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Incremental and Classical Genetic Algorithm

Abstract
By

MOHAMAD AWAD

A Classical Genetic Algorithm (CGA) is known to find an optimal or near optimal
solution for complex and difficult problems. However, there are many cases where.
these problems are subject to frequent modifications each producing a new
problem, if these new problems are large, it is costly to use a genetic algorithm to
reoptimize these problems after each modification. In this thesis, we propose an
Incremental Genetic Algorithm (IGA) to reduce the time needed to reoptimize
large-scale modified problems. To validate the proposed approach, we consider
three problems: optimal regression testing, general optimization, and exam
scheduling. In addition, we develop a hybrid genetic algorithm (HGA) for the
problem in order to improve the results of a classical genetic algorithm. The
experimental results obtained by applying IGA to the three optimization
~ problems, show that IGA requires a smaller number of generations and less time
than that of CGA to converge to a solution. In addition, the quality of the

solutions produced by IGA is similar or slightly better than that of the CGA.

KEY WORDS: artificial intelligence, incremental genetic algorithms, application of
genetic algorithm, optimization algorithm, exam scheduling, general optimization, and
regression testing.
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CHAPTER 1

Introduction

Genetic algorithms are based on the mechanics of natural evolution (Goldberg,
1989). They mimic natural populations reproduction and selection operations to
achieve efficient and robust optimization. Through their artificial evolution,
successive generations search for beneficial adaptations in order to solve a problem.
Each generation consists of a population of chromosomes, also called individuals, and
each chromosome represents a possible solution to the problem. The initial generation
consists of randomly created individuals. Each individual acquires a fitness level,
which is usually based on a cost function given by the problem under consideration.

The Darwinian principle of reproduction and survival of the fittest and the
genetic operations of recombination (crossover) and mutation are used to create a new
offspring population from the current population. The reproduction operation involves
selecting, in proportion to fitness, a chromosome from the current population of
chromosomes, and allowing it to survive by copying it into the new population. Then,
two mates are randomly selected from this population, and crossover and mutation are
carried out to create two new offspring chromosomes. Crossover involves swapping
two randomly located sub-chromosomes (within the same boundaries) of the two
mating chromosomes. Mutation is applied to randomly selected genes, where the
values associated with such a gene is randomly changed to another value within an
allowed range. The offspring population replaces the parent population, and the
process is repeated for many generations with the aim of maximizing the fitness of the

individuals.




CHAPTER 1 Introduction

Genetic algorithms are different from traditional methods in many ways,
genetic algorithm works with a coding of the parameter set and not with the parameter
themselves. Genetic algorithm searches from a population of points not a single point.

Here the term Classical Genetic Algorithm (CGA) is used to represent all types
of Genetic Algorithms including Hybrid Genetic Algorithms, which uses random
generated chromosomes as their initial population to optimize any problem.

Classical Genetic algorithms have been adapted for solving a variety of
engineering, science, and operational research problems. Some examples of such
applications can be found in (Davis, 1991), (Ebeling et al., 1996), (Baeck, 1997),
(Haupt, 1997), (Fogel, 1998), (Banzhaf, 1999), (Sait et al., 1999), and (Pham, 2000).

An outline of this CGA is given in Figure 1.

Random generation of initial population, size POP;
Evaluate fitness of individuals;
Repeat

Rank individuals and allocate reproduction trials;

Randomize
Hillclimb

For(I=1 to POP step 2) do
Randomly select 2 parents from the list of reproduction trials
Apply crossover and mutation;
Endfor
Evaluate fitness of offsprings;
Until(convergence criterion is satisfied)
Solution = Fittest

Figure 1. Classical Genetic Algorithm

In the above examples and in general, CGA finds one good solution, but
clearly problem solving is more than that, it is (1) defining the problem, (2)
representing the possible candidate solutions, (3) anticipating how the problem may

change over time, and (4) searching for solutions that are robust to those changes
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(Michalewicz and Fogel, 2000). Moreover, it is the action of re-solving the problem
as it changes based on the most recent available information. Problem solving is a
never-ending process.

In CGA evaluation, function appears as a landscape, which is the result of
mapping alternative solutions to their corresponding functional values. Each possible
solution corresponds to a point on that landscape. When the conditions of the
problem change there are two alternatives: (1) the landscape changes due to a change
in the evaluation function, or (2) the constraints on the feasible region of possible
solutions change.

If large-scale problems are known to be subject to frequent modifications each
producing a new problem, we present a new approach that reduces the cost of re-
solving these large-scale problems by CGA due to frequent changes; our approach is
based on an Incremental Genetic Algorithm (IGA).

The idea of Incremental Genetic Algorithm is if a change occurres to a certain
problem due to changes to constraints, parameters, or the evaluation function. We
save several chromosomes (individuals) from the 1* CGA run. These chromosomes
are: one third to two third (depending on the problem) consists of best feasible
chromosomes and their neighbor feasible chromosomes, one quarter or less of
infeasible chromosomes. When a change occurs we do not start the GA with
completely random initial population. Instead we start with the saved chromosomes
and the rest are randomly generated.

We validated the IGA idea by applying it to three problems: optimal
regression testing, general optimization, and exam scheduling. The experimental

results show that IGA selects better solution and require shorter execution time (less
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number of generations) to converge than CGA. In addition, in some problems the
performance of IGA overwhelms that of CGA if the size of the problem is large.

This paper is organized as follows. Section 2 describes the Incremental
Genetic Algorithm. Section 3 gives example applications. Section 4 proposed Hybrid
Genetic Algorithm for Exam Scheduling. Section § gives empirical results of HGA
and CGA for Exam Scheduling. Section 6 gives empirical results of IGA and CGA.

Section 7 contains the conclusion.
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Incremental Genetic Algorithm

When we have large scale or complex problems, which are subject to
modiﬁcations to their constraints or to their objective functions, then reoptimizing
these problems by creating major part of the initial population from chromosomes
which are saved by running Classical GA on the same problem first time before
modifications is called Incremental GA. These saved chromosomes which are used in
the initial population of the IGA, consist of two parts best feasible and best infeasible
chromosomes. Best feasible chromosomes are chromosomes, which have minimum
cost (objective function value), and they satisfy all constraints. Best infeasible
chromosomes are chromosomes with minimum cost and with minimum constraints

violation,

2.1 Saving chromosomes in CGA

Classical GA maintains a population of chromosomes at any point in time,
rather than just a single chromosome. If these chromosomes are saved on applying
certain criteria, we can later use these saved chromosomes to provide us with the
potential for diversity of approaches to large-scale, and complex problems solving.
Moreover, modifying large-scale or complex problems can make one of these saved
best infeasible chromosomes feasible, and perhaps another feasible solution in the
saved population will still be feasible can increase. The criteria we use to save
chromosomes in every generation are the following:

1™ — Select best feasible and infeasible chromosomes and save in a list.
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2" _ Ensure diversity
3™ _ Ensure that we have enough saved feasible chromosomes (at least 50% of the
size of the initial population).

In the next two sections, we will discuss two methods, the first one is called
Crowding, which we use to ensure diversity, and the second one is called LFDC,
which is used to save more feasible chromosomes. At the end, we will explain the
method that we used to decide the percentage of the saved feasible and infeasible in

the initial population of IGA. Figure 2 gives a summary of IGA outline.

Phase I :
During CGA run and in each generation
Find best so far infeasible chromosome
Apply Crowding
If no similar chromosome can be found in the saved in Jeasible chromosomes list
Save best so far infeasible chromosome
Endif
Find best so far feasible chromosome
Apply Crowding
If no similar chromosome can be found in the saved Jeasible chromosomes list
Save best so far feasible chromosome
Else
I*case where problems represent their parameters as binary encoded string*/
I*compute modulus 4 of the convergence counter*®/
If ( best so far feasible chromosome has not changed after (convergencecounter mod 4 = 0))
Compute LFDC /*Local Fitness Distance Correlation*/
If(LFDC <0 and LFDC >= -1)
Apply Crowding
Save selected local feasible chromosomes
EndIf
EndIf
*case where problems represent parameters as non binary encoded string*/
Find feasible chromosome which is close in value to the best so far feasible chromosome
Apply Crowding
¥ no similar chromosome can be found in the saved feasible chromosomes list
Save selected feasible chromosome '
EndIf
EndIf
Sort

Phase II:
Run IGA starting with initial population which is composed of
> 50 % best feasible and selected individuals according to LFDC or other method
<=25 % best infeasible
<=25 % randomly generated

Figure 2. Incremental Genetic Algorithm
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2.2 Crowding method

To avoid duplicates and to ensure diversity, a method that is called
Crowding (De Jong 1975) determines the chromosomes to maintain by applying a
measure between a new chromosome and the old ones; this measure is called
Hamming distance. =~ Hamming distance is the number of bits by which two
chromosomes differs. For this reason, a new function is added which checks for
duplicates by comparing the value of the objective function of the new chromosome
(to be saved) and the previously saved chromosomes (if Hamming distance between
two chromosomes is different than O it is accepted). This will help in the existence of

diversity between individuals.

2.3 LFDC (Local Fitness Distance Correlation) method

During the first run of the CGA the population may converge to a single point
(no change in the value of the objective function). In order to ensure that we have
enough saved feasible chromosomes for use in the creation of the initial population of

IGA, LFDC (Local Fitness Distance Correlation) method is used in optimal regression

testing and general optimization problems, another method is used with exam
scheduling problem, which we will explain at the end of this section. LFDC is
introduced and advocated in (Kallel & Schoenauer 1996) selects part of the local
(current generation) feasible chromosomes, which are strongly related to the best so
far feasible chromosome. LFDC is used if after certain number of generations (here
the number equal one quarter the convergence counter) there is no change in the value
of the best so far feasible chromosome. To compute LFDC we carry out the following

steps:
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g Compute f;, which is the fitness value of the local feasible chromosome i, and
where the fitness is the inverse of the objective function value.
2" — Compute d; which is the Hamming distance from the local feasible chromosome
i to the best so far chromosome.
3 _ Compute the average of both the fitness and Hamming distance of the local
feasible chromosomes we call them avyand avy.

Next step is that a sample of the local feasible chromosomes are selected if
they satisfy the following two conditions:
A- The fitness of the local feasible chromosome i should be greater than avg
B- The Hamming distance of the local feasible chromosome i should be less than avy,

We use the selected n local feasible chromosomes to compute the covariance

as in Equation 1, where fand 4 are the average fitness and the average Hamming

distance of the selected n sample. Last step is to compute LFDC as in Equation 2,

S (-7, - D ®

ar
0,0, are respectively the standard deviations of the fitness and distance for the n

local feasible chromosomes. For minimization problems for instance, LFDC values

Equation(1) (2)
0,0,

LFDC =
less than O and greater or equal to —1 in case of minimization indicate that we can
save this sample of n local feasible chromosomes, while values greater or equal to 1
means ambiguous in case of minimization and in this case we reject this sample of n
local feasible chromosomes. The underlying idea of this operation is that it guides the
initial population in IGA towards the best structure.

However, this cannot be used with a complex problem such as exam

scheduling, this is because we are not working with binary representation of the




CHAPTER 2 Incremental Genetic Algorithm

problem. For this reason in every generation, we save the feasible chromosome which

has an objective function value close to the value of the best so far feasible value.

2.4 Creating initial population in IGA

After the convergence toward the global optimum in CGA, all saved best,
feasible and best infeasible chromosomes are sorted. The reason for sorting these
individuals by ascending order in case of minimization or descending order in case of
maximization is to select the needed individuals from the best population in the list.

The last step is to create the initial population in IGA when the problem is
modified. Initialization is recognized to be crucial issue in evolutionary algorithms
(EAs) in general, and in Genetic Algorithm in particular, all EA practitioners have
experienced that a bad initialization can, in the best case modify the online
performance (i.e. increase the time-to solution) (Kallel and Schoenauer 1997).

So in order to avoid bad initialization and decrease the time to find an
optimum solution in IGA we have to decide on the size of the initial population of
IGA, and to decide on the number of best feasible and best infeasible chromosomes to

use from the saved chromosomes, and the number of randomly generated

chromosomes. To decide these numbers, an approach that uses a procedure that works
on varying the parts, which form the initial population in the IGA, and by running
IGA several times on different problems. These variations and changes are the
following:

a- Modifying the values of the variables or constraints

b- Changing the size of the initial population

c- Changing the percentage of the saved feasible chromosomes

in the initial population
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d- Changing the percentage of saved infeasible chromosomes in
the initial population
e- Changing the percentage of the random generated

chromosomes in the initial population

10
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Example Applications

In order to evaluate the performance of the IGA we run it on three different
problems

The first problem is optimal regression testing, the second problem general
optimization, and the third problem is exam scheduling. These problems vary in the
degree of difficulty from simple to very complex the following subsections explain

each problem.

3.1 Optimal regression testing

Regression testing is the re — execution of some subset of tests that have
already been conducted to ensure that changes have not propagated unintended side
effects. Regression testing is a significant component of maintenance. Hence reducing
the cost of regression testing is very important for making software maintenance a
less expensive activity. We use the Genetic Algorithm (GA) for regression testing

developed by (Mansour and El-Fakih, 1999).

In order for the regression testing to reduce the high cost of repeating the
whole set of test cases used in the initial development of the program, it is unreliable
to choose a random subset of test cases. Therefdre, it is important to select a subset of
Test cases that have minimal cardinality, and which accomplish the goal of regression
testing. This problem is referred to as optimal regression testing.

In regression testing we assume that the module under consideration is
represented by a control flow graph with M program segments, where a program

segment represents either a control statement or a contiguous sequence of non-control

11
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statements. In addition, it is assumed that the set of N test cases used in the initial
development of the module has been saved, and that a table of the test cases and the
program segments they cover can be determined. Further, the control flow graph
enables us to derive information about the reachability of program segments from
other segments.

Given that program segment k has been modified, the optimal retesting problem
consists of finding values for (X;, X;,..., Xx) that minimize the cost function

Z=X,+X, +....+ Xy 3)

subject to the constraints
N
J_;aijxj >b,;i=1..,M 4)

Where X;=1 (or 0) indicates the inclusion (or exclusion) of test case j in the selected
subset of retests. The matrix [a;] is derived directly from the test-segment coverage
table, i.e., a; = 1 if segment i covered by test case j; b; = 1 (or 0) indicates whether
segment i needs to (or need not) be covered by the subset of retests due to the
modification of segment k, where the values b; are derived from the segment

reachability information.

12
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3.2 General optimization

Many of these complex problems require huge amount of computational time
and resources, sometime it is not possible to obtain a solution using an exact
algorithm such as Branch and Bound in a reasonable time due to it is complexity.
These problems are characterized by the diversity of values, which can be assigned to
the variables and the constraints. These values can be zero one or minus one, and it
can be greater than one for the constraints.

In order to simulate large-scale problems with different values of parameters
and constraints, CGA is modified to accept these problems. We created Random
values, which consist of —1, 0 and 1 for parameters, and constraints b; values are 0 and
1. Another large-scale problem is created consists of -1,0,1 and constraints b; varies
between 0 and 20.

These types of complex problems are created to demonstrate the efficiency of
IGA compared with CGA. Random generated tables of data, which represent more

than binary data, such that the objective function is similar to the following Equation:

Min O.F.= ZN:(l)“X,. (5)

i=1

Subject to constraint

i=1,..,M (6)

Where b; varies between O and 20, or it could be only O and 1.

13
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3.3 Exam Scheduling

The general scheduling problem is among the hardest combinatorial problems
because it belongs to the class of NP-complete problems, which means that no
deterministic algorithm is known yet for solving the problem in polynomial time.
Scheduling of final exams for large numbers of courses and students in universities,
such as the Lebanese American University (L.A.U.), is done manually by the
Registrar’s Office, a large number of complaints are made by students about conflicts
or unfairness in the schedule. Conflicts occur when simultaneous exams are scheduled
for the same student, and unfairness to a student refers to consecutive exams or more
than two exams on the same day. A good exam schedule at L.A.U. would aim for
minimizing conflicts and the two unfairness factors based on user-assigned weights to
these three factors and subject to some constraints. We use the Genetic Algorithm
developed for exam scheduling (Tarhini and Mansour, 1998). However, this GA for
exam scheduling proved inefficient to be run for CGA and IGA comparison because

of the high number of conflicts this GA produces. For this reason a new hybrid GA is

developed which consists of the following specifications and structures taken from the
above GA, and more features are added to reduce conflicts (see chapter 4 for more
detail).

Given that A exams are to be taken by students over B days, where E exam
sessions can be done per day, the exam scheduling problem consists of assigning A
exams to /7 (=B*F) exam sessions, within specified classrooms. The objective is to
minimize the conflict and the unfairness factors, which are:

i) The number of students with simultaneous exams,

14
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ii ) The number of students with consecutive exams, and

iif) The number of students with two or more exams on the same day.

we assume the following conditions and constraints that apply at L. A.U.

a-The user should be provided with the flexibility of assigning weights to the
three conflicts and unfairness factors.

b- The number of exam periods, 77 is predefined.

c- A limited predefined number of classrooms, y; are available for exams.

d- Room capacity is taken into consideration in assigning exams to rooms. In
addition, more than one exam/section can be assigned to the same room at the
same time if they fit.

e- The total number of exams is not being greater than /7*y.
J- The user (The Registrar’s Office) has the option of forcing (an) exam(s) to be
fixed to a specified day/period/room before scheduling.
g- Scheduling of a user-defined group of exams to the same period should be
allowed.

h- The last session of one day is considered consecutive to the first session of the

next day.

Scheduling problems can be represented by graphs. Let G(V, E) be a graph in
which: vertex v; & V represents an exam to be scheduled; vertex weight w; represents
the number of students taking exam v; edge e € E joining two vertices v; and v,
represents the existence of students taking both exams v; and v; weight of edge e,
wy, represents the number of students taking both exams v; and v;. The vertex weight
is used to match a room’s capacity.

The exam scheduling problem can be expressed as a modified graph coloring

problem, where we color the vertices of a graph using a specified maximum number

15
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of colors (exam periods), 77 such that the objective function O.F. (Equation 7 below)
is minimized and the constraints (listed above) are met. A solution to the exam
scheduling problem is henceforth denoted as the configuration C. Note that each color
corresponds to an exam period and all vertices having the same color represent the
exams that can be assigned to the same period.
Let ¢(v) be the color of vertex v, and &= {cuc, ... cp} be the set of ordered,
available colors; that is, |£] = J7= maximum number of available colors, and (ci-ciy)
= 1 for i=2,..., IT The objective function, O.F., is given in terms of the following
factors:
(1) Ssg, the total number of students taking conflicting simultaneous exams = 2 Wi
with c(i) = c(j).
(i) Scg, the total number of students taking consecutive exams = 2.wi; with |c(i)-

c)| = 1.
(iii) Smg, the total number of students taking two or more exams per day = Ywj
with

¢(1) and c(j) referring to exam periods on the same day.

OF—=-0a~Ssg+@+Scg+0o+Suz (7)
Where @, @ and o are user-defined weights; the following table (Table 1)

summarizes the symbols used in the objective function and the constraints.

16
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Table 1. Symbols used in the objective function

The maximum number of available exam periods (maximum number
of colors).
7 The maximum number of available classrooms.
& The set of available rooms (available colors); |& = 17
Cj An available color in & (i.e exam period).
c(i) The period to which exam 7 is assigned (The color of vertex i ).
C The system configuration, i.e the exams schedule.
Sse The total number of students taking conflicting simultaneous exams.
Sce The total number of students taking conflicting consecutive exams.
SME The total number of students taking two or more exams per day.
a A weighting factor related to the importance of Sggin O.F.
0 A weighting factor related to the importance of Scg in the O.F.
o A weighting factor related to the importance of Symg in the O.F.
w; The number of students taking exam 7.
Wi The number of students participating in both exams 7 and ;.

17




CHAPTER 4

New Hybrid Genetic Algorithm for Exam Scheduling

Checking the previous work on Classical Genetic Algorithm for final exam
scheduling for L.AU.,, we found that is not good enough in optimizing exam
scheduling for L.A.U. this is due to the high number of simultaneous and consecutive
conflicts, which is not fair for students who are seating for exams. By investigating
this Genetic Algorithms for Exam Scheduling, the fact came out clear, the high
conflicts are caused by the reproduction process (crossover) that may alter a good
solution to a bad solution (violate constraints & increase conflicts). Two parents are
selected by a certain selection process (Roulette wheel selection) are crossed at
random to produce new offspring.

In order to improve the CGA for final exam scheduling in L.A.U. several
improvements are added. In summary, the following lists the differences between our

HGA and other previously created CGA for final exam scheduling in L.A.U.:

A- In HGA we added room constraint satisfaction into the objective function. —
B- HGA works on minimizing the cost, which is associated with the number of
conflicts (specifically simultaneous and consecutive conflicts) using a local
search mechanism called Hill-Climbing.
C- 4 new process is added in HGA called feasibilize, works on minimizing room
constraint violation.
D- CGA uses one mutation to change one gene, while HGA uses two types of

mutation operation, light and heavy.

18
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E- A procedure regrouping is added in HGA, which works on placing same
course with different sections together in the same period while reducing
conflicts and avoiding constraints violation, no such process was found in any
of the studied CGA for final exam scheduling in L.A.U.

Figure 3 shows the outline of the Hybrid Genetic Algorithm for Exam Scheduling.

Random generation of initial population, size POP;
Evaluate fitness of individuals;
Repeat
Check room violation add penalty
Save best_sofar();
Rank individuals and allocate reproduction trials;
fori=110oPOP step 2
Randomly select two parents from list of reproduction trials;
Apply crossover and mutation;
Endfor
Light mutation
Heavy mutation

Feasibilize half courses

Regroup same courses in the same periods
Hill-Climbing
Evaluate fitness of offsprings;

until convergence;

Figure 3. Outline of the Hybrid Genetic Algorithm for Exam Scheduling

19
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We start by explaining each of the above improvements in detail.

The first improvement is shown in the objective function where a penalty is
added every time a violation to the room size is found. This penalty represents the
sum of the number of rooms in every period which have their capacity violated (room
constraint).

This final sum in each chromosome is multiplied by a weight y = 200 as

shown in Equation 8 and this penalty is added to the objective function as shown in

Equation 9.
Penalty = y «(20¢ 1< -k<-1p 3)
OF. =a*Sgg + Q> Sce + o+« Spue + Penalty &)

Where ;7 represents number of periods, and p is the sum of all room violations in
period (k). The introduction of this new penalty aims to reduce room constraints
violation.

Finding room violation is implemented by using a simple procedure, keeping

records of the number of students taking exams in each period, and in each room.
When any of the GA operations changes the room or the period or both of them, these
records are updated

The second improvement is to hybridize Genetic Algorithm for final exam
scheduling by adding a local search mechanism named Hill-Climbing that finds an
optimal solution in shorter time than the other GA operators (less iterations needed).
Hill-Climbing uses a technique of calculating the penalty incurred by scheduling a

gene (course) in a particular period, given that the other genes are fixed. In more

20
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clear words, Hill-Climbing tries to re-assign a course (including all sections) in a way
that will reduce the cost and does not cause any room constraint violation. This has
the advantage that when attempting to reschedule each individual gene, the
improvement can be found in a fraction of the time that it would take to perform a full
evaluation.

The addition of Hill-Climbing to the normal genetic operators inevitably has
some computational expenses, but this can be justified by the reduction in the search
space that must be explored in order to find the optimum solution.

The third improvement is by adding procedure called feasibilize. This
procedure works on half of the infeasible population by selecting chromosomes with
highest cost (objective function), and it forces these chromosomes to satisfy room
constraint. In addition, Hill-Climbing will work on the other half of the infeasible
chromosomes to make them feasible while trying to reduce conflicts and room
violation, by moving courses to different periods and rooms.

Moreover, two types of mutations are created light, and heavy mutations.
Where light mutation operates on small portion of genes while heavy mutation works

on altering large number of genes. In more details, the light mutation works on one

gene by changing the period, while the heavy mutation works in a different way by
finding the period that has the maximum assigned courses, and the period with the
small assigned courses. Then, it tries to find a balance between these periods by
moving those courses in the period with maximum courses to the period with small
assigned courses, but on condition that the conflicts number is decreased and

constraints are respected.
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The reason for having two mutations is to create a balance between the
number of genes (courses) assigned to each period, which will cause in addition to the
help of the crossover operator to overcome the fast convergence to local optimal
solution which is caused by the local search mechanism.

However, during the reproduction and the enforcing feasibility processes,
same courses with different sections are misplaced in different periods. In order to
place them in the same period to satisfy one of the conditions stated above, a new
process called regroup rearranges these courses to be in the same period or to another
period in a way to place them together and to reduce conflicts, if necessary, a new
room is assigned without violating room constraints.

In general, the addition of these improvements make HGA runs in
O(Gen*Pop*Ex?) time where Gen is the number of generations, Pop is the number of
chromosomes and Ex is the number of exams.

In order to build confidence about the high quality of the output, and in
addition to the procedure which keeps records of the room violation, another
procedure evaluate justifies the number of conflicts after obtaining the final solution.

The genetic operators rates employed in HGA are 0.75 and 0.01 for crossover

and mutation.

When the value of the objective function does not change for a specific
number of generations the run should be stopped. For this reason a counter is set
which increments by one each time we find no change or improvement in the value of
the objective function and we say that it is converged when we have the counter equal

to 20.
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Empirical Comparison of HGA and CGA for Exam Scheduling

In order to compare the results obtained by running HGA, several data are
collected from previous experiments, which were carried to optimize L.A.U exam
scheduling using classical genetic algorithm results (Mikati, 1999).

The data covers three semesters for spring 1994-1995, fall 1996-1997, fall
1998-1999. The following version is chosen see Table 2, which represents one of the
different parameters values used in the previously developed CGA. From the run of
both HGA and CGA, the following results are obtained which are summarized in
Table 3. These results are shown in charts (Figures 4, 5, and 6) to make the task of

comparison easier.

Table 2. Weights values used in the objective function

o 10 0.2

Comparing the results, we can see the size of improvement. Although, the
number of two or more exams increased (multiple exams), we can see the
improvement in the first two conflicts, which are very important in creating a fair
exam schedule. This improvement again is obvious if we compare the difference
between the cost of HGA and CGA see Figure 7, the cost here represents the objective
function which consists of three type of conflicts, the total number of each conflict is

multiplied by a weight factor. In addition, higher weights values are given to the first
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two types of conflicts, that is why we see that the cost in HGA is lower than that in
CGA because number of simultaneous conflicts are eliminated in HGA, and

consecutive conflicts are significantly lower than that in CGA.

Table 3. Experimental results of running CGA and HGA

CGA 12 700 529 21 0
HGA 0 91 559 21 0

However, the advantage of the HGA is hindered by the time requirement

compared with any of the Genetic Algorithms for Exam Scheduling implemented for

L.A:U-However, we run HGA using a PC 1GHz in CPU speed and 128 Mbytes of -

memory and it required less than an hour.

24



CHAPTER 5 Empirical Comparison of HGA and CGA for Exam Scheduling
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HGA and CGA for 32 periods Fall 1998-1999
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Empirical Comparison of IGA and CGA

6.1 Experimental setup for IGA and CGA

In order to evaluate the performance of the Incremental Genetic Algorithm
(IGA), we run the Classical Genetic Algorithm (CGA) for Optimal regression testing,
general problem optimization, and exam scheduling and we compared them with the
results obtained from running IGA on each of the above problems.

In all what follows, the population size is 100 except for exam scheduling the
population size varies between 40 and 100 depending on the saved best feasible
solutions.

In order to demonstrate that IGA is better than CGA, each problem is modified
several times by changing the values of the variables and/or constraints.

For example, in the case of exam scheduling optimization, the modification

represents the number of courses, which were found later that no final exam is

needed. These final exams can be courses, which were not given during the semester,
but were, printed in the courses schedule. The verification is done by checking the
final exam schedule that was setup manually by the registrar office. On the other

hand, the modifications can represent eliminating periods or adding periods.
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6.2 CGA and IGA comparison for optimal regression testing

The modification in regression testing indicates whether certain segments need
(or need not) be covered by the subset of retests due to the modification of these
segments. Alternatively, it can mean that a test is included (1) or excluded (0) in the
test segment.

During the experiments on the optimal regression testing, we varied the
number of variants and constraints. We present the results of running CGA and IGA
using tables of M program segments and N test cases.

The goal here is to prove that IGA works better than CGA (means less number
of generations). When we have 0-1 ILP problem to solve, it is known that there are
several software packages ( such as Ip_solve), which can help in solving them, but on
condition that the size of the problem is small ( it is not robust when the problem is
large). However, if we ask the following question, what about if the problem size is
very huge? In addition, what if it represents a critical area in software development

and we need fast results for optimal regression testing. For this reason a comparison

between CGA anﬁcrir IGA covers fhe medium size of 0-17 ILP problem to a large one
(from 1000x1000 to 10000x10000). Table 4. gives the results for a problem size of
1000x1000. We notice that in the first case where we made 16 random changes to b;
value, CGA has the same number of generations as IGA, but there is significant
diffrence in time, this is due to the fact that CGA takes more time in Hill-Climbing
procedure than IGA takes to arrive to the feasible solution with which IGA has

started.
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Table 4. Results of CGA and IGA with MxN = 1000x1000

Optimal Number of Objective Execution Number of | Objective | Execution
. Generations Function Time in secs Generations | Function Time in secs

Regression

1000x1000 10 19 257 10 18 161

16 changes

1000x1000 17 18 300 10 18 156

32 changes

In The next experiment, we increased the size of the program segments and the test

cases. However, we kept the size of the population unchanged. The results see Table

5. shows again no significant improvement in the number of generations in finding an

optimal solution using IGA.

Table 5. Results of CGA and IGA with MxN = 2000x2000

B Nﬁmber of

Nl-l'm”berv of

Execution

Optimal Execution - Objective

Regression Generations Function Time in secs | Generations | Function | Time in secs
2000x2000 17 20 1339 10 20 1050

16 changes

2000x2000 10 21 927 10 20 726

64 changes _ ) ) _

Table 6. shows the results of doubling the size, and the modifications to the

constarints. Again, no significant improvement until the size is increased to

6000x6000 and later to 10000x10000 see Table 7. the results in this table show that as

the problem get more complex (the size is very large) IGA outperform CGA

significantly.
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Table 6. Results of CGA and IGA with MxN = 4000x4000

Optimal Number of Objective Execution Number of | Objective | Execution
Regression Generations Function Time in secs | Generations | Function | Time in secs
4000x4000 20 16 1339 20 16 1050

128 changes

4000x4000 23 16 1450 20 16 1320

256 changes

Table 7. Results of CGA and IGA with MxN = 6000x6000 and 106000x10000

Optimal Number of Objective Execution Number of | Objective | Execution
Regression Generations Function Timein hrs | Generations | Function Time in hrs
6000x6000 26 45 1 hrs 16 45 0.65 hrs
256 changes
6000x6000 35 44 1.31 hrs 10 45 0.6 hrs
512 changes
10000x10000 29 49 2.9 hrs 10 50 1.25 hrs
512 changes
10000x10000 23 49 2.1 hrs 10 49 1.2 hrs
768 changes | ) ) ,
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6.3 IGA and CGA comparison for general optimization

In general optimization two different problems are chosen. In the first
problem the variables can be {-1, 0, 1}, and the constraints ranges between 0 and 20.
In the second problem, the variables can be {-1, 0, 1}, and the constraints can be
{0,1}.
The results in Table 8 shows that IGA performs better. In addition, we change the
constraints b; to different values, and we make some modifications, Table 9 shows

another good performance of IGA.

Table 8. Results of IGA and CGA for variables {-1,0,1} and constraints 0..20

General Number MW Execution Number of | Objective Execution
optimization Generations Function Time in secs | Generations | Function | Time in secs
1000x1000 37 195 39 10 194 12

16 changes

1000x1000 29 199 35 20 189 22

32 changes

In general optimization problem, there are clear evidences that even with small
size problems but more complex, IGA shows improvement with comparison to CGA.
The reason is that it takes more generations to find an optimal solution for this type of
complex problems using CGA. However, IGA starts with a solution that is closer to

the optimal solution.
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Table 9. Results of IGA and CGA for variables {-1,0,1} and constraints {0,1}

General Number of r“(;l.)j‘gc“tﬂi;z‘r“ Execution Number of | Objective Execution
optimization Generations Function Time in secs | Generations | Function | Time in secs
1000x1000 36 100 38 15 99 17

16 changes

1000x1000 43 111 110 32 111 83

32 changes

Increasing the size of the complex problem is another way to demonstrate the

good performance of IGA. In Table 10 and 11 another two results of different

problems, here we see that the number of generations increases for CGA, while it is

trying to find an optimal solution in the search space.

Table 10. Results of IGA and CGA for variables {-1,0,1} and constraints {0,1}

General Number of Objective Execution Number of | Objecti T—Execution
optimization Generations Function Time in secs | Generations | Function Time in secs
4000x4000 23 163 956 10 B 1571 | 435 B
128 E:héhges | ' |

4000x4000 56 150 2163 10 151 450

192 changes
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Table 11. Results of IGA and CGA for variables {-1,0,1} and constraints 0..20

General : Number of Objective Execution Number of | Objective Execution
optimization Generations Function Time in secs | Generations | Function | Time in secs
4000x4000 31 449 1274 10 440 463

128 changes

4000x4000 31 459 1273 10 440 472

192 changes
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6.4 IGA and CGA comparison for Exam Scheduling

Table 12 shows the -semesters, number of exams, number of rooms, and the
number of periods...etc, we used these numbers to do the experiments. In addition,
we varied the number of generations to improve the quality of output, this variation
depends on the number of the saved chromosomes from the previous run of the
Hybrid Genetic Algorithm (HGA) which is the basis of both IGA and CGA.
Moreover, the condition states that the initial popﬁlation of the IGA consists of at
least 50 % or more of the saved feasible chromosomes. For this reason, the population
number varies between 40 and 100, with each chromosome represents a complete
schedule (courses, the period, and the room to which the courses are assigned).

Further, different results are obtained depending on the choice of the values of
the coefficients of the objective function. The different versions we used are shown in
Table 13.

Table 12. Attributes of the exam scheduling problem

Number of enrollments 9550 12275 12406
Number of enrollments manual 9550 9735 10836
Number of exams 336 426 477
Number of exams manual 336 357 359
Number of exam periods 20-40 20-40 20-40
Number of sessions within a day 4 4 4
Number of available classrooms 21 21 21
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First step in the experiments is to run each problem before the modifications
and to save best feasible and infeasible solutions. Next step is to vary the number of
periods from 20 ( 5 days) to 40 ( 10 days). The reason for changing the number of

periods is to show further differences between CGA and IGA.

Table 13. Different Weights values used in the objective function

Version number a ¢ o 4
V1 100 5 0.2 200
V2 100 1 1 200

In the first experiment, the number of periods is 32, and the comparisons,
which are carried out between IGA and CGA cover three semesters for different
years. After the modifications, the results show that IGA requires fewer number of
generations, this is due to the fact that saving large number of best feasible solutions
narrowed the search in the search space where subspaces of feasible solutions are
disjoint from the infeasible solutions. Moreover, Table 14 shows that IGA performs

better than HGA in decreasing simultaneous, consecutive, and multiple conflicts.

decreasing and increasing the number of days of exams. In addition, we modified the
constraint that forces the courses with different sections to have their exams in the
same day, we carried out this modification to Spring 1994-1995 semester. The results
of comparisons between IGA and CGA are summarized in Table 15. Moreover, we
modified the number of courses (eliminating some courses), this means decreasing the
number of conflicts. This type of modification is carried out to Fall 1996-1997 and

Fall 1998-1999 semesters, the results of comparisons are summarized in Table 16 and
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CHAPTER 6 Empirical Comparison of IGA and CGA

Table 17. Furthermore, these results are displayed as charts see Figures 8,9,10, and

11 to make them easily understood.

Table 14. Experimental results for 32 periods for IGA and CGA

Sst | Sce | Smp | Number Violation | Objective | Number of | Time
of rooms | ofroom | function | generations | in
used capacity hours

Spring | HGA-V1 | 0 258 | 987 21 0 1487 66 0.82
94-95
IGA-V1 |0 196 [ 1115 |21 0 1203 34 0.44
HGA-V2 | 0 344 1810 |21 0 1154 84 1
IGA-V2 0 345 | 802 21 0 1147 62 0.75
Fall 96- | HGA-V1 | 0 92 828 21 0 625 101 1.18
97
IGA-V1 0 82 697 21 0 549 59 0.7
HGA-V2 |0 268 | 600 21 0 868 43 0.62
IGA-V2 0 224 | 494 21 0 718 32 0.46
Fall 98- | HGA-V1 | 0 66 377 21 0 405.4 69 1.1
99
IGA-V1 0 57 334 21 0 351.8 39 0.62
HGA-V2 |0 41 197 21 0 238 59 1
IGA-V2 0 45 185 21 0 230 33 0.53
Table 15. Experimental results for different periods for Spring 94-95
HGA Periods = 20 | Periods = 24 | Periods =28 | Periods =36 | Periods = 40
Sse 14 2 0 0 0
,,,S?E 1230 879 572 231 95
SME 2148 1680 1060 647 422
Room violation 0 0 0 0 0
Objective function 4778 2759 1632 878 517
| Generations 74 60 89 72 77
Time in hours 1.313 0.64 1.47 0.75 1.1
IGA Periods = 20 | Periods = 24 | Periods =28 | Periods =36 | Periods = 40
Sse 13 2 0 0 0
Sce 1175 804 455 180 91
Sme 2116 1477 1109 527 423
Room violation 0 0 0 0 0
Objective function 4591 2481 1564 707 514
Generations 43 40 40 63 34
Time in hours 0.67 0.43 0.69 0.6 0.55
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Table 16. Experimental results for different periods for Fall 96-97

HGA Periods =20 | Periods =24 | Periods =28 | Periods =36 | Periods = 40
Sse 8 0 0 0 0
Sck 904 571 367 104 34
SMmE 1645 1170 758 360 247
Room violation 0 0 0 0 0
Objective function | 3349 1941 1125 464 281
Generations 70 63 65 75 92
Time in hours 0.9 0.64 0.8 0.88 1.56
IGA Periods = 20 | Periods =24 | Periods =28 | Periods =36 | Periods = 40
Sse 5 0 0 0 0
Sce 899 525 281 87 39
SMme 1764 1129 782 344 231
Room violation 0 0 0 0 0
Objective function | 3163 1654 1063 431 270
Generations 55 44 52 40 54
Time in hours 0.4 0.5 0.52 0.55 0.72
Table 17. Experimental results for different periods for Fall 98-99
HGA Periods = 20 | Periods =24 | Periods=28 | Periods =36 | Periods = 40
N 4 0 0 0 0
Sce 431 263 163 40 32
SMmE 757 534 376 176 99
Room violation 0 0 0 0 0
Objective function | 1588 797 1539 1216 | 131
Generations 57 29 32 30 56
Time in hours 0.5 0.25 0.30 0.3 0.53
IGA Periods =20 | Periods =24 | Periods =28 | Periods =36 | Periods = 40
SsE 3 0 0 0 0
Sck 410 238 135 38 11
SMmE 831 506 335 176 108
Room violation 0 0 0 0 0
Objective function | 1541 744 460 214 118
Generations 33 21 22 22 31
Time in hours 0.28 0.2 0.20 0.25 0.28
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Incrimental and Classical GA performance comparison
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CHAPTER 7

Conclusion

Experiments on three different problems have demonstrated that IGA, which
creates part of its initial population from the feasible and infeasible chromosomes we
save during the run of CGA on these problems first time, performs better than CGA,
which starts its initial population from random generated chromosomes. The
performance is clear when we see that IGA requires significantly less number of
generations to obtain an optimal solution than CGA. In addition, the value of the
optimal solution we obtain by IGA, is similar or sometime slightly better than the one
we obtain by running CGA.

Moreover, a new Hybrid GA for exam scheduling is created to be able to
obtain better results, and to be able to compare IGA and CGA more efficiently. This
Hybrid GA demonstrates to be better in reducing the number of simultaneous,
consecutive, and multiple conflicts than any of the previously created GA for exam

scheduling in L.A.U. In addition, we can control the number of conflicts we want to

reduce in HGA using weights factor in the objective function better than we can do in

any of the previous GA for exam scheduling in L.A.U.
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