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Abstract We investigate the dynamics of a spin-
ning top whose pivot point undergoes a small ampli-
tude high-frequency vertical vibration. The method
of Direct Partition of Motion is used to obtain an
autonomous equation governing the leading order slow
dynamics of the top’s nutation and to derive an approx-
imate closed form solution for the forced spinning top
problem.We show that the fast vibration can lead to the
stabilization of the “sleeping top” state and an expres-
sion for the minimum amplitude required is given in
terms of system parameters. We also show the exis-
tence of a degenerate family of special solutions in
which the spinning top is locked at constant nutation
and precession angles; we refer to those as “skewed
sleeping top” states. We derive the conditions under
which these states exist and are stable. The results are
verified through numerical integration of the full non-
autonomous system.
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1 Introduction

The spinning top is a classic paradigm for illustrat-
ing gyroscopic effects, the understanding of which is
essential for numerous technological applications such
as inertial sensors for navigation [6], spacecraft atti-
tude control [8] and gyroscopicwave energy harvesting
[12]. A heavy gyroscope with harmonic excitation has
been studied in [3]; however, the excitation frequencies
considered were of O (1) and O (ε), i.e., the effect of
a high-frequency excitation was not considered. The
non-trivial effects of high-frequency excitation on var-
ious nonlinear mechanical systems have been exten-
sively studied and reviewed in recent years [2,5,11].
Such effects include changes in the number of equi-
librium points, stability of equilibrium points, natural
frequencies, stiffness and bifurcation paths. The most
famous non-trivial effect of fast excitation is the stabi-
lization of the pendulum in the upright position when
its point of support is subjected to an imperceptible
but very fast vertical oscillation. The method of Direct
Partition of Motion (DPM) [2] has proved to be an
efficient and powerful analytical method for the study
of nonlinear systems under high-frequency excitation.
The use of this method here allows us to obtain a closed
form approximate solution to the spinning top under the
influence of fast vibration. In 1908, Stephenson sug-
gested that the unstable position of upright equilibrium
for a symmetrical top may be rendered stable by an
imposed fast vertical vibration of the point of support
[9]. In addition to validating Stephenson’s suggestion,
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we here show that for special parameter values, a whole
family of unexpected degenerate stable solutions exist
in which the spinning top is locked at a nonzero nuta-
tion angle from the vertical position, without any pre-
cessional motion. For the best of our knowledge, this
non-trivial effect has not been previously reported in
the literature.

In Sect. 2, we derive the equations of motion for
the system and apply DPM to obtain an autonomous
second-order equation governing the leading order
slow dynamics of the top’s nutation. In Sect. 3, we
study the stability of the classical “sleeping top” state in
addition to the existence and stability of the non-trivial
“skewed sleeping top” solutions.We then show that the
equation for the leading order nutation angle possesses
an exact closed form solution expressed in terms of the
Jacobi elliptic functions. In Sect. 4,we present a numer-
ical check of the results and compare the approximate
solution to the exact solution obtained from the numer-
ical integration of the full non-autonomous system.

2 The equations of motion

Consider a top of mass M , whose pivot point has a
vertical position z (t) from a fixed reference point. The
center of mass (G) of the top is at a distance d from the
pivot point, along the long axis of the top (see figure
5.7 in [4]).

2.1 The Lagrangian

We follow the classical mechanics approach for obtain-
ing the rigid body equations of motion [4]. The posi-
tion vector of points on the body can be written as:
ri = zk̂ + Ri where î, ĵ, k̂ are orthonormal unit vec-
tors in the inertial frame of reference.

The kinetic energy of the turning top is given by
T = 1

2

∫
(vi )

2 dm, where

vi = dri
dt

= żk̂ + dRi

dt
= żk̂ + ω × Ri

and the integral is over the whole volume of the body.
The angular velocity vector of the top,ω, can bewritten
in terms of the Euler angles (φ, θ, ψ) and their deriva-
tives:

ω = ω1b̂1 + ω2b̂2 + ω3b̂3

with

⎧
⎨

⎩

ω1 = φ̇ sin θ sinψ + θ̇ cosψ

ω2 = φ̇ sin θ cosψ − θ̇ sinψ

ω3 = φ̇ cos θ + ψ̇

The Euler angles used here are those defined in figure
4.7 in [4]. Also b̂1, b̂2, b̂3 are orthonormal unit vectors
along x ′,y′,z′, respectively, that is, along the axis of the
body frame of reference depicted in the aforementioned
figure.

Expanding the expression for the kinetic energy:

T = 1

2

∫ [
żk̂ · żk̂ + 2żk̂ · (ω × Ri )

+ (ω × Ri ) · (ω × Ri )
]
dm

We have:

(ω × Ri ) · (ω × Ri ) = ω · (Ri × ω × Ri )

so

T = 1

2
M (ż)2 + żk̂ ·

(

ω ×
∫

Ridm

)

+1

2
ω ·

(∫
Ri × ω × Ridm

)

also∫
Ridm = Mdb̂3 &

∫
Ri × ω × Ridm = L = Īω

L and Ī denote the angular momentum vector and the
moment of inertia tensor of the top about its pivot point,
respectively. The simplified kinetic energy expression
becomes:

T = 1

2
M (ż)2 + żk̂ ·

(
ω × Mdb̂3

)
+ 1

2
ω Īω (1)

The third term on the right-hand side of Eq. (1) reduces
to:
1

2
ω Īω = 1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)

where I1, I2 and I3 are the principal moments of inertia
of the top. Assuming I1 = I2, we get:
1

2
ω Īω = 1

2
I1

(
φ̇2 sin2 θ + θ̇2

)

+1

2
I3

(
φ̇2 cos2 θ + ψ̇2

)
+ I3φ̇ψ̇ cos θ

We have k̂ = (0, 0, 1) in the inertial frame of refer-
ence, and b̂3 = (0, 0, 1) in the body frame of reference.
To evaluate the second term of the right-hand side of
Eq. (1), we make use of the following linear transfor-
mation from the inertial frame of reference to the body
frame of reference: (c ≡ cos, s ≡ sin)

A=
⎡

⎣
cψcφ − cθsφsψ cψsφ + cθcφsψ sψsθ

−sψcφ − cθsφcψ −sψsφ + cθcφcψ cψsθ
sθsφ −sθcφ cθ

⎤

⎦
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On the dynamics of a spinning top 767

After algebraic manipulation, the full expression for
the kinetic energy of the top becomes:

T = 1

2
M (ż)2 + Mdżθ̇ sin θ + 1

2
I1

(
φ̇2 sin2 θ + θ̇2

)

+1

2
I3

(
φ̇2 cos2 θ + ψ̇2

)
+ I3φ̇ψ̇ cos θ (2)

The gravitational potential energy of the top is V =
Mgd cos θ . So the Lagrangian is:

L = T − V

= 1

2
M (ż)2 + Mdżθ̇ sin θ + 1

2
I1

(
φ̇2 sin2 θ + θ̇2

)

+1

2
I3

(
φ̇2 cos2 θ + ψ̇2

)

+I3φ̇ψ̇ cos θ − Mgd cos θ (3)

As a quick check, it can be seen that setting ż = 0 in
Eq. (3) leads to the expression for the Lagrangian of
the classical spinning top with a fixed pivot (eq.(5.52)
in [4])

2.2 Hamilton’s equations

The generalized momenta corresponding to φ, θ and
ψ , respectively, are:

pφ = ∂L

∂φ̇
= φ̇

(
I1 sin

2 θ + I3 cos
2 θ

)
+ I3ψ̇ cos θ

pθ = ∂L

∂θ̇
= Mdż sin θ + I1θ̇

pψ = ∂L

∂ψ̇
= I3φ̇ cos θ + I3ψ̇ (4)

From Eq. (4), we obtain expressions for φ̇, θ̇ and ψ̇ in
terms of pφ, pθ and pψ :

θ̇ = 1

I1
(pθ − Mdż sin θ)

φ̇ = 1

I1 sin2 θ

(
pφ − pψ cos θ

)

ψ̇ = cos θ

I1 sin2 θ

(
pψ cos θ − pφ

) + pψ

I3
(5)

The Hamiltonian is then given by:

H = φ̇ pφ + θ̇ pθ + ψ̇ pψ − L

= 1

2I1 sin2 θ
p2φ+ 1

2I1
p2θ + 1

2

(
1

I3
+ cos2 θ

I1 sin2 θ

)

p2ψ

− cos θ

I1 sin2 θ
pψ pφ − Md

I1
ż pθ sin θ − 1

2
M (ż)2

+M2d2

2I1
(ż)2 sin2 θ + Mgd cos θ (6)

We can see that φ and ψ are cyclic coordinates; hence,
pφ and pψ are conserved and the dynamics reduces to
a one degree of freedom system governing the nutation
angle θ . That is, pφ and pψ act as parameters for the
nutation dynamics. TheHamilton’s equations for θ are:

θ̇ = 1

I1
(pθ − Mdż sin θ)

ṗθ = pψ

I1 sin θ

(
pψ cos θ − pφ

)

+ cos θ

I1 sin3 θ

(
pψ cos θ − pφ

)2

+Mgd sin θ + Md

I1
ż pθ cos θ

−M2d2

I1
(ż)2 sin θ cos θ

Then the resulting second-order equation on θ is given
by:

θ̈ − pψ

I 21 sin θ

(
pψ cos θ − pφ

)

− cos θ

I 21 sin3 θ

(
pψ cos θ − pφ

)2

−Md

I1
(g − z̈) sin θ = 0 (7)

2.3 The method of direct partition of motion

We consider the vibration of the pivot point to be of a
very small amplitude but very large frequency, that is,
z (t) = A cos (ωt) with A = O (ε) and ω = 1

ε
where

ε << 1.Then z̈ (t) = −Aω2 cos (ωt) = −aω cos (ωt)
where a = Aω = O (1)

We define two main timescales: the slow timescale
t and the fast timescale τ = ωt = t

ε
. DPM is based on

three main assumptions [2]:

– the motion of the system under fast excitation can
be partitioned into a purely slow component and an
overlaid fast component.

– any function of fast time is periodic with a zero
average over a period of fast time.

– any purely slow function is invariant under averag-
ing over fast time. That is, t is considered a constant
when integrating with respect to τ .

We start with the first basic ansatz of DPM and decom-
pose the solution to Eq. (7) into a leading order slow
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768 H. Sheheitli

component, θ0, and a small overlaid fast component,
εθ1, i.e.,

θ = θ0 (t) + εθ1 (t, τ ) (8)

According to the second and third ansatzs, θ1 is
assumed periodic in τ with a zero average over one
period of fast time, while the slow component, θ0,
remains unchanged under the later operation, that is:

θ1 (τ + 2π) = θ1 (τ ) , 〈θ1〉τ = 0, 〈θ0〉τ = θ0

where 〈·〉τ = 1

2π

2π∫

0

·dτ

These conditions on θ1 also apply to all of its deriva-
tives, and the same is true for θ0. To implement the
DPM procedure, we differentiate Eq. (8) with respect
to t :

θ̈=d2θ0
dt2

+ 2
∂2θ1

∂t∂τ
+ ε

∂2θ1

∂t2
+ 1

ε

∂2θ1

∂τ 2

We plug this into Eq. (7) along with Eq. (8) and expand
the nonlinear terms into a Taylor series about ε = 0.
Collecting terms of the same order in ε, we obtain the
following equations governing θ1 and θ0:

O

(
1

ε

)

: ∂2θ1

∂τ 2
= Mda

I1
cos τ sin θ0 (9)

O (1) : d2θ0
dt2

− pψ

I 21 sin θ0

(
pψ cos θ0 − pφ

)

− cos θ0

I 21 sin3 θ0

(
pψ cos θ0 − pφ

)2

−Mdg

I1
sin θ0 − Mda

I1
θ1 cos τ cos θ0 + 2

∂2θ1

∂t∂τ
= 0

(10)

We integrate Eq. (9) twice with respect to τ to obtain:

θ1 = −Mda

I1
cos τ sin θ0 + c1τ + c2

By the second assumption of DPM, the two integration
constants c1 and c2 have to be zero. So the expression
for the fast component of motion reduces to:

θ1 = −Mda

I1
cos τ sin θ0 (11)

We insert this into Eq. (10):

d2θ0
dt2

− pψ

I 21 sin θ0

(
pψ cos θ0 − pφ

)

− cos θ0

I 21 sin3 θ0

(
pψ cos θ0 − pφ

)2

−Mdg

I1
sin θ0 +

(
Mda

I1

)2

cos2 τ sin θ0 cos θ0

+2
Mda

I1
sin τ cos θ0

dθ0
dt

= 0

To complete the DPMprocedure, we average this equa-
tion over a period of fast time with the assumption that
any purely slow function remains unchanged under this
operation. The result is an autonomous equation that
governs the leading order nutation motion of the spin-
ning top:

d2θ0
dt2

− pψ

I 21 sin θ0

(
pψ cos θ0 − pφ

) − Mdg

I1
sin θ0

− cos θ0

I 21 sin3 θ0

(
pψ cos θ0 − pφ

)2

+1

2

(
Mda

I1

)2

sin θ0 cos θ0 = 0 (12)

3 Leading order nutation dynamics

3.1 Stabilization of the “sleeping top”

The classical spinning top possesses an equilibrium
point at θ = 0, referred to as the “sleeping top” state
[1], which is known to be stable for:

pψ ≥ 2
√
Mgd I1 (13)

The naming of this state is due to the fact that when dis-
sipation is present, a “sleeping top” spinning at θ = 0
is seen to “awaken” as pψ decreases and the upright
position looses stability. Due to the particular choice
of the Euler angles as coordinates, the equation gov-
erning θ0 is singular at 0 and π which correspond to
the upright and downwards equilibrium positions of
the spinning top, respectively. To study the stability of
the latter states, we observe that the nutation dynam-
ics described by Eq. (12) can be seen as a one degree
of freedom system driven by the following effective
potential function:

Ueff =
(
pφ − pψ cos θ0

)2

2I1 sin2 θ0
+ Mgd cos θ0

− (Mda)2

4I1
cos2 θ0 (14)

We expand this potential function in a Taylor series
about θ0 = 0 with the condition pφ = pψ which
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On the dynamics of a spinning top 769

follows from evaluating the expressions in Eq. (4) at
θ = 0. We get:

Ueff = c1 + c2θ
2
0 + · · ·

where c1 = Mgd − (Mda)2

4I1

& c2 = p2ψ
8I1

+ (Mda)2

4I1
− 1

2
Mgd

We can deduce that the upright position if stable when
c2 > 0, that is, when:

a >

√
2gI1
Md

− p2ψ
2M2d2

i.e.,

pψ >

√
4Mgd I1 − 2M2d2a2 (15)

Note that for a = 0, this condition reduces to Eq. (13),
the already known condition for the unforced top. Next,
expanding the effective potential function about θ0 = π

with the condition pφ = −pψ , we obtain:

Ueff = c1 + c2 (θ0 − π)2 + · · ·
where c1 = −Mgd − (Mda)2

4I1

& c2 = p2ψ
8I1

+ (Mda)2

4I1
+ 1

2
Mgd

c2 > 0, i.e., the downwards state is stable for all values
of a and pψ .

3.2 Non-trivial solutions: “skewed sleeping top”
states

To investigate the existence of non-trivial equilibrium
states for the leading order nutation dynamics, we look
for equilibrium points, other than θ = 0 and θ = π .

Such states will correspond to d2θ0
dt2

= 0 and dθ0
dt = 0,

i.e., to values of θ0 that satisfy the following algebraic
equation:

pψ

(
pψ cos θ0 − pφ

)
sin2 θ0

+ cos θ0
(
pψ cos θ0 − pφ

)2 + Mgd I1 sin
4 θ0

−1

2
(Mda)2 sin4 θ0 cos θ0 = 0 (16)

For the spinning top to be in a “skewed sleeping top”
state, that is, to keep a constant nutation angle θ0 = θ∗

0
without precessing, its rate of precession φ̇ needs to
be zero for all time. From Eq. (5), this leads to the
following condition on the parameters pφ and pψ :

pφ = pψ cos θ∗
0 (17)

Plugging this into Eq. (16), we obtain an expression for
the nutation angle corresponding to the skewed sleep-
ing top state:

θ∗
0 = cos−1

(
2gI1
Mda2

)

(18)

It follows that such states exist for:

a >

√
2gI1
Md

(19)

To study the stability of the skewed sleeping top state,
we linearize the system governing θ0 and evaluate its
Jacobian at θ0 = θ∗

0 ,
dθ0
dt = 0 with pφ = pψ cos θ∗

0 , to
get:

J =
⎡

⎣
0 1

− p2ψ
I 21

+ (Mda)2

2I 21
− 2g2

a2
0

⎤

⎦

The corresponding eigenvalues have the following
expression:

λ1,2 = ±
√
a4d2M2 − 2a2 p2ψ − 4g2 I 21√

2aI1

We examine the function that is under the square root:

f = a4d2M2 − 2a2 p2ψ − 4g2 I 21

This is a quadratic function in a2 with a positive coef-
ficient of a4 and has a minimum value of:

fmin = − p4ψ
M2d2

− 4g2 I 21 < 0

with two possible roots that correspond to:

a1,2 =

√√
√
√±

√
p4ψ + 4M2g2d2 I 21 + p2ψ

M2d2

This means that f < 0 for a2 < a < a1, and conse-
quently, the eigenvalues are pure imaginary for these
values of a. We thus conclude that the skewed sleep-
ing top states exist and are stable when the following
condition is satisfied:

√
2gI1
Md

< a <

√√
√
√ p2ψ +

√
p4ψ + 4M2g2d2 I 21

M2d2
(20)

In summary, the analysis predicts that the spinning
top, under the influence of the fast vertical vibration,
will behave as if it had an apparent equilibrium state
described by (θ = θ∗

0 , φ̇ = 0), when the parameters
are chosen to satisfy conditions in Eqs. (17) and (20).
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770 H. Sheheitli

3.3 Exact solution for the leading order nutation

We observe that Eq. (12) governing θ0 represents a one
degree of freedom systemwith an effective total energy
function given by:

Ē = 1

2
I1θ̇

2
0 +Ueff

= 1

2
I1θ̇

2
0 +

(
pφ − pψ cos θ0

)2

2I1 sin2 θ0

+Mgd cos θ0 − (Mda)2

4I1
cos2 θ0

which can be written as:

E = θ̇20 + (η − κ cos θ0)
2

sin2 θ0
+ ν cos θ0 − ρ cos2 θ0

where η = pφ

I1
, κ = pψ

I1
, ν = 2Mgd

I1
,

ρ = 1

2

(
Mda

I1

)

We define the new variable u = cos θ0, then the above
expression for E can be rewritten as:

E = u̇2 + ρu4 − νu3 +
(
E + κ2 − ρ

)
u2

+ (ν − 2ηκ) u + η2,

i.e., it is of the form:

E = u̇2 + V (u)

where V (u) = A1 + B1u + C1u2 + D1u3 + F1u4

with A1 = η2, B1 = ν − 2ηκ, C1 = E + κ2 − ρ

D1 = −ν, F1 = ρ

This represents an anharmonic quartic potential oscil-
lator, for which the exact solution is given in terms of
the Jacobi elliptic functions [7]. We first translate the
system coordinate to u0 which is a local minimum of
the potential function V (u). u0 is the root of the first
derivative of V (u), i.e., the solution to:

B1 + 2C1u + 3D1u
2 + 4F1u

3 = 0

If three real roots exist, u1 < u2 < u3, then u0 = u2.
With the new translated coordinate x = u − u0, the
energy expression becomes[7]:

E∗ = ẋ2 + Ax2 + Bx3 + Cx4 (21)

where A = E + κ2 − ρ − 3νu0 + 6ρu20, B = −ν +
4ρu0C = ρ, E∗ = E − (

A1 + B1u0 + C1u20 + D1u30
+F1u40

)
.

Equation (21) is separable and leads to:
[
E∗ − Ax2 − Bx3 − Cx4

]−1/2
dx = dt

Fig. 1 Schematic of the
shape of the spinning top

which we rewrite as:

[(x − a) (x − b) (x − c) (x − d)]−1/2 dx = |C |1/2 dt
(22)

where a, b, c and d are the roots of Ax2+Bx3+Cx4 =
E∗. The full details of the integration of Eq. (22) are
given in [7]where it is reported that the general solution
has the form:

x =
[
α + βpqe (ωt;m)

]

[
γ + δpqe (ωt;m)

] (23)

pq represents one of the Jacobi elliptic functions, the
choice of which, along with α,β,γ ,δ and e, is specified
in terms of a, b, c, d and the x range of interest. The
reader is referred to [7] for the full details.

4 Numerical validation

Without loss of generality, we choose the spinning
top to have the shape illustrated in Fig. 1, with a
4 kg disk of 1 m radius and 10 cm thickness, and
a 0.8 kg rod with 20 cm radius and 50 cm length.
This leads to the following values for the physical
parameters: I1 = 1.438 kgm2, I3 = 2.016 kgm2,

d = 0.2917m, M = 4.8 kg.
We start by validating the presence and stability of

the “skewed sleeping top” states, and at the same time
we compare the exact solution obtained by numeri-
cal integration of the full non-autonomous system to
the approximate closed form solution that is given in
Eqs. (8), (11) and (23). The initial condition specifies
the choice of the Jacobi elliptic function and the values
of the constants that appear in Eq. (23), as reported in
the caption under each corresponding plot. For brevity,
the algebraic details of the involved computations are
not presented here as the process is fully detailed in [7].

In Fig. 2, we choose pψ = 9 for which the analy-
sis predicts that the “skewed sleeping top” state exists
and is stable for 4.49 ≤ a ≤ 9.34. We take a = 5,
which corresponds to θ∗

0 = 0.633 and a required value
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Fig. 2 Comparison of numerical integration solution (red-
solid line) to the approximate closed form solution (blue
dotted line) when the “skewed sleeping top” state is sta-
ble. Initial condition: (θ̇ (0) = 0, φ̇ (0) = 0, φ (0) = 0.5)
and θ (0) as specified under each figure. parameter val-
ues: pψ = 9, pφ = pψ cos

(
θ∗
0

) = 7.255, a = 5,
ε = 0.005 (dotted black line represents the value of θ∗

0 ).

a θ (0) = 0.604, θ0 (t) = θ∗ = 0.633. b θ (0) = 0.648;
pq ≡ cn, e = 1, α = −5.6 × 10−4, β = −0.059,
γ = 3.43, δ = 0.016, w = 5.91,m = 7.9 × 10−5.
c θ (0) = 1.177; pq ≡ cn, e= 1, α = − 0.0099, β= −
1.02, γ = 3.51, δ = 0.16, w = 6.02,m = 0.025. d θ (0) = 2.34;
pq ≡ cn, e = 1, α = 0.384, β = −6.96, γ = 8.17, δ =
−0.216, w = 14.05,m = 0.043. (Color figure online)

of pφ = pψ cos
(
θ∗
0

) = 7.255. The prediction is that
for this choice of a and pφ , if we start at the nuta-
tion angle corresponding to θ∗

0 with any arbitrary initial
φ value, the spinning top remains locked at its initial
position while merely undergoing an O (ε) fast oscil-
lation in its nutation angle. The plot in Fig. 2a con-
firms this prediction. To be more accurate, we point
out that since the error in the approximate θ solution

is of O
(
ε2

)
, then for the “skewed sleeping top” solu-

tions φ̇ = 0 + O
(
ε2

)
; this means that while the top

practically appears to be locked without any preces-
sional motion, it is actually drifting at an extremely
slow rate.

We note that from Eqs. (8) and (11), it follows that
for a desired initial θ0 value, θ0 (0), the corresponding
initial condition for θ is:
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772 H. Sheheitli

θ (0) = θ0 (0) − ε
Mda

I1
sin θ0 (0)

Figure 2b shows that if we start close enough to the
“skewed sleeping top” state, the spinning top is locked
to oscillate about its initial φ position. As the initial
condition is chosen to be even farther from the θ∗

0 state,
the nutation oscillation grows bigger and more asym-
metric (Fig. 2c, d) and the top drifts into a nonuniform
precession.

It is worth noting that in all the shown results, the
exact and approximate solutions almost entirely over-

lap and hence the subsequent Figs. 3 and 6 show a
zoom in on the plots to make the comparison clearer.
DPM assumes ε << 1, so the smaller ε is, the
greater is the validity of the approximate solution;
Fig. 4 shows sample results for larger values of ε.
While there is no exact cutoff for the required ε value,
DPM assumes that εθ1 = O (ε) such that the ampli-
tude ε Mda

I1
= O (ε); hence, this sets a guide on how

big ε can be for a chosen set of the physical param-
eters: M, d, a and I1. For the values chosen here,
ε = 0.02 gives εθ1 an amplitude ≈ 0.21 which is
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Fig. 3 Zoom in on solutions in Fig. 2. a Solution in Fig. 2a. b Solution in Fig. 2b. c Solution in Fig. 2c. d Solution in Fig. 2d. (Color
figure online)
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Fig. 4 As in Fig. 2, for different ε values. a, b correspond to starting at θ0 (0) = θ∗
0 ; c, d correspond to starting at θ0 (0) = 1.2. a

θ (0) = 0.604, ε = 0.01. b θ (0) = 0.575, ε = 0.02. c θ (0) = 1.154, ε = 0.01. d θ (0) = 1.109, ε = 0.02. (Color figure online)

close to O (1); hence, the assumption breaks down and
we see in Fig. 4b, d that the discrepancy between the
exact solution and the predicted solution becomesmore
pronounced.

In Figs. 5 and 6, we also take pψ = 9 but with
a=11 which corresponds to θ∗

0 = 1.403. With pφ =
pψ cos

(
θ∗
0

) = 1.499, the “skewed sleeping top” state
exists but is unstable. Figure 7 shows the phase por-
trait for the θ0 dynamics for the two sets of parameters
used. While for a = 5, it is filled with closed orbits
about the θ∗

0 center, we can see that for a = 11, the θ∗
0

state has lost stability through a pitchfork bifurcation.

The two centers that emerge after the loss of stability
correspond to uniform precession solutions in which
θ0 remains constant (Fig. 5c, d). Also, solutions start-
ing close to θ∗

0 , move away from it and instead oscil-
late about the uniform precession solutions (Fig. 5a,
b).

We next look at the stability of the classical “sleep-
ing top” state which corresponds to θ = 0. For the
chosen parameters, with a = 0, the “sleeping top” is
stable for pψ ≥ 8.88 (Eq. 13). We choose pψ = 5;
then the analysis predicts that the high-frequency exci-
tation stabilizes the “sleeping top” statewhena > 3.71.
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Fig. 5 As in Fig. 2, but with pφ = pψ cos
(
θ∗
0

) = 1.499 and
a = 11 for which the “skewed sleeping top” state is predicted
to be unstable. a θ (0) = 1.45; pq ≡ sn, e = 2, α = −0.349,
β = 0.24, γ = 0.482, δ = 0.627, w = 2.4,m = 0.427 b
θ (0) = 1.252; pq ≡ sn, e = 2, α = 0.047, β = 0.0255,
γ = 0.476, δ = −0.288, w = 2.371,m = 0.468. c θ (0) =

1.05; pq ≡ sn, e = 2, α = 0.1397, β = 1.79 × 10−4, γ =
0.478, δ = −9.73 × 10−4, w = 2.619,m = 1.06 × 10−3. d
θ (0) = 1.95;pq ≡ cn, e = 1, α = −1.002, β = −2.68 ×
10−5, γ = 1.917, δ = −5.83× 10−5, w = 7.26,m = 0. (Color
figure online)

Figures 8 and 9 confirm this; for a smaller than the crit-
ical value, solutions with initial θ values near 0 move
away from it (Fig. 8a, b), however, as a is increased
past the critical value, starting near 0 leads to oscilla-
tions about 0 (Fig. 9a, b). θ remains positive in these
solutions since θ , as defined in the Euler angles coordi-
nate system, has the range [0,π ]. However physically,

these latter oscillations correspond to the top oscillat-
ing about the upright “sleeping top” position and hence
confirm its stability.

Interestingly, there exist values of pψ and a, for
which both the classical “sleeping top” and the “skewed
sleeping top” states are stable. In such a case, start-
ing from the θ∗

0 initial position could lead either to
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Fig. 6 Zoom in on solutions in Fig. 5. a Solution in Fig. 5a. b Solution in Fig. 5b. c Solution in Fig. 5c. d Solution in Fig. 5d. (Color
figure online)

an oscillation about the upright “sleeping top” posi-
tion (Fig. 10a) if pφ = pψ or to being locked in
the “skewed sleeping top” state if pφ = pψ cos

(
θ∗
0

)

(Fig. 10b).
Finally, it is worth noting that the system studied

here does not take into account any dissipative effects
and so the apparent equilibrium states referred to here
as stable are in fact only marginally stable, with purely
imaginary eigenvalues. To check whether these states
would persist to be asymptotically stable in the pres-

ence of dissipation, we perform a simple numerical test
by adding linear viscous damping into the system. We
assume a simple dissipation function of the form:

F = 1

2
μθ θ̇

2 + 1

2
μφφ̇2 + 1

2
μψψ̇2

The resultingLagrange’s equations governing theEuler
angles of the spinning top become:

I1θ̈ + (I3 − I1) φ̇2 cos θ sin θ + I3ψ̇φ̇ sin θ

−Md (g − z̈) sin θ + μθ θ̇ = 0
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Fig. 7 Phase portrait for the θ0 dynamics with pφ = pψ cos
(
θ∗
0

)
; pψ = 9. a a = 5, pφ = 7.255, θ∗

0 = 0.633. b a = 11, pφ =
1.499, θ∗

0 = 1.403
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Fig. 8 As in Fig. 2, but for different values of a, θ (0) near 0
and pψ = pφ = 5. a a = 1; θ (0) = 0.0995; pq ≡ sn, e = 2,
α = −50.96, β = 50.86, γ = 37.67, δ = 1.35, w = 2.46,

m = 0.996. b a = 3.6; θ (0) = 0.0982; pq ≡ sn, e = 2,
α = −0.262, β = 0.258, γ = 0.235, δ = 1.11, w =
0.634,m = 0.974. (Color figure online)

φ̈
(
I1 sin

2 θ + I3 cos
2 θ

)
− 2 (I3 − I1) φ̇θ̇ cos θ sin θ

−I3ψ̇ θ̇ sin θ + I3ψ̈ cos θ + μφφ̇ = 0

I3ψ̈ + I3φ̈ cos θ − I3φ̇θ̇ sin θ − μψψ̇ = 0

Solving the last two equations for φ̈ and ψ̈ , we obtain:

θ̈ =
(

1 − I3
I1

)

φ̇2 cos θ sin θ − I3
I1

ψ̇φ̇ sin θ

+Md

I1
(g − z̈) sin θ − μθ

I1
θ̇

φ̈ =
(
I3
I1

− 2

)

φ̇θ̇
cos θ

sin θ
+ I3

I1

ψ̇ θ̇

sin θ

+μψψ̇
cos θ

I1 sin2 θ
− μφ

φ̇

I1 sin2 θ
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Fig. 9 As in Fig. 8. a a = 3.8;θ (0) = 0.0982; pq ≡ sn, e =
2, α = 0.0189, β = 2.96 × 10−4, γ = 0.173, δ = 4.99 ×
10−3, w = 0.551,m = 0.024. b a = 5; θ (0) = 0.0976;

pq ≡ cn, e = 1, α = −2.22 × 10−5, β = −6.67 × 10−3,

γ = 2.67, δ = 4.45 × 10−3, w = 4.596,m = 7.25 × 10−7.
(Color figure online)
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Fig. 10 As in Fig. 2, but with θ (0) = 0.6188, a = 5; pψ and pφ as specified under each figure. a pφ = pψ = 5. b pφ = pψ cos
(
θ∗
0

) =
4.03. (Color figure online)

ψ̈ = φ̇θ̇ sin θ −
(
I3
I1

− 2

)

φ̇θ̇
cos2 θ

sin θ
− I3

I1
ψ̇ θ̇

cos θ

sin θ

−μψψ̇
cos2 θ

I1 sin2 θ
+ μφφ̇

cos θ

I1 sin2 θ
− μψ

I3
ψ̇

We can see in Fig. 11a–c that starting in the neigh-
borhood of the “skewed sleeping top” state, the sys-

tem settles onto it when friction only depends on the
nutation and precession angular velocities. Figure 11d
shows that the dynamics are more complex when the
dissipation also depends on the spin angular velocity.
We can see the system first approaching the “skewed
sleeping top” state but then drifting away from it toward
the upright position. Figure 12 shows that this latter
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Fig. 11 Numerical integration solution for the dissipative sys-
tem for different dissipation parameter values. The initial con-
ditions used are the same as in Fig. 2b. a μθ = 0.5, μφ = 0,

μψ = 0. b μθ = 0, μφ = 0.5, μψ = 0. c μθ = 0.5, μφ = 0.5,
μψ = 0. d μθ = 0.5, μφ = 0.5, μψ = 0.01

behavior is due to the spin angular momentum, pψ ,
decreasing and simultaneously pφ increasing such that
the system approaches the upright equilibrium position
which corresponds to pφ = pψ . This latter observation
can be understood by the fact that as the top looses its
spinning motion due to friction, its dynamics approach
that of a pendulum under fast vertical vibration, for
which the upright position is rendered stable [9]. The
full study of the effects of dissipation on the dynamics
is beyond the scope of this paper and will be left for
future work.

5 Conclusion

In summary, we investigated the dynamics of a spin-
ning top whose pivot point undergoes a fast vertical
harmonic vibration. The method of Direct Partition of
Motion was employed to reduce the non-autonomous
dynamics into an autonomous second degree system
governing the leading order slow nutation dynamics.
Consequently, an approximate closed form solution for
the full system is obtained in terms of the Jacobi elliptic
functions. The analysis shows that the high-frequency
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Fig. 12 The evolution of pφ (blue dotted line) and pψ (black
solid line) for the solution in Fig. 11d

excitation can stabilize the classical “sleeping top”
state and the minimum required excitation amplitude is
derived in terms of the physical parameters of the sys-
tem. In addition,we shed light onnovel non-trivial solu-
tions that result from the high-frequency excitation, in
these “skewed sleeping top” states, the spinning top is
locked at a constant leading order nutation angle with-
out any precessional motion. The results were success-
fully checked against the exact solution obtained from
the numerical integration of the full non-autonomous
system. We hope these results will encourage further
investigation of the non-trivial effects of different forms
of fast excitation on the dynamics of spinning rigid bod-
ies.
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