essentially considers all tests at
once; it is not necessary to perform one traversal per test. By marking nodes
“visited” as the traversing is taking place, the approach avoids visiting nodes
multiple times, and ensures that the algorithm terminates in time proportional

to the size of the graph, rather than to the size of the execution traces.

A focus on changes in executable statements is done so far. A change in a
nonexecutable variable or type declaration may cause a test to reveal a fault,
even though that test executes no changed executable statements. For example,
in a C++ program, changing the type of a variable from "int" to "double" can
cause the program to fail even if no executable statements are altered. To
handle this situation, one approach is to create, in ICFGs, declaration nodes
that correspond to variable and type declarations, and associate each test that

executes a method, class, or program with all declaration nodes associated with

15

that method, class or program. Following this approach, when nonexecutable
initialization statements change, SelectTests selects all tests attached to the

assoclated nodes.

3.5 A Regression Test Selection Algorithm

The proposed regression test selection algorithm, SelecTests, is presented in
figure 3.5.1 takes a program P, its modified version P, and the test suite T for
P, and returns T, a set that contains tests that are modification traversing for P
and P’. SelectTests first initializes T” to ¢, and initializes E, which will hold the
set of edges in the ICFG for P on which tests must be selected, to ¢. Next, the
algorithm constructs ICFGs G (with entry node) and G’ (with entry node ¢')
for P and P, respectively. The algorithm then calls Compare with e and e’.
Compare ultimately places edges through which tests become modification

traversing for P and P’ into E. SelecTests then uses TestOnEdges to retrieve

these tests (line 6-7).

Compare is a recursive procedure called with pairs of nodes N and N’, from G
and G, respectively, that are reached simultaneously during the algorithm’s
comparisons of traversal trace prefixes. Given two such nodes N and N,
Compare first determines whether the two nodes have equivalent outgoing
edges. If not, then tests that reach N” may become modification traversing.
Thus, Compare selects all edges out of N: the tests on these edges include all
tests of interest. Note that if N and N’ represent typical true-valued of false-
valued predicate statements, then each node necessarily has a pair of outgoing

edges labeled “true” and “false”, and Compare will not need to select any edges.

16

If N and N’ have equivalent outgoing edges, Compare considers successor
nodes of N and N’ to determine whether N and N’ have successor nodes
whose labels differ along pairs of identically labeled edges. If N and N” have
any such successors, tests that traverse the edges to the successor are
modification traversing due to changes in the code associated with those
successors. In this case, Compare selects the edge in G that connects N to that
successor. If N and N’ have successors whose labels are the same along a pair of
identically labeled edges, Compare continues along the edges in G and G’ by

invoking itself on those successors.

Lines (10-29) of Figure 3.5.1 describe Compare’s actions more precisely. When
Compare is called with ICFG nodes N and N’, Compare first marks node N
“N’-visited”(line 11). After Compare, has been called once with N and N’ it
does not need to consider them again - this marking step lets Compare avoid
revisiting pairs of nodes. Lists to hold “visited” information are associated with
ICFG nodes in G, and created and initialized during ICFG construction. Next,
Compare uses QutEdgesEquivalent(N,N’) to check for equivalence of outgoing
edges. This function returns true only if there is one-to-one correspondence
between the labels on edge leaving N and the labels on edges leaving N'; if
there is no such correspondence the function returns false and lines (13-15)
select the necessary edges. If N and N have equivalent outgoing edges,
Compare, in the for loop of lines (17-27), considers each control flow successor
of N. for each successor C, Compare locates the label L on the edge from N to
C, then seeks the node C" in G such that (N’,C’) has label L; if (N,C) is
unlabeled, € is used for the edge label. Next, Compare considers C and C". if C

is marked “C’-visited”, Compare has already been called with C and C’, so

17

Compare does not take any action with C and C'. if C is not marked “C’-
visited”, Compare calls NodesEquivalent with C and C’. The NodesEquivalent
function takes a pair of nodes N and N, and determines whether the statement
S and S’ associated with N and N’ are lexicographically equivalent. If
NodesEquivalent(C,C’) is false, then tests that traverse edge (N,C) are
modification traversing for P and P’, and tests that executed C must be
selected; Compare adds edge (N,C) to E, the list of edges on which tests will be
selected. If NodesEquivalent(C,C’) is true, Compare invokes itself on C and C’

to continue the graph traversals beyond these nodes.

SelectTests is an interprocedural algorithm: it functions on entire programs
rather than single methods. By beginning with the entry nodes of “main”
routines, and processing called methods only when it reaches calls to those

methods, SelecTests avoids analyzing methods called only after code changes.

Algorithm SelectTests(P,P’ . T): T’

Input P.P’: base and modified versions of a program
T: a test set used to test P
Output T: the subset of T selected for use in regression testing P’
Global E: a subset of the edges in the ICFG for P
| begin
/3 T=¢
3 E=¢
4. construct G and G’, ICFGs for P and P, with entry nodes e and e’
5. Compare(e,e’)
6 for each edge (ny,n2) € Edo
7 T =T w TestsOnEdge((n;,n2))
8 return T
0 end
procedure Compare(N, N')
input N and N": nodes in G and G’
10. begin

11.

mark N “N’-visited”

12. if not OutEdgesEquivalent(N, N*)

13. for each successor C of N in G do

14, E=EJW(N,C)

15. endfor

16. else

17. for each successor C of N in G do

18. L = the label on edge (N,C) or € if (N C) is unlabeled
19. C’ = the node in G" such that (N’, C’) has label L
20. if C is not marked “C’-visited”

z1. if not NodesEquivalent(C, C')

22, E=Eu(N,C)

23. else

24, Compare(C, C)

Z5. endif

26. endif

Z7: endfor

28. endif

29 end

Figure 3.5.1. Algorithm for test selection for object-oriented
software.

18

Chapter 4: Design of The Implemented Technique

4.1 Structure

Chart

The structure chart of the SelectTest program is in Figure 4.1.

Main
Initialize_cfgs Fill _cfgs Compare TestsOnEdge Display
GetString Traverse List
OutEdgeEquivalent Insert Node NodesEquivalent Compare

Figure 4.1. Structure chart of the SelectTest program.

4.2 Structure Type, Constant and Variable Definitions

ORG_NB_ND: constant representing the total number of nodes in the

interprocedural control flow graph of the original version of the program.

19

20

MOD_NB_ND: constant representing the total number of nodes in the
interprocedural control flow graph of the modified version of the program.
LEN: constant representing the maximum length of a given type that can be read
into an array.
Edge: structure type containing three members:
1. Nodel: integer type representing a node number leaving an edge
2. Node2: integer type representing a node number arriving to an edge.
3. Next: pointer to edge type.
Node: structure type containing five members:
1. Outedgelabel: pointer to character representing the label on the out edge.
It is formed of three characters each of which has value either T (for True)
or F (for False). These three characters represent label true, false and normal
edge respectively. If one of these characters is set to true this means that the
corresponding label exists.
2. Succlnb: integer type representing the first successor node number (its
value is zero if there is no successor).
3. Succ2nb: integer type representing the second successor node number (its
value is zero if there is no successor).
4. Stmt1: pointer to character representing the actual code associated with the
first successor statement.
5. Stmt2: pointer to character representing the actual code associated with the
second successor statement.
List_of edges: pointer to structure type edge containing the list of edges on which
tests will be selected.
Orgcfg [ORG_NB_ND]: variable array of type edge and length ORG_NB_ND

containing the ICFG details of the original version of the program.

21

Modcfg [MOD_NB_NDJ: variable array of type edge and length MOD NB_ND
containing the ICFG details of the modified version of the program.

Orgprg: pointer to file type representing the name of the file containing ICFG
information about the original version of the program.

Modprg: pointer to file type representing the name of the file containing ICFG
information about the modified version of the program.

Testhis: pointer to file type representing the name of the file containing the test
history information of the program.

Visited array [ORG _NB_ND]: variable array of type integer and length ORG_NB_ND
used to record the node traversed.

Testnb: variable of type integer containing the number of tests executed on a given

program and is deduced from testhis file.

4.3 Detailed Functions Design

A) Main Function
Input: orgefg, modcfg, visited_array, list_of edges, testhis, testnb, regtest
Output: tests that are modification traversing and will be used for re-
execution
Description: Main reads a program and its modified version in
addition to its corresponding test suite and returns a set containing test that
are modification traversing for the program and its modified version.

Pseudo-code:
initialize cfg(orgefg,modcfg).
initialize_int(visited_array).
fill_cfgs(orgefg,modcfg).
create first edge in list_of edges and initialize it to zero

call Compare(0,0,list_of edges).

B)

C)

22

open testhis file.

initialize(regtest).

testnb= TestsOnEdge(regtest).
display (list_of edges,regtest,testnb).

close teshis file.

Initialize cfg Function

Input: orgcfg, modcfg.

Output: orgcfg, mmodcfg.

Description: initialize the two arrays of structure type edge for original and
modified program.

Pseudo-code:
For each entry in orgefg and modcfg arrays do
Set member succlnb & succ2nb to zero.
Set member outedgelabel to “FFF”.

Set member stmt1 & stmt2 to space.

Fill cfgs Function

Input: orgefg, modcfg.

Output: orgefg, modcfg.

Description: read the two files that contain the original and modified
version of the program in order to fill the corresponding arrays elements
with their each values according to the specified format of the file.

Pseudo-code:
Open file orgprg (then modprg).
While not end of file do
Read line from orgprg (modprg).

D)

23

Set nodenb to first field in line.

Set outedgelabel member of orgefg (modcfg) for entry
nodenb to second field in line.

Set succlnb member of orgefg (modcfg) for entry nodenb
to third field in line.

Set succ2nb member of orgefg (modcfg) for entry nodenb
to fourth field in line.

Set stmt1 member of orgcfg (modcfg) for entry nodenb to
fifth field in line.

Set stmt2 member of orgcfg (modcfg) for entry nodenb to

sixth field in line.

Compare Function

Input: orgnode and modnode, which are nodes from original and modified
version of the program, respectively, reached during the algorithm
comparison of traversal trace prefixes.

Description: link edges through which tests become modification
traversing for original and modified program to list_of edges.

Pseudo-code:
Set visited_array for entry orgnode to modnode.
If (not outEdgeEquivalent(outedgelabel member of orgefg for
entry orgnode, outedgelabel member of modcfg for entry
modnode))
{
if (succlnb member of orgefg for entry orgnode not =
Zero)
insert(orgnode, succlnb member of orgefg for entry
orgnode)
if (succ2nb member of orgcfg for entry orgnode not =
zero)
insert(orgnode, succ2nb member of orgefg for entry
orgnode)

E)

else

if ((succlnb member of orgcfg for entry orgnode not =
zero) and (visited array for entry succlnb member of
orgefg for entry orgnode not = succlnb member of
modcfg for entry modnode))
{
if (not NodesEquivalent(stmt1 member of orgefg for
entry orgnode, stmt]l member of modcfg for entry
modnode))
insert(orgnode, succlnb member of orgefg for
entry orgnode)
else
Compare(succlnb member of orgefg for entry
orgnode, succlnb member of modcfg for entry
modnode,list_of edges)
if (not NodesEquivalent(stmt2 member of orgefg for
entry orgnode, stmt2 member of modcfg for entry
modnode))
insert(orgnode, succ2nb member of orgefg for
entry orgnode)
else
Compare(succ2nb member of orgcfg for entry
orgnode, succ2nb member of modcfg for entry
modnode,list_of edges)

OutEdgeEquivalent Function

Input: outEdgeLabelO outEdgeLabelM.

Output: return 1 as True or 0 as False.

Description: this function returns true only if there is one-to-one
correspondence between the labels on edges leaving a node from original
ICFG program and the label on edge leaving a node from modified ICFG

program, if there is no such corrsponding the function returns false.

24

G)

H)

D

NodesEquivalent Function

Input: Ostatement, mstatement.

Output: return 1 as True or 0 as False.

Description: this function takes a pair of nodes from original and modified
program, and determines whether the statements associated with each node
are lexicographically equivalent. If it returns false then tests that traverse the
node in the original program and its successor are modification traversing

for the original program and its modified version.

Traverse list Function

Input: list_of edges, nodel, node2.

Output: return 1 as True or 0 as False.

Description: this function traverses the list of edges, taken from the ICFG
for the original program, through which tests become modification
traversing for the modified version of the program.

Pseudo-code:
While not end of list_of edges
If ((nodel member of list_of edges = nodel) and (node2
member of list of edges = node2))
Return 1
Else
Move to next edge in list_of edges

Return 0

TestsOnEdge Function
Input: regtest

Output: testnb

26

Description: read testhis file and select tests that has edges that are

modification traversing for the modified version of the program.

Pseudo-code:
Set testnb to zero
While not end of testhis file do
{
Initialize(edgetrace)
Read line from testhis & fill it into edgetrace array
While not end of edgetrace
{
Set nodel to first field in edgetrace
Set node2 to second field in edge trace
If (traverse list(list_of edges, nodel, node2))

{

Set regtest of entry testnb to 1
Break

}

Increment testnb by one

}

return testnb.

Chapter 5: Experimental Results

To experiment the proposed approach, three programs were chosen: Elevator,
time, and publication applications. The first application uses the elevator class,
the second uses the time class and the last application contains multiple
inheritance where class book and class tape are derived from the two base
classes publication and sales. Each application has a test suite containing
between two to four tests each. Three input files are needed for each
application: test history information file, ICFG information file for original and

modified version.

Figure 5.1 (a) shows the actual code for the base version of the Elevator
application.

The elevator application is formed of one class which is the elevator class with
one constructor and one destructor, six member functions and four data items.
Figure 5.1 (b) shows the ICFG for the base version of the Elevator application.
Statement nodes, shown as ellipses, represent simple statements. Predicate
nodes, shown as rectangles, represent conditional statements. Branches, shown
as labeled edges leaving predicate nodes, represent control paths taken when the
predicate evaluates to the value of the edge label. Statement and predicate nodes
are labeled to indicate the statements in the elevator application to which they
correspond. Statement numbers are used as node labels.

Figure 5.1 (c) shows the input file containing ICFG information for the base
version of the Elevator application. This file is described in details in the
appendix. Figure 5.1 (d) shows the same information as (a) but for the modified

version of the Elevator application. A member function, which_floor, is added,

27

28

statement 40 is altered and statement 44.1 is added. Note that the modified part
of each application is highlighted in the figure where the actual code of the
modified version of the application is present. Figure (e) shows the same
information as (b) but for the modified version of the Elevator application.
Because which_floor is not invoked by the modified version of the elevator
application, its CFG is not needed or included in the ICFG of figure 5.1 (e).
Figure 5.1 (f) shows the same information (c) but for the modified version of the
Elevator application. Line 20 and 25 of figure 5.1 (f) differs from line 20 and 25
in figure 5.1 (c) concerning the statements equivalence. Figure 5.1 (g) shows the
test history information table for Elevator application. Four tests are executed
on the elevator application. We assume that a test driver sets the values of
top_floor, bottom_floor, and current_floor as indicated, and then invokes the
method go with the indicated value of floor as parameter. For each test, the
edge trace information is recorded representing all edges traversed during the
execution of the elevator application with the corresponding test. Figure 5.1 (h)
shows the selected test(s) to be reexecuted on the modified version of the
Elevator application. The table is formed with two columns: the first column
represents the result when the above mentioned modification are applied, an
edge (36,40) is selected by the program, and two tests t3 and t4 are selected
according to this edge; the second column represents the result when only a
statement is added (44.1) without altering the other statement (40), an edge
(40,45) also is selected and only one test t4 containing that edge is selected

accordingly.

To see how Select Tests works, the Elevator application is an example that will

be explained in details. The Elevator class (presented in Figure 5.1 (a)) is

29

modified, creating Elevator ’; the new and modified code is shown in Figure 5.1
(d)). In Elevator ’, the go method has changed: line 40 has been (erroneously)
altered, and a new line 44.1, has been added. Also a new method, which floor,
has been added. The test set T for Elevator application contains test t, tz, t3, and
ts, which are described in Figure 5.1 (g). We wish to select tests from T for
reexecution when Elevator application is built with the modified version of the

Elevator class, yielding the modified version of Elevator application.

In this case, we call Select Tests with Elevator application, its modified version,
and T. SelectTests first constructs the ICFGs G and G’ for the two programs.
Figure 5.1 (e) depicts G’; G’ differs from G only with respect to the CFG for
g0. Because which floor is not invoked by modified version of Elevator
application, its CFG is not needed or included in the ICFG for the modified

version of Elevator application.

Next, Select Tests invokes Compare with entry nodes 74 and 74'. Compare
begins to visit pairs of nodes: (74,74"), (75,75"), (77¢,77¢"), (9,9"), (10,10"),
(11,11"), (12,12"), (13,13"), (X,X'), (77r,77¢"), (78¢,78¢"), (30,30"), (31c, 31c"),
(61,61"), (62,62"), (63,63"), (64,64"), (X,X"), (31r,31r"), (32,32"), and then (36,36").
On visiting (36,36"), Compare first marks “36'"-visited”, and then considers the
successor of 36, 40. The successor in G' with an equivalently labeled edge (“F”)
15 40, 40 is not marked “40'"-visited”, so Compare proceeds to step 21. 40 and
40" are not lexicographically equivalent; thus, Compare insert edge (36,40) into
E. The algorithm does not continue further from 40 and 40'. Instead, it
traverses other portions of the ICFGs. No further changes are discovered; on

return to the algorithm’s main routine, tests ts and t+ are the only tests selected.

30

If the change at 40 had not been present, the algorithm would have continued
its traversal from 40 and 40', found their successors 45 and 44.1

lexicographically different, and selected edge (40,45) (requiring only test t4).

1 #include <iostream.h>

2 #include <stdlib.h>

3 #define UP 1

4 #define DOWN 2

5 typedef int Direction;

G

7 class Elevator {

8 public:

9 Elevator (int |_top_floor) {

10 current_floor = 1;

11 current_direction = UP;

12 top floor = |_top_floor;

13 bottom_floor = 1;

14 }

15

16 virtual ~Elevator () {}

17

18 wvoid up () {

19 current_direction = UP;

20 }

21

22 voiddown() {

23 current_direction = DOWN;

24 }

25

26 Direction direction (){

27 return current_direction;

28 }

29

30 virtual void go (int floor) {

31 int valid = valid_floor(floor);

32 if (tvalid) {

33 cout < < "Invalid floor request\n";
34 return;

35)

36 if (floor > current_floor) {
37 upl);

38 cout < < "Elevator is going up";
39 }

40 else { if (floor < current_floor) {
41 duwn{};

42 cout < < "Elevator is going down”;

43
44
45

47

48
49
50
51

52
53
54
55
56
57

58
59
60
61

63

65

&7
68
69
70
71
72
73
74
75
76
77
78
79

3t

}

else

returr;

if (current_direction == UP) |
while ((current_floor != floor) &&
(current_floor < = top_floor))
add(current_floor, 1);

)

else |

while ((current_floor != floor) &&
(current floor < = bottom_floor))
add(current_floor, -1);

}

|4

private:

void add(int &a, const int &b)
{

a=at+h;

}

int valid floor(int floor) {
if ((floor > top_floor) || (floor <
bottom_floor))

return 0;

return 1;

b

protected:

int current_floor;

Direction current_direction;
int top_floor;

int bottom_floor;

b

voidmain () {
Elevator *e_ptr;

e_ptr = new Elevator(10);
e_ptr->>go(2);
1

Figure 5.1. (a) Actual code for the base version of the Elevator application.

32

Figure 5.1. (b) ICFG for the base version of the Elevator application.

33

O#FFT#74#0#void main () {# #
74#FFT#75#0#Elevator *e_ptr;# #

75#FFT#77#0#e_ptr = new Elevator(10);# #
77TH#FFT#9478#Elevator (int |_top_floor) {#e ptr->go(2);#
9FFT#10#0#current_floor = 1;# #
10#FFT#11#0#current_direction = UP;# #

L1#FFT#12#0#top_floor = | top floor;# #
124FFT#13#0#bottom_floor = 1;# #

13#FFTHO#O# # #

78#FFT#30#0#virtual void go (int floor) {# #

30#FFT#31#0#int valid = valid_floor(floor);# #

J1I#FFT#61#32#int valid_floor(floor) {#if (valid) {#
61#FFT#62#0#if ((floor > top_floor) || (floor < bottom_floor))# #
62#FFT#63#64#return O;#return 1;#

6I#FFTHO#OH # #

6AX¥FFTHONOH # #

32# TTE#33#36#cout < < "Invalid floor request\n";#if (floor > current floor) {)#
I3HFFT#34#0# return;# #

J4#FFTHO#O# # #

36# TTF#37#40#up()s#else if (floor < current floor) {#
37#FFT#18#38#void up() {#cout < < "Elevator is going up";#
18#FFT#19#0#current_direction = UP;# #

194FFT#O#O# # #

38#FFT#46#0#if (current_direction == UP) {# #

40# TTF#41#45#down();#return;#

H1#FFT#22#42#void down(){#cout < < "Elevator is going down";#
22#FFT#23#0#current_direction = DOWN;# #

2I#FFTHO#O# # #

426FFT#46#0#1f (current_direction == UP) {# #

46# TTF#47#51#while ((current_floor != floor) && (current_floor < = top_floor))#while
((current_floor != floor) 8& (current_floor < = bottom_floor))#
47# TTF#48#0#add(current floor, 1);# #

48#FFT#57#0#add(int &a, const int &b) {# #

S7T#FFT#58#0#a = a+b# #

S58#FFT#HO#OH # #

51#TTF#52#0#add(current_floor, -1)# #

524FF THOHO# # #

45#FF THOHOH # #

%o

Figure 5.1. (c) Input file containing ICFG information for the based version of
the Elevator application.

1"
2!

3

4

5"

&'

7

g

9"

10"
11
12'
13'
14'
15'
16’
17
18
19'
20
21
99!
23!
24
25"
26'
27
28"

#include <iostream.h >
#include <stdlib.h >
#define UP 1

#define DOWN 2

typedef int Direction;

class Elevator |

public:

Elevator (int | top_floor) {
current_floor = 1;
current_direction = UP;
top_floor = 1_top_floor;
bottom floor = 1;

}

virtual ~Elevator () { }

void up () {

current_direction = UP;

}

void down() {
current_direction = DOWN;

}

Direction direction (){
return current_direction;

}

28.1 int which_flooor() {
28.2 return current floor;}

291
30
31"
32
33
34
35!
Jg'
w
38
39
40’

virtual void go (int floor) {
int valid = valid_floor{floor);
if valid) |
cout < < "Invalid floor request\n";
return;
}
if (floor > current_floor) {
up();
cout < < "Elevator is going up";
H
else { if (floor <=

current_floor) {

41

down();

34

42" cout < < "Elevator is going

down";

43’)

44’ else |

44.1 cout< < “Elevator is on the
same floor\n™;

45’ return; }

46 if (current_direction == UP) {
47 while ((current floor != floor) 88
(current_floor < = top_floor))

48 add(current floor, 1);

49)

50 else {

51 while ((current_floor != floor) 828
(current floor < = bottom_floor))

52 add(current floor, -1);

53 }

54 %

35

56 private:

57 void add(int &a, const int &b)

{

58 a=a+bh;

59: }

60

61 int valid_floor(int floor) {

62 if ((floor > top_floor) || (floor <
bottom_floor))

63 return Q;

64 return 1;

65

b6

67 protected:

68 int current_floor;

69 Direction current_direction;

70 int top_floor;

71 int bottom_floor;

72}

73

74 voidmain () {

75 Elevator *e_ptr;

76

77 e_ptr = new Elevator(10);

78 e ptr->go(2);

79 }

Figure 5.1. (d) Actual code for the modified version of the Elevator

application.

Figure 5.1. (e) ICFG for the modified version of the Elevator application.

36

O#FFT# 74808 void main () {# #

THFFT#75#0#Elevator *c_ptr;# #

T5#FFT#77#0#e_ptr = new Elevator(10);# #
TT#FFT#9#78#Elevator (int |_top_floor) {#e_ptr->go(2):#

O#FFT# 10#Mfcurrent_floor = 1:# #

10#FFT#1 1#0#current_direction = UP;# #

1 1#FFT#12#0#top_floor = |_top_floor;# #

12#FFT#1 3#0#bottom_MNoor = 1:# #

| 3#FFTH#04 # #

TE#FFT#30#0#virtual void go (int floor) {# #

30#FFT#H#3 1#0#int valid = valid_floor(floor);# #
31#FFT#61#32#int valid_floor(floor) {#if (!valid) {#
G1#FFT#62#0#if ((floor > top_floor) || (floor < bottom_floor))# #
O2#FFT#63#0644#return O;#return 1:#

O3#FFTHOHOH # #

GHFFTHOMOH #

32#TTE#33#36#cout << "Invalid floor requestn”;#f (floor > current_floor) {)#
IZHFFTH3440#return;# #

SAHFEFTHOHOM # #

36#TTF#37#40#up();#else if (floor <= current_floor) {#
3T#FFT#18#38#void up() {#cout << "Elevator is going up"#

| 8#FFT#1 980 current_direction = UP# #

19HFFTHOH#0# # #

IBH#FFTHAGHMAT (current_direction == UP) {# #
40#TTF#4 1 #44#down():#cout << "Elevator is on the same floor\n"#
41#FFT#22#42#void down(){#cout << "Elevator is going down":#
22HFFTH23# 0 current_direction = DOWN;# #

23HFFTHO#E # #

A2#FFT#AGHMAT (current_direction == UP) {# #

A6HTTE#47#5 1#while ((current_floor != floor) && (current_floor <= top_floor)}#while
((current_floor = floor) && (current_floor <= bottom_floor))#
4THTTEHME#O#add(current_floor, 1):# #

48#FFTH#3T#Madd(int &a, const int &b) {# #

STHFFT#58#0f#a = a+b# #

SSHFFTHO#OH # #

SI#TTF#52#0#add (current_floor, -1)# #

S2HFFTHO#0 # #

A4 FFTH4 5#return;# #

45#FFTHOHOH # #

T

Figure 5.1. (f) Input file containing ICFG information for the modified
version of the Elevator application.

37

test

top_floo
r

qhmmm_ﬂnu
r

Current_{lo
or

Floo

edge trace

il

10

1

1

(74,75),(75,77),(77,9),(9,10),(10,11),(11,12),(12,13),(13,7
8),(78,30),(30,31),(31,61),(61,62),(62,63),(63,32),(32,33),
(33,34)

t2

10

(74,75),(75,77),(77,9),(9,10),(10,11),(11,12),(12,13),(13,7
8),(78,30),(30,31),(31,61),(61,62),(62,64),(64,32),(32,36),
(36,37),(37,18),(18,19),(19,38),(38,46),(46,47),(47,48),(4
8,57),(57,58),(58,47)

3

10

(74,75),(75,77),(77,9),(9,10),(10,11),(11,12),(12,13),(13,7
8),(78,30),(30,31),(31,61),(61,62),(62,64),(64,32),(32,36),
(36,40),(40,41),(41,22),(22,23),(23,42),(42,46),(46,51),(5
1,52),(52,57),(57,58),(58,51)

4

10

(74,75),(75,77),(77,9),(9,10),(10,11),(11,12),(12,13),(13,7
8),(78,30),(30,31),(31,61),(61,62),(62,64),(64,32),(32,36),
(36,40),(40,45)

Figure 5.1. (g) Test history information table for Elevator application.

Modification
traversing
test (36,40) | (40,45)
tl
t2
t3 X
t4 X X

Figure 5.1. (h) Test(s) selected to be reexecuted on the modified version of the
Elevator application.

38

Figures 5.2 (a) to (h) contain the same information as figures 5.1 (a) to (h) but
for the Time application. The time application is formed of one class which is
the time class with two constructors and no destructor, two member functions
and three data items. Two statements are altered: statement number 25 and
statement number 30. Line 15 and 19 in figure 5.2 (f) differs from line 15 and 19
in figure 5.2 (c) concerning the statements equivalence. Four tests are executed
on the time application. We assume that a test driver sets the values of t1.hrs,
t1.mins, t1.secs, t2.hrs, t2.mins, and t3.secs. The table in figure 5.2 (h) is formed
with two columns: the first column represents the result when the above
mentioned modification are applied, two edges (24,25) and (29,30) are selected
by the program, and three tests t1, t2, and t3 are selected according to these
edges; the second column represents the result when only one statement is
altered (30), only one edge (29,30) is selected and two tests t1 and 12 containing

that edge are selected accordingly.

1 #include <iostream.h>

2

3 class time{

4 prival:n:

5 int hrs, mins, secs;

51

7 public:

8 time(}{

9 hrs = mins = secs = 0;
10 }

11

12 tme (int h, int m, ints) {
13 hrs = h;

14 mins = m;

15 secs = 5

16}

17

18 void display() {

19 cout << his << ":"<<mns<<":" << secs;
20)

21

22 void add_time(time t1, time 12){
23 secs = tl.secs + t2.secs;
24 if (secs > 59) {

25 secs -= 60;

26 mins+ +;

27 }

28 mins + = tl.mins + t2.mins;
29 if (mins > 59){

30 mins -= fA0;

k1| hrs+ +;

32 }

33 hrs + = tl.hrs + t2.hrs;
34}

35k

36

37 woid main() {

38 time timel(5, 59, 59);

39 time time2(4, 30, 30);

40 ume tumed;

41

42 umel.add time(timel, time2);
43 cout < < "\ntime3} = ";

44 umel.display();

45

Figure 5.2. (a) Actual code for the base version of the Time application.

39

Figure 5.2. (b) ICFG for the base version of the Time application.

40

41

O#FFT#37#0#void main() {# #

IT#FFT#38#0#tme time1(5, 59, 59):# #

IR4#FFT#12#39%time (int h, int m, int 5) {#time time2(4, 30, 30).#
124#FFT#13#0#hrs = hi# #

134#FFT#14#0#hmins = m;# #

|4H#FFT#1 5#0dsecs = s;# #

| SHEFTHOMOG # #

39#FFT#12#40ftime (int h, int m, int 5) {#time time3:#
AO#FFT#S#42#time() {#time3.add_time(timel, time2);#
S#FFT#9#0#hrs = mins = secs = 0i# #

O#FFTHOHOM # #

A24FFT#22#43#void add_time(time tl, time (2) {#cout << "\ntime3 = "#
22#FFT#23#0#secs = tl.secs + t2.secs# #

2IHFFTH24H#0#S (secs > 59) {# #

24#TTF#25#28#secs -= 60;#mins += tl.mins + t2.mins:#
25HFFT#26H# 0 mins++;# #

26#FFT#28#0#mins += tl.mins + t2.mins:# #

28HFFT#29#0#f (mins > 59) {# #

20#TTF#30#33#mins -= 60:#hrs += tl.hrs + t2.hrs:#

JOH#FFTHS 1#0#hrs++:7 #

J1H#FFT#33#04#hrs += t1.hrs + t2.hrs;# #

I3HEFTHOHOM # #

A3#FFTH#4440#time3. display().# #

J44FFT#H#1 8#0¢void display(){# #

|8#FFT#19#0#cout << hrs << " : " << mins << " : " << secs;# #
| O#FFTHOMO # #

O

Figure 5.2. (c) Input file containing ICFG information for the base version of
the Time application.

Pd

g og N Oy

10°
1’
12!
13
14'
15'
16'
17
18'
19’
20'
21
22'
23’
24'
25'
26
27
28'
29'
30"
31"
32
33'
34'
35'
36"
37
38"
39"
40"
41"
42'
43'
44'
45'

#include <iostream.h>

class time {
private:
int hrs, mins, secs;

public:
time(){

hrs = mins = secs = 0;
H

time (int h, int m, int s} {
hrs = h;
mins = m;
SECS = §;

)

void display() {
cout << hrs << ":"<<mins << ":" << secs;
1

void add_time(time t1, time t2){

secs = t1.secs + t2.secs;
if (secs > 59) {

secs = secs - 60;

mins+ +;
} |
mins + = tl.mins + t2.mins;
if (mins > 59){

mins = mins - 60;

hrs+ +;

hrs += t1l.hrs + t2.hrs;

}
Vi

void main() {
time timel(5, 59, 59);
time time2(4, 30, 30);
time timed;

time3.add_time(timel, time2);
cout < < "\ntime3d ="
time3.display();

!

42

Figure 5.2. (d) Actual code for the modified version of the Time application.

Figure 5.2. (e) ICFG for the modified version of the Time application.

43

44

O#FFT#37#0#void main() {# #

FTHFFT#38#0#ime timel (3, 59, 59);# #

38#FFTH#12#3%ime (int h, int m, int) {#time time2(4, 30, 30).#
| 24#FFT#1 3#Mthrs = hy# #

1 3#FFT#14#0#mins = m:# #

| 44#FFT# 1 5#dfsecs = s:# #

| SHEFTHOH0H # #

JO#FFT#12#40#time (int h, int m, int s) {#time time3;#
AOH#FFT#8#424#time() {#time3.add_time(timel, time2):#
SH#FFT#9%04hrs = mins = secs = O# #

OHFFTHOM#O # 4

42#FFT#22#43#void add_time(time t1, time t2) {#cout << "\ntime3 = "#
224FFT#23#Msecs = t].secs + t2.sces;# #

2IHFFTH2A#04F (secs > 59) {# #

2AH#TTF#25#28#secs = secs-00:#mins += tl.mins + (2. mins;#
25#FFT#26#HMmins++.# #

26#FFTH#28#(Hmins += tl.mins + (2. mins;# #
2B#FFTH294044F (mins > 59) {# #

29#TTE#30#33#mins = mins-60;#hrs += tl.hrs + t2.hrs;#
J0#FFTH#3 1#dhrs++;# #

J1#FFT#33#04éhrs += t1.hrs + (2. hrs:# #

I3HFFTHOMO # #

43#FFT#44#0#time3. display():# #

444FFT#18#0#void display() {# #

|8#FFT#19#0#cout << hrs << " : " << mins << " : " << secs;# #
1 9HFFTH#O0H # #

%

Figure 5.2. (f) Input file containing ICFG information for the modified
version of the Time application.

45

Testft1.hrs [t1.mins [t1.secs

t2.hrs [t2.mins [t2.secs

edge trace

tl

5 59

59

4

30

30

(37,38),(38,12),(12,13),(13,14),(14,15),(15,39),(39,1
2),(15,40),(40,8),(8,9),(9,42),(42,22),(22,23),(23,24),
(24,25),(25,26),(26,28),(28,29),(29,30),(30,31),(31,3
3),(33,43),(43,44),(44,18),(18,19)

2

10

30

15

(37,38),(38,12),(12,13),(13,14),(14,15),(15,39),(39,1
2),(15,40),(40,8),(8,9),(9,42),(42,22),(22,23),(23,24),
(24,28),(28,29),(29,30),(30,31),(31,33),(33,43), (43,4
4),(44,18),(18,19)

&)

30

15

30

(37,38),(38,12),(12,13),(13,14),(14,15),(15,39),(39,1
2),(15,40),(40,8),(8,9),(9,42),(42,22),(22,23),(23,24),
(24,25),(25,26),(26,28),(28,29),(29,33),(33,43),(43,4
4),(44,18),(18,19)

4

10

10

10

(37,38),(38,12),(12,13),(13,14),(14,15),(15,39),(39,1
2),(15,40),(40,8),(8,9),(9,42),(42,22),(22,23),(23,24),
(24,28),(28,29),(29,33),(33,43),(43,44),(44,18),(18,1

9)

Figure 5.2. (g) Test history information table for Time application.

Madification traversing
test (24,25), (29,30) (29,30)
t X X
t2 X X
13 X
tad

Figure 5.2. (h) Test(s) selected to be reexecuted on the modified version of the

Time application.

46

Figures 5.3 (a) to (h) contain the same information as figures 5.1 (a) to (h) but
for the publication application. The publication application is formed of two
main classes and two other derived classes. The main classes are: the publication
class with two member functions and two data items; and the sales class with
two member functions and one data item. The derived classes are: the book
class, which is derived from publication and sales classes, containing two
member functions and one data item; and the tape class, which is derived from
publication and sales classes, containing two member functions and one data
items. One statement is altered: statement number 40 and two constructors are
added: one for the derived class book, and the other for the derived class tape.
Figure 5.3 (f) differs Figure 5.3 (c) concerning the statements equivalence and
addition of a number of lines for the constructor of the two derived classes.
Two tests are executed on the publication application. We assume that a test
driver sets the values of Max, Months, and sales[0]. The table in figure 5.3 (h) is
formed with two columns: the first column represents the result when the
above mentioned modification are applied, one edge (90,91) is selected by the
program, and the two tests t1 and 12 are selected according to this edge; the
second column represents the result when only one statement is altered (40) and
no constructors are added, only one edge (39,40) is selected and one test t1

containing that edge is selected accordingly.

OO =] O LA e L B e

[R T
Ca =T =1 e = R R

22
23

23
206
27
28
29
30
3l
32
33
34
35

30

3

38
39

41
42
43

#include <iostream.h >
const int LEN = 83;
const int MONTHS = 3;
const int MAX = 500;

class publicaion {
private:
char titlef LENJ;

float price;

public:
void getdata() {
cout < < "\nEnter title: ";
cin > > utleg
cout < < "Enter price: *;
cin > > price;

H

void putdara() {
cout =< < "\nTitle: " < < title;
cout << "\n Price: " < <
price;
}
h

class sales {

private:
float salesfMONTHS];

public:
void getdata();
void putdata();

5

void sales:getdata() {
cout < < " Enter sales for 3

months\n";
for(int j=0; j< MONTHS; j+ +)
it
cout < < " Month

TS jEl <<
cin > > sales[j];
if (sales[j] > MAX)
sales[j] = MAX;
1

}
void sa!es;:puldn:[a{] {

45

40

47
43
49
50
51

52
53
54
55
56
57
58

59

61
62
63

65

66
67
68
69
70

71
72
73
74
73
76
11

78
79
80
81
82
83
84

47

for(int j=0; j< MONTHS; j+ +)
cout << " Sales for
month" << j+1 << ™%
cout > > sales[j];
}
}

class book : private publication,
private sales {
private:

int pages;

public:
void getdata() {
publication::getdata();
cout < < "Enter number of
pages: ";
cin > > pages;
sales::gerdatal);
i

void pudata(}{
publication::putdata();
cout << "\n Pages:" <<
pages;
sales:putdata();
}
I

class tape : private publication,
private sales {
private:

float time;

public:
void getdata() {
publication::getdara();
cout < < "Enter playing time:

cin > > time;
sales::getdata();

}

void pudata(}{
publication::putdata();
cout << "\n Playing time:
" < < time;

85
86
87
88
89
90
91
09

$a|es::putdata[: J;

}
};

void main()
book bookl;
tape tapel;

92
93
94
95
96
97
98 |

48

boaok Lg,e’tdata{ :I-;
tapel.getdata();

book1.putdata();
tapel.putdarta();

Figure 5.3. (a) Actual code for the base version of the Publication application.

49

1011,

icat

Figure 5.3. (b) ICFG for the base version of the Publication appl

50

O#FFT#89#0#void main() (# #

BOHFFT#O0#0#book book 1:# #

QO#FFT#9 1 #04Htape tapel:# #

91#FFT#93#0#book | .getdata();# #

O3H#FFT#56#94void getdata() {#tapel.getdata():#
S6H#FFT#57#0#publication::getdata();# #

STHFFT#12#58#void getdata() {#cout << " Enter number of pages: "#
12#FFT#13#0#cout << "\nEnter title: "; # #

13#FFT#144#0fcin >> title;# #

14#FFT#15#0#cout << " Enter price: "# #

| S#FFT#16#0#cin >> price;# #

|GHFFTHOHOH# # #

SB#FFT#3594#0#cin >> pages;# #

SHHFFT#HO60#0#sales:: getdata();# #

GOHFFT#34#0#void sales::getdata() {# #

34HFFTH35# 0 cout << " Enter sales for 3 months\n";# #
ISHFFT#36#0#for(int j=0; jJ<MONTHS; j++) {# #
36HTTE#3THO#cout << " Month " << j+l <<™: "# #
3THFFT#38#0tcin >> sales[j]:# #

3BHFFT#39#0#if (sales[j] > MAX)# #

IO TTE#O#O#sales (] |=MAX# #

AO#FFTHOHOH # #

94#FFT#75#96#void getdata() {#bookl.putdata():#
T5#FFT#76#0#publication::getdata();# #

To#FFT#12#7 T#void getdata() {#cout << " Enter playing time: ":#
TTHFFT#78#0#cin >> time;# #

TE#FFT#794#04sales: getdata():# #

TOHFFT#34#0#void sales::getdata() {# #

QGHFFTH#O0#T#void pudata() {#tapel.putdata():#

GI#FFTHOHH Hpublication::putdata();# #

GAHFFTH12#65#void getdata() {#cout << "\n Pages: " << pages:#
GSH#FFTHOGH(W sales::putdatal),# #

GOHFFTH34# 04 void sales::getdata() {# #

OTHFFT#82#0##void pudatal) {# #
B2HFFT#HE3# 0¥ publication::putdata(y;# #

B3HFFTH1 2#84kvoid getdata()} {#cout << "n Playing time: " << time:#
SMFFTHES# (M sales: -putdatal);# #

85#FFT#34#04#void sales::getdata() {# #

So

Figure 5.3. (c) Input file containing ICFG information for the base version of
the Publication application.

1' #include <iostream.h>
2' constint LEN = 80;

3" const int MONTHS =3;
4' const int MAX = 500;

5!
6' class publicaion {
7' private:

8 char title{LEN];
9" float price;

11" public:

12 void gerdata() {

13" cout < < "\nEnter title: ";

14 cin > = title;

15 cout << " Enter price: ";
16 cin > > price;

17" }

18'

19" void putdata() {

200 cout < < "\nTitle: " < < title;
21" cout << "\n Price: " < < price;
22 }

23 };

25" class sales {

26' private:

27" float salesst MONTHS];

28

29' public:

30" void getdata();

31" void purdarta();

32k

3y

34" void sales:getdata() {

B ot << ” Enter sales for 3
months'n";

36" for(int j=0; j<MONTHS;)+ +) {

3T com << " Month " <<
jel << u"

38' cin > > sales[j];

39" if (sales[j] > MAX)

40" sales[j] = MAX + 1;

41')

42' 1

43

44' void sales:putdata() {

45" for(int j=0; j SMONTHS; j+ +) {

51

46' comr << " Sales for
month" << j+1 << ™"

47" cout > > sales[j];

48' }

49' }

s

51" class book : private publication,
private sales {

52" private:

53" int pages;

54

55' public:

55.1 book(){

55.2 pages = 0;}

56' void gerdata() {

57" publication::getdara();

58' cout << " Enter number of
pages: ";

59' cin > > pages;

60" sales:getdata();

61' }

62

63' void pudata() {

64' publication::putdarta();

65' cout < < "\n Pages: " < < pages;

66' sales:purdara();

67"}

68' };

o

70" class tape : private publication,
private sales {

71" private:

72 float time;

73

74" public:

74.1 tape() {

74.2 time = 0.0;}

75" void gerdara() {

76' publication::getdata();

77 cout << " Enter playing time:

",
]

78 cin > > time;

79" sales::gerdata();

0 }

sl

82' void pudata() {

83" publication::putdata();

84

g5
8¢’
87
88’
89
90
99

Figure 5.3. (d) Actual code for the modified version of the Publication

cout << "\n Playing time: " < <

time;
sales:purdara();
1

b

void main()
book book1;

application.

91" rape tapel;

o2

93" bookl.getdata(};
94' tapel.getdata();

o5'

96' book1.putdata();
97" tapel.putdata();
98" }

52

Figure 5.3. (e) ICFG for the modified version of the Publication application.

54

O#FFT#89%80#void main(} {# #

SO#FFTH#90#54#book book 1:#book() |#
SHHFFT#55#0Hpages = 0;# #

SSHEFTHOROH # #

9O#FFT#9 1#73#tape tape | :#tape() (#

TIHFFT#74#04time = 0.0;# #

THEFFTHOROH # #

O1#FFT#93#0#tbook 1 .getdata();# #

O3#FFT#56#944#void getdata() {#tapel.getdata():#
S56#FFT#57#0#publication::getdata():# #
STH#FFT#12#58#void getdata() {#cout << " Enter number of pages: ";#
1 2#FFTi#13#0#cout << "\nEnter title: "; # #

L3#FFTH# 144t 08cin == title:# #

14#FFT#15#0#cout << " Enter price: "# #

L 5#FFT#16#0#cin >> price;# #

16#FFT#O#04 # #

SR#FFT#39#0#cin >> pages:# #

SORFFTHOO#0M#sales: :getdatal).# #

GORFFT#34#0#void sales::getdata() {# #
34#FFT#35#0#cout << " Enter sales for 3 months\n":# #
ISHFFT#36#0#for(int j=0; j<MONTHS; j++) {# #
IGHTTF# I T#0cout << " Month " <<j+l << " "# #
ITHFFT#38#0#cin >> sales|j]:# #

IBHFFT#39#04#((sales[j] > MAX)# #
JHTTF#40#Msalesj|[=MAX+1:# #

ADHFFTHO#O# # #

O4#FFT#75#96#void getdata() {#book1.putdata().#
TSH#FFT#76#0#publication::getdata().# #
TOHFFT#12#77#void getdata() {#cout << Enter playing time: ";#
TTHFFTHTR#0#cIn >> time# #
T8H#FFTH#79#0#sales::getdata():# #

TOHFFT#34#(Wvoid sales::getdata() {# #
OOHFFT#HO60#9T#void pudata() {#tapel.putdata();#
63#FFT#64#(¥publication::putdata().# #
GMIFFT#12#65#void getdata() {#cout << "\n Pages: " << pages:#
GSHFFT#OG#0#sales::putdata().# #

OO#FFT#34#(Wvoid sales::getdata() {# #
OT#FFT#82#0#void pudata() {# #
S2#FFT#83#0#publication::putdata().# #
83#FFT#12#84#void getdata() {#cout << "n Playing time: " << time:#
SHFFT#85#0#sales::putdata();# #

SS#FFT#34#0#void sales::getdata() {# #

o

Figure 5.3. (f) Input file containing ICFG information for the modified
version of the Publication application.

35

test

MA

MONTHS

Sales[0

Edge trace

tl

500

501

(89,90),(90,91),(91,93),(93,56),(56,57),(57,12),(12,13),(13,14),(14,15),(15,16)

(16,58),(58,59),(59,60),(60,34),(34,35),(35,36),(36,37),(37,38),(38,39),(39,40
}1{40:94.) !(94 r?5} ’ I:?S ,?6},(?6, 1 2}1{1 6:7?:: " W:?EJ 1 {?3: ?9] 3 E??:j'4} ’ {43,9ﬁ),{96,6
3),(63,64),(64,19),(19,20),(20,21),(21,84),(84,85),(85,44)

t2

500

400

1(89,90),(90,91),(91,93),(93,56),(56,57),(57,12),(12,13),(13,14),(14,15),(15,16)
(16,58),(58,59),(59,60),(60,34),(34,35),(35,36),(36,37),(37,38),(38,39),(39,94
),(94,75),(75,76),(76,12),(16,77),(77,78),(78,79),(79,34),(40,96),(96,63),(63,6
4),(64,19),(19,20),(20,21),(21,84),(84,85),(85,44)

Figure 5.3. (g) Test history information table for Publication application.

Modification
traversing
test | (90,91) | (39,40)
tl X X
2 X

Figure 5.3. (h) Test(s) selected to be reexecuted on the modified version of the
Publication application.

Chapter 6: Conclusion

The proposed technique is based on code analysis for selecting regression tests for
C+ + software. This technique selects test cases from existing test suites that
execute code that has changed in the production of a C+ + applications program or
class. The results indicate that the proposed algorithm can reduce the number of
regression tests that must be run. However, a reduction in the number of tests that
must be run does not, by itself, promise savings; savings will result only if the cost
of test selection analysis plus the cost of running the selected tests is less than the
cost of simply running all tests. If test execution and validation are fully automated,
and sufficiently efficient, then test selection may be unnecessary. If execution
and/or validation are excessively expensive in time or human interaction, and if
test selection analysis is sufficiently inexpensive, test selection may be worthwhile.
The approach is advantageous because it handles selective retest needs for C+ +,
and is independent of program specifications and methods used to develop test
suites initially. Although this current work has addressed test selection for C+ +
software, the approach can be adapted to other strongly-typed languages such as

Java.

Also of importance for future work is considering other important regression
testing problems. It has been considered only the problem of selecting test cases,
from an existing test suite, for reexecution. In general, modifications to classes may
render existing test suite inadequate: new test cases to exercise new functionality
are needed, and the problem of identifying where such test cases are needed is at

least as important for software quality as the regression test selection problem.

56

Bibliography

[1] S. Elbaum, D. Gable, and G. Rothermel. Understanding and Measuring the Sources of
Validations in the Prioritization of Regression Test Suites.

[2] P.Hsia, X. Li, D. Kung, C-T. Hsu, L Li, Y. Toyoshima, and C. Chen. A technique for
the selective revalidation of OO software. Software Maintenance: Research and Practice,
9:217-233, 1997.

[3] D. Kung, J. Gao, and P. Hsia. Class Firewall, Test Order, and Regression Testing of
Object-Oriented Programs. Department of Computer Science and Engineering. The
University of Texas at Arlington.

[4] D. Kung,]. Gao, P.Hsia, F. Wen, Y, Toyoshima, and C. Chen. On regression testing
of object-oriented programs. The journal of Systems and Software, 32(1):21-40, January 1996.

[5]1 L. Larsen and M.]. Harrold. Slicing object-oriented software. In 18" International
Coference on Software Engineering, pages 495-505, March 1996.

[6]]. Hartmann and D.J. Robson. Techniques for selective revalidation. IEEE Software,
16(1):31-8, January 1990.

[7] Michelle Lee, A. Jefferson Offutt and Roger T. Alexander. Algorithmic Analysis of the
Impacts of Changes to Object-oriented Software. 34” International Conference on
Technology of Object-Oriented Languages and Systems, Santa Barbara, CA, August 2000.

[8] H.K.N. Leung and L.White. Insights into testing and regression testing global
variables. Journal of Software Maintenance: Research and Practice, 2:209-222, December
1990.

[9] H.K.N. Leung and L.White. A study of integration testing and software regression at
the integration level. In Proceedings of the Conference on Software Maintenance - 1990, pages
290-300, November 1990.

[10] H.K.N. Leung and L.White. A cost model to compare regression test strategies. /n
Proceedings of the Conference on Software Maintenance — 1991, pages 201-8, October 1991.

[11] G. Rothermel and M.]. Harrold. A safe, efficient algorithm for regression test

selection. In Proceedings of the Conference on Software Maintenance — 1993, pages 358-67,
September, 1993,

57

58

[12] G. Rothermel and M.]. Harrold. Selecting regression tests for object-oriented
software. In Proceedings of the Conference on Software Maintenance — 1994, pages 14-25.
IEEE Computer Society Press, September 1994.

[13] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test selection for C+ +
software. Journal of Software Testing, Verification and Reliability, January 1999.

[14] M. Winter. Managing Object-Oriented Integration and Regression Testing. In
proceedings of the 6" European Conference on Software Testing Analysis Review, Munich,
Germany, Nov/Dec 1998.

[15] Lee J. White. Elements of Reuse and Regression Testing of Object-Oriented Software.
Department of Computer Engineering and Science, Case Western Reverse University.

[16] L.J. White and H.K.N. Leung. A firewall concept for both control-flow and data-flow
in regression integration testing. In proceedings of the Conference on Software Maintenance,
1992, pages 262-70, Novemeber 1992.

Appendix: Implementation Details

A. Creation of The Control Flow Graph

A full implementation, of the proposed technique, requires a front-end language
analyzer that can instrument programs and output control flow graphs and symbol
table information. Such an analyzer for C+ + is not available, and therefore the
creation of the graphs or test histories to be run on a C+ + program cannot be
accomplished. To compensate for the creation of a control flow graph and a
history test table, input files are used instead to read from them similar

information.

Two input files shall contain all needed information about the object-oriented
program and its modified version, respectively. This information should be
arranged in a way that imitates the role of the control flow graph and that, at the
same time, can be used in the proposed technique. Another input file shall contain
the test history of the object-oriented program by gathering edge trace information

for each test belonging to the test suit created to test this program.

B. Files Format

The format of a line in the interprocedural control flow graph input file is:
e Node number
e Symbol “#”
o Three characters of Boolean type (T or F) representing the out edge label for
true, false, normal edge.
e Symbol “#”

e First Successor node number
39

® Symbol “#”

e Second Successor node number

e Symbol “#”

e Actual code associated with the statement of the first successor node

e Symbol “#”

e Actual code associated with the statement of the second successor node

e Symbol “#”

The format of the line in the test history file is:

e Node number

e Symbol %"

e Node number

e Symbol #

e Node number

e Symbol %"

e Node number

e Symbol #

e FErc...

B. File Specifications and Rules

The rules that should be followed in order to create the control flow graph in the
input file is the following:
o Every statement in the object-oriented program should be given a number

starting from the first line of the program.

61

e Then create manually the interprocedural control flow graph (ICFG) of the
program by starting with the entry node of the program, which is the main
function.

o To simulate the ICFG, we used an input file formatted as described in the
previous paragraph for both the original program and its modified version:

o The first line in the input file should have a node number equal zero
and the first successor node number is the node number of the program
startup function, which is the main function.

o A predicate node, which represents a conditional statement, should
have two successors. Also, a call node also has two successors: the called
entry node of the called method and the next statement that follows
that call node. The exit node of a method has no successors.

o A zero value, given to one of the two successor fields, means that the
node being traversed has no successor.

o The field, that contains the three Boolean characters, takes its value by
studying the situation of the node being traversed. If the node is not a
predicate then the first two characters have value FF, and the third T,
meaning it is a normal statement. If the node is a predicate, then the
first two characters have value T'T, and the third F, meaning it is not a
normal statement. In addition to that, the call node is treated like a
normal node concerning these three characters.

o At the end of each file a symbol "%" is added in the last line to denote

the end of file.

