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Smooth and nonsmooth duality for free time

problem

Chadi Nour

Institut Girard Desargues, Université Lyon I, 21 avenue Claude Bernard, 69622
Villeurbanne Cedex, France (chadi@igd.univ-lyon1.fr).

Summary. The main result of this paper contains a representation of the minimum
cost of a free time control problem in terms of the upper envelope of generalized
semisolutions of the Hamilton-Jacobi equation. A corollary generalizes a similar
result due to Vinter using smooth subsolutions.

Key words: free time problems, duality, Hamilton-Jacobi equations, viscos-
ity solutions, proximal analysis, nonsmooth analysis

1 Introduction

The following optimal control problem is considered in Vinter [15]:

(Q)































Minimize ℓ(T, x(T )),
T ∈ [0, 1],
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [0, T ],
x(0) = x0,

(t, x(t)) ∈ A ⊂ [0, 1]× IRn ∀t ∈ [0,T ],
(T, x(T )) ∈ C ⊂ [0, 1]× IRn,

where the given data is a point x0, the function ℓ : IR × IRn −→ IR ∪ {+∞},
the multivalued function F : IR × IRn −→ IRn, and the sets A and C. Vinter
in addition formulated a convex optimization problem (W ), associated with
(Q), namely, the minimization of a linear functional under linear constraints
of equality type on the set W of generalized flows, a weak∗-convex compact
set of a space of Radon measures also associated with problem (Q). Based
on the apparatus of convex analysis and, in particular, on convex duality, he
established a very close interconnection between problems (Q) and (W ). He
proved that the set W is the convex closure of the set of admissible arcs of
the original problem (Q), and also that both problems are solvable and that,
moreover, their values coincide. This makes it possible to prove a necessary
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and sufficient condition for optimality for problem (Q) related to well-known
sufficient conditions, referred to as verification theorems, in dynamic opti-
mization, see [4] and [6]. Simultaneously, Vinter gives a “smooth duality” for
the problem (Q); that is, the value of problem (Q) is represented in terms of
the upper envelope of smooth subsolutions of the Hamilton-Jacobi equation.
This so-called “convex duality” method was first introduced by Vinter and
Lewis [17], [18]. For more information about the possibility of approaching
control problems via duality theory in abstract spaces, see ([7], [8], [11], [12],
[15], [17] and [18]).

We remark that the problem (Q) treated by Vinter is an optimal control
problem with finite horizon (T ∈ [0, 1]), and he has affirmed [16] that his
generalized flows approach does not extend to free time problems with infinite
horizon (T ∈ [0,+∞[) and do not leads an upper envelope characterization of
the minimum cost, in term of smooth solutions of the autonomous Hamilton-
Jacobi inequality.

In this article, we consider the following free time problem

(P )































Minimize T + ℓ(x(T )),
T ∈ [0,+∞[,
ẋ(t) ∈ F (x(t)) a.e. t ∈ [0,+∞[,
x(0) = x0,

x(t) ∈ A ∀t ∈ [0, T ],
x(T ) ∈ C.

Our main result is a “nonsmooth duality” for the problem (P ); that is, a
representation of the minimum cost of (P ) in terms of the upper envelope
of generalized semisolutions of the Hamilton-Jacobi equation. This type of
duality is well studied in the literature with several techniques and particularly
for fixed time problems, see for example [1], [2], [4, Chapter 4], [9], [10], [13],
[14] and [19]. We use the proximal subdifferential to define our generalized
semisolutions. This concept of solution appeared in Clarke and Ledyaev [3],
where the various concepts were also unified. Using our nonsmooth duality we
extend Vinter’s smooth duality for free time problems with infinite horizon.
Let us enter into the details.

We assume in the problem (P ) that the set A is closed, that C is compact,
and that the extended-valued function ℓ : IRn → IR∪{+∞} is lower semicon-
tinuous and bounded below by a constant ω. As for the multivalued function
F , we assume that it takes nonempty compact convex values, has closed graph,
and satisfies a linear growth condition: for some positive constants γ and c,
and for all x ∈ IRn,

v ∈ F (x) =⇒ ‖v‖ ≤ γ‖x‖+ c.

Finally, we assume that (P ) is nontrivial in the sense that there is at least
one admissible trajectory for which the cost is finite.

We associate with F the following function h, the (lower) Hamiltonian:
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h(x, p) := min{〈p, v〉 : v ∈ F (x)}.

The augmented Hamiltonian h̄ is defined by

h̄(x, θ, ζ) := θ + h(x, ζ).

Given a lower semicontinuous function f : IRn −→ IR ∪ {+∞} and a point
x ∈ domf := {x′ ∈ IRn : f (x ′) < +∞}, we say that ξ ∈ IRn is a proximal
subgradient of f at x if and only if there exists σ ≥ 0 such that

f(y)− f(x) + σ‖y − x‖2 ≥ 〈ξ, y − x〉,

for all y in a neighborhood of x. The set (which could be empty) of all proximal
subgradients of f at x is denoted by ∂P f(x), and is referred to as the proximal
subdifferential. The Proximal Density Theorem asserts that ∂P f(x) 6= ∅ for
all x in a dense subset of domf . We also define the limiting subdifferential of
f at x by

∂Lf(x) := {lim ξi : ξi ∈ ∂P f(xi), xi −→ x and f(xi) −→ f(x)}.

We refer the reader to [4] for full account of proximal and nonsmooth analysis.
Now we define Ψ to be the set of all locally Lipschitz functions ψ on IRn that
satisfy the proximal Hamilton-Jacobi inequality

h̄(x, ∂Lψ(x)) ≥ 0 ∀x ∈ A

as well as the boundary condition

ψ(x) ≤ ℓ(x) ∀x ∈ C.

The following nonsmooth duality is the main result.

Theorem 1.

min(P ) = sup
ψ∈Ψ

ψ(x0).

This leads directly to the following optimality conditions.

Corollary 1. Let (T̄ , x̄(·)) be an admissible trajectory for (P ). Then (T̄ , x̄(·))
is a minimizer for (P ) iff there exists a sequence of functions {ψi} in Ψ such
that

lim
i−→+∞

ψi(x0) = T̄ + ℓ(x̄(T̄ )).

Our theorem, whose proof is self-contained modulo some basic facts from
proximal analysis, is new with respect to its very mild regularity hypotheses
on F (which need not even be continuous), as well as the presence of a unilat-
eral state constraint. Moreover, the fact that locally Lipschitz functions and
limiting subgradients figure in our duality also gives easy access to smooth



4 Chadi Nour

duality of the type found by Vinter. We extend his result by obtaining a dual-
ity in which feature only smooth solutions of an autonomous Hamilton-Jacobi
inequality.

We note that using our methods we can also prove Vinter’s duality pre-
sented in [15] and extend it for fixed time problems, but due to space restric-
tion we only treat here the free time with infinite horizon case and we only
sketch the proofs. For complete details, see [5].

This article is organized as follows. In the next section we sketch the proof
of the above theorem. Section 3 is devoted to the generalization of Vinter’s
smooth duality.

2 Proof of Theorem 1

First we note that under our hypotheses on F , any trajectory can be extend
indefinitely both forward and backward, so all trajectories can be considered
as being defined on ]−∞,+∞[. By the compactness property of trajectories
and since ℓ is bounded below, it is easy to prove that the problem (P ) admits
a solution. For all k ∈ IN∗, we consider the function ℓk defined by

ℓk(x) := inf
y∈IRn

{ℓ(y) + k‖x− y‖2}. (1)

The sequence (ℓk)k is the quadratic inf-convolution sequence of ℓ. The follow-
ing lemma gives some properties of ℓk.

Lemma 1. For all k ∈ IN∗, we have:

1. ℓk(·) ≤ ℓ(·) and the set of minimizing points y in (1) is nonempty.
2. ℓk is locally Lipschitz and bounded below by ω.
3. For all x ∈ IRn,

lim
k−→+∞

ℓk(x) = ℓ(x).

We also consider a locally Lipschitz approximation for the multifunction F . By
[4, Proposition 4.4.4] there exists a sequence of locally Lipschitz multifunctions
{Fk} also satisfying the hypotheses of F such that:

• For each k ∈ IN, for every x ∈ IRn,

F (x) ⊆ Fk+1(x) ⊆ Fk(x) ⊆ co F (x+ 3−k+1B).

•
⋂

k≥1
Fk(x) = F (x) ∀x ∈ IRn.

A standard method of approximating the terminally constrained problem (P )
by a problem free of such constraints involves the imposition of a penalty
term, the inf-convolution technique, and the preceding approximation of F .
We consider for all k ≥ 1 the following optimal control problem:
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(Pk)















Minimize T + ℓk(x(T )) + kdC(x(T )) + k
∫ T

0
dA(x(t)) dt,

T ≥ 0,
ẋ(t) ∈ Fk(x(t)) a.e. t ∈ [0,+∞[,
x(0) = x0.

Lemma 2. There exists a sequence λn strictly increasing in IN∗ such that:

lim
n−→+∞

min(Pλn
) = min(P )

We continue the proof and remark that the problem (Pλn
) is exactly the

following problem:















Minimize T + ℓ̂λn
(z(T )),

T ≥ 0,

ż(t) ∈ F̂λn
(z(t)) a.e. t ∈ [0,+∞[,

z(0) = (0, x0),

where F̂λn
is the augmented locally Lipschitz multivalued function defined by

F̂λn
(y, x) := {λndA(x)} × Fλn

(x), ∀(y, x) ∈ IR × IRn and ℓ̂λn
is the locally

Lipschitz function defined by ℓ̂λn
(y, x) = ℓλn

(x) + λndC(x) + |y|, ∀(y, x) ∈
IR× IRn.
Let V̂λn

: IR × IR × IRn −→ IR be the value function of the problem (Pλn
);

that is, for every (τ, β, α) ∈ IR× IR× IRn, V̂λn
(τ, β, α) is the minimum of the

following problem:















Minimize T + ℓ̂λn
(z(T )),

T ≥ τ,

ż(t) ∈ F̂λn
(z(t)) a.e. t ∈ [τ,+∞[,

z(τ) = (β, α).

Lemma 3. The value function V̂λn
satisfies the following:

1. V̂λn
is locally Lipschitz on IR× IR× IRn.

2. V̂λn
(τ, β, α) ≤ τ + ℓ̂λn

(β, α), ∀(τ, β, α) ∈ IR× IR× IRn.
3. ∀(τ, β, α) ∈ IR× [0,+∞[×IRn we have

V̂λn
(τ, β, α) = τ + V̂λn

(0, 0, α) + β.

4. ∀(t, y, x) ∈ IR× IR× IRn, ∀(θ, ξ, ζ) ∈ ∂P V̂λn
(t, y, x) we have

θ + λndA(x)ξ + hλn
(x, ζ) ≥ 0.1

1 This Hamilton-Jacobi inequality follows since the system (V̂λn
, F̂λn

) is strongly

increasing on IR×IR×IRn (the function V̂λn
(·, z(·)) is increasing on [a, b] whenever

z is a trajectory of F̂λn
on some interval [a, b]), and using [4, Proposition 4.6.5]

which gives a proximal characterization for the strong increase property. We note
that hλn

is the lower Hamiltonian corresponding to Fλn
.
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Now let ψλn
: IRn −→ IR be the function defined by

ψλn
(x) := V̂λn

(0, 0, x), ∀x ∈ IRn.

Using Lemma 3 and the definition of ∂L we get:

Lemma 4. ψλn
∈ Ψ.

We continue the proof and remark that

ψλn
(x0) = V̂λn

(0, 0, x0) = min(Pλn
),

then
sup
ψ∈Ψ

ψ(x0) ≥ ψλn
(x0) = min(Pλn

).

Therefore
min(P ) = lim

n−→+∞
min(Pλn

) ≤ sup
ψ∈Ψ

ψ(x0).

Now we show the reverse inequality by considering ψ ∈ Ψ making the tempo-
rary hypothesis that F is locally Lipschitz. Then by reasoning by the absurd
and using the definition of ∂L we have the following lemma.

Lemma 5. For all open and bounded subset S ⊂ IRn, for all ε > 0, there
exists a neighborhood U of A such that

1 + h̄(x, ∂Pψ(x)) ≥ −ε ∀x ∈ S ∩ U.

Let (T̄ , x̄(·)) be a solution of the problem (P ). By Gronwall’s Lemma (see [4,
Proposition 4.1.4]) there exists ρ > 0 such that x̄(t) ∈ B(0; ρ), ∀t ∈ [0, T̄ ]. We
apply the preceding lemma for S = B(0; ρ) and for ε > 0, we get the existence
of a neighborhood Uε of A such that

1 + h̄(x, ∂Pψ(x)) ≥ −ε ∀x ∈ S ∩ Uε.

Then by [4, Proposition 4.6.5] we get that

ψ(x0) ≤ εT̄ + ψ(x̄(T̄ )) ≤ εT̄ + ℓ(x̄(T̄ )) = εT̄ +min(P )

hence by taking ε −→ 0 we get

ψ(x0) ≤ min(P )

therefore
min(P ) ≥ sup

ψ∈Ψ

ψ(x0).

To remove the need for the locally Lipschitz hypothesis on F it is sufficient
to use the following lemma (follows by reasoning by the absurd and using a
convergence property of ∂L, see [4, Exercise 1.11.21]), and then continue as in
the Lipschitz case.

Lemma 6. For all n ∈ IN there exists kn ≥ n such that

1 + h̄kn(x, ∂Lψ(x)) ≥
−1

n
∀x ∈ A ∩ B̄(0; ρ).

The proof of Theorem 1 is achieved. ⊓⊔
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3 Smooth duality

An important application of our main result is the smooth duality studied by
Vinter in [15]. Using Theorem 1 we show the following theorem which extends
the Vinter’s smooth duality for our problem (P ).

Corollary 2.

min(P ) = sup
ϕ∈Φ

ϕ(x0)

where Φ is the set of all functions ϕ : IRn −→ IR which satisfy:

• ϕ ∈ C1(IRn, IR),
• 1 + 〈ϕ′(x), v〉 ≥ 0, ∀x ∈ A, ∀v ∈ F (x),
• ϕ(x) ≤ ℓ0(x) ∀x ∈ C.

Proof. Since for all ϕ ∈ Φ we have ∂Lϕ(t, x) = {ϕ′(t, x)}, we get that Φ ⊂ Ψ .
Then by Theorem 1 we have

min(P ) = sup
ψ∈Ψ

ψ(0, x0) ≥ sup
ϕ∈Φ

ϕ(0, x0).

For the reverse inequality, let ψ ∈ Ψ . Using the fact that if ψ is differentiable
at α ∈ IRn then ψ′(α) ∈ ∂Lψ(α), we have the following lemma.

Lemma 7. Let α ∈ A such that ψ is differentiable at α. Then

1 + 〈ψ′(α), v〉 ≥ 0, ∀v ∈ F (α).

Since ψ is locally Lipschitz and by Rademacher’s theorem we have that ψ
is differentiable a.e α ∈ IRn. Using the sequence Fk and the penalization

term k
∫ T

0
dA(x(t)) dt (as in Lemma 2), we can assume that F is Lipschitz

and A = IRn. Then by Lemma 7 and by a standard mollification technique
(convolution with mollifier sequence), we have the following lemma.

Lemma 8. There exists a sequence δi −→ 0 such that for all ε > 0 there exist
i0 ∈ IN and a sequence of functions (ψiε)i which satisfy: for i ≥ i0 we have
ψiε ∈ Φ and

ψiε(x0) ≥
ψ(x0)−M |δi| − ε

1 + |δi|
,

where M := max
x∈C

−ψ(x).

Clearly the preceding lemma gives the desired inequality. ⊓⊔

It is clear that Corollary 2 leads to a version of the necessary and sufficient
conditions of Corollary 1 in which only smooth semisolutions are used.

A well-known and special case of the present framework involves the min-
imal time function associated to the target C and under the state constraint
A:



8 Chadi Nour

TAC (α) :=























Inf T ≥ 0,
ẋ(t) ∈ F (x(t)) a.e. t ∈ [0,+∞[,
x(0) = x0,

x(t) ∈ A ∀t ∈ [0, T ],
x(T ) ∈ C.

By Corollary 2 (ℓ0 = 0) we have the following characterization of TAC , which
appear to be new at a technical level:

TAC (α) = sup
ϕ∈Φ

ϕ(α)

where Φ is the set of all functions ϕ : IRn −→ IR which satisfy:

• ϕ ∈ C1(IRn, IR),
• 1 + 〈ϕ′(x), v〉 ≥ 0, ∀x ∈ A ∀v ∈ F (x),
• ϕ(x) ≤ 0 ∀x ∈ C.
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