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Abstract

This paper investigates the computational complexity of deciding

whether the vertices of a graph can be partitioned into a disjoint union

of cliques and a triangle-free subgraph. This problem is known to be

NP-complete on arbitrary graphs. We show that this problem re-

mains NP-complete even when restricted to planar graphs and perfect

graphs.

1 Introduction

According to [3], given graph properties P and Q, a (P,Q)-colouring of a
graph G is a partition of its vertex set into two sets A and B such that A
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induces a subgraph that belongs to P and B induces a subgraph that belongs
to Q. A graph G is (P,Q)-colourable if G admits a (P,Q)-colouring.

In this paper, we investigate the computational complexity of deciding
whether a graph G is (P3-free, K3-free)-colourable, that is, whether G admits
a partition of its vertex into two sets A and B such that A induces a P3-
free graph (i.e., a disjoint union of cliques) and B induces a K3-free graph
(i.e., a graph with no triangle). This problem is known to be NP-complete
on general graphs [3]. We thus restrict our attention to special classes of
graphs. Our hardness results are stated in the following two theorems.

Theorem 1.1. Deciding whether a planar graph G is (P3-free, K3-free)-
colourable is NP-complete.

Theorem 1.2. Deciding whether a short-chorded graph G is (P3-free, K3-
free)-colourable is NP-complete.

Theorem 1.2 implies the same for perfect graphs (see [1, 6]). Section
2 introduces the terminology that will be used in the rest of this paper.
Sections 3 and 4 contain the hardness proofs on planar graphs and perfect
graphs, respectively. Finally, we discuss open problems in Section 5.

2 Background

All graphs considered here are finite and have no multiple edges and no
loops. For undefined graph terminology we refer the reader to Diestel [4].
Let G = (V,E) be a graph and V ′ ⊆ V . The graph G′ induced by deleting
the vertices V \ V ′ from G is denoted by G′ = G[V ′]. Kn, Cn, Pn denote a
complete graph, a cycle, and a path on n vertices respectively. We say that G
is H-free if it contains no subgraph isomorphic to some graph H . The graph
G \ v is obtained from G by deleting the vertex v. We do not distinguish
between isomorphic graphs. The union Q = G ∪ H of graphs G and H is
such that for any v ∈ V (G) and u ∈ V (H), uv 6∈ E(Q).

A graph is said to be embeddable in the plane, or planar, if it can be
drawn in the plane so that its edges intersect only at their ends.

An odd hole is an induced cycle of odd length at least 5. A graph G is
short-chorded (also known as Raspail) if every odd cycle C of length at least
5 in G has a short chord, i.e., a chord joining two vertices of distance 2 in C.
Short-chorded graphs were introduced in [1]. A graph G is perfect if for every
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induced subgraph H of G, the chromatic number of H equals the size of the
largest clique of H . By the strong perfect graph theorem [6], short-chorded
graphs are perfect.

Unless otherwise specified, let colouring mean (P3-free, K3-free)-colouring,
and let colourable mean (P3-free, K3-free)-colourable.

3 Proof of Theorem 1.1

In this section, we establish Theorem 1.1. The problem is clearly in NP.
To show NP-hardness, we provide a reduction from Planar 3-SAT, which is
known to be NP-hard [5], and defined as follows: Given a boolean formula
ψ, its associated graph G(ψ) has one vertex vx for each variable x in ψ and
one vertex vC for each clause C in ψ. There is an edge between vx and vC

iff x or ¬x appears in C. A instance of Planar 3-SAT is a set of variables
X = {x1, x2, . . . , xn} and a set of clauses C = {Ci | i = 1, 2, . . . , m}, such
that each Ci = (li,1 ∨ li,2 ∨ li,3) consists of 3 literals and each literal li,k is xp

or xp for some xp ∈ X. Given a boolean formula θ = C1 ∧ C2 ∧ . . . ∧ Cm,
the problem is to determine whether there exists a truth assignment to the
variables in X such that θ is satisfiable, where G(θ) is known to be planar.
We can safely assume that a literal and its negation do not occur in the same
clause.

Gadgets. The weak negator gadget with endpoints x, y is presented in Figure
1. The following observations are left as a simple exercise to the reader.
Clearly, the gadget admits a colouring. Moreover, x and y cannot both be
in the P3-free part, and if x (or y) is in the P3-free part, then there exists
a colouring such that x (or y respectively) does not have a neighbour in the
P3-free part.

The strong negator gadget with endpoints x, y is presented in Figure 2.
The following observations are left as a simple exercise to the reader. Ob-
viously, the gadget admits a colouring. Moreover, x and y have different
colours, and if x (or y) is in the P3-free part, then there exists a colouring
such that x (or y respectively) does not have a neighbour in the P3-free part.

The weak and strong negator gadgets are clearly planar.

Given an instance of Planar 3-SAT, we construct the following reduction
graph.
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Construction. Let mx be the number of occurrences of variable x. Each
variable x is represented by a variable component X (see Figure 3), which is
a cycle of length 2mx whose edges are replaced by a strong negator gadget.
We number the vertices from 1 to 2mx in a clockwise traversal. Its odd
numbered vertices, denoted by negative literal vertices, represent the negative
occurrences of x, while its even numbered vertices, denoted by positive literal
vertices, represent the positive occurrences of x. Each clause C = (lx,i ∨ ly,j ∨
lz,k) is represented by a triangle whose vertices are the vertices of variable
components that correspond to the literals lx,i, ly,j and lz,k. Denote the graph
obtained in this way by F .

x y x y

Figure 1: The weak negator gadget with endpoints x, y together with a
colouring where the white vertices are in the P3-free part and the black
vertices are in the K3-free part (left), and its symbolic representation (right).

x

y

x y

Figure 2: The strong negator gadget with endpoints x, y together with a
colouring where the white vertices are in the P3-free part and the black
vertices are in the K3-free part (left) and its symbolic representation (right)

Lemma 3.1. F is colourable if and only if θ is satisfiable.

Proof. By the property of the strong negator gadget, in any colouring of a
variable component the positive literal vertices receive one colour and the
negative literal vertices receive the other colour.

Suppose θ is satisfiable. If θ(x) is true, let all the positive literal vertices
corresponding to x be in the P3-free part, and let the negative literal vertices
of x are in the K3-free part. If θ(x) is false, let all the negative literal
vertices corresponding to x be in the P3-free part, and let the literal vertices
of x are in the K3-free part. Clearly, every variable component is colourable.
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Figure 3: A variable component

Furthermore, every triangle T corresponding to a clause C is colourable, for
otherwise all 3 vertices in T belong in the K3-free part, in which case all
three literals in C are false, a contradiction. To ensure that no vertices in
the P3-free part induce a P3, we can colour each strong negator gadget S
occurring in a variable component in such a way that its endpoint in the
P3-free part does not have a neighbour in S in the P3-free part.

Conversely, suppose F is colourable. If a positive literal vertex corre-
sponding to variable x is in the P3-free part, set θ(x) to true. Otherwise, set
θ(x) to false. Observing that every triangle corresponding to a clause must
have at least one vertex in the P3-free part concludes the proof.

The proof of planarity can be easily derived from [5]. We include it here
for completeness:

Lemma 3.2. F is planar.

Proof. F can be obtained from the associated graph G(θ) as follows. For
every variable x and vertex vx occurring in G(θ), replace vx by a variable
component. For every clause C and vertex vC occurring in G(θ), replace vC

by a triangle. There is an edge between a triangle and a variable component
whenever the variable represented by the variable component occurs in the
clause represented by the triangle. Each node of the triangle is used exactly
once. By contracting every edge that goes from a triangle to a variable
component we get the graph F as required.

Conjoining Lemma 3.1 and 3.2, Theorem 1.1 follows.
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4 Proof of Theorem 1.2

The problem is clearly in NP. To show NP-hardness, we provide a reduction
from Positive 1-in-3-SAT, which is known to be NP-hard [2]. An instance of
Positive 1-in-3-SAT is a set of variables X = {x1, x2, . . . , xn} and a set of
clauses C = {Ci | i = 1, 2, . . . , m}, such that each Ci = (li,1∨li,2∨li,3) consists
of 3 positive literals and each literal li,k is xp for some xp ∈ X. The problem
is to determine whether there exists a truth assignment to the variables in
X such that θ = C1 ∧C2 ∧ . . .∧Cm is satisfiable with exactly one true literal
per clause.

Gadgets. The weak negator gadget (see Figure 1) and the strong negator
gadget (see Figure 2) have been described in Section 3.

The literal gadget with endpoints x, y, z is presented in Figure 4. The
following observation is left as a simple exercise to the reader. It has a
colouring, and in every colouring it has at least two endpoints in the P3-free
part.

The propagator gadget with endpoints u, v, w is presented in Figure 4.
The following observation is left as a simple exercise to the reader. It has a
colouring, and in every colouring it has exactly one or three endpoints in the
P3-free part.

x y

z

u

w v

Figure 4: The literal gadget (left) with endpoints x, y, z and the propagator
gadget (right) with endpoints u, v, w along with a colouring where the white
vertices are in the P3-free part and the black vertices are in K3-free part.
Note that the propagator gadget is not symmetric.

Given an instance of Positive 1-in-3-SAT, we construct the following re-
duction graph.

Construction. For each variable x that appears in θ create a variable com-
ponent Vx (see Figure 3), which is a cycle of length 2mx (where mx is the
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number of occurences of x) whose edges are replaced by a strong negator
gadget. We number its vertices from 1 to 2mx in clockwise traversal. Its
even numbered vertices, denoted by literal vertices, are labelled lx,1, . . . , lx,mx

,
and its odd numbered vertices, denoted by propagator vertices, are labelled
px,1, . . . , px,mx

. For a clause C = (x ∨ y ∨ z) where x, y and z are the i’th,
j’th and k’th occurrence, respectively, create a copy HC of the literal gadget
whose endpoints are identified with lx,i, ly,j and lz,k, and a copy RC of the
propagator gadget whose endpoints are identified with px,i, py,j and pz,k. HC

and RC are said to be the associated literal gadget and associated propagator
gadget, respectively, of C. Denote the graph obtained in this way by G.

Lemma 4.1. G is colourable if and only if θ is satisfiable with exactly one
true literal per clause.

Proof. By the property of the strong negator gadget, in any colouring of a
variable component, the set of literal vertices receive one colour and the set
of propagator vertices receive the other colour.

Suppose θ is satisfiable with exactly one true literal per clause. If θ(x)
is true, let the literal vertices and the propagator vertices in Vx be in the
K3-free part and P3-free part, respectively. If θ(x) is false, let the literal
vertices and propagator vertices in Vx be in the P3-free part and K3-free
part, respectively. Clearly, the variable components are colourable. Consider
the associated literal gadget HC and associated propagator gadget RC of a
clause C. It follows by our colouring that HC has two endpoints in the P3-
free part, and RC has one endpoint in the P3-free part. Consequently, HC

and RC are colourable. To ensure that no vertices in the P3-free part induce
a P3, colour each strong negator gadget N in such a way that its endpoint
in the P3-free part has no neighbour in N in the P3-free part.

Conversely, suppose G is colourable. If the literal vertices in Vx are in the
K3-free part we set the variable θ(x) to true. Otherwise, we set θ(x) to false.
Consider the associated literal gadget HC and associated propagator gadget
RC of a clause C. By contradiction, suppose all endpoints of HC are in the
P3-free part. By the property of the construction, the endpoints of RC are in
the K3-free part, which contradicts the property of the propagator gadget.
It follows that exactly one endpoint of HC is in the K3-free part, in which
case C has exactly one true literal as required.

Lemma 4.2. G has no odd hole.
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Proof sketch. It is routine to verify that the weak negator gadget, the strong
negator gadget, the literal gadget, and the propagator gadget contain no odd
hole. Also, each induced path P (or Q) between the endpoints of a literal
gadget (or propagator gadget, respectively) has even length. P and Q are
said to be a literal path and propagator path, respectively.

Let C be an induced cycle of length at least 4 in G. If C occurs in a
variable component or a gadget, then C has even length. Otherwise, let S
be the set of literal and propagator paths occurring in C, and let C ′ = C \S.
By the property of the construction, C ′ forms a set of disjoint paths where
each path is composed of alternating propagator and literal vertices.

We claim that there exists an even number of odd length paths in C ′.
Suppose otherwise, and let J = {J1, J2, . . . , J2h+1} ⊆ C ′ be the the set of
odd length paths occurring in C ′. Without loss of generality, let this be the
order in which they appear along a clockwise traversal of C. Given that any
Ji ∈ J has odd length, it follows that Ji has one literal vertex endpoint and
one propagator vertex endpoint. From this, given that the endpoints of the
even length paths in C are of the same type, observe that for any Js, Jq ∈ J , s
and q have the same parity if and only if Js and Jq both have the same order of
appearance of the type of their endpoints along the traversal. Consequently,
to get from J2l+1 to J1, there must exist another odd length path J2l+2 in
C ′, a contradiction. Hence, the sum of the length of the paths in C ′ is even.
Since the sum of the length of the paths in S is clearly even, it follows that
C has even length.

Observation 4.1. the weak negator gadget, the strong negator gadget, the
literal gadget, and the propagator gadget are short-chorded.

Lemma 4.3. Let C be an odd cycle of length at least 5 in G. If C is not a
subgraph of a weak negator gadget, a strong negator gadget, a literal gadget,
or a propagator gadget, then at least one of the following holds:

(i) C contains an even length path connecting the endpoints of a weak
negator gadget.

(ii) C contains an even length path connecting the endpoints of a strong
negator gadget.

(iii) C contains an odd length path connecting two endpoints of a literal
gadget.

(iv) C contains an odd length path connecting two endpoints of a propagator
gadget.
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Proof. If the part of C within each gadget is induced then C has even length
by Lemma 4.2. So there exists a part of C within a gadget that has a
length whose parity differs from the length of the induced path connecting
the endpoints of the gadget under consideration. In any gadget, all induced
paths between endpoints have lengths of the same parity. Namely odd for
the weak and the strong negator gadgets, and even for the literal and the
propagator gadgets. This completes the proof.

Lemma 4.4. G is short-chorded.

Proof. Each of the four paths from Lemma 4.3 has a short chord. Together
with Observation 4.1 we get the desired result.

By conjoining Lemmas 4.1 and 4.4, Theorem 1.2 follows.

5 Further Work

One direction would be to investigate the complexity of the (P3-free, K3-
free)-colouring problem in other graph classes.

More generally, we can ask for the complexity of (F ,Q)-colouring a graph
for various properties F and Q. When F and Q are additive induced hered-
itary properties, the problem is NP-complete on general graphs [3]. Can
complexity dichotomies for this problem be established in special classes of
graphs?

Acknowledgments

The authors would like to express their gratitude to Matthew Johnson for
carefully reviewing the paper and improving its presentation and readability.
The first author was supported by the Durham Doctoral Scholarship (DDS).

References

[1] A. Lubiw, Short-chorded and perfect graphs. Journal Combinatorial

Theory B 51 (1991) 24–33.

9



[2] T.J. Schaefer, The complexity of satisfiability problems. Conference

Record of the Tenth Annual ACM Symposium on Theory of Computing

(STOC 1978, San Diego, Calif.), 216–226, ACM, New York, 1978.

[3] A. Farrugia, Vertex-partitioning into fixed additive induced-hereditary
properties is NP-hard. The Electronic Journal of Combinatorics 11

(2004) R46.

[4] R. Diestel, Graph theory, Third edition. Springer (2006).

[5] D. Lichtenstein, Planar formulae and their uses. SIAM Journal on Com-

puting 11 (1982) 329–343.

[6] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong
perfect graph theorem. Annals of Mathematics 164 (2006) 51–229.

10


	1 Introduction
	2 Background
	3 Proof of Theorem 1.1
	4 Proof of Theorem 1.2
	5 Further Work

