<\

Synthesis with VHDL

by

Hatem Halawi

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

Thesis Advisor: Dr. Haidar Harmanani

School of Arts and Sciences
LEBANESE AMERICAN UNIVERSITY
July 2001

LEBANESE AMERICAN UNIVERSITY

GRADUATE STUDIES

We hereby approve the thesis of
Hatem Halawi
Candidate for the Master of Science

(Adviser:\Dr. Haidar Harmanani)

(signed)

(Co-advisor: Dr. Ramzi Haraty)

Date ,fy?,/ 9/00(

We also certify that written approval has been
obtained for any propriety material contained
therein.

I grant to the LEBANESE AMERICAN UNIVERSITY the right to use this work,
irrespective of any copyright, for the University's own propose without cost to
University or to its students, agents and employees. I further agree that the University
may reproduce and provide single copies of the work, in any format other than in or
from microforms, to the public for the cost of reproduction.

Abstract

The need of high-level behavioral languages that make it easier to programmers to
design hardware raised the issue of high-level synthesis. High-level synthesis is
concerned with the design and implementation of circuits from behavioral description
of some high-level languages that contain a set of goals and constraints.

Synthesis is defined as the translation of a behavioral description into a structural one.
Doing this requires a synthesis tool that helps to get a good and efficient output design
from a behavioral description.

A synthesis tool that takes a behavioral description and outputs a schedule is
presented in this thesis. The synthesis tool is made of many two main components that
also made of smaller ones. The first component is the translator that translates a
behavioral code into an intermediate form that will be the input of the second
component. The second component is the scheduler. The scheduler takes objects
(nodes) and schedules them using some scheduling algorithms that are presented in
the thesis.

To my parents

Acknowledgements

I would like to take opportunity to thank people who helped in making this thesis
possible.

I would like to thank my advisor Dr. Haidar Harmanani for his continuous help all the
times and with every thing possible through out my M.S. studies.

Thanks to the committee members Dr. Walid keirouz and Dr. Ramzi Haraty.

I would like to thank all those who indirectly helped me in writing my thesis and
implementing my project.

Finally I would like to thank my family and friends for their long support.

Table Of Contents

Chapter 1 Introducton 1
1.1 Introduction 1
1.2 Motivation 1
1.3 Problem Definition 2
1.4 Thesis Outline 3
Chapter 2 High-Level Synthesis 4
2.1 High-Level Synthesis Task 4
2.2 The VHDL Synthesis Domains 4
2.3 System Design: The productivity Bottleneck 5
2.4 From Phisical Design to System Design: Abstraction Levels 6
2.5 Behavioral Synthesis 9
2.6 Behavioral Synthesis Tools 9
2.7 Algorithmsfor behavioral VHDL ... 10
2.8 VHDL for High-Level Synthesis T
2.9 Using VHDL for Syntheis 1
Chapter 3 Literature Review 13
3.1 The Design Process of Behavioral VHDL R C
3.1.1 AA-VSS system o 13
3.1.2 Assessments ... 16
3.2 Synthesis in a VHDL Environment ... 16
" 3.2.1 Flexible Architecture Synthesis via VHDL ... 18
3.2.2 Assessments o 19
3.3 Architectural Synthesis via VHDL ... 19
3.3.1 SandS s 21
3.3.2 KeyStone . 23
3.3.3 Assessments . 25
Chapter 4 Solution Approach:Tool Construction ~ ..oovveevin, 26
4.1 Introduction ... 26
4.2 Behavioral VHDL Translation s 29
4.2.1 Lexical Analysis s 29
4.2.1.1 Introduction . 29

4.2.1.2 Jlex: A Lexical Analyzer Generator

... 30
.3

4.2.2 Parsing
4.2.2.1 Context Free Grammars o 31
4.2.2.2 Using Parser Generators (CUP) . 32

4.3 Scheduling e, 32

4.3.1 Introduction s 32

4.3.2 A Model for The Scheduling Problem RRCC

4.3.4 Scheduling Algorithms B T |
4.3.4.1 Unconstrained Scheduling: The ASAP Scheduling Algorithm 34
4.3.4.2 Latency-Constrained: The ALAP Scheduling Algorithm Y
4.3.4.3 Forced-Directed Scheduling ... 35

4.4 The Synthesis Tool . 36
Chapter 5 Expeimental Results . 43
5.1 Introduction .. 43
5.2 Experimental Resulits ... 43

5.2.1 Simple Experiments 43
5.2.1.1 Input . 43
5.2.1.2 Results ... 44

5.2.2 Complex Expeiments ... 44
5.2.2.1 Input ... 44
5.2.2.2 Resullts ... 48

5.2.3 Complex Experiment with Conditions 48
5.2.3.1 Input ... 48
5.2.3.2 Results ... 50

5.3 Benchmarks . 50
- Chapter 6 Conclusion 51
References 63
Appendix A Specification files for analysis and parsing = 54
Appendix B Scheduler Implementation 56
Appendix C Benchmarks 61

Chapter 1 Introduction

1.1 Introduction

High-level synthesis is concerned with the design and implementation of circuits from
behavioral description subject to a set of goals and constraints. High-level synthesis
systems accept a behavioral specification and produce a register-transfer level design.
The synthesis system generates an RTL description of a data-path and a controller
from an algorithmic description that defines the precise procedure for the computer

solution of a problem [1].

For a given behavioral specification, enormously many different register-levels can be
produced. Instead of producing all and selecting the best one, synthesis systems use
estimation in earlier design stages to prune the designs that are inferior or violate a

given constraint [2].

In order to alleviate the design complexity, many commercial and educational tools
for synthesis have emerged in the past decade. Recently, high-level synthesis tools

with high level test considerations have emerged as well [1].

1.2 Definition of the problem

As have been mentioned in the introductory material, the main point behind synthesis
is to find a better and more efficient design. To do so, synthesis tools are highly
recommended to analyze the behavioral description of the design, find unnecessary

items in the design, take advantage of all available resources than can parallelize and

hence increase performance and efficiency, and finally create a new schedule for the
design without loosing any of the goals the design was designed to reach.

A behavioral description will be the input to such tools (VHDL in this case). The
input will be analyzed, parsed, translated into an intermediate form and finally given

to the scheduler which schedule its processes according to some criteria (algorithm).

1.3 Motivation: Why high-level synthesis?
When dealing with this issue a question would be raised "Why High-Level Synthesis?"
The answer to this question would begin by answering the following question Why
high-level hardware design languages like VHDL?
High-level hardware design languages are used for several reasons and some of them
are:
* Have an easy design tool and make it easy for designers to design before
switching to hardware.
¢ Provide organized designs.
¢ Provide simulation and testing of the design before implementing the
hardware.

¢ Provide good understandability of the design and make it easier to control.

However, the development of these design languages has reached a to a high level
where the program is now easy to be implemented but not very efficient any more.

This issue raised the idea of high-level synthesis where a synthesis tool takes a
behavioral high-level hardware design language code and reschedule the tasks to have

a good and efficient design.

1.4 Thesis outline

This thesis deals with high-level behavioral synthesis using VHDL. To do this, a lot
of research and readings have been done on this issue, gathered information,
exploring some tools that deal with this issue , and implementing a synthesis tool. The
synthesis tool accepts behavioral VHDL design, translate it to an intermediate form,
and schedule the processes in this form to give a proposed new design which is
supposed to be more efficient and acquire less space.

Chapter 2 includes an introduction of the high-synthesis task which gives information
and a background about the subject .

In chapter 3, a review of some of the literature written on this issue will be presented
by summarizing some of the good papers that dealt with high-level synthesis using
VHDL.

In chapter 4, the solution approach will be presented, the steps that have been
followed, the tools that have been used to complete this work, and finally a small
presentation of the synthesis tool and how it works by showing the layout of the tool,
_what does it do, and give small examples to give a better view and understanding of
the tool. This section will appear as a small manual of the tool.

In chapter 5, results of some experiments and benchmarks that have been
experimented using the synthesis tool.

The last chapter contains the conclusion of this thesis.

Chapter 2 High Level Synthesis

2.1 High-Level Synthesis Task

Synthesis is defined as the translation of a behavioral description into a structural one.
The main difficulty in this process is that most behaviors have no implied
architecture. Thus, it is rather impossible to develop synthesis algorithm that will
generate the same quality from all possible design descriptions. One of the main tasks
of high-level synthesis is to find the structure that best meets constraints while

minimizing other costs [1].

2.2 The VHDL Synthesis Domains

System-Level Synthesis Domain: System-level synthesis tools partition the system
description into hardware and software pieces based on the constraints specified by
the designer. Interface synthesis is also performed to ensure that appropriate
communication protocols are incorporated into the hardware and software portions.

More details of the system level specification and synthesis process are available.

Chip-Level Synthesis Domain: Each of the chips derived from system-level synthesis
must be synthesized into hardware. This is the function of the chip-level synthesis

domain. The input to this domain is the behavioral specification of each chip.

Logic/Layout-Level Synthesis Domain: The RT level netlist that is output from the
chip-level synthesis can be further synthesized using some of the commercially

available logic and layout tools.

2.3 System Design: The Productivity Bottleneck

Nowadays one of the major objectives within VLSI domain is the improvement of the
design quality and the designers' objectivity. This is due to the fact that the design
process is characterized by two sets of factors and variable ones. For instance, typical
large design budgets are usually fixed to around 10 to 15 persons over 18 months, and
designers productivity has been evaluated to 10 projects per day. Controversially,
ASIC design complexity forecast for year 2000 is 7 million transistors for 0.18 micron
CMOS technology. It is expected that this exponential increase will continue until

year 2010 in order to reach 40 million transistors[1].

At present, when using the most advanced logic and RTL (register transfer logic)
synthesis tools, such a budget covers the design only 1 to 2 million transistors ASICs.
This means that for year 2010 we still have a factor of 20 to 40 to close the gap
between what present tools provide and what the technology will deliver.
It is then clear that we need improvement of the design quality and designers'
productivity. This may be achieved in two ways:
= Providing higher level design tools allowing to start from a higher level of
abstraction. After the success and widespread acceptance of logic and RTL
synthesis, the next step is behavioral synthesis, commonly called architectural
or high-level synthesis.
® Using more structured design methodologies allowing for an extensive reuse
of existing components and subsystems. It seems that 70% of new designs
correspond to existing components that cannot be reused because of a lack of

methodologies and tools.

2.4 From Physical Design to System Design: Abstraction Levels

The arrival and acceptance of standard Hardware Design Languages (HDLs) such as
VHDL and Verilog, have promoted high-level specification of electronic circuits.
HDLs may be used for specification of whole systems, as well as subsystems that may
then be assembled within a hierarchical (structural) description. The fact that various
tools (for synthesis and simulation) have been developed this last decade has also
helped high-level specification for VLSI to emerge and to gain more and more

acceptance in the VLSI design community.

HDLs can be used for design specification at various abstraction levels, from gates to
the behavioral level. Timing concepts will be used to fix the abstraction level of

design specification.

Timing is the main issue during the process of designing an integrated circuit. In fact
regardless of the abstraction level, the design process may be defined as the
refinement of high-level concepts (operation, primitives, statements or constructs)

into lower level concepts using more detailed timing units.

At the lowest level the basic timing unit is the delay. The design is specified in terms
of gates and devices that are interconnected through nets. A typical specification at
this level is a schematic. Of course this may be described using a HDL format such as
VHDL or Verilog. At this level the components of the design (gates, nets, devices) are
characterized by delays. Simulation and timing analysis tools are needed in order to

compute the performance of the full design. The clock period will correspond to the

longest path between two memorization elements. A path may include several

components.

The next level is called logic or Register Transfer Level (RTL). The design is
specified at the clock cycle level. Typical descriptions will state what to do at each
clock cycle. A description is generally formed of a set of registers, operators, and
transfers between registers and operators. Typical representations used by synthesis

tools at this level are Boolean equations, FSMs and BDDs.

Such representation can be extracted automatically from HDLs. The main design
steps applied starting from this level are logic optimizations, synthesis state encoding
and technology mapping. The main role of these transformations is to fix the clock
period and the gate count. The logic optimization is generally a trade-off between
these two parameters. In VHDL, when writing statements an RTL description, we
assume that all the computations between two wait statements can be transformed into
a set of gates able to perform that computations within a clock period. The
decomposition of the clock period delays is made automatically by RTL synthesis. Of
ﬂrﬁcourse the designer can control the synthesis results through different writing styles or

a set of constraints. This kind of description is also called synchronous description or

cycle based description.

The next level is called behavioral or algorithmic level. A design is specified in terms
of computation steps. The concept of operations and control statements (loop, wait)
will be used to sequence the I/O events and the computation. At this level we have an

event-driven specification. A typical description will be composed of a set of

protocols to exchange data with the external world and internal computation. A
computation step is composed of the set of operations executed between two
successive I/O and/or synchronization points. A computation step may be take several
clock cycles. The main function of behavioral synthesis is to split these computation
steps into a set of clock cycles. Moreover, some of these computation steps may
include data dependent computation implying a non-predictable (variable)
computation time. A typical representation at this level is Behavioral Finite State
Machine (BFSM), Control Flow Graph (CFG), Data Flow Graph (DFG) and Control-
Data Flow Graph (CDFG). When writing a behavioral description we assume that all
the computations between two synchronization points can be decomposed into a set of
clock cycles that respects the communication protocol. The decomposition of a
computation step into clock cycles is made automatically by behavioral synthesis.
One of the major problems when using behavioral synthesis is to specify complex and

precise protocols within behavioral description.

At the highest level, we have the system level specification. Such a specification
includes distributed control and multi-thread computations. The basic timing unit at
this level is the communication transaction. The basic primitive is the process. A
description will be composed of a set hierarchical, parallel and communication

process.

Most hardware description languages allow the first three abstraction levels (Gates,
RTL, Behavior). For each of these languages, each level corresponds to a writing style
using a subset of the language. One can note that we can describe and simulate a full

system at the gate level or describe a gate at the behavioral level.

When describing large systems, it is often the case that all the specification levels
have to be combined. In fact a system specification is seldom given in a unique
specification level. Generally, it is composed of blocks described at different

abstraction levels.

2.5 Behavioral Synthesis

Behavioral synthesis is the processes that from a behavioral or functional
specification and produces an architecture able to execute the initial specification. The
architecture is generally given as a Register Transfer Level (RTL) specification and is
composed of a datapath and a controller. The behavioral description specifies the
function to be performed by the design. It may be textual or graphical. A behavioral
synthesis tool acts as a compiler that maps a high-level specification into an
architecture. In order to modify the architecture you simply have to change the
behavioral description and return it through the behavioral synthesis tool. The use of
behavioral synthesis induce a drastic increase in productivity since behavioral

descriptions are smaller and easier to write and modify.

High-Level synthesis is the bridge between what is called system design and CAD

tools acting at the logic and RT Levels.

2.6 Behavioral Synthesis Tools

Several synthesis tools have been published in the literature. Only few of them have
been applied for the design of VLSI chips[1]. While behavioral synthesis tools have
been applied successfully to DSP algorithms, arithmetic computation and interfaces,

behavioral synthesis was less successful for the off real-time controllers, complex

heterogeneous design and data dependent computation. None of the existing
behavioral synthesis tool has been recognized as a universal tool that may be efficient
in all application domains and for all kinds of architectures. Existing behavioral
synthesis tools may differ from several points of views. These correspond to the main
choices that have to be made when designing a behavioral synthesis tool and more

generally application generators.

2.7 Algorithms for behavioral synthesis

Behavioral synthesis produces an architecture starting from a functional specification.
It is generally decomposed into five major transformations: generation of an
intermediate form, scheduling, allocation binding and architecture generation. Only a

brief outline of these steps will be given in this section :

1.Compilation of the behavioral description and generation of intermediate form
This step may include compiler-like transformations aimed at removing all the details

related to the description language and the writing style. Such transformations include

~constants propagation, dead code, elimination, loop unfolding and procedure

expansion.

2.8cheduling

Scheduling is the partitioning of the behavioral description into subgraphs, each one
being executed in a single control step. A control step corresponds to a transition of an
FSM. It may include several operations to be executed in parallel.

3. Allocation

Allocation fixes the amount and types of resources needed to execute the behavioral

description.

10

4.Binding

This step decides which resources will be used by each operation of the behavioral
description.

5.Connection allocation

This step fixes the resources needed for communication between the units of the
datapath.

6.Architecture generation

This step produces an RTL description of the synthesis design.

2.8 VHDL for High-Level Synthesis

In typical design environment designers describe the design implementation using
hardware description language such as VHDL. The design can be next synthesized
using high-level synthesis and fed to lower level synthesis tools in order to generate
the final physical design. This process can only succeed if the synthesis system can

guarantee a consistency among abstraction levels[1].

~Many different hardware designs can implement a given behavioral description, a
subset of which also meet specified requirements such as cost, performance, and
testability. Existing hardware synthesis systems typically use cost and performance as
the main criteria for selecting the best hardware implementation, and even consider

test issues during the synthesis process [3].

2.9 Using VHDL for synthesis

A VHDL description consists primarily of entities and architectures. An entity

describes a device's interface with its environment through a list of input and output

11

ports. The architecture describes the relationship between the device's inputs and
outputs. One can model the device with any combination of the description levels
mentioned earlier: architectural, register-transfer, logic, and structural.

Because VHDL was designed mainly as a simulation language, it presents some
problems for synthesis. However by following modeling guidelines associated with
each level of description, one can use it effectively as a synthesis language. Although
a complete discussion of these guidelines is beyond the scope thesis.

The architectural level allows the designer to model design functionality with process
statements. A process statement may include several sequential statements that
provide the capabilities found in many high-level programming languages such as
Ada, C, and Pascal. Although the Silicon 1076 synthesis environment supports most
sequential statements at the architectural level, some restrictions apply like Wait
statement time-out, Signal assignments are not permitted in all cases,... Most of these
restrictions are not found in VHDL, which make more realistic and better for

synthesis.

12

Chapter 3 Literature Review

This chapter will review some of the literature written in this field in the recent years.
A summary of three good papers will be presented. These papers describe many
aspects of high-level synthesis of behavioral VHDL and its importance in designing
and simulating hardware. Moreover, these papers describe some tools that have been

implemented or under construction for synthesizing behavioral VHDL.

3.1 The Design Process of Behavioral VHDL

3.1.1 AA-VSS system

The design process of behavioral synthesis from VHDL descriptions can be divided in
two parts, (1) the architectural allocator (AA) that derives the appropriate type and
number of resources that can satisfy the performance constraints imposed by the
designer, and (2) the VHDL synthesis system (VSS) that synthesizes a RT-level
netlist based on the allocation constraints. These two parts are combined together to

form the AA-VSS system.

WJAA—VSS is based on a top-down design methodology that is divided into three
domains[8]:

e System-level synthesis domain

e Chip-level synthesis domain

¢ Logic/layout-level synthesis domain

Each one of these deals with its domain and they are complementary. To synthesize

systems we must make sure the chip level is working well and so on.

13

AA-VSS can be used to explore the design space to produce efficient chip design. The
input to the system is a behavioral description written in VHDL. In order to facilitate
the exploration of a large design space, many knobs are available on the system. The
designer can control the synthesis process by changing the settings on the knobs. The
knobs are listed as follows:
Partial resources (RAMs, register and register files, muxes and buses) [8]
e Clock period
e Performance constraints
e Component library
e Control pipelining
® Memory hierarchy
The designs synthesized by the AA-VSS system can be represented using the FSMD
model of hardware. In FSMD model, the synthesized design consists of two parts[8]:
® The data path, which performs the storage of the data and computations on the
stored data values. It consists of functional units, memory components, and
buses.

® . The controller, which performs the sequencing of various states, and controls

the data path operations. It can be represented by a finite state machine,
consists of a set of states and transmissions between states.
AA-VSS system accepts behavioral VHDL as input to the system. VHDL descriptions
may contain sequential, process-level statements such as
¢ Sequential assignment statements
¢ Conditional statements (if, case)
¢ Loop statements

o Wait statements

14

AA-VSS does not accept the following language features in VHDL[8]

e Enumerated types

e Aliases

e CONSTANT declaration

e Null statement

e Procedures and functions

e Exit statements

e Return statements

® Loop statements with no iteration schemes
The first step in high-level synthesis is architecture allocation. Architecture allocation
refers to the process of selecting the functional units, storage elements, and
interconnects used to implement the datapath. Also, it defines the way in which data
may be transferred between the datapath functional and storage units.
Architecture allocation consists of the following information:

Level allocation: grouping the storage elements into different levels

Storage allocation: This defines the number and types of memories used in the

S — datapath.

Functional unit (FU) allocation which specifies
o The types of FUs used
o The number of FUs of each type
o The delay and data initiation rate of each FU

Interconnect Allocation which defines:

o The number of buses in the design

O The delay per bus

15

Scheduling partitions all the operations in the CDFG into different sub-graphs such
that each sub-graph is executed in one control step. However, the scheduling process
must ensure that sufficient resources are available in each clock cycle to execute all
the operations assigned to that control step[8].

Binding maps the variables and operations in the scheduled CDFG onto specific
instances of the allocated functional units, storage components, and interconnect units

while ensuring that the design behavior operates correctly.

3.1.2 Assessments

In this paper the authors is dealing with a synthesis system that, first derives the
appropriate type and number of resources and second synthesize the RT-level netlist
based on allocation constraints.

The authors describe a top-down design methodology to designing the system by
going through three synthesis levels system, chip, and logic/layout levels. After that
the authors goes over each step and describe it. However they did not a brief
explanation of how binding and scheduling is done. Scheduling algorithms as well as

binding criterion were not offered.

3.2 Synthesis in a VHDL Environment

The growth of system complexity has made gate-level hardware design increasingly
difficult. To manage this complexity, computer designers are turning from traditional
bottom-up methods to more hierarchical design practices. Hardware design languages
such as VHDL now make it possible to use a single set of semantics to specify,

simulate and design complex systems.

16

VHDL's advantage as a specification and synthesis language is that it can describe
hardware at various levels of abstraction. The term architectural level describes the
intended behavior of the hardware. The next level is the register-transfer level, which
describes a system as a set of interconnected storage elements and functional blocks.
At the logic level, a network of gates and flip-flops, the behavior is specified by logic
equations. The lowest level is the structural level, the netlist that specifies what
hardware components to use. RTL synthesis is the process of generating a netlist from
an RTL description [11].

VHDL description of systems consists of a set of entities (device interface with its
input and output) and architectures (relationships between devices input and output).
However, VHDL was designed as a simulation language and it may present some
problems. On the other hand, following some guidelines associated with each level of
description, one can use VHDL effectively as a synthesis language.

Planning refers to the designer's task of making decisions that result in
implementations exhibiting various sets of trade-offs. Architecture partitioning,
exploration and evaluation of alternatives are the key steps in planning a design

implementation.

As a first step, the architectural exploration tool groups atomic operations in the
CDFG into clusters. It applies a hierarchical clustering algorithm to the operations to
form a cluster tree. The algorithm assigns each operation in the CDFG to an
individual cluster.

The goal of design space exploration is to find architectures that produce the intended
behavior and comply with the user's area and timing goals. The exploration tool
obtains different designs by considering the cluster sets at various levels of the tree,

starting from the root and moving towards the leaves [11].

17

The tool chooses the hardware resources for each partition by assigning the minimum
number of function units necessary to perform the operations in the cluster. Then the
tool invokes a scheduler, which transform the operations into control steps using the
appropriate hardware resources for the design.

The goal of architecture evolution is to predict the performance of an architecture
found during design space exploration. To do so, the tool uses estimators that predict
the area and speed of the selected architecture.

When scheduling is complete, the number of registers and multiplexers requires of

each partition of an architecture are estimated [11].

3.2.1 Flexible architectural synthesis (Flexsyn)

Flexsyn, the architecture synthesis engine perform the following functions in the
design environment: scheduling, connectivity binding, and register optimization.
Flexsyn's scheduling algorithm attempts to minimize the number of control steps,
within the constraints of the clock frequency and module set.

Flexsyn uses a branch-and-bound algorithm for connectivity binding. For all

operations in each state, the algorithm performs the following steps [11]:

1. Binds the registers carrying input variable to buses.

2. Binds buses to the inputs of function units.

3. Binds the output of function units to buses.

4. Binds buses to registers.
The connectivity-binding algorithm tries to reduce the number of registers in the
design. It looks only at a portion of the CDFG at a time, so it may use more registers

than necessary.

18

3.2.2 Assessments

In this paper, the authors are talking about synthesis using VHDL, hardware design
and simulation language. They showed the importance of VHDL in synthesis and how
it helps and make it easier when applying synthesis steps like clustering, partitioning
scheduling, binding and finally optimizing a design. On the other hand, this paper did
not show the advantage of VHDL over other hardware design languages. As a paper
talking about VHDL, It did not show where are the functions that VHDL do and

others do not.

3.3 Architectural synthesis Via VHDL
The term architectural synthesis is used to differentiate a class of design
methodologies for large digital (VLSI) system. These design styles can be
characterized by the following attributes:
e The system themselves are built from a "few" "large" objects rather than
many small ones.
e The design is done with components from a design library.

-o-- The design trade offs are in terms of structure. That is, we design by

choosing components and interconnections strategies, rather than by
choosing between algorithms for implementing functions.
The rational for this design styles based on the fact that the size of the design are such
that optimization tool s take prohibitively long to run on the entire design. Rather a
library of optimized (a possibly parameterized) components is used. We assume that
the designer is primarily concerned with the design of the algorithm that will be
implemented and the resources available (speed and area) rather than low level

implementation issue. Therefore, the tradeoff s available to the designer are in terms

19

of variations in the algorithm, component, interconnection style, and control style
selection.

To build systems using this design method, the user (and the design tool) must have
access to the characteristics of available components to make informed choices. If the
library is a set of templates of parameterizes modules (rather than completed modules)
the design tool must have ways to estimate the final size and speed of the system in
order to guide the designer decision making..

The primary advantage of this design style is that it tends to produce working systems
with minimum time from both the design synthesis tool and the designer. Systems are
compositions of tested components interconnected using fixed techniques, usually
with simple timing models. If the components are well characterized, and the design
tool can perform placement and routing effectively, it is possible to generate working
systems which meet specifications.

On the other hand, the primary draw back of this design style is that it tends to
preclude a level of global system optimization which is possible when an entire
design is synthesized at once. Generally, design tools can not perform this level of

optimization on large systems. However, there are times when global optimization

among components is the only way to get the desired performance from a system.

The goal in this work is to have a tool where we can get the benefits of a component
based design style without sacrificing performance. We believe that this can come
from removing the arbitrary boundaries between components which exist when they
are just “ cut and pasted” from a component library. We build a single hierarchical
VHDL entity using components from a VHDL component library. At different stages
in the synthesis process, redundant operators at the boundaries between the

components are removed. The resulting monolithic design is then given to behavioral

20

synthesis tools. However, to fully utilize the advantages of a library we needed to
keep in the library (along with the VHDL description of the components and their
performance characteristics) an abstract representation of their optimized layout.
During the final synthesis phase of the design, the tools will use this information to

speed up the synthesis of the full design.

3.3.1SandS

SansS (Slicer And Spicer) is a tool which performs architectural synthesis, the
compilation of a high-level behavioral specifications into a register transfer level
architecture. The input to SandS is a behavioral specifications written in a high-level
language which describes an algorithm or set of algorithms that the user wants
implemented on a chip. This input is generally more abstract than a VHDL
structural/Dataflow description that would be used as the input to a logic synthesizer.
An example simple file for a simple division algorithm we used throughout this paper

is shown in the following Figure:

Program Divide(input, Output);
Type integer = {0..7};

Portin_y, in x, out q. integer;
Var y, x, q: integer;

Begin
Y:=in y;in x; q :=0;
If (y>=1x) then

Repeat
Yi=y=x;
q:=q+l;
when y>x ;
out q:=gq
end.

b Division Algorithm havioral
g e into a

flow-graph representation. The second is the allocation of operations to states or

21

control steps of the machine (also called state binding). The third task is the
allocation of hardware components to operations, register assignments, and the
creation of multiplexors and/ or busses to complete the data path. This last task is also
referred to as connectivity binding.

SandS builds an architecture based on constraints imposed by the user. The idea is to
let the user perform architectural design tradeoffs, while the system synthesizes
design that meets the user’s constraints. This separates two basic type of knowledge
needed to produce the design. The first type is the “What To Build” knowledge (the
users Job) and the second is “ how to build” it (the synthesizer job”. The separation of
knowledge in SandS frees the user from implementation details and presents the
opportunity for creative exploration in the design space. The user can

Ask “what if” questions and have systems generated quickly to explore design
alternative.

The constraints that the user specifies are control knobs for the system. By alternating
the adjustments of the knobs, the user can direct SandS’s region of operations within
the design space. We have selected the following three major user constraints for

three major user constraints for the architecture synthesizer:

1-component selection: the component selection mainly consists of the specification
of the number of architectural components such as ALU’s multipliers, adders,
subtractors, etc. that are allowed in the design along with the component delay time.

2- control style selection: the control style selection specifies the type of micro-engine
controlling the design. Ti may be of a PLA or random logic type and may have
pipeline registers inserted within it.

3- Interconnect style selection: the interconnected style selection chooses between a

tri-state bus based system or a system interconnected by multiplexors.

22

4- Control cycle time: the clock speed or control step period determines the amount of
time allotted for each control step. The longer the period, the more time there is

during each control step to perform each operation.

Information from the component library is necessary to produce reasonable estimates
for the component and control delay times. These estimates could be guesses or result
of VHDL simulations of the components. They could, in fact, be generated by running
the library components individually through the module and layout synthesis tools,
extracting the netlist from the layout, and simulating the result.
Early in the design process, the user must be able to obtain estimates quickly, in order
to eliminate options of the design space that aren’t worth exploring. Using estimates
rather than real values from low-level simulation will help reduce the design space
quickly. As we discuss below, it is possible, even desirable, to use “hypothetical”
components at this phase of the design. As the design starts to approach a viable
solution, the estimates must become more accurate and the designer (with the system)
can spend more time deriving accurate estimate.

3.3.2 Keystone

Keystone is a multilevel design and synthesis system developed jointly by researchers

at the University of Pittsburgh, and Pennsylvania State University. It is the result of

several ongoing research efforts by researchers at both schools. Keystone consists of a

suite of specification, synthesis, simulation, and analysis tools for designing VLSI

systems. The following figure represent this system:

23

. . 1
! tempcral specificztions !
- !

e
. \\ \/\
\
Y \
i
S

N7
A /
iming |
waveforms \

/ / ‘\.“
(/} \
%
3

{
| M\ TN

i
-

e e

ey _.__-———‘-"/

|
!
L PP
rsim Zoics
v\

3 i
) ;
7
/
aetlist ¥V

{

!

The tools themselves are indicated by ellipses while each data abstraction level which
we support is indicated by a box. The title of each box represents the format of the
data within the abstraction level. The shaded boxes and ellipses indicate the path
through the system which we will focus on later in this paper.

The tools are shown connecting the different design representations with which they

interact. Most of the tools perform optimization within a design abstraction layer as

well as transformation between representations. Some of the optimization tools
perform restructuring or decomposition as well.

User supplied input to the design system can come at any of several abstraction levels.
It can come from an architectural or temporal specification, it can be expressed in
either behavioral or data-flow VHDL text or it can be given as a schematic graphical
description of the architecture to bi implemented. System output can be generated at
many abstraction levels. Perhaps the lowest levels of output of the design system are
two dimensional gate matrix layout in a form compatible with MAGIC and timing
waveforms from both the high-level tools and simulators.

As indicated by the bi-directional arrows, in addition to going from “higher”
abstraction levels to lower ones, we support reverse transformation, e.g., from a
layout to a VHDL or a schematic description of that layout. We support these various
transformations in order to provide the user with a variety of input and output format
options including netlists, mask designs, or logic equations fro other systems. By
being able to move easily between representations in the design space, the system is
able to more easily handle the design level interactions, user feedback operations, and

support the user in the design process.

3.3.3 Assessments

This paper talks about how to produce working systems using design libraries and
tested components in addition to the design synthesis tools.

Then the author present some previous work done on synthesis by writing about some
of the synthesis tools and how they work.

What is not offered is, enough information and description about what are the good

features of each tool and where each tool is better than the other.

25

Chapter 4 Solution Approach: Tool Construction

4.1 Introduction
As said before, high-level synthesis produces, from a behavioral description, a
register- transfer-level design which satisfies a given set of hardware cost/execution
time constraints. The major tasks in high-level synthesis are (i) translating the
behavioral description, (i) scheduling of computation steps, and (iii) hardware
allocation. These steps will be described in the solution approach presented in this
chapter.
The approach presented in this chapter differs from other approaches. The synthesis
tool that is described in the next sections has two main features that might not found
in many other synthesis tools. These features are:

¢ The tool provides conditional and nonconditional design schedules

e The tool provides schedules with resource and without resource constraints

with number and type of resources set by the user when applying resource

constraint scheduling.

To construct the synthesis tool, constructing algorithms steps have been followed. The
input to the tool, as said before, is behavioral VHDL. The input is given to a compiler
or translator to translate it into an intermediate language after getting rid of some
redundant and unnecessary stuff in the input. This intermediate language is easy to
read and schedule into a CDFG and give a new design from the original behavioral
input design.

To implement the synthesis tool, JAVA was used as the programming language for
several reasons:

e Itis portable

26

It is object oriented which helps to visualize the intermediate form which are
objects that contain processes and their information

It has good graphical user interface features which make it easier to use the
synthesis tool

It will be easier to update the program or parts of it, or use it with other

software

This chapter will go over each step followed to implement the tool. The steps are:

L.

Behavioral VHDL translation to intermediate form: by building a special
purpose compiler
Scheduling the intermediate form using different scheduling algorithms

Getting a new design schedule

27

The flow chart of the synthesis tool:

Behavioral
VHDL

Lexical Analysis & parsing

Special Format
program
Instructions

v

Scheduler

Synthesized
program Schedule

1Q

4.2 Behavioral VHDL Translation

Compilation or translation is not an easy issue. This is a field by itself and it needs a
good understandability of some lower level issues that we usually, as high level
programmers, do not deal with.

Compilers or translators are divided into two main parts: Lexical analyzers and
parsers. Each of these parts has its job but they are absolutely complementary and
compatible.

In the following sections I will be explaining each parts of the compiler and what does

it do.

4.2.1 Lexical Analysis

4.2.1.1 Introduction

To translate a program from one language into another, a compiler must first pull it
apart and understand its structure and meaning, then put it together in a different way.
The front end of the compiler perform analysis; the back end does synthesis .

The analysis is usually broken up into:

Lexical analysis: breaking the input into individual words or "tokens":

Syntax analysis: parsing the phrase structure of the program; and

Semantic analysis: calculating the program meaning.

The Lexical Analyzer takes a stream of characters and produces a stream of names,
keywords, and production marks; it discards white space and comments between
tokens. It would unduly complicate the parser to have to account for possible white
space and comments at every possible point; this is the main reason for separating

lexical analysis from parsing.

20

I will not go very deeply in explaining and discussing the lexical analyzer since this is
a field by itself but I will talk briefly about how I produced my lexical analyzer and

the tool I used to produce it which is Jlex.

4.2.1.2 JLex: A Lexical Analyzer Generator

JLex is a Lexical Analyzer Generator that produces a Java program from lexical
specifications. These specifications are written and specified into a file in a special
format and is given as an input file to JLex which will produce the Lexical analyzer
for the language specified in the file. The specification contains regular expressions
and actions.

The JLex input file is organized into three sections, separated by double-percent

directives("%%"). A proper JLex specification has the following format:

User code

%%

Jlex directives

%%

regular expression rules

In the next pages I will be showing the construction the lexical analyzer that was used
in the translation process of the behavioral VHDL. First, I will show the specification
file that was given to Jlex in order to generate the lexical analyzer. Then I will show

the generated lexical analyzer.

20

Some of the issues might be ambiguous, however the explanation f these issues is out
of the scope of this thesis as I myself faced some problems in having a good

understandability in order to generate this lexical analyzer and later the parser.

4.2.2 Parsing
Definition: The way which words are put together to form phrases, clauses, or

Sentences.

Webster’s Dictionary

4.2.2.1Context-Free Grammars

As has been said fhat a language is a set of strings; each string is a finite sequence of
symbols taken from a finite alphabet. For parsing, the string is a finite source
programs, the symbols are lexical tokens, and the alphabet is the set of token types
returned by the lexical analyzer.

A context-free grammar describes a language. A grammar has a set of productions of

the form:

Symbol-> symbol symbol

Where there are zero or more symbols on the right-hand side. Each symbol is either
terminal, meaning that it is a token from the alphabet of strings in the language, or
nonterminal, meaning that it appears on the lefi-hand side of some production. No
token can ever appear on the left-hand side of a production.

The abbreviation mechanism in JLex, whereby a symbol stands for some regular

expressions is convenient enough that it is tempting to use it in interesting ways.

21

4.2.2.2Using Parser Generators (CUP)

CUP (Construction of Useful Parsers) is a tool to generate a parser. A CUP
specification as in Jlex has a preamble, which declares the list of terminal symbols,
nonterminals, and so on, followed by grammar rules. The preamble also specifies how
the parser is to be attached to a lexical analyzer and other such details.

As in the lexical analyzer section I will not go so much in this subject but I will insert
in the next section the parser specifications I used to generate my parser.

Also as in the lexical analyzer, the input file for the parser generator is formatted and
partitioned in many sections and this will be viewed in my input file to generate my
parser using CUP.

The input file used to generate the parser must have the following specifications:
-Preliminaries to set up and use the scanner (lexical analyzer)

-Terminals (tokens returned by the scanner

-Non terminals

-Precedences

-The Grammar

Giving a file having these specification, CUP will generate a parser .

4.3 Scheduling

4.3.1 Introduction

Scheduling is a very important problem in architectural synthesis. The scheduling of
the sequencing graph that prescribes operations dependencies, determine the precise
start time of each task. Scheduling determines the concurrency of the implementation

and has a major effect on its performance. The maximum number of concurrent

operations of any type on any step is a lower bound on the number of hardware
resources of these operation types.

In this section, I will present some models for the scheduling problem and describe
the major algorithms for scheduling that I have used in my implementation. I consider
first sequencing graph that are not hierarchical (no branching or iterative constructs)

and representative of the model data flow. These graphs do not support pipelining.

4.3.2 A Model for The Scheduling Problem

The sequencing graph is a non-hierarchal polar acyclic graph Gy(V,E), Where the
vertex V={v;, i=0,1,....,n} and the edge set E={(viv;); 1,j=0,1,....n} represent
dependencies. Let D={d;; i=0,1,...n} be the set of operation execution delays. We will
assume that the delays are data-independent and known and that the delays for the
source and sink vertices are both zero, i.e. dy=d,=0.

The sequencing graph requires that the start time of an operation is at least as large as

the start time of each of its direct predecessor plus its execution delay (ti>tj+dj)

4.3.3 Scheduling without Resource Constraints

Unconstrained scheduling is applied when dedicated resources are used. Practical
cases leading to dedicated resources are those when operations differ in their types or
when their cost is marginal when compared to that of steering logic, registers, wiring
and control.

Unconstrained scheduling is also used when resource binding is done prior to
scheduling, and serializing the operations that share the same resource solves resource

conflicts.

33

4.3.4 Scheduling Algorithms
4.3.4.1Unconstrained Scheduling: The ASAP Scheduling Algorithm

The unconstrained Scheduling minimum-latency scheduling problem can be solved in
polynomial time by topological sorting the vertices of the sequencing graph. This
approach is called as soon as possible (ASAP) scheduling since the start time of each

operation is the least one allowed by the dependencies.

The ASAP Algorithm
ASAP(Gs (V,E)) {
Schedule vy by setting to° = 1;
Repeat {
Select a vertex v; whose predecessors are scheduled;
Select v; by setting t;° = max(j: (v;,v;) ¢ E) t* +d;;
}
until (v, is scheduled);

return (t%);

4.3.4.2 Latency-Constrained Scheduling: The ALAP Scheduling

Algorithm
We consider now the case in which a schedule must satisfy an upper bound on the
latency, denoted by p. This problem may be solved by executing the ASAP

scheduling algorithm and verifying that (t,+to*)<p.

34

The as late as possible (ALAP) scheduling algorithm provides maximum values of

start times. We denote by t; the start times computed by the ALAP algorithm.

The ALAP Algorithm:
ALAP(Gs (V,.E), n) {
Schedule vy by setting t," = p +1;
Repeat{
Select a vertex v; whose successors are scheduled:;
Select v; by setting t;" = min(j: (v;,v;) ¢ E) th +d; ;
}
until (v, is scheduled);

return (t9);

4.3.4.3 Forced-Directed Scheduling

This algorithm was proposed by Paulin and Knight as a heuristic approach to solve

the resource-constrained and the latency-constrained scheduling problems. Before

describing the algorithm let me briefly describe the underlying concepts.

The time frame (1.} th i=0,1,..,n)of an operation is the time interval where it can
scheduled. #° # these are the earliest and the latest times in a frame which can be
computed by the ASAP & ALAP algorithms. The operation probability(p(l)) is a
function that is zero outside the corresponding time frame and is equal to the
reciprocal of the frame inside it.

The type distribution(qy(l)) is the sum of the probabilities of the operations

implementable by a specific resource in the set {1,2,..,nr} at any time step of interest.

35

In forced-directed scheduling the selection of a candidate operation to be scheduled in
a given time step is done using the concept force. Forces attract/repel operations
into/from specific schedule steps. Here the forces are related to its probability that was
mentioned. The assignment of an operation to a control step corresponds to changing
its probability. These forces are related to concurrency of operations of a given type.
The larger the force the larger is the concurrency. Forces are categorized in two
categories self-forces and predecessor/successor forces. These forces are computed
using some formulas proposed by mathematicians.

I will not go further in this explanation since it is out of the scope of this thesis but I
will write the force-Directed algorithm.

To take care of unconditional resource sharing and conditional resource sharing
—Transform a dataflow graph with conditional branches into dataflow graph without
conditional branches (bottom-up)

—Apply scheduling algorithm

—Transform the schedule got for the original dataflow graph(top-down)

The FDS Algorithm

FDS(G(V,E), lat{

repeat {
compute the time-frame;
compute the operation and type probabilities;
compute the self-forces, pred/succ-forces and the total forces;
Schedule the operation with the least force and update time-frame;
}
until (all operations are scheduled)

return(t) }

26

4.4 The Synthesis Tool

In this Section an overview will be given on the synthesis tool that have implemented.
The section contain a presentation of what does the tool do and how does it do it with
some figures showing the graphical user interface of the tool and examples of their

use.

When we first run the program where the tool is implemented the layout shown in this

figure will appear:

Two menus will appear the "Options” menu and the "Schedule” menu.

27

In the next figure we will see the options available in the "Options" menu:

%Synlhemz Tool

Here we can see the options available in the "Options” menu.
As will be shown in the next figures the first option provide the user with a text editor

to edit his code that need to be synthesized and scheduled.

3

This is a text editor, which has two menus the "File" menu and the "Edit" menu.
These menus almost provide the same functionalities as usual text editor similar
menus.

The options of the text editor will be shown in the following two figures:

Now the next menu in the Main Synthesis tool frame is the one that do the main
synthesis work before explaining what does the options in this tool I will show the

options available in the "Schedule" menu in the following figure:

20

. iFEImages

These three options are the abbreviations of the scheduling algorithms explained in
chapter 3. ASAP means "As Soon As Possible", ALAP means " As Late As Possible",
and FDS means " Forced Directed Scheduling".

Clicking on the ASAP, ALAP, or FDS the form shown in the following figure will

appear:

Im&So

java_cup

JLex
Accountclass
Accountjava
Alinelcon.class

40

This is a file chooser where a VHDL file can be chosen from any place and when
Open button is cliked the file will be analyzed, parsed, and scheduled using the

chosen scheduling algorithm (ASAP, ALAP, or FDS)

This is an example of an input to the tool:

gipraces(Eport, Ainport, Binpor, Dinporf)
“ivariable a,b,c.d e integer;

egin

e=Eport a=Ainport; b=Binpor; d=Dinport;

gc=ath,
e=cORd,

Eoutpor==g;

Hiend processs

41

This is the output schedule of the above input:

42

Chapter 5 Experimental Results

5.1 Introduction

In this chapter I will be presenting some of the results that I got when experimenting
the synthesis tool explained in chapter 4. I will test the tool with a behavioral HTML
code that is written to solve a differential equation. I got this from [4].

This code will be written using the text editor in the synthesis tool and then will be
fed to the tool using the ASAP algorithm to be scheduled.

To see the difference, I will present a serial schedule for the behavioral VHDL code

and then another schedule got from the tool.

5.2 Experimental Results
Assumptions taken:
e Load and store operations take 1 time unit
¢ Add and Subtract operations take 2 time units

¢ Multiply operation take 4 time units

e Comparison operation takes 2 time units
¢ No constraints will be assumed. Resources needed are assumed to be available

Considering one iteration of the loop in the behavioral VHDL code
5.2.1 Simple Experiment
5.2.1.1 Input

Consider the following behavioral VHDL

Process (In1,In2)
Variable V1,V2: integer;
Begin
V1=Inl+In2,
V2=In2+5;
Output<=V1-V2
End Process;
End:

A2

5.2.1.2 Results

In the following table, a comparison between the serial design and the synthesis tool

output design will be presented.

Serial Design time Synthesis tool output design time

13 time units 6 time units

This shows 54% performance improvement

5.2.2 Complex Example Without Conditions

5.2.2.1 Input

The VHDL behavioral Description for solving the differential equation:

Process (Aport, Dxport, Xinport, Yinport, Uinport)
variable x,y,u,a,dx: integer;
variable: x1,y1,t1,t2,t3,t4,t5,t6: integer;
Begin
x:= Xinport; y:=Yinport; u:=U inport;
a:= Aport; dx:=Dxport;
While (x<a) loop

tl:=u*dx;

12:=3%x;

t3:=3*y;

t4:=t1*%t2;

t5:=dx*t3;
t6:=u-t4;
u:=t6-t35;
yl:=u*dx;
y=y+yl;
X;=x+dx
end loop;
Xoutport<=x;
Youtport<=y;
Uoutport<=y;
end process;

In the next pages the figures of the serial schedule and Synthesis tool output schedule

will be shown.

AA

Serial Schedule

o

t1

Io|

2

Io|

13

1=

5emm

t1

t4

2

t

3

dx

le)

t5

t6

t4

t6

t5

This will take 53 time
Units as shown in this
serial schedule

vl

dx

45

53--

Synthesis Tool schedule without resource constraints

u dx 3 X 3 A 1--
* * * +
tl 2 t3 X
®
t4 T e sm— 11--
16
u
E3
vl
+
V| 0 e 25--
This new scheduled design will
take 25 time Units

A&

Synthesis Tool schedule with resource constraints (2 operations of each type)

This new scheduled design will
take 25 time Units

A™

5.2.2.2 Results
In the following table, a comparison between the serial design and the synthesis tool

output design will be presented.

Serial Design time Synthesis ~ tool output | Synthesis tool output
design time without | design time with resource

resource constraints constraints

53 time units 25 time units 27 time units

This shows 53% performance improvement without resource constraints

and 49% performance improvement with resource constraints

5.2.3 Complex Example With Conditions

5.2.3.1 Input
Input to the synthesis tool in this case is "ARMS COUNTER.vhd]" a behavioral vhdl
for the ARMS_COUNTER benchmark which is the Armstrong counter. It counts up

or down and the counting is stops when limits are reached. It operates with the Clock

and Strobe signals acting as triggers. The signal CON terminates the operation mode
of the counter.

The content of the input file is found in Appendix B.

AQ

Synthesis Tool schedule(for one part, the others are done in parallel)

CLK STABLE 1 CLK STABLE CNTE 1 TRUE CNT 0001

CNT CNT | | e 13--

AN

5.2.3.2 Results

In the following table, a comparison between the serial design and the synthesis tool

output design will be presented.

Serial Design time Synthesis tool output design time

31 time units 13 time units

This shows 58% performance improvement

5.3 Benchmarks

In this section, a table of results for testing some VHDL benchmarks will be

presented. These benchmarks will be available in appendix B with their description.

Benchmark Name _[Conditions| Nested Conditions | Serial Sched Time | Sched time without RC| Sched time with RC
Display.VHDL yes 50% 51 25 38
Fancy.VHDL yes 25% 65b 28b 40b
ARMS_Counter.VHDL yes 30% 38 13 29
Elip.VHDL no 152 37 61
Diffeq.VHDL no 53((@-x)div dx +1) 25((a-x)div dx +1) 31((a=x)div dx +1)

RC= Resource Constraints

=n

Chapter 6 Conclusion

From the examples in the previous chapter we can see the difference in performance.
If we analyze the complex example (differential equation) we can see that in one
iteration the first design took 53 time units (53*((a-x)div dx + 1) time units for all
iterations)when manually scheduling the processes without applying the synthesis tool
while the new scheduled design using the implemented synthesis tool took 25 time
units without resource constraints and 27 time units with resource constrains which
show 53% and 49% performance improvement respectively. The improvement is also
obvious in the results regarding the benchmarks used to test the tool. Some show a
very good improvement and others less. This is due to some code that cannot be
parrallelized like nested conditions that must be done serially.

Off course there are some negative assumptions, like having no resources constraints
in ASAP and ALAP algorithms, that might decrease our performance, however in the

third algorithm FDS this was taken into consideration. On the other hand there are

another positi\'/eweilssﬁmptions, like considering some pipelined scheduling algorithms,
that we did not also take which may almost overcome the decrease in performance.
This shows what have been mentioned in chapter 1 about the importance of High-
Level synthesis in hardware design and process scheduling.

What is good in this tool is the use of the three scheduling algorithms which give an
efficient and good design of a behavioral description.

In this thesis, a good research has been done to show the importance of synthesis tools
in hardware design nowadays. Moreover, a synthesis tool have been implemented for

many reasons:

To have and give a better knowledge of synthesis tools describe in detail how
they operate.

Have a good knowledge of each step have been followed so that future work
to produce better tools, will be in considering each of these steps alone and
make it better.

This tool can be adapted in the future to be applied for procedural languages.
Using Java, the object oriented programming language, to implement such tool
by taking advantage of object orientation and java features in GUI and other

things.

-~

References

[1]JAhmed Amine Jerraya, Hong Ding, Polen Kission, Maher, Rahmouni. "Behavioral
Synthesis Component Reuse With VHDL". Kluwer Academic Publishers. Boston,
1997.

[2]Andrew w. Appel. " Modern Compiler Implementation in Java". Cambridge
University Press, 1998.

[3]De Michelli. "Synthesis and Optimization of Digital Circuits". McGraw-Hill, 1994,

[4]H. Harmanani, H. Halawi. " A Synthesis for Test System using VHDL". Lebanese
American University, 2001.

[5]Ju Hwan Yi, Hoon Choi, In-Cheol Park, Seung Ho, Hwang, Chong-Min Kyung.
"Multipe Behavior Synthesis Based on Selective Groupings". Dept. of EE, KAIST,
Taejon, Korea.

[6]Kavin O'Brein, Maher Rahmouni, Ahmed Jerraya." 4 VHDL-Based Scheduling
Algorithm For Control-Flow Dominated Circuits". Laboratoire TIM3/INPG. pp. 135-
145. France.

[7]LaNae J. Avra, Laurent Gerbaux, Jean-Charles Giomi, Francoise Martinolle,
Edward J. McCluskey. "Synthesis for Test Design System". Stanford University.
Stanford, California, May 1994.

[8]Longanath Ramachandran, Nancy D. Holme, Daniel D. Gajski."The Design
Process for behavioral Synthesis from VHDI". University of California, February
1994,

[9IMinjoong Rim, Rajvi Jain. " Lower-Bound Performance Estimation for the High-
Level synthesis Scheduling Problem". pp. 451-458. IEEE, 1994.

[10]Piere G. Paulin, John P. Knight. ” Force-Directed Scheduling for Behavioral
Synthesis of ASIC's" . pp. 661-679. IEEE, 1989.

[11]Vijay Nagasamy, Neerav Berry, Carlos Dangelo." Specification, Planning, and
Synthesis in a VHDL design Environment". pp. 58-68. IEEE, 1992.

[12]S. Narayan, F. Vahid, D.D. Gajski." Incorporating VHDL Signal/Wait Semantics
into Synthesis". University of California. California, April, 1992.

[13] Taewhan Kim, Noritake, Jane Liu, C. Liu. " A Scheduling Algorithm for
Conditional Resource Sharing". vol 13, No. 4,pp. 425-438, IEEE Transactions 1994

[14] "Architectural Synthesis via VHDL".

Appendix A

Specification files for analysis and parsing

Al.The following is my specification input file for my lexical

analyzer:

/* User code*/

import java.awt.*;
import java.awt.event.*;
import java.io.*;

3%
/* Jlex directives */

8

private final int NUMIDENTS=19;

%}

%char

%line

%function nextToken

%type java_ cup.runtime.Symbol
%class LexAna

gfunction Tokenize

gnotunix

%ignorecase

alpha=[la=zA=7]
digits=[0-9]
underbar=[]
alphau=[a-zA-Z]
alphanu=[a-zA-Z 0-9]

signs=[+-]
minus=[-]
beq= ",
pas: ":>"
ipas= [<] [=]

eoln=[\n]
white=[\n\t]

other= .
dot= "."
quote=[\"]
squote=["]

name= [a—zA—Z_]({dot}?[a—zA—ZO—9_])?

string= [\"] [other]*[\"]

number= {digits}+

float= [+-]1?{number} ({dot} {number})? ([Ee] [+-]? {number})?
Comentzll__ll . * H\n"

3%
/* regular expression rules */

ARCHITECTURE {return new java_cup.runtime.Symbol (1, "ARCHITECTURE") ; }
BEGIN {return new java cup.runtime.Symbol (2, "BEGIN");}

COMPONENT {return new java cup.runtime.Symbol (3, "COMPONENT");}
DOWNTO {return new java cup.runtime.Symbol (4, "DOWNTO") ;}

END {return new Java_cup.runtime.Symbol (5, "END ");}

ENTITY {return new java_ cup.runtime.Symbol (6, "ENTITY") ;}

GENERIC {return new java_ cup.runtime.Symbol (7, "GENERIC");}

IF {return new java cup.runtime.Symbol (8,"IF");}

IN {return new java_cup.runtime.Symbol (9, "IN"};}

INOUT {return new java cup.runtime.Symbol (10, "INOUT") ;}

IS {return new java_cup.runtime.Symbol (11,"IS");}

LIBRARY {return new java_cup.runtime.Symbol (12, "LIBRARY");}

MAP {return new java_ cup.runtime.Symbol (13, "MAP");}

OF {return new java_cup.runtime.Symbol (14,"OF");}

OUT {return new java_cup.runtime.Symbol (15, "OUT");}

PORT {return new java cup.runtime.Symbol (16, "PORT") ;}

SIGNAL {return new java_cup.runtime.Symbol (17, "SIGNAL");}

TO {return new java_cup.runtime.Symbol (18, "TO") ;}
USE {return new java cup.runtime.Symbol (19, "USE");
NOT {return new java_ cup.runtime.Symbol (20, "NOT") ;
AND {return new java cup.runtime.Symbol (21, "AND");
OR {return new java_ cup.runtime.Symbol (22, "OR") ;}

}
}
1

A2. An example of a specification file is the following:

/*imported libraries to be used in the generated parser class*/

import java cup.runtime.*;

import java.awt.*;

import java.awt.event.*; _

import java.io.*;

/* Preliminaries to set up and use the scanner */
init with {: scanner.init():;
scan with {: return scanner.next token();

o ea
~e

~

/*terminals*/
terminal Entity:;
terminal IS;
terminal END ;
terminal GENERIC;
terminal PORT;
terminal DOWNTO;
terminal TO;
terminal ARCHITECTURE;
terminal OF;
terminal BEGIN ;
terminal COMPONENT;
terminal IN;
terminal OUT;
terminal IF;

terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal

MAP;
SIGNAL;
LIBRARY;
USE;
INOUT;
AND;

OR;

NOT;

/*non terminals*/

non terminal Identifier;

non terminal VectorType;

non terminal port signal;

non terminal Bit;

non terminal declaration, declarations,entity declaration,
architecture_declaration,library_declaration,use_statement;

/*An example of a Grammer*/

declarations = declaration
|
declarations declaration;

declaration ::= entity declaration
I

architecture declaration

library declaration

use statement;

-

Appendix B
Scheduler Implementation

B1. Scheduler Implementation
The following is the Java class representing the code in the intermediate language
form and the scheduler use instances of these classes to represent the nodes of the

final schedule.

public class gnode({
String name;
int succ[], //array of successors
pred(]; //array of predecessors

int dur, //duration
st, //schedul time
type, //node type 0 initially, 1 for operaticn, 2 for
//operands
succNo,
predNo;

public gnode(String na,int d)
{

name= new String (na) ;

succ=new int([50];

pred=new int[50];

dur=d;

st=-1;

succNo=0;

predNo=0;

type—O’; T
}

//write a pointer to a node in another node to be its pred

public void AddPreds (int i)

{
pred[predNo]=i;
predNo++;

}

//write a pointer to a node in another node to be its pred

public void AddSuccs (int i)
{

succ[succNo]l=1i;
succNo++;

}

public int{] GetSucc() // gets the successors of n

4o}

{
int m[]=new int[50];
int i;

for(i=0;i<succNo;i++)
m[i]l=succli];

return m;

}

public int[] Getpred() //gets the predecessors of n
{

int m[{l=new int[50];
int i;

for (i=0;i<predNo;i++)
m{i]=pred[i];

return m;
}
}

The following is the scheduler implementation in a Java Class:
public class sgraph {

gnode gn[]=new gnode[100];
static int nodeNo=0;

public int GetMaxTimePred(gnode n) //gets the max time of the pred
{

int pred[],i,max=0;

pred=new int[50];

pred=n.Getpred();

for(i=0;i<n.predNo;i++)

{

if (max < gn[pred[i]].st+gnlpred[i]].dur)} max=
gnipred[i]].st+gn{pred[i]].dur;

}

return max; .

}

public int GetMinTimeSucc(gnode n,int lat) //gets the min time of
the succ

{
int succ[],i,min=lat+1;
succ=new int[50];
succ=n.GetSucc();
for(i=0;i<n.succNo;i++)
{
if (min >= gnlsucc[il].st) min= gn[succ[i]l.st;
}
return min;

}

public boolean PredAreSched(gnode n) //test if predecessors are
scheduled

{

boolean b=true;
int predl[],i;
pred=new int[50];

LQ

pred=n.Getpred() ;
for(i=0;i<n.predNo;i++)

if(gn[pred[i]].st==-1) b=false;
return b;

}

public boolean SuccAreSched(gnode n) //test if successors are
scheduled

{

boolean b=true;

int succl],i:

succ=new int[50];

succ=n.GetSucc () ;

for(i=0;i<n.succNo;i++)

if(gn[succ[i]].st==-1) b=false;
return b;

}

public void AddNode (String str,int d) // adds a node of name s &
duration d to the graph
{

gn[nodeNo]=new gnode(str,d);
nodeNo++;
}

public int GetIndex(String s)
{

int i=0;

int j=-1;

while (i<nodeNo)

{

if (gn[i].name.compareTo (s)==0) Jj=1i;
i++;

}

return j;

}

public boolean SchASAP{gnode n) //schedules a node if possible using
ASAP

1
boolean b=false;
if (n.predNo==0)
{
n.st=1;
b=true;
}
else if (PredAreSched(n))
{
n.st=GetMaxTimePred (n) ;
b=true;
}

return b;

}

public boolean SchALAP(gnode n,int lat) //schedules a node if
possible using ALAP
{

boolean b=false;
if(n.succNo==0)

{

50

n.st=lat+1;
b=true;
}
else if (SuccAreSched(n))

{

n.st=GetMinTimeSucc(n,lat)-n.dur;
b=true;
}

return b;

}

// as soon as posible algorithm (unconstrained scheduling)
public int[] ASAP()

{

int 1[]=new int[nodeNo]:;

int count=1l;

int countl=1l;

boolean AllSched=false;

// schedule Vo the lst node
gn[0].st=1;

//for all Vi's schedule Vi if all preds are scheduled
while (! AllSched)
{

if(gn[countl].st==-1)
if (SchASAP (gn[countl]))
count++;

if (count==nodeNo) AllSched=true;

countl=(countl+l) % nodeNo;

}
for(int i=0;i<nodeNo;i++) 1l[il=gn[i].st;
return 1;

}

// as late as possible algorithm ({ latency constrained)
public int[] ALAP(int lat)

{
int 1[]l=new int[nodeNo];

int count=1l;
int countl=nodeNo-2;
boolean AllSched=false;

// schedule Vn the last node t=lat+1l
gn[nodeNo-11].st=lat+1;

//for all Vi's schedule Vi if all succs are scheduled
while (! AllSched)

{

1£(SchALAP (gn[countl], lat))

count++;

if (count==nodeNo) AllSched=true;

countl=countl-1;

if (countl==-1) countl=nodeNo-2;

}

for(int i=0;i<nodeNo;i++) 1l[i]l=gn[i].st;
return 1; }

“~N

1

Appendix C

Benchmarks

This Appendix contain the VHDL code of the Benchmarks used to test the synthesis
tool:

C1. Fancy.vhdl

The FANCY benchmark was created to illustrate the RTL optimization
Process.
"RT-Level Transformations for Gate Level Testability

__**VHDL***

—— SRC-MODULE : FANCY

—-— NAME ¢ fancy.vhdl
—-— VERSION : 1.0
—-— PURPOSE : Architecture of FANCY benchmark

—— LAST UPDATE: Wed May 19 13:03:48 MET DST 1993

B R R R R N S s A ST T S R S S ARV B AN

~— Architecture of FANCY

PACKAGE types IS
SUBTYPE nat8 is integer RANGE 0 TO 255;
END types;

USE work.types.il%;w

ENTITY fancy IS

PORT (reset : IN bit; -— Global reset
clk : IN bit; -— Global clock
startinp : IN boolean;
ainp : IN nat8;
binp ¢ IN nat8;
cinp ¢ IN nat8;
eoc : OUT boolean;
£ : OUT nat8);

END fancy;

ARCHITECTURE algorithm OF fancy IS
BEGIN
fancy: PROCESS
VARIABLE templa, templb, temp3, temp4, temp6ba : nat§;
VARIABLE a, b, ¢, counter : nat8;
VARIABLE start : boolean;
BEGIN

eoc <= true;

o

f <= 0;

RESET_LOOP : LOOP
WAIT UNTIL clk = '1'; EXIT RESET_ LOOP WHEN (reset = '1');
a = ainp;
b := binp;
c := cinp;
start := startinp:;

templa := 0;
counter := 0;
eoc <= false;
WHILE (counter < b) LOOP
IF (a <= counter) THEN
IF (a <= counter) THEN
tempba := b;
ELSE
tempba := templa;
END IF;
ELSE
tempba
END IF;

1
]

IF ((templa 0) XOR (a > counter) XOR (a <= counter) XOR

start) THEN

1l

templb
ELSE
IF (a > b) THEN
templb := a;
ELSE
templb := b;
END IF;
END IF;

Ci

IF start THEN

temp4 := templb;
ELSE

temp4 := tempba;
END IF;

IF (start XOR (a > b)) THEN
IF (b > c¢) THEN

temp3 := c;
ELSE
temp3 := b;
END IF;
ELSE
temp3 := templb;
END IF;

0) XOR (a > counter) XOR (a <= counter)) THEN

1l

IF ((templa

templa := temp4 + temp3;
ELSE
IF ((a > b) XOR (b > c¢)) THEN
templa := tempd4 + templa;
ELSE
templa := tempd + a;
END IF;
END IF;

counter := counter + 1;

WAIT UNTIL clk = 'l'; EXIT RESET LOOP WHEN (reset = '1l');
END LOOP;

f <= templa;
eoc <= true;

END LOOP RESET_LOOP;

END PROCESS fancy;
END algorithm;

C2. ARMS_COUNTER.vhdl

The Armstrong counter counts up or down and the counting is stops when limits are
reached. It operates with the Clock and Strobe signals acting as triggers. The signal
CON terminates the operation mode of the counter.

-— Controlled Counter Benchmark

—-— Source: "Chip Level Modeling with VHDL" by Jim Armstrong
(Prentice~Hall 1989)

—-— Benchmark author: Joe Lis

-= Copyright (c) by Joe Lis 1988

-— Modified by : Champaka Ramachandran on Aug 24th 1992

—-- Verification Information:

-= Verified By whom? Date

Simulator

-—- Syntax yes Champaka Ramachandran 24/8/92 ZYCAD
—- Functionality yes Champaka Ramachandran 24/8/92 ZYCAD

use work.BIT FUNCTIONS.all;

entity ARMS COUNTER is
port (
CLK: in BIT;
STRB : in bit;
CON: in BIT VECTOR(1l downto 0);
DATA: in BIT VECTOR(3 downto 0);
COUT: out BIT VECTOR(3 downto 0));

end ARMS COUNTER;
--VS3S: design style behavioural
architecture ARMS_COUNTER of ARMS COUNTER is

signal ENIT, RENIT: BIT;

signal EN: BIT;
signal CONSIG, LIM: BIT VECTOR{3 downto O0);
signal CNT : BIT VECTOR({3 downto 0);

begin

———————————————— The decoder ——-——--—--———-——mmmmm

DECODE: process (STRB, RENIT)

variable CONREG: BIT VECTOR(1l downto 0) := "00";
begin
if (STRB = '1l') and (not STRB'STABLE) then

CONREG := CON;

case CONREG is
when "00" => CONSIG <= "Q001";
when "01" => CONSIG <= "0010";
when "10" => CONSIG <= "0100"; ENIT <= '1';
when "11" => CONSIG <= "1000"; ENIT <= '1°';
when others =>

end case;

end if; -- Rising edge of STRB

if (RENIT = 'l') and (not RENIT'STABLE) then
ENIT <= '0';

end if;

end process DECODE;

———————————————— The limit loader -——-———————————ro—

LOAD LIMIT: process (STRB)

begin B B —
if (CONSIG(l) = '1') and (not STRB'STABLE) and (STRB = '0') then
LIM <= DATA;
end if;

end process LOAD LIMIT;

———————————————— The counter —————————mo oo

CTR: process (CONSIG((Q0), EN, CLK)

variable CNTE : BIT := '0';
begin
if (CONSIG(0) = '1') and (not CONSIG(0)'STABLE) then
CNT <= "0000";
end if;

if (not EN'STABLE) then

o &

if (EN = '1') then

CNTE := '1"'";
else
CNTE := '07;
end if;
end if;
if (not CLK'STABLE) and (CLK = '1l') and (CNTE = '1') then
if (CONSIG(2) = '1l') then
CNT <= CNT + "0001";
elsif (CONSIG(3) = '1l') then
CNT <= CNT - "0001";
end if;
end if;

end process CTR;

———————————————— The comparator —————-——————— -

LIMIT CHK: process (CNT, ENIT)
begin

if (not ENIT'STABLE) then
if (ENIT = '1') then
EN <= '1'; RENIT <= '1"';
else
RENIT <= '0';
end if;
end if;

if (EN = '1') and (CNT = LIM) then
EN <= '0';
end if;

end process LIMIT CHK;

COUT <= CNT;

end ARMS COUNTER;

C3. Display.vhdl
The DISPLAY chip is a driver for four seven-segment LED displays. The display

units display ten minutes, minutes, ten seconds and seconds. After reaching 59 59,
they reset on the next clock to 00 00.

ENTITY display IS

PORT (reset : IN bit: -- Global reset
clk : IN bit; -— Global clock
en : IN boolean;

unit0 : OUT bit vector (6 DOWNTO 0

unitl : OUT bit vector (6 DOWNTO 0

unit2 : OUT bit vector (6 DOWNTO O

unit3 : OUT bit vector (6 DOWNTO O
END display:;

r

14

)
)
)
)

— N

P4

ARCHITECTURE algorithm OF display IS

SUBTYPE nat4 is integer RANGE 15 DOWNTO O;
SUBTYPE nat3 is integer RANGE 7 DOWNTO O0;

BEGIN
display: PROCESS
VARIABLE secs, mins : nat4; —-- counters for seconds and
minutes
VARIABLE tsecs, tmins : nat3; -- counters for ten seconds and
ten minutes
BEGIN

~~ Initialization

secs
tsecs :=
mins :=
tmins := 0;
unit0 <= "1000000";
unitl <= "1000000";
unit2 <= "1000000";
unit3 <= "1000000";

.
I4
.
r

.
r

O OO o

RESET LOOP: LOOP
WAIT UNTIL clk = 'l'; EXIT RESET LOOP WHEN reset = 'l';

—- decoder part of the display circuit:

- 0 6543210

: 1000000
1111001
0100100
0110000
0011001
0010010
0000010
1111000

unitX (6..0)

0000000
0010000

OCOITn U WNE O

- 0=1light, l=dark!

CASE secs 1S

WHEN 0 => unit0 <= "1000000";
WHEN 1 => unit0 <= "1111001";
WHEN 2 => unit0 <= "0100100";
WHEN 3 => unit0 <= "0110000";
WHEN 4 => unit0 <= "0011001";
WHEN 5 => unit0 <= "0010010";
WHEN 6 => unit0 <= "0000010";
WHEN 7 => unit0 <= "1111000";
WHEN 8 => unit0 <= "0000000";
WHEN 9 => unit0 <= "0010000";

WHEN others => unit0 <= "0000000";
END CASE;

CASE tsecs 1S
WHEN 0 => unitl <= "1000000";

“~7

WHEN 1 => unitl <= "1111001";
WHEN 2 => unitl <= "0100100";
WHEN 3 => unitl <= "0110000";
WHEN 4 => unitl <= "0011001";
WHEN 5 => unitl <= "0010010";

WHEN others => unitl <= "0000000";
END CASE;

CASE mins IS

WHEN O => unit2 <= "1000000";
WHEN 1 => unit2 <= "1111001";
WHEN 2 => unit2 <= "0100100";
WHEN 3 => unit2 <= "0110000";
WHEN 4 => unit2 <= "0011001";
WHEN 5 => unit2 <= "0010010";
WHEN 6 => unit2 <= "0000010";
WHEN 7 => unit2 <= "1111000";
WHEN 8 => unit2 <= "0000000";
WHEN 9 => unit2 <= "0010000";

WHEN others => unit2 <= "0000000";
END CASE;

CASE tmins IS

WHEN 0 => unit3 <= "1000000";
WHEN 1 => unit3 <= "1111001";
WHEN 2 => unit3 <= "(0100100";
WHEN 3 => unit3 <= "0110000";
WHEN 4 => unit3 <= "0011001";
WHEN 5 => unit3 <= "0010010";
WHEN others => unit3 <= "0000000";
END CASE;
IF en THEN
IF (secs = 9) THEN
secs := 0;
IF tsecs = 5 THEN
tsecs := 0;
IF mins = 9 THE
mins := 0;
IF tmins = 5 THEN
"7 tmins := 03
ELSE
tmins := tmins + 1;
END IF;
ELSE
mins := mins + 1;
END IF;
ELSE
tsecs := tsecs + 1;
END IF;
ELSE
secs := gsecs + 1;
END IF;
END IF;

END LOOP RESET LOOP;

END PROCESS display;
END algorithm;

H~HR]

C4. Ellip.vhdl

The elliptic filter has been used as a benchmark for many
architectural synthesis packages, and is a part of the high-level
synthesis benchmark suite. The elliptic filter belongs to the class
of infinite Impulse Response (IIR) filters, because its response to
an impulse input remains non-zero till infinite time in a theoretical
sense. The particular filter we deal with here is a low pass filter,
meaning that it filters off frequencies higher than a certain limit,
called the cut-off frequency.

-- Elliptical Wave Filter Benchmark

—-— VHDL Benchmark author: D. Sreenivasa Rao
—-— University Of California, Irvine, CA 92717
- dsr@balboa.eng.uci.edu, (714)856-5106

—-- Developed on 12 September, 1992

—-— Verification Information:

-- Verified By whom? Date
Simulator

-- Syntax yes DSR 09/12/92
ZYCAD

-— Functionality yes DSR 09/12/92
ZYCAD

--use std.std logic.all;
use work.bit functions.all;

entity ellipf is
port (inp : in BIT VECTOR(1l5 downto 0);
outp : out BIT VECTOR(15 downto 0);
sv2, svl3, svl8, sv26, sv33, sv38, sv39
in BIT VECTOR(15 downto 0);
svZ2_o, svl3 o, svl8 o, sv26 o, sv33 o, sv38 o, s8v39 o
out bit vector(l5 downto 0));
end ellipf;

architecture ellipf of ellipf is

begin

process (inp, sv2, sv1l3, svl8, sv26, sv33, sv38, sv39)
~— constant ml, m2, m3, m4, m5, m6, m7, m8 : integer :=

(11111111 1111111);

&0

variable nl, n2, n3, n4, n5, n6, n7 : BIT VECTOR(15 downto 0);
variable n8, n9, nl0, nll, nl2, nl3 : BIT VECTOR(1l5 downto 0);
variable nl4, nl5, nlé, nl7, nl8, nl9 : BIT VECTOR(1l5 downto 0);
variable n20, n2l, n22, n23, n24, n25 : BIT_VECTOR(15 downto 0);
variable n26, n27, n28, n29 : BIT VECTOR(15 downto 0);

- constant i1 : integer := (1);

begin

while (i = 1) LOOP
nl := inp + sv2;
n2 := sv33 + sv39;
n3 := nl + svl13;
nd := n3 + sv26;
n5 := n4 + n2;
né := nb5 ;
n7 := nb5 ;
ng8 := n3 + né6;
n9 := n7 + n2;
nl0 := n3 + n8;
nll := n8 + n5;
nl2 := n2 + n9;
nl3 := nl0 ;
nl4 := nl2 ;
nl5 := nl + nl3;
nle := nl4d + sv39;
nl7 := nl + nl5;
nl8 := nl5 + n8;
nl9 := n9 + nlé6;
n20 := nlé + sv39;
n2l := nl7 ;
n22 := nl8 + svl8;
n23 := sv38 + nl9;
n24 := n20 ;
n25 := inp + n2l;
n26 := n22 ;
n27 := n23 ;
n28 := n26 + svl§;

n29 := n27 + sv38;
8v2_o <= n25 + nl5;
svl3 o <= nl7 + n28;

sv18_o <= nZ87
8v26 o <= n9% + nll;
8v38 o <= n29;
8v33 o <= nl9% + n29;
8v39 o <= nl6 + n24;
outp <= n24;
end LOOP;
end process;

end ellipf;

-—configuration ellipcon of ellipf is
-— for ellip beh

-- end for;

-—end ellipcon;

70

