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REDUCTION-BASED METHODS AND METRICS
FOR SELECTIVE REGRESSION TESTING

ABSTRACT

by

RAMI K. BAHSOON

Selective regression testing attempts to choose an appropriate subset of test
cases from among a previously run test suite for a software system, based on
information about the changes made to the system to create new versions.

In this thesis, we address two major problems in selective regression testing:
the regression test selection problem and the coverage identification problem.
To address the former problem, we propose three reduction-based selective
regression testing methods that reduce the number of selected test cases for
retesting the modified software by omitting redundant tests from the initial test
suite. But, one method, referred to as Modification-Based Reduction version |
(MBR1), selects a reduced number of test cases based on the modification
made and its effects in the software. A second method, referred to as
Modification-Based Reduction version 2 (MBR2) improves MBR1 by
omitting tests that do not reach the modification. A third method, referred to as
Precise Reduction (PR), further reduces the number of test cases selected by

omitting all non-modification-revealing tests from the initial test suite.




To approach the latter selective retesting problem, we suggest two McCabe-
based regression test selection metrics that could be also extended to address
the test selection problem. These metrics are the Reachability regression Test
selection McCabe-based metric (RTM), and dataflow Slices regression Test
McCabe-based metric (STM). The suggested metrics help in monitoring test-
coverage adequacy, reveal any shortage or redundancy in the test suite, and
assist in identifying where additional tests may be required for retesting.

We empirically compare MBR1, MBR2, and PR with three reduction and
precision-oriented methods on 60 test-problems. The results show that PR
selects the least number of test cases most of the time and omits non-
modification-revealing test cases all the time. We illustrate a typical
application of our suggested metrics using the 60 test-problems on two

coverage-oriented selective regression testing methods.

KEYWORDS: Software maintenance, selective regression testing, test suite
reduction, retesting metrics, McCabe's cyclomatic complexity, test coverage.
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CHAPTER 1

INTRODUCTION

The software maintenance phase of the software development life cycle
involves activities that are carried out after the development of the software
and during its operational life. In this phase, programs are modified as a result
of errors, changes in the user requirements, or changes in the software and
hardware environments. During such modifications, new errors may be
introduced, causing unintended adverse side effects in the software. Thus,

necessitating the software to be tested again.

Regression testing can be progressive or corrective (Leung and White 1989).
The former involves retesting major changes to the program’s specifications.
The latter is performed on specifications that essentially remain unchanged, so
that only modifications that do not affect the overall program structure require
retesting. For corrective regression testing, it might be costly to repeat the
whole set of test cases used in the initial development of the program and
unreliable to choose a random subset of these test cases. Selective retest
techniques attempt to reduce the cost required to retest a modified program by
selectively reusing tests and selectively retesting the modified program. These
techniques address two major problems (Rothermel and Harrold, 1997): (1)

the regression test selection problem- the problem of selecting tests from an




existing test suite and (2) the coverage identification problem, the problem of
determining where additional tests may be required.

Therefore, if TS={t), ta,..., ta} is the set of n test cases used in the initial
development of a program P, the regression test selection problem requires
that a subset of test cases R be selected from 75 for rerunning on the modified
program P’ with the objective to provide confidence that no adverse effects
have been caused by the modification. The coverage identification problem

requires identifying portions of P’ that require additional testing.

The test case selection is approached by strategies such as safe, minimization,
or coverage. Safe approaches require the selection of every existing test case
that exercise any program element that could be possibly affected by a given
program change. Minimization approaches attempt to select the smallest set of
test cases necessary to tests affected program elements at least once. Coverage
approaches attempt to assure that some structural coverage criterion is met by
the test cases that are selected. Because in practice a coverage criterion is
applied to select a single test case satisfying each coverage requirement
induced by the criterion, coverage approaches can be viewed as special types

of minimization approaches (Rosenblum and Weyuker, 1997).

The selection of suitable test cases can be made in different ways and a
number of selective regression testing methods have been proposed. These
methods are based on different objectives and techniques such as: procedure
and class firewalls (Leung and White, 1992; Hsia et al., 1997); semantic

defferencing (Binkley, 1997); textual differencing (Vokolos and Frankl,




1997); slicing-based dataflow technique (Gupta et al, 1996); and safe
algorithm based on program’s control graph (Rothermel and Harrold, 1997).
Furthermore, some empirical studies of these methods have been reported
(Baradhi and Mansour, 1997; Graves et al., 1998) and some software tools
based on some of them have been constructed (Vokolos and Frankl, 1997; von

Mayrhauser and Zhang, 1999).

In particular, Mansour and El-Fakih (1999) have proposed using an
optimization formulation of the selective retesting problem and a Simulated
Annealing (SA) algorithm for minimizing the number of selected test cases,
Also, Harrold, Gupta, and Soffa (1993) have suggested a methodology for
reducing the size of a test suite, which can be used for reducing the number of
selected test cases. We refer to this method as the Reduction (RED) algorithm.
Furthermore, Agrawal, Horgan, and Krauser (1993) have proposed slicing
algorithms (SLI) that select test cases whose output may be affected by the
modification made to the program. The first two methods are reduction-
oriented: RED aims to reduce the number of selected retests regardless of
where the modification is done in the program. SA takes the modification into
account and aims to minimize the number of selected retests. The SLI
algorithm concentrates on including all the test cases whose dynamic/relevant
program slices contain the modified component. This often leads to a large

number of selected retests by SLI.

In this thesis, we restrict our attention to two major problems of selective

retesting. These are: (1) the problem of selecting a reduced number tests from




an existing test suite and (2) the coverage identification problem- the problem

of determining where additional tests may be required.

To address the former problem, we propose three reduction-based selective
regression testing methods. The first method, referred to as Modification-
Based Reduction version 1 (MBRI), improves the RED algorithm by
accounting for the location of the modification made in the program and its
effects. The second method, referred to as Modification-Based Reduction
version 2 (MBR2) improves MBR1 to only select test cases that execute the
modification. The third method, referred to as Precise Reduction (PR), uses
slicing in a similar way to the SLI algorithm to determine the useful test cases
and applies a reduction procedure to reduce the final number of selected
retests. We use 60 problems to empirically evaluate MBR1, MBR2, and PR

and compare with SA, RED, and SLI.

We approach the latter problem by suggesting two McCabe-based regression
test selection metrics that could be also extended to address the test selection
problem. These are Reachability regression Test selection McCabe-based
metric (RTM), and dataflow Slices regression Test McCabe-based metric
(STM). RTM is an upper bound metric that derives its measures from
reachability information and provides an upper indication of paths that must
be tested for being potentially affected by the modification, and by
implication, an upper bound of tests to rerun for exercising these paths at least
once. STM is a data flow McCabe-based variable dependent metric; it derives

its measure from information related to slices affected by the modification and




computes two bounds: an upper and a lower bound of the number of retests to
test the affected definition-use pairs. Furthermore, these metrics help in
monitoring test-coverage adequacy, revealing any shortage or redundancy in
the test suite, and assist in identifying where additional tests may be required.
We use 60 problems to try our suggested metrics on two coverage-oriented
selective regression testing methods. These are Gupta, Harrold, and Soffa’s
DataFlow (DF) algorithms (Gupta et al, 1996), and Leung and White’s

Segment-FireWall (SFW) algorithm (Leung and White, 1992).

This thesis is organized as follows. Chapter 2 describes the regression test
selection problem and the program modeling assumptions. Chapter 3 presents
the two proposed versions of Modification-Based Reduction, Chapter 4
proposes Precise Reduction. Chapter 5 suggests the McCabe-based regression
test selection metrics. Chapter 6 describes the experimental approach and

results. Chapter 7 contains our conclusions and suggestions for further work.




CHAPTER 2

REGRESSION TEST SELECTION PROBLEM AND
PROGRAM MODELS

Software maintenance activities can account for as much as two-thirds of the
overall cost of software production (Rosenblum and Weyuker, 1997). One
necessary maintenance activity, regression testing, is performed on modified
software to provide confidence that the software behaves correctly and that
modifications have not adversely impacted the software’s quality. Regression
testing is expensive; it can account for as much as one-half of the software
maintenance (Leung and White 1989). During regression testing, an
established suite of tests may be available for reuse. One regression testing
strategy reruns all such tests, but this retest-all approach may consume
inordinate time and resources. Selective retest techniques, in contrast, attempt
to reduce the time required to retest a modified program by selectively reusing

tests and selectively retesting the modifed program.

In this chapter, we present the regression test selection problem, a regression
testing problem. In the subsequent sections, we brifely describe the selective
regression testing subproblems, steps of a typical selective regression testing
technique, and cost effectiveness considerations. We also present the program

modeling assumptions.




2.1 SELECTIVE REGRESSION TESTING

Selective regression testing attempts to choose an appropriate subset of test
cases from a previously run test suite for a software system, based on
information about the changes made to the system to create new versions. The
intuition is that if, instead of rerunning the entire test suite (the so-called retest
all strategy), a systematically-selected subset is chosen to be run. then
substantial resources will be saved due to the limited size of test suite
(Rosenblum and Weyuker, 1997). Most of the selective retest techniques
attempt to reduce the cost of regression testing by identifying portions of the

modified program or its specification that should be tested.

Let P be a procedure or a program, P be a modified version of P, and TS be
the test suite created to test P. A typical selective retest technique proceeds as

follows:

(1) Select RC TS, a set of tests to execute on P, the modified version of P.
(2) Test P” with R, establishing P*'s correctness with respect to R.

(3) If necessary create R”, a set of new functional or structural tests for P~
() Test P” with R”, establishing P 's correctness with respect to R,

(5) Create R”, a new test suite and test history for P’, from R, R”, and R”".

In performing these steps, a selective retest technique addresses several
problems (Rothermel and Harrold, 1997). Step (1) involves the regression lest
selection problem. Step (3) addresses the coverage identification problem: the

problem of identifying portions of P” that require additional testing. Steps (2)




and (4) address the rest suite execution problem: the problem of efficiently
executing tests and checking test results for correctness. Step (5) addresses the
test suite maintenance problem: the problem of updating and storing test

information.

Although each of these problems is significant, we restrict our attention to two
major problems: (1) the problem of selecting tests from an existing test suite

and (2) the problem of determining where additional tests may be required.

The first problem, referred to as the test selection problem, assumes that a test
suite, TS, used in the initial development of the program: a set of test case
requirements ry, 13, ...T;; and subsets of TS, T, Ts,..., T,, one associated with
each of the rjs such that any one of the test cases t; belonging to the T; can be
used to test r; are saved and that a table of test case-requirement coverage can
be determined. After a program is modified, the regression test selection
problem requires finding a subset R of test cases from TS that test for the rs
impacted by the modification and satisfy criteria such as minimum-cardinality

of the obtained subset or testing different data effects.

The second problem, refered to as the coverage identification problem,
addresses the problem of identifying portions of the modified program that
require additional testing. This, if necessary, requires creating R, a set of new

functional or structural tests for P, and updating T5.




The former is addressed in chapters 3 and 4 by proposing reduction-based
selective retesting methods. An approach to the former and the latter based on

McCabe cyclomatic complexity is suggested in chapter 5.

2.2 COST-EFFECTIVENESS OF SELECTIVE RETEST
TECHNIQUES

Leung and White (1991) show that a selective retest technique is more
economical than the retest-all technique only if the cost of selecting a reduced
subset of tests to run is less than the cost of running the tests that the selective
retest technique omits. The various factors affecting the cost include, but are
not limited to, CPU time, disk space, effort of testing personnel, the cost of

business opportunities gained or lost through increased or reduced testing.

2.3 PROGRAM MODELING USING CONTROL FLOW

We assume that a program under test is modeled by a control flow graph with
n nodes, where each node represents a program segment, which corresponds to
a control statement or to a contiguous sequence of assignment statements.
Those n nodes constitute a set of requirements {ry, 12,....In }. Also it is assumed
that a set of n test-requirements TS, Ty, Ts,...,T,, one associated with each of
the ris such that any one of the test cases t; belonging to the T; can be used to

test rj, is determined and saved.




10

2.4 PROGRAM MODELING USING DATA AND CONTROL
FLOW

For selective regression testing techniques that require slicing data flow-based
analysis, we assume that the program model presented in the previous section
is extended to keep data flow information for relevant segments/nodes. This
includes the definitions and uses of the variables in the program statements
within segments. Uses are classified as either computation uses (c-uses) or
predicate uses (p-uses) according to whether a variable is used in a

computation or in a predicate statement.

2.5 REACHABILITY INFORMATION

The control flow graph representation enables us to derive information about
the reachability of the program segments from other ones to determine the
impact of change. Such information is needed to determine all requirements
that might be potentially affected by the modification. For a program with n
program segments, the segment reachability matrix, S, generated from the
control flow graph, is a 0-1 nxn matrix that describes both the direct and
indirect interconnections between the various program segments. S[i, j]=1
indicates that segment §; is directly/indirectly reachable from S, where 0
indicates otherwise. Given the segment k is modified, segments potentially
affected by the modification are obtained by performing logical OR operation
on the k-th row and the k-th column of the modified segment in reachability

maltrix.




Figure 2.1. Control flow graph G used to derive reachability
matrix §

For example, the control flow graph G of Figure 2.1 translates into S, the

reachability information matrix depicted in Table 2.1. Upon modifying S,

logical OR operation on entries of the fourth row and fourth column gives that

besides S, segments Sy, Sz, 53, Sg, and §;; are potentially affected.

Table 2.1. Reachability information matrix

§ I 2 35 6 2 8 9 10 1
l I L 1T HI1TY 11 1 1 I
2 0 I 1881 3. 8 ¢ § 1 l
3 O ¢ 1 111000 ¢ I
4 S 0N T 0. 1L 00 Y6 Mo 1
3 0O 0 001 1000 o0 I
6 000 001 000 o 1
7 LI+ v I B TS T (N VI 1
8 O 06 09°0 0 0 1 0.1 1
9 0 L 00,0 00 0 1 1 |
10010 0 0 0 00 0 0 0 | |
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CHAPTER 3

MODIFICATION-BASED REDUCTION

In this chapter, we propose two selective retest methods that orient the
reduction technique, RED, presented in (Harrold et al., 1993) to address the
regression test selection problem by including modification information. The
two methods are referred to as MBR | (Modification-based Reduction version
1) and MBR2 (Modification-based Reduction version 2). MBR1 improves the
RED algorithm by using reachability information to only account for the
modification and its impact in the reduction test selection process. MBR2

uses reduction to only select test cases that execute the modified requirement,

3.1 BACKGROUND

The reduction technique, RED, is a test suite management technique that is
capable to manage and control the size of the test suite by eliminating both
redundant and obselete tests from the test suite with the objective of obtaining

a minimum representative set of test cases,

The algorithm requires an association between the initial test cases (in 75) and
the requirements of the program. For a particular program, a test selection
criterion translates into a set of requirements whose satisfaction provides the

desired measure of coverage with respect to that criterion. The RED algorithm

12
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aims to construct a minimum subset of test cases, R, from TS that can still

satisfy all the given requirements of the considered criterion.

Given T, a set of requirement {ri, 13, ..., 1y}, and subsets of T, Tz il
such that the test cases in T; cover the requirement r;. To select the test cases
for R, the RED algorithm first considers all test cases that occur in single
element Tjs and includes them in R. Then, it marks all the Tis containing these
selected tests cases. Next, all unmarked Ti's of cardinality two are considered.
Repeatedly, the test cases that occur in the maximum number of such subsets
are chosen and added to R. Again, all unmarked T;s that contain the added test
case are marked. This process is repeated for all unmarked Ti's of cardinality

3,4, ..., Max-Card, where Max-Card is the maximum cardinality of the T;'s.

The algorithm can provide a reduction in the number of test cases to rerun to
validate a changed program. However, RED is modification independent; it
does not explicitly target the modification and count for its effects in the
reduction process. In the subsequent sections, we orient reduction to count for
such and address the test selection problem, Chapter 4 also works on this

problem.

3.2 MODIFICATION-BASED REDUCTION

MBRI1 and MBR2 revise the test selection process of RED to account for
modification and its impact on the reduction process. Upon modifying a

particular requirement(s), the change does not necessarily affect all other
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requirements. This implies that it may be unnecessary and costly to consider
the unaffected requirements and include tests that exercise those requirements.
The two versions assume that the program under test is modeled by control

flow graph discussed in section 2.3,

3.2.1 Modification-Based Reduction version 1 (MBR1)

Our approach to determine the requirements that might be impacted by the
change uses reachability information derived from the control-graph discussed
in section 2.5. A requirement that is not reachable from/reaches the modified
one(s) is not potentially affected by the modification and need not be tested.
The MBR1 method uses the derived reachability information to select a subset
R of test cases from T that satisfies r;'s reachable from/reach the modified
requirement. The selected set R, with test cases that satisfy the affected 1;'s,
must contain at least one test case from each T; associated with the affected
to ensure that an adequate coverage of the changed and potentially affected
requirements is attained. Such approach aims to potentially reduce the selected
regression test suite by eliminating tests covering almost unaffected parts
along with redundant tests. A redundant test case is one that covers the same

structural or functional requirement as another test case in the test suite.

3.2.1.1 MBR1 input/output

The MBR1 inputs are: the set of requirements {ry, ra....ry}; a set of affected
requirements AR subset of {ry, ra,....r,), such that any requirement rj in AR is

said to be reachable from/reaches the modified requirement(s); and subsets of
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TS, Ty, Ty,...,Tn such that the test cases tjin T; cover the requirement r;. MBR

outputs R, a selective set of tests that covers affected requirements in AR.

3.2.1.2 MBR1 steps

To construct R, MBRI initiates the reduction process by neglecting and
marking as unaffected every requirement r, not in AR where k in [1...n]). The
associated tests Ty’s of ry's are excluded. For the unmarked requirements, the
MBRI1 then selects and includes in R all the singletons Ti's that test for the
affected requirements and marks all T,'s containing those test cases as
satisfied. Next, all unmarked T;’s of cardinality two are considered. The test
case occurring in the maximum number of T; is chosen and added to the R set.
Again, all unmarked T;'s containing these test cases are marked. This process
is repeated for T;'s of cardinality 3, 4, ..., Max-Card, where Max-Card is the
maximum cardinality of the T;’s. When examining the T,’s of size n, there
may be a tie because several test cases covering the affected requirements
occur in the maximum number of T;’s of that size. In this case, Ti's with
cardinality (n+1) are examined. The test case that occurs in the maximum
number of Ti’s of cardinality (n+1) is chosen. If a decision can not be made,
the Ti's with greater cardinality are examined and finally a random choice is

made. Figures 3.1 and 3.2 outline the MBR | steps and algorithm respectively.




Step 1: Determine affected requirements using reachability information
Neglect as unaffected every requirement ry not in AR; k in [1...n]
Mark Ty’s of ry's

Step 2: Select tests from singletons associated with affected requirements and
mark affected requirements satisfied with selection

For unmarked Ti’s of cardinality =1 Do
Select and include in R singletons T;'s
Mark r;'s associated with singletons T;'s as satisfied
For unmarked T;'s of various cardinalities Do
IfTiN T;# © Then
Mark r; as satisfied

Step 3: Select tests from unmarked suites with higher cardinality and mark
affected requirements satisfied with the selection

While n < Max-Card Do
Get j's in the maximum of unmarked T;s of cardinality equal to n
If the number of returned t;'s greater than 1 Then
Set Tie to true
While Tie Do
Get t; the maximum of tied tests in unmarked T;'s of
cardinality(n+1)
If the number of returned tests equal 1 Then
Set Tie to false
EndWhile

Select and include ; in R
For unmarked Tj's of various cardinalities Do
If TN T;# @ Then
Mark r; as satisfied
Increment n

EndWhile

Figure 3.1. High level description of MBR] steps




Input T, Ty, ..., T, associated testing sets for ry, ra, ..., Iy respectively,
containing test cases from t,, ty, ....t,
AR: 1y, 1j, rywhere 1y, T T, are potentially affected requirements
Output R: {Tk,Tj, Tm...)subset {T,,Ts, ...,T,}
Declare MAX_CARD, CUR_CARD: L..nt; LIST: list of t's; NEXT_TEST:one of P IO
MARKED: array[1...n] of boolean, initially false; MAY_REDUCE: Boolean
Max( ):return the maximum of a set numbers: Card( ):returns the cardinality of a set
Begin
/* Step 1: initialization*/

For any requiremnt r; such that r, in {ri, 2.1y} and £ notin AR{r,, ljs Im... ) Do
MARKEDi]: =true /* neglects Tests associated with Unaffected requirements*/
MAX_CARD:= Max(Card(Ti)) such that MARKED(i]=false

/* Get the max cardinality of T, in affected requirements associated tests*/
If Card (T;) =1 and (MARKEDIi]: =false) Then
R: =Union Ti's  /*take union of all T's*
Else MARKED [i]: =true
For each T; such that (T, NR # empty) do MARKED [i]: =true
{*Mark all T; containing elements in R*/
CUR_CARD: =| *consider single element first*/
/* Step 2 : compute R according for sets of higher cardinality*/
Loop
CURD_CARD: =CUR_CARD+1
While there are T, such that (Card (T)=CUR_CARD) and not MARKED [i] Do
*process all unmarked sets of higher cardinality*/
LIST:=all t;in T, (where Card(T))=CUR_CARD) and (not MARKED([i])
*all tj in T; of size CUR_CARD #/

NEXT_TEST:= ScIectTcst{CUR_CARD.LIST} /*get another {; to include in R*/
R:= Union(R, {NEXT_TEST} ) /*add the test to R*/
MAY_REDUCE:=false
For each T, where NEXT _TEST belong to T; Do
MARKED [i]:=true /*mark t; containing next NEXT_TEST*/
If Card (Ti)=MAX_CARD Then MAY_REDUCE:=1
Endfor
If MAY_REDUCE Then
MAX_CARD: =MAX (Card (T,)), for all i where MARKED[i]=false
Endwhile
Until CUR_CARD=MAX_CARD
End ReduceTestsuite

Function SelectTest(Size,List)  /* this function selects the next t; to be included in R*/
Declare COUNT:array[l...n]
Begin

For each t; in LIST Do compute COUNTI[t].the number of unmarked Ty's of
cardinality SIZE containig t;, Construct TESTLIST consisting of tests from LIST for
which COUNTIi] is the maximum
If Card(TESTLIST)=1 then return(the test case in TESTLIST)
Elseif SIZE=MAX_CARD then return (any test case in TESTLIST)
Else return{SelectTest(SIZE+ | TestLIST))
End SelectTest

Figure 3.2. Algorithm MBR] for finding regression set R from TS




3.2.1.3 MBR1 algorithmic complexity

To analyze the worst case run-time of MBRI, let k denote the number of
associated testing sets T; in AR, S, = > Card {T;'s} denote the number of test
cases ;s testing for AR, and Max-Card, the maximum cardinality of the
groups of sets affected at a time. MBRI involves two main steps: (1)
computing the number of occurrences of various test cases in sets of varying
cardinality, and (2) selecting the next test case to add to the R set. These steps
are performed repeatedly until a representative set is found. Computing the
number of occurrences of various test cases in sets of varying cardinality takes
O (k*Max-Card) time since there are k sets of affected requirements and all
elements of these sets are examined once. Selecting the next test case to be
included in the R set requires examining the counts associated with each test
case. This step takes at most O (S, * Max-Card) times. Selecting a test case
and recomputing the counts is repeated at most k times. Therefore, the overall

run-time of MBRv; is O (k (k+S.) Max-Card).

3.2.1.4 MBR1 example

To illustrate MBR1, consider the program P and its corresponding control-
flow graph in Figure 3.3. The program reads the lengths of three sides of a
triangle, classifies the triangle as either scalene, isosceles, right, or an
equilateral, computes its area using a formula based on the class, and finally,
outputs the class and the area computed. The code is segmented without loss

of generality; S,...., §; correspond to those segments. For this example, we




assume that the combined conditions are handled in one predicate segment for
the sake of simplicity in exposition. Table 3.1 gives the test cases used in
testing the program. Table 3.2 gives the test-segment traversal information.

Table establishes the test-requirement based on information given in Table

3.3;
read(a,b,c);
class:=scalene;
if a=b or b=c S1 o
class:=isosceles; 2 °
if a*a=b*b+c*c S3
class:=right; S4 a
if a=b and b=c o
55
class :=equilateral: S6 °
case class of o7
right -area:=b*c/2; n
58
equilateral: area:=a*2*sqr1(3/4); o
39

otherwise : s:=(a+b+c)/2;

area:=sqri(s*(s-a)*(s-b)*(s-c)); o o
end, 510

write(class, area); % \

Figure 3.3. Segmented program P and its corresponding control flow



Table 3.1. Tests t;'s used in testing P

-

Test Case Input Output

a b ¢ Class area
t 2 2 2 Equilateral 1.73
ty 4 4 3 Isosceles 5.56
t3 3 &4 3 Right 6.00
ty 6 5 4 Scalene 9.92
ts 3 3 3B Equilateral 2.60
tg 4 3 3 Isosceles 4.47

Table 3.2. Test-segment traversal information of P

Test Case _Sequence of Segments Traversed

4]
6]
3
Ly
ts
lg

S1, 82, 83, Ss, S¢, S7, Se, Sy
S1, 83, 83, Ss, S7, S10, 813
S1, 83, 84, Ss, 89, Ss, Sy

S1, 83, S5, 87, Sy, Sy

S1, 83, 83, 8s, S, S7, So, S13
S1, 83, 83, Ss, S7, S0, Sy

Table 3.3. Test suite TS, testing—requirements S, and associated tests Ti's

i R; T;

1 Si [ttt t6 )
2 Sa {t1,ta,ts,6}

3 S3 {t1,2,L3, 4,85, b6 }
4 S4 {ts]

5 Ss {thota,ta,ta ts, s )
6 Se {ti,ts}

7 Sy TR ERER PREN Y|
8 Sg {ta}

9 Sg {lt-ti}

10 Sio {t2,ta,t6}

11

Sii {th,t2,t3, 8,85, )




Upon modifying Sg, reachability analysis shows that the change in Sg might
potentially affect all segments except So and S;. The set of affected
requirements, AR ={S,, S, S3, Ss, Sg, S7, Sg, S1}, is then used by MBRI to
find the set R of regression tests that satisfy all potentially affected
requirements. Using Table 3.3, the algorithm first marks segments So and S
as unaffected and neglect their associated Ti's (i.e., Ty and Ty from the
reduction process). MBR1 then examines all potentially affected singletons:
test t3 in Ty and Ty is chosen and included in R. Since test t; covers segments
S1, 83, Ss, Sy, and Sy, the corresponding Ti's of those tests are marked as
being satisfied. Then, we consider unmarked Ty's of cardinality two (i.e., Tg).
Examining Ts shows a tie for test cases t; and ts for the maximum. Thus, we
continue processing the unmarked T;’s for the next higher cardinality. T, of
cardinality 4 is considered next. We only use the test cases involved in the tie
to compute the maximum of cardinality 4. Again, there is a tie between t; and
ts for the maximum. Since the highest cardinality is reached, a random choice
can be made to include either t; or ts in the R set. Selecting t, to include in R
leads to mark T; and Ty as satisfied since t, exercises their corresponding

requirements. Thus the resulting regression set R is {t; ts}.

3.2.1.5 MBR1 testing coverage

MBRI does not attempt to provide a complete testing coverage for all the
program requirements. However, an adequate coverage of all the requirements
that are impacted by the change(s) is sought, The coverage with respect to all

requirements and the degree of test suite selection are dependent on the




-

location of the modified requirement and varies with degree of reachability it
exhibits with other requirements. If most of the requirements are said to be
reachable from/reach the modified one, then MBRI tends to test for all
requirements. In some cases, testing for potentially affected requirements,
whose tests do not reach the modification, might drive MBR1 to select such
tests that could happen to cover the unaffected part. This is could be simply
referred to the fact that no other tests in TS could satisfy that requirement.

MBR2 focuses on this problem.

3.2.2 Modification-Based Reduction version 2 (MBR2)

MBR2 is based on the following simple observations concluded from MBR1:
(i) not every test t; € T; exercising a requirement reachable from/reaches the
modified requirement does necessarily reach the modification: (ii) if a
requirement, say the modified one, is not executed under a test case, it can not
affect the program output for that test; (iii) a requirement reachable
from/reaches the modified segment/requirement does not necessarily affect the

program output of the modification-related part.

To verify these observations through the illustrated MBR1 example: even
though the modification of S,y characterizes S, and S¢ as potentially affected,
neither of their associated tests reach S)p. Thus, these tests fail to test for the
modification even though the inclusion of tests from T, and T is necessary

according to the previous version. Further, the inclusion of tests from those




Ti’s might drive some requirements identified as unreachable to be executed;

hence, not affecting the output of the modification-related part.

MBR2 exploits these observations by eliminating tests that do not reach the
modification due to a control evaluation. The adapted observations are then
used towards orienting MBR2 to only select tests executing the modified
requirement. Our approach assumes that adequate tests responsible for

exercising every control evaluation in the program are provided.

3.2.2.1 MBR2 steps

Modifying requirement ry, t;'s belonging to its associated test T, constitutes
the set of tests that are said to execute the modified requirement. To construct
R, MBR2 initiates the reduction process by neglecting and marking as
unaffected every requirement ry not in AR where k in [1...n]. The associated
test cases Ty's of ry’s are excluded. For the unmarked requirements, MBR2
first examines all test cases that occur in single element T;'s in the test suite. A
singleton test is selected and included in the R set only if it executes the
modified requirement; i.e., it belongs to Ty, Requirements that are covered by
the selected test are marked as satisfied. Then, all unmarked T;'s of cardinality
two are considered. The test case executing the modified requirement and
occurring in the maximum number of Tj's of the considered cardinality is
chosen and added to R. Again, all unmarked T;'s containing the selected test
are marked. This process is repeated for T;'s of cardinality 3, 4, ..., Max-Card,

where Max-Card is the maximum cardinality of the Ti’s. When examining the




Ti's of size n, there may be a tie because several test cases exercising the
modified requirement occur in the maximum number of T;'s of that size. In
this case, MBR2 examines the unmarked T;'s with cardinality (n+1) for those
test cases that were involved in the tie. The test case that occurs in the
maximum number of T;'s of cardinality (n+1) is chosen. If a decision can not
be made, the T;'s with greater cardinality are examined and finally a random
choice is made. At any time, if the considered T; includes no test cases that
execute the modified requirement, the T; is neglected and its associated
requirement is marked. Notice that such neglected tests might be exercising
some requirements that are reachable from/reaches the modified one(s);
however, these tests do not reach the considered requirement modification and
need not be run. Figures 3.4 and 3.5 outline the MBR2 steps and algorithm

respectively.




Step 1: Determine affected requirements using reachability information

Neglect as unaffected every requirement ry not in AR; k in [1...n]
Mark Ty's of ry's

Step 2: Select tests from Singletons that executes
Rid and mark requirements satisfied with selection

For unmarked Ti’s of cardinality =1 Do
If (t; €T;) executes Ryoq Then
Select and include t; in R
Mark r;’s associated with singleton T;'s as satisfied
For T;'s of various cardinalities Do
IfFR N T;# @ Then
Mark r; as satisfied

Step 3: Select tests from unmarked suites with higher cardinality
That executes Rug and mark requirements satisfied with the selection.

While n < Max-Card Do

Insert in List all (t; £T}) executing Ry (i.e T; Ty # @)such
that T; is unmarked of cardinality n
Get ;s such that t; occurs in the maximum of List

If the number of returned ;"s greater than 1 Then
Tie = true
While Tie Do
Get t; the maximum of tied tests in unmarked T,'s of cardinality (n+1)
If the number of returned tests equal 1 Then
Tie = false
EndWhile
Select and include t; in R
For unmarked T;'s of various cardinalities Do
If (4 €T}) Then
Mark r; as satisfied

Set List to empty
Increment n
EndWhile

Figure 3.4. High level description of MBR2




Input T, Ts,....Ty: associated testing sets for ry, ry, ... r, respectively,

containing test cases from ty, ty,...,t,.

Rinoa: modified requirement. AR: ry, rj, ruwhere 1y, 1j, Iy, are potentially affected
requirements

Output  R: {Tk,Tj, Tm... }subset {T,,T;,....T,}
Declare MAX_CARD, CUR_CARD:1...nt; LIST: list of t's; NEXT_TEST:one of [T C T
MARKED: array[1..n] of Boolean, initially false; MAY_REDUCE: Boolean

Max( ):return the maximum of a set numbers; Card( ):returns the cardinality of a set
Begin

/* Step 1: initialization®/

For any requiremnt r; such that r;in {ry, r3,..., 1.} and r; notin AR{r,, Ty Fge.- } Do
MARKED [i]: =true /* neglects Tests associated with Unaffected requirements*/
MAX_CARD:= Max(Card(Ti)) such that MARKED[i]=false

/* Get the max cardinality of T in affected requirements associated tests*/
If Card (T}) =1 and (T;NT,, # empty) Then
R:=Union Ti's /*take union of all T)'s executing R */
Else MARKED [i]: =true
For each T;such that (T; MR # empty) do MARKED [i]: =true
/MMark all T; containing elements in R*/
CUR_CARD: =1 /*consider single element first*/
/* Step 2 : compute R according for sets of higher cardinality*/
Loop
CURD_CARD: =CUR_CARD+|
While there are T; such that (Card (T;)=CUR_CARD) and not MARKED [i] Do
{*process all unmarked sets of higher cardinality®/
LIST:=all tj in T; (where Card (T;)=CUR_CARD) and (not MARKED[i]) and tjin T,
/*all tjin T, of size CUR_CARD executing Ruuq */
If (Card(Ti)=CUR_CARD) and (not MARKEDi]) and (T; N T,, is empty) Then
MARKED [i]: =true /*Neglect T;'s doesn’t execute Rpq®/
NEXT_TEST:= SelectTest(CUR_CARD,LIST) #*get another t; to include in R*/
R:= Union(R, {NEXT_TEST) ) /*add the test to R*/
MAY_REDUCE:=false
For each T, where NEXT_TEST belong to T; Do
MARKED [i]:=true /*mark t; containing next NEXT_TEST#*/

If Card (Ti)=MAX_CARD Then MAY_REDUCE:=1
EndFor

If MAY_REDUCE Then

MAX_CARD: =MAX (Card (T))), for all i where MARKED [i]=false
Endwhile

Until CUR_CARD=MAX CARD
End ReduceTestsnite

Function SelectTest (Size, List) /* this function selects the next t; to be included in R*/
Declare COUNT:array[1...n]

Begin

For each ti in LIST Do compute COUNT|t;],the number of unmarked Ty's of

cardinality SIZE containig t,, Construct TESTLIST consisting of tests from LIST for
which COUNTI(] is the maximum

If Card(TESTLIST)=1 then return(the test case in TESTLIST)

Elseif SIZE=MAX_CARD then return (any test case in TESTLIST)
Else return{SelectTest(SIZE+ |, TestLIST))
End SelectTest

Figure 3.5. Algorithm MBR2 for finding regression set R from TS




3.2.2.2 MBR 2 algorithmic complexity

To analyze the worst case run-time of MBR2, let n denote the number of
associated testing sets T;, Cy, = Cardinality{T,,} denote the number of tests in
Tr that traverse the modified requirement ry,, and Max-Card, the maximum
cardinality of the groups of sets. MBR2 performs two main steps: (1)
computing the number of occurrences of test cases that traverse a modified
requirement(s) against Ty, in sets of varying cardinality and (2) selecting the
next test case to add to the R set. These steps are performed repeatedly until a
representative set is found. Computing the number of occurrences of test cases
in sets of varying cardinality takes O (n*C,*Max-Card) time since there are n
sets and all elements of these sets are examined once against T, Selecting the
next test case to add to the R set includes examining the counts associated with
each test that is said to traverse the modified requirement. This step takes at
most O (Cy+Max-Card) time. Selecting a test case and recomputing the counts
is repeated at most n times. Therefore, the overall run-time of MBR2 is O (n

(n+1)(Cm-Max-Card)).

3.2.2.3 MBR2 example

Upon modifying Sq, reachability analysis shows that the change in Sy might
potentially affect all segments except Sg and So. This forms the set of
potentially affected requirements, AR = (S, S5, S, S4, Ss, Se, S7. S10, St ).
Tests in Tig= {12, ty, 15} are tests that execute the modified segment Syp. To

find the set of regression tests R that execute S;p and might satisfy the




potentially affected requirements with control reaching the modification,
MBR?2 starts the reduction process by marking segments Sz and So as
unaffected and neglect their associated T;'s (i.e., Ty and Ty). MBR2 then
examines all the singletons of the potentially affected requirements: test t3 of
Ty is not selected and included in the representative set for t; doesn’t execute
Si0. T4 is marked as neglected, the control in S, does not reach S,p. Then, we
consider unmarked T;'s of cardinality two (i.e., Tg). Examining Tg shows that
neither test cases t; nor ts execute S;p. None of those tests needs to be
selected. Again, Sg and its associated test Ty are marked as neglected. The
unmarked To of cardinality 3 is considered next. Test cases t,, ty, and tg in Tyo
traverses the modified segments, S;o. Since there is a tie between test cases t,
ts, and 1 for the maximum, we continue processing the unmarked T;'s for the
next higher cardinality. Thus, T, of cardinality 4 is considered next. We only
use the test cases involved in the tie to compute the maximum of cardinality 4.
Again, there is a tie between t; and tg for the maximum causing the T;’s of
cardinality 6 to be examined. Examining the unmarked T, Ts, Ts, Ty, and T},
of cardinality 6 shows that t; and t, still lie in the tie for the maximum of those
Ti’s. Since the highest cardinality is reached, a random choice can be made to
include either t; or ts in the representative set. Selecting t; to include in the
representative set allows Ty, T, T;, Ts, Ty, Tip and Ty, to be marked as
satisfied since t» exercises their corresponding requirements. Thus the
regression set R is reduced to {t2}. Even though each of t; and t executes the
modified segments, those tests are excluded since they are redundant tests that
cover the same requirements, Furthermore, the eliminated tests, t;, t; and ts

exercise potentially affected requirements with control evaluation leading to




the execution of portions unreachable from the modified segment; hence,

unaffecting the program output of the modification-related part,




CHAPTER 4

PRECISE REDUCTION

In this chapter, we modify the reduction technique, RED, presented in
(Harrold et al., 1993) to address the regression test selection problem using
slicing-based analysis of the program under test. We refer to proposed method

as Precise Reduction (PR).

4.1 BACKGROUND

In this section, we give background information on the dynamic and relevant
slicing techniques suggested in (Agrawal et al., 1993). In the subsequent
sections, we describe how we modified RED to address the test selection

problem using slicing-based analysis.

4.1.1 Dynamic slice

The dynamic slice technique is based on the observation that not every
statement/segment that is executed under a test case has an effect on the
program output for that test case. The dynamic program slice with respect to
the program output for a given test case gives the statements/segments that
were executed and had an effect on the program output. A dynamic program

slice is obtained by recursively traversing the data and control dependence

3o




edges in the dynamic dependence graph of the program for the given test case.
However, this technique fails to identify test cases that if executed will affect
the output if they are evaluated differently. The relevant slice technique

extends the dynamic slicing technique to solve this problem.

4.1.2 Relevant slice technique

Relevant slices with respect are composed of those statements that, if
modified, may alter the program output for a given test case. Those statements
should be identified because if changes are made to them they may evaluate
differently and change the program output. These slices are obtained by
identifying the predicates on which the statements in the dynamic slices are
potentially dependent, as well as, the closure of data and potential dependency
of these predicates. The set of statements corresponding to these predicates
including those in the dynamic slice gives the desired relevant slice. An
algorithm to compute the potential dependencies of a variable, var, at a

location, loc, in a given execution history is given in Figure 4.1.




Static_defs=static reaching definitions of var at loc:
Dynamic_def=the dynamic reaching definition of var at loc;
Control_nodes=the closure of the static control dependeces
of the statements in static_defs;
intialize potential_deps to null;
mark all nodes in the dynamic dependence graph between loc
and dynamic_def as unvisited;
For each node, n, in the dynamic dependence graph starting at loc
and going back up to dynamic_def Do
If n is marked as visited Then
continue; /* i.e., skip this node*/
mark n as visited;
If n belongs to control_nodes Then
add n to potential_deps;
mark all the dynamic control dependences of n
between n and dynamic_def as visited;
EndIf
EndFor
return potential_deps;

Figure 4.1. An algorithm to compute the potential dependencies of a
variable, var, at a location, loc, in a given execution history

4.2 PRECISE REDUCTION

The approach presented in (Harrold et al., 1993) for managing and reducing
the size of the test suite is adapted and extended to address the regression test
selection problem through introducing modification(s) information that
exploits the relevant slicing analysis approach and observations presented in
(Agrawal et al., 1993). The proposed algorithm, Precise Reduction (PR), is
motivated by the following observations that are revised to fit the requirement-
based testing nature of the reduction technique: (i) not all requirements in the
program are executed under a test case; (ii) if a requirement is not executed
under a test case, it can not affect the program output for that test case; and

(iii) even if a requirement is executed under a test case, it does not necessarily




affect the program output for that test case. The adapted observations are then
used towards orienting the reduction process to only select tests with relevant
slices contain modified requirement(s) and affect the output for the considered
modification(s). Such proposed orientation ensures that only modification-
revealing tests are the selected for revalidation; all non-modification-revealing
tests are omitted and henceforth referred as precise (Rothermel and Harrold,
1996). PR also attempts to eliminate all redundant tests by removing tests that
exercise the same requirement as another in the test suite. Eliminating non-
modification-revealing along with redundant tests potentially reduces the R set

of tests to be used for revalidation, an objective that is sought by PR.

PR assumes that the program under test extends the model of section 2.4 to
keep potential dependencies information for the various program variables in
the relevant segments/nodes. Such information enables us to compute the

program dynamic and relevant slices with respect to test cases.

4.3 PR INPUT/OUTPUT

The PR inputs are: the set of requirements {ry, ra, ...Tn}; and subsets of T8, T,
Tz, ..., Ty such that the test cases 1j in T; cover the requirement r;. The
approach assumes that relevant program slices with respect to the program
output for all test cases in the regression test suite are computed. After a
program is modified, tests t;'s in T; whose relevant slices containing the
modified requirement and affect the output for the considered modification are
determined and forms the set RSTC TS. If the number of ti’s in RST exceeds |,

then PR is applied to select R, a reduced set of RST from T5.




4.4 PR ALGORITHMIC STEPS

To construct R, the PR algorithm first examines all test cases that occur in
single element Ti’s in the test suite. A singleton test is selected and included in
the R set only if it belongs to RST; that is, its computed relevant slice covers
the modified requirement(s) and affect the output for the considered
modification. Requirements that are covered by the selected test are marked as
satisfied. Then, all unmarked Ti's of cardinality two are considered. The test
case, whose computed relevant slice covering the modified requirement and
affecting the output for the considered modification(s) (belongs to RST), is
chosen and added to the R set if it happens to occur in the maximum number
of Ti. Again, all unmarked T;’s containing the selected test are marked. This
process is repeated for T;'s of cardinality 3, 4, ..., Max-Card, where Max-Card
is the maximum cardinality of the Ti’s. When examining the T;'s of size n,
there may be a tie because several test cases with relevant slices containing the
modified requirement and affecting the output for the considered modification
happen to occur in the maximum number of T;’s of that size. In this case, PR
examines the unmarked Ti’s with cardinality (n+1) for those test cases that
were involved in the tie. The test case that occurs in the maximum number of
Ti's of cardinality (n+1) is chosen. If a decision can not be made, the T;’s with
greater cardinality are examined and finally a random choice is made. At any
time, if the considered T; includes no test cases with relevant slices containing
the modified requirement and affecting the output for the considered
modification, the T; is neglected and marked simply because these tests
exercise r;’s that do not alter the program output upon the considered

requirement modification (revised observation i and ii). The reason for the




inclusion of such tests in the R set is unnecessary and might be costly. The PR

steps and algorithm are outlined in Figures 4.2 and 4.3 respectively.




Step 1: During off line Processing:
Compute dynamic/relevant slices
Determine RST, the set with tests whose relevant slices
contain a modified requirement (R q)

Step 2: Select from singletons tests whose relevant slices contain
Rimos and mark requirements satisfied with selection

For unmarked T;'s of cardinality =1 Do
If (t;eT)and (t; € RST) Then
Select and include t; in R
Mark r;'s associated with singleton T;'s as satisfied
For T;’s of various cardinalities Do
IfR N T;# @ Then
Mark r; as satisfied
EndFor
EndFor

Step 3: Select from unmarked suites with higher cardinality tests
whose relevant slices contain Ry, and mark requirements
satisfied with the selection

Mark as neglected all Ti's that do not contain any test with relevant slice contain
Rinod

While n <= Max-Card Do

Insert in List all (t; €T; NRST) such
that T; is unmarked of cardinality n
Get t;'s such that tj occurs in the maximum of List

If the number of returned t;'s greater than | Then
Set Tie to true
While Tie Do
Get (; the maximum of tied tests in unmarked T;'s of cardinality (n+1)
If the number of returned tests equal 1 Then
Set Tie to false
EndWhile
Select and include t;in R
For unmarked T;'s of various cardinalities Do
If (;eT;) Then
Mark r; as satisfied
Elself (n = Max-Card) Then
Mark r;as neglected
EndFor

Set List to empty
Increment n
EndWhile

Figure 4.2, High level Description of PR steps




- F

Input  T,.T;,...\T,: associated testing sets for ry, r3,....1y respectively,
containing test cases from ty, ty,... 1,.
Ruea: modified requirements,
AR: 4y, b,...., tywhere t, U, L, are tests whose relevant slices contain Rinea
Output  R: {Tk,Tj,Tm...}subset {T,, T,,... T}
Declare MAX_CARD, CUR_CARD:1...nt; LIST: list of t's; NEXT_TEST:one of ty, tg,....t,
MARKED: array[1..n] of Boolean, initially false; MAY_REDUCE: Boolean
Max( ):return the maximum of a set numbers; Card( ):returns the cardinality of a set
Begin
/* Step 1: initialization®/
MAX_CARD:= Max(Card(Ti)) /* Get the max cardinality of T; in affected

requirements associated tests®/
If Card (T;}=1 and (T\NRST # &) Then
R: =Union T{’s /*take union of all Ty’s with relevant slices contain Rooa */
Else MARKED [i]: =true /*neglect single element T,'s with relevant slices not
containing Ry«
For each Tjsuch that (T; NR # empty) do MARKED[i]: =true
{#*Mark all T; containing elements in R*/
CUR_CARD: =| Mconsider single element first*/
/* Step 2 : compute R according for sets of higher cardinality*/
Loop
CURD_CARD: = CUR_CARD+1
While there are T, such that (Card (T;)=CUR_CARD) and not MARKED([i] Do
/*process all unmarked sets of higher cardinality*/
LIST:=all t; in T; (where Card(T;)=CUR_CARD) and (not MARKED([i]) and t; inRST
/*all tjin T; of size CUR_CARD whose relevant slice contain R, */
If (Card(Ti)=CUR_CARD) and (not MARKEDIi]) and (T; N R§T= &) Then
MARKED [i]: =true /*Neglect T;'s with relevant slice not containing Rpee®/
NEXT_TEST:= SelectTest(CUR_CARD,LIST) /*get another i to include in R*/
R:= Union(R, [NEXT_TEST) ) /*add the test to R*¥/
MAY_REDUCE:=false
For each T; where NEXT_TEST belong to T; Do
MARKED [i]:=true /*mark t, containing next NEXT_TEST*/
If Card (Ti)}=MAX_CARD Then MAY_REDUCE:=|
Endfor
If MAY_REDUCE Then
MAX_CARD: =MAX (Card (T,)), for all i where MARKED[i]=false
Endwhile
Until CUR_CARD=MAX_CARD
End ReduceTestsuite

Function SelectTest(Size,List)
Declare COUNT:array[ l...n]
Begin

For each ti in LIST Do compute COUNT][t,],the number of unmarked T)'s of

cardinality SIZE containig t;, Construct TESTLIST consisting of tests from LIST for
which COUNTTi] is the maximum
If Card(TESTLIST)=1 then return(the test case in TESTLIST)
Elseif SIZE=MAX_CARD then return (any test case in TESTLIST)

Else return (SelectTest(SIZE+1, TestLIST))
End SelectTest

* this function selects the next t; to be included in R*/

Figure 4.3. Algorithm PR for finding regression set R from TS




4.5 PR ALGORITHMIC COMPLEXITY

To analyze the worst case run-time of PR, let n denote the number of
associated testing sets T;, C; = Cardinality {RST) denote the number of tests
in RST, and Max-Card, the maximum cardinality of the groups of sets. PR
involves two main steps: (1) computing the number of occurrences of test
cases with relevant slices containing a modified requirement(s) in sets of
varying cardinality and (2) selecting the next test case to add to the
representative set. These steps are performed repeatedly until the R set is
found. Computing the number of occurrences of test cases in sets of varying
cardinality takes O (n*C/*Max-Card) time since there are n sets and all
elements of these sets are examined once against RST., Selecting the next test
case to add to the representative set includes examining the counts associated
with each test with relevant slices containing a modified requirement(s). This
step takes at most O (CeMax-Card) time. Selecting a test case and
recomputing the counts is repeated at most n times. Therefore, the overall run-

time of PR is O (n (n+1)(CssMax-Card)).

4.6 PR EXAMPLE

We use program P and its associated tests explained in section 3.2.1.4 to
illustrate our proposed PR technique. Table 4.1 gives the test cases used in
testing the program P. Table 4.2 gives TS that includes lest-requirement
information. Figures 4.4 and 4.5 show the relevant slices with respect to the

program output for ty, t4, and tg.




Table 4.1, Tests t,'s used in testing P

Test Case Input Output
a b ¢ Class area
ty Z 2 2 Equilateral 1.73
t 4 4 3 Isosceles 5.56
{3 5 4 3 Right 6.00
ts 6 5 4 Scalene 9.92
ts 3 3 3 Equilateral  2.60
ts 4 3 3 Isosceles 4.47
read(a,b,c);
class:=scalene;
if a=b or b=c Sl
class:=isosceles; s2
if a*a=b*b+c*c S3
class:=right; 54
if a=b and b=c
55
class :=equilateral; S6
case class of S7
right :area:=b*c/2;
S8
equilateral: area:=a*2*sqrt(3/4); 59

otherwise : s:=(a+b+c)/2;
area:=sqrt(s*(s-a)*(s-b)*(s-c));

end; S10
write(class, area); S1l

Figure 4.4. The relevant program slice for 1,




read(a,b.c);
class:=scalene;

if a=b or b=c §1
class:=isosceles; S2
if a*a=b*b+c*c 83
class:=right; 54
if a=b and b=c S5
class :=equilateral; S6
case class of S7
right :area:=b¥*c/2; &

equilateral: area:=a*2*sqrt(3/4); %

otherwise : s:=(a+b+c)/2;
area:=sqrt(s*(s-a)™*(s-b)*(s-c));

510

end;
write(class, area); S1l

Figure 4.5. The relevant program slice for t;and t5

Table 4.2, Test suite TS, testing—requirements S; , and associated tests Ti's
g§-req

i R T

1 Si {t,t2.t3,t, 05,06}
2 Sa {t,ta,ts,16 )

3 S5 { U213, L8506}
< Ss {ts}

5 Ss (TRCHEN PREN Y.
6 Sﬁ {l],tj}

7 S {t1,t2,3,L,85,86
8 Sg {t3}

9 Sg [t,ts}

10 Sio {t2,t4.16)

11 Sy {11,02,13,L4, 15,86 }




read(a,b,c);
class:=scalene;

if a=b or b=c sl
class:=isosceles; 52

if a*a=b*b+c*c §3
class:=right; 54

if a=b and b=c S5
class :=equilateral; S6
case class of S7

right :area:=b%¥c/2; &

equilateral: area:=a*2*sqrt(3/4); 59

otherwise : s:=(a+b+c)/2;
area:=sqrt(s*(s-a)*(s-b)*(s-c));
S10

end;
write(class, area); Si1

Figure 4.6. The relevant program slice for t;

Upon modifying S,o, dynamic/relevant-slicing analysis shows that the change
in Syo may affect the program output only for t;, ts, and ts for this example,
Note that the modified segment S,y belongs to the relevant slice with respect
to the program output of these tests. However, the relevant program slices with
respect to other test cases do not include the modified S,q. For example, Figure
4.6 shows that the modified Sy does not belong to the relevant slice with
respect to the program output for t3. Tests ty, ty, and ts then constitute the RST

to be used in the reduction test selection process.
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Using Table 4.2, the PR algorithm first examines the singleton T;'s: tests in Ty
and Tg can not be included in the R set since t; does not belong to RST; i.e.,
the computed relevant slice for t; does not contain S;o. T4 and Ts are marked
as being neglected. Then, we consider unmarked T;’s of cardinality two (i.e.,
Te and To). Test cases t; and ts do not belong to RST. Tg and Ty are also
marked as neglected. The unmarked Ty of cardinality 3 is considered next.
Test cases ty, t4, and t in Typ belong to RST; i.e., they affect or potentially
affect the output for the considered change. Since there is a tie between test
cases Iz, ty, and ts for the maximum, we continue processing the unmarked Ty’s
for the next higher cardinality. Thus, T, of cardinality 4 is considered next. We
only use the test cases involved in the tie to compute the maximum of
cardinality 4. Again, there is a tie between t; and t; for the maximum causing
the Ti's of cardinality 6 to be examined. Examining the unmarked T}, Ts, Ts,
T4, and T}y of cardinality 6 shows that t; and tg still lie in the tie for the
maximum of those Ti's. Since the highest cardinality is reached, a random
choice can be made to include either t; or tg in the representative set. Selecting
t2 to include in the representative set allows T,, Ty, Ts, Ts, T+, Tig and Ty, to be
marked as satisfied since t; exercises their corresponding requirements. Thus
the resulting regression test R is {t;}. Note that the modification-revealing
tests ty and ts are excluded since they are redundant tests that cover same
requirements and have the same relevant slices as the selected t. The
eliminated tests, 1), t; and ts, are non-modification-revealing tests; they don’t

affect the output for the considered change.




CHAPTER 5

McCABE-BASED REGRESSION TEST SELECTION
METRICS

In this chapter, we address a second major problem in selective regression
testing: the coverage identification problem, the problem of determining where
additional tests may be required. We approach this problem by proposing two
selective McCabe cyclomatic-based test selection metrics. These are the
Reachability regression Test selection McCabe-based metric (RTM), and the
dataflow Slices regression Test McCabe-based metric (STM). These metrics
monitor testing coverage adequacy, suggest bounds on the number of tests to
rerun, help in revealing any shortage or redundancy in the test suite, and assist
in identifying where additional tests may be required. In the following
subsequent sections, we explain our objectives and approaches in finding these

metrics.

5.1 McCABE CYCLOMATIC COMPLEXITY

McCabe Cyclometic complexity is a software metric that provides a
quantitative measure of the logical complexity of the program (McCabe,
1976). When McCabe metric is used in the context of path testing, the value
computed for the cyclomatic complexity defines the number of independent

paths in the basis set of a program and provides us with an upper bound for the
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number of independent paths that compromise the basis set, and by
implication, an upper bound on the number of tests that must be designed and
executed to guarantee coverage of all program segments at least once. To
know how many paths to look for, the computation of the cyclomatic
complexity gives us the answer. The cyclomatic number V(G) of a flow graph
G with n nodes/segments, e edges, and P predicate nodes/segments calculates
as follows:

V (G)= e-n+2 where 2 is a constant; or by using the count of the predicates in

G given by V(G)=P+1.

5.2 OBJECTIVES OF McCABE-BASED REGRESSION
TEST SELECTION METRICS

The proposed McCabe-based regression testing metrics are coverage
regression test selection metrics that visualize the affected component of the
graph to quantify the complexity and the retesting effort, assist in static
generations of tests to retest for the change, and find upper and lower bounds
of selective regression tests that guarantee an adequate coverage of the
modified program components. Such metrics can be used as a guide to provide
a deterministic measure of the number of selected tests for revalidation. It also
attempts to provide a logical measure of the modification complexity, the

complexity of the part affected by the modification.

More specifically, the two McCabe-based regression independent test
selection metrics are: Reachability regression Test selection McCabe-based
metric (RTM), and dataflow Slices regression Test McCabe-based metric

(STM). RTM is an upper bound metric that derives ils measures from




reachability information and provides an upper indication of paths that must
be tested for being potentially affected by the modification, and by
implication, an upper bound of tests to rerun for exercising these paths at least
once. STM, a data flow McCabe-based variable dependent metric, derives its
measures from information related to slices affected by the modification and

computes two bounds: an upper and a lower bound.

5.3 REACHABILITY REGRESSION TEST SELECTION
McCABE-BASED METRIC(RTM)

The Reachability regression Test selection McCabe-based metric, denoted by
RTM, attempts to provide an upper bound indication of the number of selected
regression tests that guarantee the coverage of requirements potentially
affected by the modification at least once. The metric is independent of the

nature of modification.

5.3.1 RTM computation

To calculate the upper bound, our approach uses segment reachability
information explained in section 2.4 of chapter 2. Given a control flow graph
G with n segments, and that segment ! has been modified, the reachability
computation gives the segments that are reachable/reach the modification and
classified as potentially affected. We denote the upper bound upon modifying
segment [ in graph G as RUg(l). To compute RUg(I), our approach first
removes all control constructs that are not reachable from/reach the modified
segment/node [ to obtain a reduced flow graph G,. G; must contain a unique

entry and exit nodes; we consider that the entry and exit points are those of G.




Computing the cyclomatic complexity of G;, V(G)), gives us RUg(I).
RUg(1)=V(G) provides an upper bound of the linearly independent paths that
must be retested and, by implication, an upper bound on the number of tests
that must be rerun to guarantee coverage of all segments potentially affected
by the change in [ at least once. Note that the reachability information will
include all segments that might at most be affected by the change in [,
henceforth, the calculated complexity of G;, V(G,), is considered an upper

bound.

5.3.2 RTM example

To illustrate the computation of our proposed RTM upper bound, Figure 5.1
shows that upon modifying node 3, reachability information identifies nodes 1,
3,7,8,9, and 10 as potentially affected. From node 1, the entry node, to node
10, the exit node, we remove all control constructs not reaching the potentially
affected nodes to obtain the reduced graph G,. The testing effort is reduced to
RUgG(3)=V(G,)=2. This a suggested upper bound on tests to rerun for

revalidating all potentially affected nodes.

Upon modifying node 4, reachability information identifies nodes 1, 2, 4, 6
and 10 as potentially affected. From node 1, the entry node, to node 10, the
exit node, we remove all control constructs not reaching the potentially
affected nodes to obtain the reduced graph Gs. The testing effort is reduced to
RUg(4)=V(Gz)=1. This is a suggested upper bound on tests to rerun for

revalidating all potentially affected nodes.
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V(G)=4
RUG(3)=V(Gy)=2 RUG(4)=V(G3)=1

Figure 5.1. RTM computations upon madifying location 3 and 4

5.3.3 RTM and the program structure

The upper bound is affected by the structure of the program under regression
testing and varies with the location of the modified segment and the degree of
reachability it exhibits with other ones. If most of the segments are said to be
reachable from/reach the modified one, then the upper bound tends to
approach the program cyclomatic complexity; hence, slight simplification of

the regression test selection problem is attained.




5.4 DATAFLOW SLICES REGRESSION TEST McCABE-
BASED METRIC (STM)

In this section, we extend McCabe complexity to deal with variable changes.
The Dataflow Slices regression Test McCabe-based metric, denoted by STM,
computes two bounds. The STM bounds indicate an upper and lower number
of regression tests to rerun to exercise the affected definition-use pairs due to

the considered variable(s) change.

5.4.1 STM assumptions

To determine STM bounds, our approach extends McCabe complexity to deal
with variable changes. Our approach assumes that definitions and uses of
variables are attached to nodes in the flow graph. Upon modifying a program,
data flow analysis is performed to determine the affected def-use pairs. Uses
are classified as either computation uses (c-uses) or predicate uses (p-uses). A
c-use occurs whenever a variable is used in a computation statement; a p-use
occurs whenever a variable is used in a conditional statement. To identify the
definitions and uses that are affected by the program edit, we use the

Backward/Forward algorithms suggested in (Gupta et al., 1992).

5.4.2 STM computations

To compute the data-flow test bounds, we assume that a control flow graph G

with n segments is given, and that the sets of affected definitions-use pairs

have been identified due to the modification of variable x at location [. From




&Y

G, we first remove all paths with control constructs not leading to the
identified affected def-use pairs to obtain a reduced graph G;. To be valid, G
must have a unique entry segment/node and terminate with a unique exit
node/segment. We consider that the unique entry and exit points are those of

the program or the module under regression test.

5.4.3 STM upper bound

To compute the STM upper bound upon the modification of variable x at
location [, denoted by SUg(x/1), we compute SUg(x4)=V(G,). V(G,), the
cyclomatic complexity of Gy, gives the number of all possible independent
paths from the unique entry to the exit point of the program/module and, by
implication, the number of tests that must be rerun to ensure the coverage of
the affected def-use pairs through the independent paths of G upon the
modification of variable x at location [. This bound indicates all independent
possible paths from the entry to the exit point that traverse the affected def-use

pairs; hence, it is referred to as upper bound.

5.4.3.1 STM upper bound example

To illustrate the computation of our proposed STM upper bound, Figure 5.2
shows that upon modifying node 1, forward walk on variable x, identifies a
use of x in nodes 7. From node 1, the entry node, to node 10, the exit node, we
remove all control constructs not reaching the affected def-use pair (1,7) to

obtain a reduced graph G,. The testing effort is reduced to SU(x/1)=V(G))=1.




Upon modifying node 10, backward walk on variable ¥, identifies a use of y in
nodes 2. From node 1, the entry node, to node 10, the exit node, we remove all
control constructs not reaching the affected def-use pair (2,10) to obtain a

reduced graph G,. The testing effort is reduced to SUG(y/10)=V(G,)=2.

cN
= @ i oo
¥ )

V(G)=4 G, G;
SUq (x/1)=V (Gy)=1 SUg (yN10)=V (Gy)=2

°>°
(0

Figure 5.2. STM computations upon modifying variable x at location 1, and variable yatl0
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5.4.4 STM lower bound-with adjusted entry and exit points

The bound described in the previous section provides an upper bound of all
independent possible paths that traverse the affected def-use pairs from the
entry to the exit point of the program or the module under test. To find the
lower bound, we aim to find the least number of linearly independent paths
that traverse the affected def-use pairs. Clearly, adjusting the entry and exit
points, without the loss of affected def-use testing coverage, might provide a

solution.

5.4.4.1 STM lower bound-Forward Adjustment

When a definition variable x is modified at location I, we set the node
containing the modified variable as an adjusted - virtual entry point.
ForwardWalk (Gupta et al., 1992) is then performed to locate the uses of the
variables x modified at [ along each paths. To find an adjusted virtual exit
point, we examine the number of returned affected def-use pairs of the
modified variable x edited at /. If a single affected def-use pair is returned by
the walk, then we can set the node containing the only use as an adjusted
virtual exit point. However, in case of the obtained def-use pairs exceeds one,
we must find a node through which the obtained uses converge. To determine
such a node, all the obtained uses are marked. Then, depth search is performed
from the marked uses until the first node with all its direct or indirect
predecessors are the marked uses is reached. This point is marked as the

adujsted virtual exit point. In Figure 5.3, we outline the algorithm Forward




Adjustment for finding the adjusted entry and exit points upon the

modification of a definition variable x at location /.

When a definition variable x is modified at location 1,
Set the node at / as an adjusted virtual entry point
Perform Forward Walk /* to loacte affected def-uses */
Mark the uses
If a single affected def-use pair is returned Then
Set the mark use as a virtual exit point
Else
Perform depth search from the marked uses until a node EX with direct
or indirect predecessors are the marked uses is reached
Set EX as the adjusted virtual exit point

Return(adjusted virtual entry point, adjusted virtual exit point)

Figure 5.3. Algorithm Forward Adjustment Jor finding adjusted virtual entry and
exit points

5.4.4.2 STM lower bound-Backward Adjustment

When a use of variable x is modified at location [, we set the node containing
the modified variable as an adjusted virtual exit point. BackwardWalk (Gupta
et al., 1992) is then performed to locate the definitions of the variables x
modified at [ along each paths. To find an adjusted virtual entry point, we
examine the number of returned affected def-use pairs of the modified
variable x edited at . If a single affected def-use pair is returned by the walk,
then we can set the node containing the only definition as an adjusted virtual
entry point. However, in case of the obtained def-use pairs exceeds one, we
must find a node through which the obtained definitions converge. To

determine such a node, all the obtained nodes containing the definitions are




marked. Then, reverse-depth search is performed from the marked definitions
until the first node with all its direct or indirect successors are the marked
definitions is reached. This point is marked as the adujsted virtual entry point.
In Figure 5.4, we outline the algorithm Backward Adjustment for finding the
adjusted entry and exit points upon the modification of a use variable x at

location [,

When a use variable x is modified at location 1,
Set the node at [ as an adjusted virtual exit point
Perform Back Walk /* to loacte affected def-uses */
Mark the definitions
If a single affected def-use pair is returned Then
Set the marked definition as a virtual entry point
Else
Perform reverse-depth search from the marked definitions until a node
EN with direct or indirect successors are the marked definitions is
reached
Set EN as the adjusted virtual entry point
Return(adjusted virtual entry point, adjusted virtual exit point)

Figure 5.4. Algorithm Backward Adjustment for finding adjusted virtual entry and
exit points

5.4.4.3 STM lower bound computation

By setting the adjusted virtual entry/exit point, we obtain a sub-graph G, of G.
Each node in G, can be reached by the adjusted virtual entry node and each
node can reach the adjusted virtual exit node. We refer to the paths of G, as the
basis subpaths in G, relative to G obtained upon modifing a variable x at

location [,




To compute the STM lower bound upon the modification of variable x at
location [, denoted by SLg(x1), we compute SLg(x/1)=V(G;). V(G,), the
cyclomatic complexity of Gy, gives the number of all possible subpaths that
must be tested to ensure the coverage of those affected def-use pairs from the
virtual adjusted entry to the virtual adjusted exit point, and by implication, the
upper and lower numbers of tests to rerun with respect to G; and G
respectively. Note, that SLg(x/) approaches the SUq(x/1) incases where the
adjusted virtual entry/exit nodes are those of the program or module under
test. Otherwise, SUg(x/1) < SLg(x/1) for V(G,) <V(G); hence, a lower bound is

obtained.

5.4.4.4 STM lower bound example

To illustrate the computation of our proposed lower bounds, Figure 5.5 shows
that upon modifying node 3, forward walk on variable x. identifies two uses of
x in nodes 4 and 5. The Forward Adjustment algorithm set nodes 3 and 6 as
virtual entry and exit points respectivel y to obtain a reduced graph G; of G,.
The testing effort is reduced to SLei(x/3)=V(G;)=2. This is the minimal

number of tests needed to rerun to test the affected sub-paths relative to G,.

Upon modifying x at location 6 of graph G in Figure 5.6, backward walk on
variable x, identifies two definitions of x in nodes 4 and 5. Backward
Adjustment set nodes 3 and 6 as virtual entry and exit points respectively to
obtain a reduced graph G,. The testing effort is reduced to SL; (x/6)=V(G;)=2.

This is the minimal number of tests needed to rerun to test the affected sub-




paths. Editing x at location 4 of the same graph, we obtain a reduced graph G

using Forward Adjustment with SLg (x/4)=V (G3)=1.

G

Gy SLg; (x/3)=V (G3)=2
ViG)=3

Figure 5.5. G, a reduced control flow graph of Gyupon applying Forward
Adjustment on variable x at location 3
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SLg (x/6)=V (G;)=2

SLe (Y/10)=V (G4)=2

SLg (x/4)=V (G3)=1

Figure 5.6. Gy, G, and G, reduced control flow graphs of G upon applying
Forward/Backward Adjustment




5.4.4.5 STM Lower bound interpretation

The value of SLg(x/1) suggests the minimum number of tests/paths to look for.
To choose these tests/paths relative to G, the graph representing the
program/module under regression test, the tester may take any test exercising a
path from the unique entry of G, passing through the adjusted virtual entry and
exit of G; along any of the G, basic subpaths, to the unique exit of G. The
lower bound metric of STM recommends choosing SLs(x/1) of these tests that
are sufficient to test for the basic sub-paths of G, relative to G. This is the

minimum number of tests/paths to look for relative to G,

5.5 REGRESSION TESTING WITH McCABE-BASED
COMPLEXITY BOUNDS

A selective regression testing algorithm based on the suggested bounds would
provide: (i) a deterministic measure of the modification complexity
introduced; (ii) bounds on the number of retests for revalidation; (iii) testing
coverage adequacy with respect to the affected portion of the program; (iv)
and degree of testing reliability and safety. These are necessary aspects that
most regression test selection techniques fail to address. Tables 5.1 and 5.2
summarize how the RTM and STM bounds could be used to monitor the test

selection process and identify where additional tests may be required.




In this section, we also outline an example of using STM bounds to address

the test selection problem in data flow testing. Our example could be extended

to address other coverage selective regression testing techniques.

Table 5.1 Number of retests(#R) relative to RTM bounds

Metric | Interpretation #R relative to | Action Reliability/Safety
RULT) of Retesting
Inadequacy of testing with | Update test suite
=] respect to all potentially to attain coverage | Unreliable/Unsafe
‘:"f affected requirements adequacy with
&= respect to the
o| Coverage of the affected potentially -
*| requirement is not affected portion |
certainly attained and retest |
I
I
= Coverage of all potentially |
= 3 affected requirements is |
o hl"-: attained through all More
e| possible independent Reliable
*| potentially affected paths |
|
Coverage of all potentially | Optional; |
< affected requirements is manage the test |
=| attained at least once suite to eliminate |
P redundancy -
%| Redundancy of retest
Test for RUg(1)




Table 5.2 Number of retests(#R) relative to STM bounds

Metric | Interpretation #R and STM Action Reliability/Safety
Inadequacy of testing Update test
3 suite to cover
§ Coverage of affected slices | affected slices Unreliable
v| is not attained and retest _
S
= |
':Es Coverage of the affected i
portion is attained with
(i minimal retests L?ss
as Reliable
s = |
& = F
i % Coverage is attained |
| through all possible More
T independent affected paths reliable
o
& i
Coverage attained at least manage the |
_| once test suite to |
S eliminate
:.E Redundancy of retest redundancy *
Loy
é Test for #R=
| ** SUg(xA)

5.5.1 Dataflow selective regression testing using STM bounds

Data flow testing based on backward/forward algorithms finds all the affected
def-use pairs due to a modification in the program. The technique then
requires selecting all test cases in the regression testing suite that satisfy these
affected pairs. Such test selection tends to include all redundant tests in the
regression suite satisfying the affected def-use pairs and leads high number of
selected retests in some cases. This fact is experimentally observed. To select
a minimal regression suite with redundant tests eliminated, we recommend

using STM bounds as indictors in the test selection process. This is an outline

of the recommended strategy:

1) Determine affected def-use pairs due to the modification (e.g., using

Backward/Forward algorithms).
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2) Compute STM lower and upper bounds. STM lower bound provides a
proper indication of the number of the affected sub-paths, STM upper bound
indicates the maximum of tests to rerun to revalidate the affected independent
paths.

3) Using STM bounds as indicators of test coverage adequacy, select test case

from the test suite that will force the execution of each of the sub-paths.

5.6 SUMMARY

In this section, we summarize the major properties and characteristics of the
McCabe-based metrics suggested in previous sections. Tables 5.3 and 54
summarize the objectives, characteristics, requirements, and suitability of

applications of the suggested RTM and STM metrics respectively.

Table 5.3. RTM metric table

Metric

Description and objectives

Characteristics and applications

RTM
Upper Bound

Denoted by RUg{l), RTM upper
bound upon modifying location /
in control graph G.

Indicates an upper bound of
retests with respect to all
potentially affected requirements

Monitors testing coverage
adequacy with respect to all
potentially affected independent
paths

Quantifies the complexity of the
modification and the maximum
testing effort for revalidating
potentially affected requirements

Helps in revealing redundancy of
tests (if any) in the initial test suite

Requires control graph modeling

Requires reachability
information

McCabe based computation
Location dependent

Varies with the modification and
degree of reachability the
modification exhibits with other
requirements

Could be integrated with
selective regression testing
techniques to guide the test
selection process towards safety




Table 5.4. STM summary table

Metric

Description and objectives

Characteristics and applications

Lower Bound

Denoted by SLs(x1), STM lower
bound upon editing x at location [
in control graph G.

Provides a lower bound on
numbers of tests to rerun for
revalidating affected definition-use
pairs

Monitors minimal testing coverage
adequacy with respect to all
potentially affected independent

paths

Quantifies minimal testing effort

Helps in revealing shortage in tests
(if any) in the initial test suite

STM

Upper Bound

Denoted by SUg(x/1), STM upper
bound upon editing x at location [
in control graph G.

Indicates an upper bound of
retests with respect to all affected
definition-use slices

Monitors testing coverage
adequacy with respect to all
potentially affected independent
paths

Quantifies the complexity of the
modification and the maximum
testing effort for revalidation

Helps in revealing redundancy of
tests (if any) in the initial test suite

Requires control flow modeling
and data flow information

McCabe based computation
Variable and location dependent

Suitable for selective regression
techniques thatuses/incorporates
data flow slicing-based analysis

For structured programs, upper
and lower bounds varies with the
modification

For unstructured programs, upper
bound approaches cyclomatic
complexity

Could be integrated with
Dataflow-based selective
regression testing techniques to
guide the test selection process.




CHAPTER 6

EMPIRICAL RESULTS AND DISCUSSION

In this chapter, we use 60 test problems to empirically compare the proposed
reduction-based selective regression testing methods described in chapters 3
and 4 to other three minimization-oriented selective techniques. These are SA
(Mansour and El-Fakih, 1999), RED (Harrold et al., 1993), and SLI (Agrawal
et al., 1993). We base our comparison on four quantitative criteria. These
criteria are the test cases selection percentage, algorithm’s execution time,
precision, and inclusiveness,

Furthermore, we use the test problems to try our suggested McCabe-based
metric on two coverage-oriented selective regression testing methods. These
are Gupta, Harrold, and Soffa’s dataflow (DF) algorithms (Gupta et al.,
1996), and Leung and White’s segment-Firewall (SFW) algorithm (Leung and

White, 1992),

6.1 TEST ENVIRONMENT

The experiments have been done on a PC running a Pentium I1 233 Mhz CPU.
Seventeen program modules (M1-M17) are used, for which the flowgraphs
and the initial suite of test cases, TS, have been manually generated. These
modules are described in Table 6.1, where the size (in Lines Of Code), number

of segments (M), and McCabe's cyclomatic number (v) are also given for each
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module. The cyclomatic number is included to give an idea about the

complexity of the modules. These modules are of small size and simple

complexity (M1-M8) and of medium size and complexity (M9-M17). For each

module, we have also derived the table of the segment/requirement coverage

information of the n test cases used. We use different combinations of values

for n and the location/number of the modified segment,

Smod, In order to

generate 60 test problems from the 17 modules. These problems are identified

in the table of results (Table 6.2, Table 6.4) by MiTj, where i refers to the

module (1-17) and j is a sequential number for a test problem for module i. For

all these problems, we have designed TS to at least include tests that cover all

the independent paths suggested by v. This approach ensures that all

requirements are covered at least once,

Table 6.1 Test modules

Module  Function M LOoC v
Ml Determines a triangle's type 11 24 3
M2 Calculates the sum and average of 100 or fewer bounded 13 21 (§
numbers
M3 Determines the root of an algebraic equation iteratively 13 38 3
M4 Reads a sequence of three binary bits and determines the 14 32 7
implied status
M5 Searches for a palindrome in a string 15 3l 8
M6 Raises a number to the appropriate power and displays the 16 46 5
results
M7 Reads a string and replaces it with an encoded character 16 22 8
M3 Code containing nested loops and case statements 16 21 7
M9 Code from phase II of an exam scheduling code 54 162 27
MI10 Code from phase I of an exam scheduling code 60 170 31
M1l Phase I of an exam scheduling code 63 229 33
MI2 Code from phase II of an exam scheduling code 69 203 35
MI13 Code from phase II of an exam scheduling code 73 223 39
Ml4 Code from phase III of an exam scheduling code 90 350 44
MI5 Code from phase 11 of an exam scheduling code 91 o4 42
MI16 Phase Il of an exam scheduling code 104 381 49
M17 Phase I1 of an exam scheduling code 109 313 58




6.2 REDUCTION-BASED METHODS-EXPERIMENTAL
COMPARISONS AND RESULTS

In this section, we briefly explain the four quantitative criteria used for
evaluating and comparing the proposed PR, MBR1, and MBR2 to the other
three minimization-based regression testing algorithms. These are SA, RED,
and SLI. We present the experimental results, comparisons, and discussions

based on these criteria.

6.2.1 Quantitative criteria

The quantitative criteria used in the comparison are the test cases selection
percentage, algorithm’s execution time, precision, and inclusiveness:

(i) Percentage of test selection refers to the percentage of test cases selected by
an algorithm from TS to rerun for revalidation, denoted by % selection;

(ii) Execution time of a regression-testing algorithm, denoted as toye:

(iii) Precision: Precision is defined in terms of modification-revealing and
modification-traversing tests. Modification-revealing tests are those that
produce different outputs for the modified program from those for the ori ginal
version. Modification-traversing tests are those that execute modified code.
Obviously, not all modification-traversing tests are modification-revealing.
Precision measures the ability of an algorithm to omit non-modification-
revealing tests that will not cause the modified program to produce different
output (Rothermel and Harrold, 1996). If the initial test suite TS contains nmr

non-modification-revealing tests, and a regression testing algorithm omits




onmr of these tests. That is, it selects snmr (= nmr-onmr) of them. Then, the
precision of the algorithm is given by the ratio (onmr/nmr), where nmr #0;

(iv) Inclusiveness: Inclusiveness measures the extent to which a regression
testing algorithm selects modification-revealing tests that will cause the
modified program to produce different output (Rothermel and Harrold, 1996).
If the test suite T contains mr modification-revealing tests, and a regression
testing algorithm selects smr of these tests, then the inclusiveness of the

algorithm is given by the ratio (smr/mr), where mr 0.

6.2.2 Selection percentages and execution time results

Table 6.2 gives the percentage of selection, % selection, and the execution
times, lexec, in seconds, of the six algorithms for the 60 test problems. Table
6.3 gives aggregate results based on those in Table 6.2. We note that the time
0.00 in Table 6.2 means very small time, namely less than 0.01 seconds. We
also note that the small magnitude of the execution times reported in Table 6.2
might look insignificant to justify a comparison of the speed of the five
algorithms. But, since typical maintenance practices imply that changes to a
program are done in a large number of small modification steps, the

comparison of le of the algorithms becomes useful.




Table 6.2, Selection (%) and execution times (sec) for the six algorithms

Test % Selection §ins

Ref| Problem

TP BB sl Bl | e
! 1Tl 11120151 5§ 100] 150] 300/ 50| 100] 50 0.38] 0.00] 225 0.00] 0.00] 0.00]
2 |M211 1211216161 83 167 167] 83] 167 &3] 0.22] 0.00] 2.25] 0.00] 0.00] 0.00]
3 |Ma3Ti 131 8 151 812500 250 25.0] 125] 250[ 125] 1.64| 0.00| 1.86] 0.00] 0.00] 0.00|
4 |M3T2 13 116 [ 5] 8§ 125 125 250 63] 125] 63 0.33] o.00] 10.05] 0.00] 0.00 0.00]
| B [YEFE] 131321517 ) 63] 63 250 31| 63] 6.3] 0.66] 0.00] 565 000 0.00 0.00|
6 |M3ITe 3164|5171 3] 3.1 328 1.6] 3.1] 1.6] 1.54] 0.00[1553] 0.00 0.00 0.00}
7 |m3Ts 131ed 15) 51 31 31] 344 16 31 3.1 154 000l 192 0.00] 0.00 0.00]

MATI 14 | 8 [ 7]12) s00f 500 125] 12.5] 50.0] 50.0] 0.11] 0.00]27.13] 0.00] 0.00 0.00{
9 |M4T2 141 8 [7] 7 | soof soof 250 25.0] 50.0] 25.0] 0.11] 0.00] 1.86] 0.00] 0.00 0.00]
10 |M4T3 14 1321717 | 125] 125] 281] 63| 125] 6.3] 0.66] 0.00]43.90] 0.00] 0.00 0.00|
11 |MsTi 15148 181 13] 42 21 125] 21| 21| 21| 0.99] 0.00]34.56] 0.00] 0.00 0.00|
12 Ms12 15 |96 [ 8] 7 Loy 1of 1.0] 1ol 1of 1.0] o.16] 0.00]39.33] 0.00] 0.00] 0.00]
13 |MaT1 161 6 16113} 333 667] 167 167] 333] 33.3] 0.11] 0.00] 2.25] 0.00] 0.00] 0.00]
14 Imrz 16 18 16113 42/ 831 167] 42[ 432[ 42| 099] 0.00] 3.90] 0.00] 0.00] 0.00|
15 |M6T3 16 148 16161 42 4.2 354] 42] 42] 42| 0.99] 0.00] 4.83] 0.05| 0.00] 0.00]
16 |M7T1 16 [ 65 [8] 7 15 L5) LS| 1S5] 1s| 1s| 1.59] 0.00] 225 0.00] 0.00] 0.00f
17 |M8TI 16 | 8 | 7] 6 | 500 soof 125] 12.5] so.0] 125] 1.09] 0.00] 599 0.00 0.00 0.00
18 |moTi 34 J1200290 13 ) 17] 42 03] 13| 43 23] 3.02] 0.05] 225 0.00] .00 0.0
19 Moz 54 [120[27] 0 L7 42] 25 17 42] 25| 3.02] 0.05] 2.04] ooo] ooo] 005
20 |MeT3 34190127113 ) 33| 56| 78 44] 56| 44| 236 0.05| 882 0.00] 0.00] 0.05
21 |MoTd 41901271 16 33] 56| 67] 44| 56| 44 236] 0.05| 2.52] 0.00] 0.00| 0.05
22 hmun 6l | 80 [31115] 25| 63| 100] 38| 50| 50| 27| 0.05] 4.25] 0.00] 0.00] 0.00
23 IMio12 | 61 | 80 |31] 55 ) 25| 63| 100] 38 50| 3.8 274] 0.05] 5.8 oool ooo 0.00]
24 IMioT3 J 61 ) 60 I31] s3] Sof 83 11.7] 50| 50/ 50| 274 003| 6311 0.00] oo 0.00]
25 |Miors | 61 | 60 |31] 171 50 83 50| 50| 83| s3] 2.74| 0.05| 460 0.00] 0.00 0.00
26 JMIITE | 63 | 101 [33) 16| 30 50 sof z20f sof sol 275 1.97] 747 oool 197 0.00}
27 IMirr2 63 1101]133] 61 | 30| 50| 69 30| 50| s0] 275 19711077 000l 197 0.00]
28 IMHT3 | 63 [101[33] 12 30 50 30 20[ 50/ so] 275 197 2.69] o.00] 197 0.00]
29 \MITY | 63 |101133] 17| 30 50 50 20| 50 sof 275 197 741] o00] 197 0.00]
30 pM1ITs |63 110133 191 30 50 50 20] 50| so0| 275 1.97] 2.69] 000 797 000l
A IMI2T1 | 69 | 94 135] 67 | 11| 64 21| 11| 64| 64| 233| 0.00] 6.86] 0.00] 0.00] D05
32 M1z | e | e |35] 8 L 64) 20 21) 64] 43| 253 oo0[ 401 o.00] 000 0.05
33 IMI273 | 69 | 94 [35] 13 | LI 64| 332 2| 64] 64| 253| 0.00] 5.16] o.00] 0.00] 005
J4 IMI2T4 | 69 1130135) 36 | 23] 3] s85] 3] 30| 23| 3.57| 005 9.45] 0.05] 005l 0,
35 \MI2TS | 69 |130135) 2 | 23] 31| 638 3| 3.1 23| 3.57] 0.05| 368 0.00] 0.05] 005
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38 IMI3T3 | 75 | 165139 16 | 24| 30[ 970 24| 30| 24| 4.56] 0.00| 1286 0.05] .00l 011
39 IMI3T4 |75 | 93 |390 72 | 43] 65| 22| 11| 65| 54] 2.58| 0.00] 4.56] 0.00] 0.00 0o
40 WMI3TS 175 1 93 [139] 71| 43 es| 1| 14| 65| 22| 258| 0.00] 3.84] o.00] 000 0.00]
L Mi3T6 | 75 | 93 139) 2 | 43| 65] VI 1i| 65| 54| 2358] 0.00[10.27] 0.00] 000 0.00]
42 IMI3T7 175 | 93 139) 10| 43] 65 L1 1I| 65| 63| 258 0.0 3.84] 0.00] .00 005
43 pMi3Ts |75 | 93 [39] 13 | 43[ 65| 1| 11| 65| 32| 258 o00] 3.15| 000] 000 000
A WMIJT1 | 90 | 65 J44] 5 | 10.8] 108] 3] 3] 0.8 10.8[ 1.76| 0.00] 20.98] 0.00] 0.00] 0.00
45 IMI412 | 90 | 65 [44) 1 | 108] 108] 15[ 15| 10.8] 10.8] 1.76] 0.00[353.35] 000 Doo 0.00]
46 JMI4T3 | 90 | 95 [44) 76 | 42] 74] 232 32| 74| 21| 269] 0.00| 1187 oo0] 000 0,00
47 WMISTI 91 | 60 |42] 62 | 5o 83| 83| s0| 67 67| 274| ooo] 247 oool 000 0.00]
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S IMISTS 91 ) 80 1421 77 | 25| 63] 25| 25 s0| 50| 274 o00] 2.85| 0.00] 0.00] 0.00
52 JMiSTe | 91 | 80 [42) 66 | 25| 63] 13] 3] 50| 50| 274] o.00] 336 000 000 0.00
53 pMIeTT J 104165 [49] 6 | 6.2] 108] 3] 30 108 92| 1.87] 0.00] 203 0.00] 000 0.00
S4 |Mi6T2 | 104] 65 490 a0 | 62] 108] 30 31| 108 93] 187 0.00] 495 000 000 D00
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57 Mizrr | 109] 96 [S8] 72 | 52[ 73] 048] 73| 73 73] 291] 0.00] .88 0.00] 000 0.00
58 [mirr2 19| o6 SR 2 52) 73] 9a8) 73[ 73] 3] 291 0.00] 287 o.00 000 0.05
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The least percentages of selection for 73% of the time, as shown in Table 6.3,
are recorded by our proposed PR algorithm. Such small selection percentages
are expected since PR selects only modification-revealing tests and omits all
non modification-revealing and redundant ones. A redundant test case is one
that covers the same structural or functional requirement as another test case in
TS. The selected tests are sufficient to provide testing coverage of the relevant
slices containing a modified requirement(s) and might affect the output of the
maintained program. Thus, the minimal number of the selected tests is not
obtained on the expense of the desired coverage. As far as the execution time
is concerned, Tables 6.2 and 6.3 show that PR is the fastest of all the

algorithms.

Table 6.3. Aggregate results for the 60 test problems

9 Times SA  RED SLI PR MBRI MBR2
Least #R 43% 10% 37% 72% 13%  37%
Worst #R 10% 55% 52% 0% 47% 22%
Fastesttexec. 0% 73% 0% 95% 87% T5%
Slowest texec. 15% 0% 83% 0% 0% 0%

The test selection percentages of the MBR algorithm record the least for only
13% of the time ranking it the fourth as far as the least test selection
percentage is concerned. The MBR1 algorithm shows only 17% improvement
in selecting fewer tests when compared to RED. Such little improvement is
related to the fact that most of the modules used exhibit strong dependency;
hence, most of the segments are said to be reachable from/reach the modified
one. Under such conditions, MBR1 tends to test for almost all segments and
such results do not reflect an exact behavior of the algorithm. However, the

test selection percentage varies with the location of the modified segment(s)




and the degree of reachability it exhibits with other segments in a particular
program. This makes MBR1 more suitable for problems with components
exhibiting low dependency. Like RED and SA, MBRI1 is capable to omit all
redundant test cases, a feature inherited from RED. MBRI is the second

fastest among the five algorithms according to Tables 6.2 and 6.3.

The test selection percentages of the MBR2 algorithm record least for 37% of
the time ranking it the third as far as the least test selection percentage is
concerned. The MBR2 algorithm shows 47 % improvement in selecting fewer
tests when compared to MBR1. Such improvement is related to the fact that
MBR2 omits tests that do not reach the modification. Like RED, SA, and
MBR1, MBR2 is capable to omit all redundant test cases, a feature inherited
from RED. MBR2 is the third fastest among the six algorithms according to

Tables 6.2 and 6.3.

The SA test selection percentages ranks the second for 43% of the time. Such
low percentages are expected since SA selects only the test cases that are
necessary to execute (once) the modified segment and all the segments
reachable from it. Thus, SA omits many redundant test cases. A low test
selection percentage would still be obtained by SA even if all segments are
reachable from all other segments (due to an outer loop). However, Tables 6.2

and 6.3 show that SA is the second slowest among the five algorithms.

The RED algorithm also selects a small number of retests. Its test selection

percentages record the lowest for 10% of the test problems. RED is also




capable to omit redundant test cases. This capability places it close to MBR1
as far as the test selection percentage is concerned. Its execution time is also
quite low and makes RED among the fastest (and close to) MBR2 and MBR 1
algorithms. The RED algorithm has a unique weakness in comparison with the
other four algorithms: the location of the modified segment has no effect on

the selected tests when the technique addresses regression testing.

For the SLI algorithm, the test selection percentage is highly dependent on the
location of the modified segment with respect to the dynamic slices of the test
cases. That is why, Table 6.2 shows sharp changes in percentages for different
values of Syeq in the same module. For some test problems in Table 6.2 (e.g.;
see problems 36-38), where Sy is in many dynamic slices, the selection
percentage even approaches 97%. For these problems, SLI does not exclude
redundant test cases. For some other problems, where the modified segment is
included in one dynamic slice, SLI selects only one retest. So, although Table
6.3 reveals that SLI yields the lowest selection percentages for 37% of the
time, this does not indicate a trend for SLI's behavior due to its strong
dependency on Syea. Further, Tables 6.2 and 6.3 clearly show that SLI is the

slowest among the algorithms,

6.2.3 Precision and inclusiveness

Table 6.4 gives the precision and inclusiveness results for the 60 test

problems. Table 6.5 gives the aggregate results. Table 6.6 illustrates in detail

how precision and inclusiveness values are computed for two test problems.
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Table 6.4. Precision and inclusiveness percentage results for the six al
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Table 6.5. Inclusiveness and precision Aggregate results for the 60
test problems

% Times SA RED  SLI PR MBRI MBR?
Highest Precision  13%  13% 100% 100% 18%  40%
Lowest Precision 30%  78% 0% 0% 60% 5%

Highest 12% 159% 83% 12% 12% 21%
Inclusiveness
Lowest 68%  54% 18% 37% 46% 21%

Inclusiveness

Table 6.6. Comparison of detailed precision and inclusiveness results for two
test problems

Algorithm N mr nmr #R smr snmr Onmr Precision % Inclusiveness %

SA 65 4 61 4 2 2 59 97 50
RED 65 4 61 7 2 5 56 92 50
SLI 65 4 61 2 2 0 61 100 50
PR 65 4 61 2 2 0 61 100 50
MBR1 65 4 61 7 2 5 56 92 30
MBR2 65 4 61 6 3 3 3 95 75

{a) Test problem MIGT]

Algorithm N mr nmr #R smr snmr Onmr Precision % Inclusiveness %

SA 9% 91 5 5 5 0 5 100 5

RED 9% 91 5 7 2 5 0 0 2

SLI 9 91 5 91 91 0 ] 100 100

PR 9% 91 5 7 7 0 5 100 8

MBRI1 2 91 S5 7 2 5 0 0 2

MBR2 9% 91 5 7 4 3 2 40 4
(b) Test problem M17T1

Table 6.4 shows that the PR and SLI algorithms have the highest precision and
inclusiveness among the five algorithms. This is due to their ability to omit all
non-modification revealing test cases and select only ones that are
modification revealing. That is why, SLI and PR are fully precise. SLI's
inclusiveness depends on the location of the modified segment and, generally,

not all modification-revealing test cases are selected. But, the inclusiveness of
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PR depends on the selected non-redundant test cases whose relevant slice
contain a modified segment(s) and is generally low: if several redundant test
cases with relevant slices traversing a modified segments, PR attempts to

select only one of them.

The SA, RED, MBRI1, and MBR2 algorithms show similar precision and
inclusiveness properties. Although they are not fully precise, they exhibit
nearly-full precision for most of the 60 problems. The precision of MBR2 is
improved over that of MBR1 and RED, for MBR2 omits tests that fail to
execute the modification; hence, improving the chance of selecting
modification-revealing tests. When testing for programs with segments
exhibiting low reachability to the modified one, MBR1 tends to give higher
precision values than that reported by RED (e.g., see problems 13 and 14 of
Table 3). Interestingly, RED and MBR1 have zero precision for test problem
MITTI. Table 6.6(b) shows that it happened that the 7 selected retests
included all the 5 non-modification-revealing test cases in addition to only 2
modification revealing ones. However, the inclusiveness of SA, RED, MBRI,
and MBR2 is low, since: (i) RED does not explicitly target modification
revealing test cases due to its Speg-independence, and (ii) if several
modification revealing test cases traverse a particular segment, RED, MBRI,

MBR2 and SA attempt to select only one of them.

For the quantitative criteria, we note that: (a) we are doing an assessment
using only a limited number of test problems, (b) the test problems used are

not random, (c) the test case design is essentially based on all-statement




coverage and where the value of n is increased, arbitrary test cases were
added, and (d) changing the location of Syes Was done in an arbitrary, but not
in a random way. Due to these considerations, we do not claim that our results
reflect an exact behavior of the algorithms. But, the results indicate a trend of

their behavior that is consistent with the theoretical interpretation.

6.3 McCABE-BASED METRICS-EXPERIMENTATIONS

In this section, we use the proposed STM and RTM metrics to evaluate the test
selection adequacy for two coverage-based regression test selection

algorithms. These are DF and SFW,

DF and SFW define all the definition-use pairs that may be affected by the
modification and select test cases accordingly. The values of the #R are
influenced by S, and are variable and location dependent. These techniques
do not exclude redundant test cases and yield to high test selection percentages
that require a large regression testing effort, which is not always affordable.
Therefore, it is suitable and would be favorable to use the STM bounds to

monitor the testing coverage adequacy of these techniques.

6.3.1 STM results

For each of the 60 test problems, we have computed both the STM upper and
lower bounds using the approaches discussed in chapter 5. Table 6.7 gives the
computed bounds normalized to a percentage figure to allow the comparison

with selection%. Figure 6.1 sketches samples of the results for some test
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problems. The computed lower bound quantifies the minimal testing effort
required to test for an edit of a variable var at location Smod for test problem
MiTj. It also indicates the minimal tests needed to rerun for revalidating the
affected definition-use pairs. We note that any drop below the computed lower
bound indicates shortage in retests and inadequacy of testing coverage. The
STM upper bound gives an indication of the sufficient tests required for
revalidating the change. Selected retests exceeding the upper bound are

considered as redundant tests, We have used Table 5.2 to interpret the results.

Comparing the % selection with the computed STM lower bound, Table 6.6
shows that none of the selected retests of the 60 test problems has dropped
below the STM lower bound for either DF or SFW. This could be referred to
the fact that 7S is developed using v to include tests that exercise at least the
independent basis paths in the program. Such approach has provided at least a
minimal adequate coverage of all the affected definition-use pairs. Note that %

lying on the lower bound indicate that a minimal testing coverage is attained.

Comparing the % selection with the computed STM upper bound, the same
table indicates that % selection has exceeded the bound for some test
problems (e.g., see problems sketched in Figure 6.1). Selection % exceeding
the upper bound reveals redundancy in the selected tests, which is favorable to
avoid. Under such conditions, regression testing for the STM upper bound
would be favorable. An optional action in this case would require managing
and controlling the test suite to eliminate redundant tests that exercise the

same coverage.




Table 6.7 Selection (%), RTM(%), and STM(%)

Test %RT. % STM | % Selection
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Figure 6.1 STM samples from m11-m17

For tests problems that report test selection ling between the two bounds, we
note that as the number of the reported selection percentage approaches the
upper bound, the chance of selecting modification revealing test is improved

and the selection would be then characterized as more safe and reliable.

6.3.2 RTM results

For each of the 60 test problems, we have also computed the RTM upper
bounds using the approach discussed in chapter 5. Table 6.6 gives the RTM
bounds normalized to a percentage figure to allow the comparison with
selection % of SFW and DF. Figure 6.2 sketches samples of the RTM results.
The computed RTM bound quantifies the maximum testing effort required to
test for all potentially affected by the modification. The computed bounds vary
with the test problem and the reachability that Spog exhibits with other

segments within the same module (e.g., see Figure 6.2).
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Figure 6.2. RTM samples from m1-m10




CHAPTER 7

CONCLUSIONS AND FURTHER WORK

In this thesis, we have addressed two major selective regression testing
problems: (1) the test selection problem, the problem of selecting tests from an
existing test suite and (2) the coverage identification problem, the problem of
determining where additional tests may be required. We have addressed the
former by proposing three reduction-based selective regression-testing
methods. We have suggested an approach to the former and the latter by
suggesting bounds on the selected retests based on McCabe cyclomatic

complexity.

The proposed three reduction-based selective regression testing methods are
referred to as MBR1, MBR2, and PR. MBR 1 improves the RED algorithm by
using reachability information to only account for the modification and its
impacts in the reduction test selection process. MBR2 improves MBR1 to only
select test cases that execute the modification. PR uses incremental slicing-
based analysis to only select modification-revealing tests. These algorthims

reduce the number of selected test cases and eliminate redundant tests.

We have suggested two McCabe-based regression test selection metrics to

address the coverage identification problem. These are Reachability regression

Test selection McCabe-based metric, and dataflow Slices regression Test

78




McCabe-based metric. The former, RTM, is an upper bound metric that
derives its measures from reachability information and provides an upper
indication of paths that must be tested for being potentially affected by the
modification, and by implication, an upper bound of tests to rerun for
exercising these paths at least once. The latter, STM, a data flow McCabe-
based variable dependent metric, derives its measures from information related
to slices affected by the modification and computes two bounds: an upper and
a lower bound of the number of retests to rerun to test the affected definition-

use pairs.

We have empirically compared our reduction-based methods to other three-
minimization approaches. These are SA, RED, and SLI. Experimentation has
shown that significant reduction in the test suite may be realized. The results
show that PR has selected the least number of tests for almost all the test
problems with full precision. MBR2 has improved MBR by further reduction
of 47% in the number of selected tests for the 60 test problems. MBR1 has
slightly improved RED for programs with segments exhibiting low

reachability from the modified one.

We have applied the suggested McCabe-based metrics to DF and SFW. We
have used the calculated RTM and STM bounds to monitor the test selection
adequacy of these techniques.

We indicate that our proposed reduction-based methods could be applied once
the impact of change is determined and a test-requirement association is

established. This makes our methods flexible and easier to adapt and extend to




address the revalidation of various programming paradigms. For instance, the
two versions of Modification-Based Reduction could be easily extended to
address the revalidation of object-oriented software on the class integration

level using a similar approach to that described in (Hsia et al., 1997).

Also, we note that most of the selective regression testing techniques are
frequently unaware of how the original test suite was designed (Rosenblum
and Weyuker, 1997). Most of the regression testing strategies that have been
described in the literature are independent of any coverage criterion that may
have been used to create the original test suite. Selective regression testing
based on the criterion used to generate the original test suite might be more
favorable and help in monitoring the quality and effectiveness of regression
testing through test-coverage adequacy analysis and metric collection. For
instance, test suite development using McCabe cyclomatic complexity and
regression testing based on the proposed McCabe-based regression test
selection metrics illustrates a typical example of a recommended strategy that
extend the approach used in test development to address the retesting problem
in a more deterministic context through facilitating test-coverage adequacy

analysis and metric collection.

We conclude by noting that the costs of testing and maintenance dominate the
cost of the evolved software and are motivated to a large degree, by a desire to
ensure software quality. The long-term quality of the evolved software is
dependent on the effectiveness of maintenance and retesting. To retest for

quality, we recommend studying various factors that might affect the




effectiveness of these regression-testing techniques such as the fault-detection

effectiveness, test-coverage adequacy, and safety measures.

Further work would involve: (1) automating the generation of the
preprocessing requirements of the different algorithms: (2) extending
McCabe-based regression test selection metrics to address various selective
regression testing criteria; (3) designing and implementing realistic scenarios
for testing (to construct 75), modifying, regression testing, and executing the
test codes to quantitatively evaluate and compare the fault-detection
capabilities of the proposed reduction-based algorithms; (4) to analytically and
empirically investigate factors in software and test design that affect the
regression testability of software; and (5) adapting the proposed reduction-
based selective regression testing methods for addressing the revalidation of

object-oriented software .
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