X
¢

CONCURRENT BIST COST ESTIMATION DURING
DATA PATH ALLOCATION

by

MAYA KODEIH

Submitted in partial fulfillment of the requirements
for the Degree of Master of Science

Thesis Advisor: Dr. Haidar M. Harmanani

Department of Computer Science
LEBANESE AMERICAN UNIVERSITY
November 2002

LEBANESE AMERICAN UNIVERSITY

GRADUATE STUDIES

We hereby approve the thesis of

MAYA KODEIH

candidate for the Master of Science degree*.

(signed)

Dr. Walid Kairouz

Date: _El_\o_‘lﬂ,_'].a.c}_

*We also certify that written approval has been obtained for any proprietary material
contained therein.

I grant to the LEBANESE AMERICAN UNIVERSITY the right to use
this work, irrespective of any copyright, for the University's own purpose
without cost to the University or to its students, agents and employees. 1
further agree that the university may reproduce and provide single copies
of the work, in any format other than in or from microforms, to the public

for the cost of reproduction,

CONCURRENT BIST COST ESTIMATION DURING DATA PATH

ALLOCATION

ABSTRACT

by

MAYA KODEIH

The increase in density that the advent of Very Large Scale Integration (VLSI) has
allowed made the move to higher levels of design abstraction imperative. High Level
Synthesis emerged as a result; however, most solutions 1) were not optimal; 2) did not
incorporate testing at the system level. Recently, a new trend in high-level synthesis
has emerged, with researches being aware of the importance of testability at the
system level,

In this work we introduce a method for concurrent BIST cost estimation during
testable data path allocation. A basic feature of this method is the integration of
testability in the design process. The main objective is to develop a system-level
synthesis tool set mapping a behavioral description onto an optimized and testable
RTL design subject to user-defined constraints. The method considers test points cost
concurrently with design cost. In order to measure the performance of our method,
we use six data flow graphs which are widely adopted for benchmarking high-level
BIST synthesis.

il

iii

To my husband and children

ACKNOWLEDGMENTS

I would like to thank my Thesis advisor Haidar Harmanani for his guidance
throughout my M.S. studies. Thanks is also due to Dr. Nashaat Mansour and to Dr.
Walid Kairouz for being on my Thesis committee.

I'would like to express my sincere gratitude to the Lebanese American University
whose financial support during my graduate studies made it all possible,

Finally, I would like to thank my family for their patience and their long support.

iv

Contents

L INErOQUCHION. .cvvuiiiiiiiiiiiiiiiiiiirrereenerereeeeneneeeseesessessesssennnrrnnesonssnnes 1
1.1. Synthesis: From Concept to STHCON.vvueeeeieee e, 2
1.2. The Design and Test PIOCESS.uuviiueiie e 5

1.2.1. Scheduling in High-Level Synthesis...............ovvueeevneiuiiiiinniii, 6
1.2.2. Allocation in High-Level Synthesis...............cvvveeuiieinsieiesini, 8
1.2.3. Modeling vs. DESIZN.uuiviiriiniiiie e 9
1.2.4. Testing for VLSI Built-In Self-Test...........uvvvevneineeeeiisieei, 10
1.3. Illustrating High-Level Synthesis using An Example............................ 12
1.4. Design For Testability..............couviiiiiiiiiiiiii e 16
15, Built-TIn Self TESt.......covvvuiniriieiiieii et 18
1.6. Design and Test Tradeoffs..............occoueiiieneeeeeiiee e, 19

2. Review Of Literature.......covivuruiiineerunieruieneruneersneenessenessenesssneesssnnnns 21
2.1. Allocation TeChIqUES.covviiviie i 21
2.2. Allocation Technique Reducing Area Overhead...................coovvivnii.l 23
2.3. Allocation Techniques Based on ILP...............oouvniiiniiienineiiiiiii 24

3. Concurrent BIST Cost EStIMAation......cceceeeiereunererrneireunseereeneeeennnseennns 28

3.1. Testable Data Path Synthesis...........c..coocoiiiiiiiiiiiiiiii e 29

3.1.1. BIST Methodology.......cooiviiiii e e 29
3.1.2. Data Flow Synthesis........c.ccovviviiiiiiiiiiiiiii e reee e 29
3.1.3. Module Allocation Graph.............ccooviiiiiiiiiiiiiiiicees 30
3.1.4. Resources Allocation with Testability Consideration.................... 30
3.2. Concurrent BIST Points Selection.............ccooiviiiiiiiiiiiiiiiiinnn 31
3.2.1. Testability Tradeoff Model at the System Level.......................... 31
3.2.2. Data Path Representation...........c.ccooviiiiiiiiiiiiiiiii e e, 33
3.2.3. Pseudo-Merge of two TFBS.......ccciviiiiiiiiiiiciiic e, 34
3.2.4. Select Input Re@isters.c.viiriiiiiirii e e 34
3.2.5. Select Output RegiSters........cvvvviriiiiiiiiiereiie e 34
3.2.6. Self-Loop Breaking...........cooviiiiiiiiiiiiiiii i e, 36
4. Experimental Results.......cccoivieriiiniiiiiiiiiiiiiiiiciiiiiiiiiiciiinciicssessnsesenes 40

vi

4.2. 6" Order FIR Filter............ccoveviuiiririeirisieseeeeee e, 42
4.3. 3" Order IIR Filter Cascade CONNECHON.cveeevveeeeseesoosee 43
4.4. 6-Tap Wavelet FIMer............cooiiiiiiiii e, 45
4.5. 4-point Discrete Cosine Transformation (DCT)...........c.uvvvveeneenivnann..., 45
46, TSENG....uieiiit i 46
4.7 Paulin.. ..o 46
A8 RESUIS. ...ttt 47
S 1) T 1T | T PO 52
6. Bibliography.........ccucvuiiiiiiiiiiiiiiiniiniienriuiiiieinrenreseesressessnssensennssnn 53

vii

List of Figures

1.1 Design abstraction 16Vels..............oeeiuiiuneinien e 4
1.2 A hypothetical Silicon Compiler Design FIoW............oovueivunsiise 4
1.3 Scheduled Data FIOW GIaphc.uiuniiieiieinie e 7
1.4 Top-down design floW............coooviiiiiiii i 10
1.5 Input behavioral specification or algorithmic model.................coovveveeiiiii, 13

1.6 a) The data flow representation of the algorithmic model, b) the module library

indicating the speed and cost of SPecific TESOUICES.vvevevveeeeeeeie 14
1.7 An RTL implementation, data-path Structure......................ooevvunevvunnee, 14
1.8 Testing a circuit using BIST.............oiiuuiiiunieiie e 18

3.1. (a) Self Testable ALU with Self-Adjacent register, (b) Non-Testable ALU with

Self-Adjacent TEGISEIS.viuunieii e 29
3.2. Basic model for testability tradeoffs.............vveeevuneieeeieee 32
3.3. Merging ProCedUIe.ccvuuueiirneiiie e et 32
3.4. (a)Example DFG, (b) Corresponding MAG..........cooviuesiueeeees 33
3.5 Paths that may cause functional Self-I00PS..........c...vevueeereeseeioeeiieee, 36
4.2 A 6™ order FIR fIter............ocvoieeseeeee oo 42
4.2. Data flow graph for the 6™ order FIR filter................cccvvveeoeeeoo 43
4.3. Data flow graph of a 3™ order IIR filter (cascade connection)....................... 44
4.4. Data flow graph of a 6-tap wavelet filter.................c.c..ooveiieriiieii 45
4.5 Data flow graph of a 4-point discrete cosine transformation.......................... 46
4.6. Data flow graph of TSENg..........oiuuuuiiinn e 46
4.7 Dz;ta flow graph of Paulin............oooooiuiiiiiiiiiiiii oo 47

viii

List of Tables

1.1 State-Table, or "Controller"...........oouinie e, 15

4.1. Characteristics 0f the CITCUItS.oiviiniiniii e, 41
4.2 Number of transistors of 8-bit test registers and multiplexers................... 42
4.3 Results from the FIR filter.............ocooiiiiiiiiiii e, 48
4.4 Results from the ITTIR3 filter...........ccooviiiiiiiiii e 49
4.5 Results from the wavelet 6 filter..................o.oooviiiiiiiiie e, 49
4.6 Results from the DCT4 filter.............cooiiiiiiiiii e 49
4.7 Results from the diffeq Example.................cocoiiviiiiiiiiiiiinni, 50
4.8 Results from the diffeq Example with a different binding........................ 50
4.9 Results from the Tseng Example............oveuiiiiinininieieiiieeeeneieenannns 50
4.10 Results COMPATISOIIS.cvuivniiitiiteieeieiie i i e eee e e e eeenas 51

ix

Chapter 1

Introduction

Computer design aids for digital systems began as programs performing the routine
tasks of bookkeeping. As designs grew, reliable analysis and optimization programs
evolved to aid in the design process. This design complexity raised the level of
abstraction at which integrated circuit is designed; thus, moving the designer to higher
levels, releasing him of the details of the logic and circuit level. High-level synthesis
(HLS) of digital systems is one step in the design process. It consists of transforming
a behavioral (algorithmic) description of a design into a register transfer level
description of the design. The HLS process is divided into the following three
subtasks: 1) operation scheduling; 2) resource allocation; 3) resource binding. The
operation scheduling assigns each operation in the design to a time step in which it
will be executed. Resource allocation determines the types (e.g., adder, multiplier, or
register) and the number of these types of resources that should be included in the
design. Finally, Resource binding determines which resources should be used to
implement each specific operation. Recently, a new trend in high-level synthesis has
emerged, with researches being aware of the importance of testability at the system
level. In this chapter we discuss the synthesis process in general and high-level
synthesis in particular. In addition, we describe design for testability along with our
approach to integrate both the design and test process at the system level. We later

present the research motivation and the Thesis organization.

1.1. Synthesis: From Concept to Silicon

The design of electronic circuits can be tackled at various levels of abstractions,
dealing with designs at different domains. The design process at each domain
requires the development of specific tools to support and automate the various stages.
This, every electronic system can be described at the behavioral domain, structural
domain and physical domain. The behavioral domain describes the intended behavior
of the system without any reference to the implementation. The structural domain
deals with the system as a hierarchy of functional elements. Finally, the physical
domain describes the structure as it is mapped to physical components.

The various design domains are best illustrated using the Y-chart shown in Figure
1.1, first introduced by [GaKu83]. Thus, every design can be described as a point
along the three axes, with more abstract levels at the periphery, and all the levels
converging to a common center point. Using the Y-chart, we define synthesis as the
transition from the behavioral domain to the structural one. Depending on the
behavior level of abstraction, the outcome of the synthesis process varies. The input
to the synthesis process is described behaviorally, in terms of a hardware language
while the output is defined in terms of structural components. Each component is
defined by its own behavioral description which can be obtained through synthesis on
a lower abstraction level. The ultimate goal of the synthesis process is to fully
automate the design process — that is the transformation from behavior to structure. A
software system that can provide this transformation is called a silicon compiler. The
design flow of a hypothetical silicon compiler is illustrated in Figure 1.2. The system
consists of a "pipeline" of synthesis tasks at various levels of abstractions. Every task

is subsequently divided into subtasks which serve as a vehicle to introduce design

2

steps into synthesis and to provide a top-down design methodology. We distinguish

among the following synthesis processes:

System level synthesis which partitions the system into subsystems consisting
of a set of communicating concurrent processes together with a behavioral
description at the algorithmic level.

High-level synthesis which generates a register-transfer level (RTL)
description of a data path and a controller from an algorithmic description that
defines the precise procedure for the computational solution of a problem.
Logic level synthesis which generates a gate level hardware from a Boolean
equations description. The logic synthesis task includes logic optimization
through logic minimization, aiming at minimal area, in terms of number
literals.

Technology mapping which generates a physical implementation of an abstract
network through library and technology mapping. In general, technology
mapping is done at the logic level by covering the network with cells, resulting
in different areas and delay values. However, some approaches perform
technology mapping at the RTL level, after high-level synthesis; thus mapping

RTL components to macro-blocks.

Behavioral System level Structural

..............

......

Domain Domain

...........
......

System Spec_ W ", CPU, Memory

Algotithm W e
Register-T F&“E!'SfEI' S‘]‘;@E - P - J‘\LU Reg, Nﬁl}g
aniemz Equa‘nrm ; Gate thﬂ'{rp
lefemntxgl Equa’rmn ; 'E‘fmmstur

Pmc:ez-sor, Sabwystem

......

- Rectaqg!eipalygun—ﬁmup

Siandardwﬁgefifﬁubaeli ; :

........

Maero-C ;*.E-I'

",
.
....
.......

Block/Chip

Physical’'Geometrical
Domain

Figure 1.1: Design abstraction levels

{ Concept ’

System Level High-Level Luogie Synthesis &
Synthesis Synthesis Technology Mapping
{ Silicon ’

Figure 1.2: A hypothetical Silicon Compiler Design Flow

As the complexity of systems increase, so will the need for synthesis tools and design
automation on higher, more abstract levels where functionality and tradeoffs are
easier to understand. Note that the terms specification and description will not be

used interchangeably in this Thesis; the first term will be used to describe the

behavior in terms of results while the latter will be used to describe the behavior in

terms of procedure.

1.2. The Design and Test Process

Design and test are commonly viewed as being two sides of the same coin [Agra91].
The design process is quite mature at the logic and layout levels due to many existing
professional tools for design synthesis and simulation. Due to the complexity in
current VLSI technology, the field of high-level synthesis has recently emerged to
address the need of design methods and techniques at the register-transfer level (RTL)
[McPC90]. The aim of high-level synthesis is the automatic generation of an RTL
design (data path/controller) from a behavioral level description, subject to a set of
constraints. The actual circuit layout can be later generated using a silicon compiler.
Currently, there are several such tools [DeMi90, Jain89, Thom88, Marw86, Raba88].
The behavioral synthesis of digital systems is a computationally intractable problem
since most its sub-problems are known to be NP-hard or at least NP-complete. Thus,
the synthesis process is further partitioned into subtasks. Two major subtasks in high-
level synthesis are operations scheduling and resources allocation. This complexity
means basically that 1) most designs are not optimum; 2) there is often room for
improvement by restricting the design space and moving in the right direction.

Just as with the design process, the test process, particularly test generation, has
matured at the logic and circuit levels. For example, there are several tools for test
generation, including some recent ones based on logic synthesis techniques [DAC90].
It has been estimated that the cost of testing and diagnostics goes at a higher rate than
a factor of 10 per level [WiPa83]. This makes test considerations and solutions very

attractive at the system level and makes design for testability especially important.
5

Two points have become clear: a) DFT is particularly important at the RTL or system
level of the design hierarchy to achieve good test quality [WiPa83], b) DFT increases
the chip cost due to the extra silicon area and may imply a performance degradation
as well.

Thus, there is a tight relation between design and test, and tradeoffs between
both disciplines can be best addressed if they are integrated in a system level design
environment. This would result in various solutions and styles under various design
constraints in a very short turnaround time. However, traditional design and test
methodologies at the system level have always separated the two processes. Test is
usually done as a post-design process, i.€., after the completion of the design process.
To consider the testing issues only after the design has been completed leads to
delays, designs which are hard to test and more area overhead than necessary. We
describe next the synthesis process and propose later our view for testability at the

system level.

1.2.1. Scheduling in High-Level Synthesis

In this section we talk in more detail about scheduling. Scheduling in high-level
synthesis assigns the operators in the DFG to control steps that represent the clock
cycles in the final design. The scheduling phase affects greatly the following factors
in the final design:

1. The design timing: Scheduling fixes the overall timing of the design,
illustrated by the maximum number of control steps. This determines the
overall design performance.

2. The number of resources: While the cost of a design cannot be determined

until allocation, the scheduling phase determines a lower bound on the number

6

of functional units and registers. The lower bound on functional units is the
maximum number of a given resource scheduled concurrently at a given time
step. The lower bound on the number of registers is the maximum number of
data flow transfer which crosses the boundary of a given time step in the
schedule.

Thus, one of the tasks of scheduling is to minimize the length of the schedule
while minimizing the number of resources. One of the difficulties in scheduling is
operators dependency which requires that an operator that produces a value be
scheduled before an operator which consumes this value. When the two operators are
scheduled in different control steps, this will imply that the result must be stored in a
register until it is used. Furthermore, scheduling has to deal with control operations
such as conditionals, loops and subroutines. Figure 1.3 shows the transformation of

the DFG from Figure 1.6 to a Scheduled data flow graph (SDFG).

Figure 1.3: Scheduled Data Flow Graph

1.2.2. Allocation in High-Level Synthesis

Data path allocation is concerned with assigning operations and values to hardware so
as to minimize the amount of hardware needed. During allocation, registers are
allocated for variables, operations are assigned to functional units (FU), and
connections which are multiplexers, buses, or a combination of both, are established
between them. The allocation phase is constrained by the control step schedule which
it implements. Thus, all operators in the scheduled DFG must be bound to ALUs;
however, operators which are active simultaneously cannot share the same hardware.
In the same token, values that are active across control steps boundaries are stored in
registers. There may be additional constraints on the design which limit the total area,
total design throughput, or delay.

Allocation techniques can be classified into two categories. The first category
is iterative/constructive where an operation, value or interconnection to be assigned is
selected, and the algorithm then iterates. The other category is based on global
allocation that includes graph heuristic techniques such as in Facet [TsSi86]; branch
and bound techniques such as in Mimola [Marw86] and in Splicer [Pang88] where
additional heuristics are used to reduce the search space and a trade-off with design
quality. Finally, the allocation problem can formulated as a mathematical problem
where a variable is created for each possible assignment of an operation, variable, or
interconnection to hardware element. Constraints are then formulated, and an
objective function that includes area or some other parameters is minimized.

Scheduling and allocation can be accomplished independently like in the Facet

system and in MIMOLA or interdependently like in MAHA, HAL, ADPS, and EIf.

1.2.3. Modeling vs. Design

The first representation of a design is called a model, though it could also be called a
specification. The reason we call the initial design a model is that it is typically the
vehicle for design exploration. The designer may try several different variations of
the model. For example, he may try out different implementations of an algorithm, or
different combinations of resources. It is at this experimentation stage that the most
fundamental decisions about the system are made. Things like how many processors,
which algorithms will be used, which ones go in hardware and which in software,
characteristics of the memory architecture, data connections, all are fundamental
decisions which will shape the eventual implementation of the target design, and
which may be made based on information gained from experimentation with the
initial model. For this reason the initial model is often called an architectural model.
It is a short conceptual step from architectural model to system implementation.
After all, the model is executable, and the target system is executable, so it is just a
matter of transforming one into the other. The rub, of course, is in the details. The
transformation must conform to the design constraints, which may not be captured in
the architectural model. As the constraints are added, as well as the design features
those constraints imply, the model becomes a more precise specification and,
ultimately, a complete representation of the design. This is the very essence of top-

down design Figure 1.4).

Figure 1.4: Top-down design flow

1.2.4. Testing for VLSI Built-In Self-Test

In very large scale integrated (VLSI) circuits, there exists a large device count and a

relatively few input/output pins. This can produce complex structures for which test

generation is difficult and results in long tests with high input/output traffic during

testing. One approach to dealing with this difficult testing problem is to employ

Built-In Self-Test (BIST). In the VLSI environment, desirable goals for BIST are to:

1.

2.

Eliminate as much test generation as possible,
Permit a fairly general class of failure modes,
Permit easy circuit initialization and observation,
Reduce input/output pin signal traffic, and

Reduce test length.

10

Although BIST techniques clearly realize a number of the goals listed, for very large
circuits with extensive BIST resources, the testing time can still be quite long if the
tests for the various parts of the circuits are executed one after the other. In such
cases, in order to reduce testing time and fully exploit the power of the BIST
resources, it is essential to control the testing process so that full use is made of the
potential parallelism available.

In order to develop a perspective for parallelism in BIST, consider the testing
of a block of logic within a VLSI chip. The inputs to the block under test (BUT) must
be stimulated with an appropriate input sequence including initialization steps. The
outputs of the BUT must be observed and the response analyzed to determine if the
block is faulty or not. The observation of the response must typically be coordinated
with the application of the input sequence.

In the typical BIST implementation for testing a block of logic, the original source of
the stimuli is a set of one or more test pattern generators (TPG) and the final
destination of the responses is a set of one or more compressors and/or response
analyzers. It is possible that the test generators and response compressors and/or
analyzers are directly attached to the block under test. Often, however, there is
additional logic lying between the test generators and the BUT and between the BUT
and the response compressors/analyzers. Thus, test control logic must which controls
not only the test pattern generators and response compressors/analyzers but also this
intervening logic. Typically, paths must be established from the test pattern
generators to the inputs of the BUT and from the BUT to the response
compressors/analyzers. In addition, the test control logic must interact with a higher
level of control either on or off the chip. The blocks which are required to perform a

test (test control logic, TPGs, compressors/analyzers, BUT, and any intervening logic)
11

are known as fest resources. Test resources may be shared among BUTs. For

example, testing schemes exist in which the response compressor for one BUT can be

used as an input stimulus, i.e., as a TPG, for another BUT. Also for those blocks

which lie on the periphery of the chip, a portion of the test resources may lie off-chip.

1.3. Tllustrating High-Level Synthesis using An Example

High level synthesis generates register-transfer level designs from behavioral

specifications, in an automatic manner. Traditional high-level synthesis tools accept

as input:

L.

An algorithmic description, or a behavioral specification, that is usually
represented in text by an infinite loop containing a series of procedural
statements to those that might be found in a "C" program. Two popular
languages that are used for algorithmic level hardware descriptions are Verilog
and VHDL.

Design constraints such as cost constraints, performance constraints, power

consumption constraints, pin count or testability constraints, etc.

3. An optimization function.

4. A module library representing the available components at RTL.

As output, synthesis tools produce:

1.

A register transfer level implementation that consists of a set of data-path
resources (e.g., functional-units, registers, and multiplexers), interconnections
between them, and a state-table to indicate the function that each resource is to
perform at any given time.

A controller captured usually as a symbolic FSM.

Other attributes, such as geometrical information.
12

The goal of high level synthesis is to generate an RTL design that implements the
specified behavior while satisfying the design constraints and optimizing the given
cost function. The algorithmic description or behavioral specification is represented
by a procedural and functional language, and is also represented by graphics notations

as shown in Figure 1.5.

PROCEDURE Test;
VAR
a,b,c,d,e.f,ghlxy,zv
BEGIN
Read(a,b,c,d,e.f,g,h,Ix,y,2z,v)
always
x:=a+(b*c)
y=(d+e)
z:=(f<g)
v:=(h<i)

END;

Figure 1.5: Input behavioral specification or algorithmic model.

For easier machine representation and manipulation, the textual algorithmic
specification is typically transformed into a data-flow graph form prior to synthesis.
A simple example to illustrate the algorithmic, register transfer and intermediate data-

flow graph representation is shown in Figure 1.6.

13

+ +

b, c d e f h
& resource op cost speed(ns)
addS 2 75
addF 4 40
mult * 12 150
comp < 2 75
mux 1 10
x y z v

a)Data-Flow Representation b)Module Library

Figure 1.6: a) The data flow representation of the algorithmic model, b) the module

library indicating the speed and cost of specific resources.

Figures 1.5 and 1.6(a) contain the same information but the data-flow
representation is more graphical and is therefore easier to read. It also eliminates
high-level language constructs. Figure 1.6(b) is a primitive module library that
indicates the presence of two adders, an expensive fast adder and a slower less

expensive adder.

N IEIEI

=] [v]

reg1 reg2 reg3 reg4

Figure 1.7: an RTL implementation, data-path structure.

The register transfer level implementation shown in Figure 1.7 is only one of
many possible that properly implements the algorithmic specification using resources
from the given primitive module library. For example, it would be possible to remove

all multiplexers from the design by allocating an extra adder and an extra comparator.
14

The above register transfer level model implements the algorithmic
specification in the following way. In step 1, ful begins to multiply operands b and ¢
while fu2 adds operands d and e and fu3 compares operands fand g. To route the
proper operands to functional units, fu2 and fu3, the multiplexers must be configured
as shown in the first row of the state-table, see Table 1.1. Also in step 1, registers
reg2 and reg3 must be loaded with the new values of y and z coming out of fu2 and
fu3 respectively. In step 2, the multiply operation finishes (it requires more than one
step) and the output is routed to fu2 via mux?2 to be added to a that is being routed to
fu2 via mux1. Also in step2, fu3 is now comparing h and I because the multiplexers
have been re-configured as shown in row 2 of Table 1.1 to route these values to its
inputs. Finally, in step 2, registers regl and reg4 are loaded with the new values for x

and v that are coming out of fu2 and fu3 respectively.

Step Next Step | Ful Fu2 Fu3 Mux1 Mux2 Mux3 Mux4 Regl Reg2 Reg3 Regd
1 2 * + + Right Right Left Left hold load load hold
2 1 * + + Left Left Right Right load hold hold load

TABLE 1.1: State-Table, or "Controller".

Suppose our objective is to find a minimum cost design for a 2-step schedule
length. According to the given primitive module library, the above implementation
satisfies this objective. Thus there are two important goals for traditional high-level
synthesis tools. First, the tool must construct a register transfer level implementation
that complies with the specification. A compliant register transfer level design is one
that implements the functionality specified in the algorithmic description without
violating any design rules — an example design rule is that functional-units can
perform at most one operation in a given control-step. Secondly, a good high-level

synthesis tool attempts to optimize some objective function that includes factors such

15

as area, performance, power, etc. The high-level synthesis problem is typically
divided into a number of sub-tasks which, though each can be performed
independently, are highly interrelated in terms of their affect on overall design quality.
Some of the common sub-tasks are:
® Scheduling: The scheduling problem is to place operations from the data-flow
graph into specific control-steps to satisfy data-dependencies and, sometimes,
global resource constraints. Scheduling was discussed in detail in section
1.2.1.
® Module Selection: The problem of module selection is to determine which
type of resource from the primitive module library will be used to implement
each type of operation in the graph.
® Allocation: The allocation problem is to determine how many instances of
each type of resource will be required, sometimes in response to global
performance constraints. The resources that are allocated include
interconnection components (multiplexers, busses) and registers, as well as
functional-units.
® Binding: The binding problem is to choose which of the allocated resources
will be used to implement operations from the data-flow graph, and which

registers and interconnections will be used to store and transport values.

1.4. Design For Testability

The success with test automation depends on testability. There are two aspects in
testability, visibility and control. Visibility is our ability to observe the states and

outputs of the software under test. Control is our ability to provide inputs and reach

16

states in the software under test. If we take a broader look at testability we find other
aspects within the system to test that have to be ensured in order to have good
testability:

® Operability should be maintained. The better the system works, the more
efficiently it can be tested.

o Controllability of the system is another aspect that we should maintain in
order to have good testability. It means that the input terminals or devices of
the circuit under test can control the output.

* Observability has to be maintained as well. It means that the circuit under test
can be observed at some output terminals or devices. Observability ensures
that what we see is what we get.

* Simplicity of the design has to be ensured. The less there is to test the more
quickly we can test it.

® Understandability of the design also has to be kept. The more information we
have the smarter we test.

* Suitability of the design should be ensured as well. The more we know about
the intended use of the software, the better we can organize our testing to find
important bugs.

* Stability of the system is another addition that we can have. The fewer the
changes, the fewer the disruptions to testing.

Testability Features are features that have been used to improve the visibility or

controllability of the software. Control features include methods such as exception

seeding (Instrument low level I/O code to simulate €ITors), test points, or

17

automatically filing memory. Test points allow data to be inspected, inserted or
modified at points in the software,

Digital testing is concerned with revealing physical defects in circuits by applying
test patterns to the circuit under test (CUT) and verifying the test responses (Figure
1.8). Three main issues are important during testing. The first issue is the fault model
adopted to reveal the faults, The most common and simplistic fault model is the
single stuck-at fault model. The second issue is concerned with fest pattern
generations which could be deterministic, pseudorandom or exhaustive. The last
issue is the fest quality which is usually referred to as Jault coverage. Faylt coverage
is the percentage of modeled faults covered by the applied patterns and it is quantified

by fault simulation,

l Test Patterns Getzerataa
P

Circuit Under Test
(CcuT)

L Signature Analyzer j

Figure 1.8: Testing a circuit using BIST

1.5. Built-In Self Test

The complexity in VLSI design process complicated the testing process of such
systems as well. External equipments were used to generate test patterns which

would be fed to special test input pins of the chip, and the responses would be
18

collected from output pins to be analyzed again by external equipments. However,
the shrinking in design rules, and the significant increases in density and complexity
in VLSI devices made the accessibility to the circuit very hard and made the
traditional test generations and application methods very costly. Design For
Testability (DFT) was an initiative in the computer hardware industry in the 1980's. It
is part of a larger effort called error detection and fault isolation (EDFI). This
required that running systems be able to detect errors and isolate them to originating
components. Design For Testability (DFT) techniques emerged as a solution that
aims at efficient and cost effective testing by enhancing the controllability and
observability of the circuit of the circuit under test. Within the scope of DFT, Built-In
Self-Test (BIST) techniques were proposed, as seen in section 1.2.2. The basic idea
behind BIST is that the generation and verification of test occurs within the logic
itself. Many BIST techniques were proposed such as Built-In Logic Block
Observation (BILBO), store-and generate, syndrome testing, and autonomous testing.
Along with the benefits, there are some penalties for using BIST techniques. These
penalties include a hardware overhead, an additional design cost, an increase in the

pin-count, and a possible degradation in the circuit performance [KiHT88].

1.6. Design and Test Tradeoffs

Incorporating DFT techniques in a given circuit may involve either the resynthesis of
the design if DFT was not considered earlier or modifying the design by inserting
extra hardware. The extra hardware may be in the form of extra logic added to
configure registers as test registers during test mode or be even inserting dummy
structures which will be active only during test mode. This extra hardware will affect

the chip delay and final area. Thus, there is always a limit on how much extra
19

hardware can be inserted and a careful balance must exist between the amount of DFT
used and the gain achieved. Furthermore, increasing the VLSI chip area for testing
purposes results in an increase in power dissipation and a decrease yield [AbBF90].
Since testing is mainly concerned with faults identifications, and decreased yield leads
to an increase in faulty chips produced, again careful balance must be reached
between adding logic for DFT and yield. Normally, yield decreases linearly as chip
area increases. Thus, if the additional hardware required to support DFT does not

lead to an appreciable increase in fault coverage, then the defect level will increase.

20

Chapter 2

Review of Literature

There has been active research on high-level test synthesis that incorporates some
testability features during high-level synthesis. High-level built-in self-test (BIST)
synthesis aims to embed BIST capability for the synthesized circuit. Furthermore,
testing has shifted from external, using automatic test pattern generation, to built-in
self-test (BIST) techniques as millions of transistors are being put on a single chip
with limited I/O making external testing very difficult. With the introduction of BIST
techniques the chip is able to test itself. The problem of reducing area overhead
without sacrificing the quality of the test has become an important area of research.
Incorporating BIST considerations into earlier stages of the design cycle can lead
to a more efficient exploration of the design space, thus resulting in a circuit that
achieves a desired fault coverage with minimal BIST area overhead and meets the

area, throughput and other global requirements.

2.1. Allocation Techniques

One of the earliest high-level BIST synthesis methods was proposed by Papachristou
et al. The approach is based on constraining allocation to generate a self-testable
template, represented by a testable functional block, and hence results in exploring a
small subspace of the testable design space. For their method, operations and
variables are assigned to a testable functional block (TFB), which consists of input
multiplexers, an arithmetic logic unit, and output registers. Also, the approach is to
merge modules, registers ‘and interconnect simultaneously thus not utilizing the

flexibility provided by the separate optimization of these subproblems. The objective
21

of the assignment is to avoid self-adjacent registers (through which the input and the
output of a module form a loop), which are undesirable in BIST due to high area
overhead. Papachristou et al. have combined register and module allocation methods
that generate self-testable designs that either have no self loops or have self-loops in a
specific configuration.

Avra proposed a register allocation method to avoid or minimize self-adjacent
registers in a design based on register conflict graphs. The assumption in this work is
that very self adjacent register needs to be modified to be a BIST register, and thus the
area overhead is high. Two variables of a data flow graph have conflict if they are an
input and output of the same module. The merger of the two variables of a data flow
graph has conflict if they are an input and output of the same module. The merger of
the two variables in a register assignment results in a self-adjacent register, and hence
it should be avoided.

Parulkar et al. investigated a method that maximizes the sharing of test
registers to reduce the area overhead. During the register assignment phase, input and
output variables of a data flow graph are merged to result in maximum sharing of the
registers and to avoid self-adjacent registers. A reverse perfect vertex elimination
scheme is employed to obtain maximal sharing of registers.

For all the methods mentioned so far, reducing area overhead in BIST
synthesis is the main concern. Test time is not a concern in the design process and is
determined from the synthesized circuit through a post process. To reduce test time in
BIST, Harris and Orailoglu examined conditions that prevent concurrent testing of
modules. They identified two types of conflicts, namely, hardware conflict and

software conflict. The synthesis process is guided to avoid such conflicts in the

22

synthesized circuit. They reported that test time is reduced for example circuits

(presumably at the cost of higher area overhead).

2.2. Allocation Technique Reducing Area Overhead

The technique presented by Parulkar et al. target testability and area overhead. A
typical data path design contains registers and functional modules, such as adders
and multipliers that are selected from a predesigned library. One way of testing such
data paths with low BIST area overhead is minimal intrusion BIST. This method
involves the modification of a subset of the functional registers to perform test
functions such that all modules in a data path are tested using pseudorandom patterns.
The methodology used by Parulkar ef al. ensures that each functional module is tested
or covered by BIST resources. The actual fault coverage of a functional module
depends on the logic design of the module and the BIST resources, the seed and the
polynomial chosen, and the number of test patterns. The rest of the data path
comprising of multiplexer paths and registers is very well structured and hence easy
to test using functional patterns. This form of testing that combines pseudorandom
patterns for modules and functional patterns for the rest of the data path, assures a
high fault coverage for the complete data path at very low cost. Depending on the
required BIST functionality, such as generating test patterns and compressing test
responses on-chip, four types of BIST registers can be designed. Each type has a
different area overhead. The goal is to synthesize designs such as the minimal
intrusion BIST methodology can be implemented with low area overhead. The
method of Parulkar et al. starts with a scheduled data flow graph (DFG), where
variables and data transfers are assigned to registers and interconnect in a way that the

functional constraints are satisfied and the area overhead required for BIST is
23

minimal. The assignment is based on two key ideas: (1) sharing of BIST functions
required to test different modules by a register, and (2) minimizing the number of
BIST registers that would be essential in any BIST solution of the synthesized data
path. The assignment techniques are designed to ensure that the Sfunctional area is not
compromised in the quest for low BIST area overhead.

The methodology used for BIST is pseudorandom methodology, therefore,
two test functionalities are necessary on chip: (1) capability of generating
pseudorandom test patterns, and (2) capability of compressing test responses into a
signature. In order to make a data path self-testable minimal intrusion BIST is used,
where a subset of the functional registers in the data path are modified and given self
test capabilities. In minimal intrusion BIST, in the test mode, some of the registers in
the data path are reconfigured to support test pattern generation, some to support test
response compression or signature analysis, and some to perform both of these test
functionalities. The issue of concurrency of these functionalities arises when the
functionalities are performed by the same register. The functionalities of generation
and compression can be performed at different times (nonsimultaneous) or

simultaneously.

2.3. Allocation Techniques Based on ILP

Integer linear programming (ILP) has been used to perform specific tasks in high-
level synthesis. Hafer and Parker pioneered formulating a high-level synthesis
problem into an ILP model in the 1980s. Since then, many researchers investigated
ILP models to address synthesis problems. Various ILP formulations for scheduling

and binding problems are available in the literature. A major advantage of an ILP-

24

based approach is that the obtained solution is optimal though computationally
intensive due to the inherent nature of ILP, which involves an exhaustive search.

The ILP-based approach that is of interest to us is one that performs the three
subtasks involved in register assignment of high-level BIST synthesis; these three
subtasks are system register assignment, BIST register assignment, and
interconnection assignment. Kim e al. proposed an ILP-based method that performs
the three subtasks concurrently to achieve a global optimality. They present ILP
formulations for high-level BIST synthesis with an objective of minimizing the area
for each k-test session where £ is 1, 2... N and N is number of modules. Hence, their
ILP-based method tries to find N optimal (in area) BIST circuits of which a BIST
circuit for a k-test session tests the entire modules in exactly k subtest sessions. This
method offers a range of designs with different optimized area overhead and test time.

A high-level BIST synthesis for the parallel BIST architecture needs to assign
a test-pattern generator to each input port of a module and a signature register to the
output of the module. Kim et al. impose two constraints in their BIST synthesis.
First, test-pattern generators and signature registers are reconfigured from existing
system registers. All test registers function as system registers during normal
operation. Second, extra paths are not added for testing. The constraints are met
through reconfiguration of existing registers into four different types of test registers:
A test pattern generator (TPG), a multiple input signature register, a built-in logic
block observer (BILBO), or a concurrent BILBO (CBILBO). If a register should be a
TPG and a signature register (SR) at the same subset session, it should be
reconfigured as a CBILBO. If a register should behave as a TPG and an SR, but not
at the same time, it should be reconfigured as a BILBO. Reconfiguration of a register

into a CBILBO requires double the number of flip-flops of the register. Hence, it is
25

expensive in hardware costs. The number of subset sessions necessary for a test
session is determined by the number of modules sharing the same SR, because an SR
cannot be shared between modules tested in the same subset session, while a TPG can
be shared between modules as long as each input of a module receives test patterns
from different TPG's. Consider a DFG in which all operators are assigned to N
modules. Through an appropriate register assignment, it is possible that the N
modules can be tested at least once using exactly k subtest sessions where % is L2..
N. Test registers are reconfigured to TPG's and/or SR's in each subtest session, and a
subtest of modules is tested in a subtest session. When a BIST design is intended to
test all of the modules in & subtest sessions, the BIST is said to be a k-test session. As
extreme cases, BIST design for one-test session tests all modules in one subtest
session, while a BIST design for N-test session tests only one module in each subtest
session.

The ILP formulations are for BIST register, which include system registers,
and interconnections assignments. The formulations are solved to minimize an
objective function for each k-test session. In Kim ef al. the objective function
represents hardware area in terms of the number of transistors. Their method
performs the system register assignment, BIST register assignment, and
interconnection assignment concurrently through exhaustive search as we have
mentioned before, and finds an optimal (in area) BIST design for each k-test session.
The method generates N optimal BIST designs, where each design tests the entire
modules in £ subtest sessions.

The objective of an ILP is to minimize an objective function, i.e., cost
function, for the ILP formulations. The cost function to be minimized for the

proposed ILP model represents hardware area (in terms of transistor count). The
26

hardware area is calculated using the number of system registers, SR's, TPG's,
BILBO's, CBILBO's, and n-input multiplexers. The number of transistors for each
type of hardware that have been mentioned is also included in the cost formula. To
compute the value of the cost function it is necessary to compute the number of
individual registers, BIST registers, and multiplexers. Then, the number of registers
is multiplied by the number of transistors used per register.

The major limitation of this method lies in the long processing time for large
designs. Hence, this method in its current form is impractical for large industry
circuits. Kim et al. have investigated a new heuristic method to address the problem.
The heuristic partitions a given data flow graph into smaller regions based on control
steps and applies the ILP for each region successively. The heuristic reduces the
processing time by several orders of magnitude, while the quality of the solution is
slightly compromised. When the heuristic is applied in the discussed method, the

method should be able to handle large industry circuits.

27

Chapter 3

Concurrent BIST Cost Estimation

The testability of a circuit depends largely on its interconnect structure as well as on
the functions of its components. It has been generally recognized that in order to have
a good design quality, there must be a tight coordination between the design and test
processes. Given a behavioral circuit description, there exist different
implementations with various structures. The testability cost may increase or
decrease accordingly. Based on this observation, this work incorporates test
constraints during the design process by tightly integrating the design and test
processes.

The problem we address in this thesis is defined as follows: Given a
behavioral level description of a circuit represented in the form of a scheduled DFG, a
technology library and a set of constraints, generate self-testable RTL data path
structure such that: 1) the datapath conforms to all the user constraints; 2) the
overhead of test registers in the data path is minimized. The proposed method is
based on the following approach:

* A model for the testable synthesis of RTL datapath structures. This is done
through the synthesis of designs with structural properties proven to be good
for testing.

* A test point selection scheme that concurrently explores, during the synthesis

process, designs with low test and design cost.

28

3.1. Testable Data Path Synthesis

3.1.1. BIST Methodology

Assume we have the circuit in Figure 3. 1(a). To be able to test such a circuit, we
allocate the registers at the input ports as TPGRs. Test patterns are collected and
observed at the output port, configured as an MISR. One of the difficulties in
implementing BIST techniques is the register self-adjacency problem Figure 3.1(b)
that is due to the fact that it is not possible to assign a register as both a pattern

generator and a signature analyzer at the same time.

TPGR
TPGR TPGR TPGR TPGR
I S I

Figure 3.1: (a) Self Testable ALU with Self-Adjacent register, (b)
Non-Testable ALU with Self-Adjacent registers

3.1.2. Data Flow Synthesis

Given a scheduled Data Flow Graph (DFG), a DFG node corresponds to 1) an
operator that must be assigned to a functional unit during the control step in which it
is scheduled; 2) a value that must be assigned to a register for the duration of its life
time. Finally, data transfers are assigned to some path of connections, buses and
multiplexers.

The allocation model is based on the notion of structural testability. The key

element of the structural testability model is the Testable Functional Block (TFBs)

29

which are test kernels that do not have any self-loops. In this model, behavioral
operations are mapped onto the ALU of the TFB, while the behavioral variables are
mapped to the register at the TFB output.

Based on the above model, two TFBs are compatible if there is no resource
conflict between the operations of the DFG nodes and if their merger does not result

in self-adjacent registers that will hinder the design structural testability,

3.1.3. Module Allocation Graph

In order to illustrate the compatibility relations among the DFG nodes, we use a
Module Allocation Graph (MAG). This is a directed levelized graph with its nodes
corresponding to ones in the DFG operations and levels to the DF G schedule. An
edge between two DFG nodes in the MAG indicates that both nodes are compatible;
however, node A is scheduled before node B. A given path in the MAG corresponds
to a list of compatible TFBs that can share resources. Clearly, nodes at the same level

are not compatible, i.e., cannot be merged.

3.1.4. Resources Allocation with Testability Consideration

The testable allocation algorithm is an iterative refinement procedure. The method
constructs an Initial Datapath Structure (IDP) that corresponds to an initial design
point through the mapping of DFG nodes onto individual TFBs (Figure 3.4(a)). The
initial
design cost is incrementally improved through the merging of TFBs guided by the
cost difference of the current and the intended data path configuration.

In order to achieve a good design quality in a relatively short time, we use

local cost functions that we associate with every edge or path in the module allocation

30

graph. The cost function includes ALU, multiplexers, registers, and test overhead

cost. The merging algorithm has an order complexity of ON?).

3.2. Concurrent BIST Points Selection

In order to determine the exact effect of the above synthesis operation, we propose a
methodology that takes the design for testability cost into consideration. In what
follows, we describe the tradeoff model and describe the process of BIST cost

estimation BIST during allocation (Figure 3.3).

3.2.1. Testability Tradeoff Model at the System Level

Assume a module is random pattern testable when random patterns are applied
directly on its input ports and its output can be observed from its output ports.
Whether the module, inside the system, is testable or not depends on 1)whether the
input patterns applied to this module are random enough and 2) whether the fault
effects of this module can be sensitized through intermediate modules to an
observable point. Only if these conditions cannot be satisfied, an observable or a
controllable point needs to be inserted. Based on this observation, the tradeoff design
approach is depicted in Figure 3.2.

e If the output patterns of module A, produced by feeding A with random
patterns generated by R; is "random enough" then R, need not be a
controllable point to exercise module B.

e If the faulty output response of A can "go through" block B and received by
R3, then R, need not be an observable point.

o If we know, by investigation, that R, does not need to be either a controllable
or an observable point, then BIST insertion overhead can be saved by leaving
R; as a normal register.

* The randomness of an output pattern and the "transparency" of a module can
be improved by increasing the testing time.

31

R1

L

Module A

Module B

R3

Figure 3.2: Basic model for testability tradeoffs

(Pseudo merge two TFBs and corresponding test R
plans

.

f

Select input test registers
-

Select output test registers

Break self-loops

Figure 3.3: Merging procedure

32

at

T=2

=3

T=4

Level 1 @ Level 1 @
Level 2 ’ Level 2 @ @
Level 3 @{

Level 4 @ Level 3

()

Figure 3.4: (a) Example DFG, (b) Corresponding MAG

3.2.2. Data Path Representation

The RTL data path consists of modules, registers as well as the connections between
these entities. The usage of each test register, referred to as attribute table, can be
controllable, observable, pseudo-controllable, or pseudo-observable. The final
implementation attribute of a register is the union of the underlying register usage.
This implementation can indicate the hardware overhead before and after merging of
data flow nodes by computing the difference over two test plans where the given

operators reside.

33

3.2.3. Pseudo-Merge of two TFBs

The pseudo merger of two TFBs combines the given two TFBs into one and link their

associated test plans into a preliminary "merged test plan",

3-2.4. Select Input Registers

In order to test the datapath, we need to select a "Pattern Generator” for each input
port of a datapath module resulting from merging the two given TFBs. Thus, for
every CLB input port in the data path we select one register to provide random
patterns during testing and remove the input port from all the "controllable" usage
entry of the other input registers. The selection priority goes from "Normal,"
"Observable," "Controllable," to "Controllable & Observable." However, if the
current TFB is transparent enough such that the testing time is acceptable after the
adjustment, move the output port identifier list in "observable" to "pseudo observable"
for all input registers. Note that we do not select the same input register to cover any
two input ports of 2 module since this introduces dependencies between input test

patterns to that module.

3.2.5. Select Output Registers

The selection of a "signature analyzer" is accomplished by avoiding the intended
operator merger when the merged output register provides test patterns to different
input ports of the same module. Next, the method selects accordingly one of the
following cases:
1. A BIST register combined with a BIST register: If the merged test registers are
a controllable and an observable point respectively, then move the identifier

list from "controllable" to "pseudo-controllable," and we move the identifier

34

list from "observable" to "pseudo-observable”. Assign implementation
attribute to "normal" when the upper bound of test time is not exceeded. If,
however, either register is attributed with both a controllable and an
observable point, then we assign the implementation attribute "controllable &
Observable" to the output register.

2. A Non-BIST register combined with a Non-BIST register: The resulting
register in this case has an attribute "normal" except in the case when t;
exceeds user specification. Ift; is above user specified upper bound, we have
to give the attribute "controllable" when it originated from pattern randomness
problem, or allocate the attribute "observable" when the problem comes from
the module transparency deficiency.

3. Non-BIST registers combined with BIST registers: 1If the BIST register is a
"controllable" point, we can remove this attribute when the test time is not
exceeded. This is done by moving all items in the attribute entry
"controllable" to "pseudo-controllable." Since now half of the time the
patterns will be random, although the other half of the time the patterns are
not, two times of the previous pattern generation time will be enough random
to test the modules followed it. A similar argument applies for the case when
the register attribute is "controllable." However, if due to the time limit a
register needs to be assigned as a BIST register, then a BIST attribute is

assigned to register after merging.

35

3.2.6. Self-Loop Breaking

Once the input and output test points have been selected, it is possible that some self-
loops have been created due to the functional removal of test points. A self-loop
problem arises only when there exists a path F -> C and/or C -> F where F and C
are test registers (Figure 3.5). There are two cases that may result in a self-loop:
1. Test plan T; connects to test T and the path F -> C pass through the boundary.
2. The path F -> C is in the same test plan.
Note tat the above situation does not arise due to the structural property of the
underlying data path design, but rather with the test methodology and tradeoff that we
have chosen. In what follows, we describe the loop breaking algorithm with reference

to Figure 3.5.

Figure 3.5: Paths that may cause functional self-loops

Both TFBs are in different test plans
Suppose that the case F -> C is considered. Then, if F and C are in different test plans
and at least one of register does not have a "normal" test attribute, there is no self-loop

between F and C. Othewise, we have the following:

36

1. Get all the children of F and store in a queue I.
2. For all nodes in I, pick a node A
a) Ifitis C, then there is a cycle; add to C an implementation attribute of
either "controllable" or observable (the decision can be made
randomly.(Modify the attribute table accordingly. Stop.
b) Ifitis a node that has already been visited then goto 2,
c¢) Ifitis a node with implementation attribute of either "controllable" or
"observable" but is not one of the interface node, mark A visited and
go to 3.
d) Add all its unvisited children to the queue I and mark A "visited".
Both TFBs are in the same test plan
Suppose that the case F -> C is considered. IfF and C are in the same test plan then:
1. If both implementation attributes are "normal," then we need to find a
controllable and an observable point.
2. If the union of the implementation attributes is “controllable" (or
"observable"), we need to find an observable point (or a "controllable" point)
3. If the union of their implementation attributes is "controllable and
Observable", it is similar to the previous case.
Loop Breaking Algorithm
The loop breaking process proceeds as follows:
1. Start from F and store all its children in a queue I. Assign eachnode in I a
label that is the same as the implementation attribute it bears.

2. Getanode A and mark it as "visited." Repeat until the queue is empty.

37

a) If the label set union of the current node and F is 1) "controllable,"
"observable" or 2)"controllable &\observable", "observable", then there is
no self-loop in this path. Goto 2.

b) If any children of the current node is C, then there is a self-loop. Record
the current node label and the current node identifier that caused the self-
loop.

¢) Otherwise (i) assign the label set union of the current node and that of F to
the "current label",(ii) assign all unvisited children of the current node with
the "current label set" (iii) put these children into queue L

. Break-Loop

a) Get the union of the attributes of registers F and C, call it START.

b) If START is "normal" and the union of all the labels recorded is (i)
"normal," then assign all the recorded nodes "controllable" and the node F
"observable" (ii) "controllable," then assign all the recorded nodes that
have attribute "normal" with attribute "controllable" and the node F
"observable" (iii) "Observable," then assign all the recorded nodes that
have attribute normal with attribute "observable" and the node F
"controllable"(iv) "controllable &\ observable", then assign all the
recorded nodes that have attribute "normal” with attribute "observable," F
"controllable and observable ". Once the implementation attribute has
been added, modify the attribute table accordingly.

¢) IfSTART is "controllable" then add to the recorded registers the attribute
"observable"; modify the implementation attribute and usage attribute

accordingly.

38

d) IfSTART is "controllable & observable" then either F or C is "controllable
&observable" while the other one is "normal." In this case, add to all the
recorded registers "observable" attribute and modify the implementation

attribute and usage attribute accordingly .

39

Chapter 4

Experimental Results

In this chapter, we present experimental results on the performance of our

method.

4.1. Background

We measured the performance of our system using six data flow graphs,
which are widely adopted for benchmarking high-level BIST synthesis. The data flow
graphs include the ones studied by Tseng and Siewiorek, called tseng, and by Paulin
and Knight, called differential equation. The other four data flow graphs are the 6™
order FIR (finite impulse response) filter, a 3" order IIR (infinite impulse response)
filter, a 4-point DCT (discrete cosine transformation) circuit, and a 6-tap wavelet
filter. Details of the circuits are shown in Table 4.1. Column headings of the table

are described below:

ckt: the name of the circuit.

var: the number of variables in the DFG.

const: the number of constants in the DFG.

op: the number of operations in the DFG.

reg: the minimum number of necessary registers (equivalent to the

maximal horizontal crossing), and

modules: the minimum number and types of necessary modules.

40

Data Flow Graph Data Path
Ckt
Var | Const{ Op Reg Modules
tseng 8 0 11 5 3 ALUs
diffeq 10 2 12 5 2 multipliers, 1 adder, 1 subtracor
fir6 13 7 27 7 2 multipliers, 1 adder
iir3 14 8 26 6 I multiplier, 1 adder, 1 subtractor
dct4 15 4 23 6 2 multipliers, 1 adder, 1 subtractor
wavelet6 16 6 28 7 I multiplier, 1 adder, 1 subtractor

Table 4.1: Characteristics of the circuits

In this thesis, the area of a circuit is represented by the transistor count of
registers and multiplexers in the circuit. Data path logic is not considered in the
transistor count. The number of transistors in test registers and multiplexers is based
on the circuits of [KoZw79] and [WaMc86] and is given in Table 4.2. In the table,
#Trs and #MuxIn denote the number of transistors and the number of multiplexer
inputs, respectively. The heading "Avg" in Table 4.2(b) is the average number of
transistors per multiplexer input.

The reference circuits, which were used to measure the area overhead of BIST

designs, were obtained through an ILP for data path synthesis.

41

E Type ’ Reg. TPG ’ SR ’ BILBO lCBILBO
! #Trs ’ 208 256 l 304 [388 (596

(a) Test registers

FMuxIn 2 ' 3 I 4 ’ 5 6 7 Avg
H#Trs 80 l 176 / 208) 300 320 350 -
ﬁTrs/input 40 ' 59 ‘ 52 l 60 53 50 52
(b) Multiplexer

Table 4.2: Number of transistors of 8-bit test registers and multiplexers

4.2. 6th Order FIR F ilter

The 6™ order finite impulse response (FIR) filter is used in the results asa
demonstrative circuit. This circuit implements the function:

Y =hoxo + hix; + hyx, + hsx3 + hyxy + hsxs + hgxg
where h, is a filter coefficient, and x,, is the delayed value of Xn-1. This equation

requires seven multiplications and one summation. Figure 4.1 shows a block diagram

of the filter.
x0 -1 X1 -1 x2 -1 x3 1 x4 -1 x5 -1 | x6
z z z z z z
ho h1 h2 h3 h4 h5 hé

Sum

e S

Y =h0X0 + h1x1 + h2x2 + h3x3 + hdx4 + h5x5 + h6x6
Figure 4.1: A 6™ order FIR filter
42

Figure 4.2 shows a data flow graph for the 6™ order FIR filter with the scheduling and

module assignment completed.

S0 x0 x1
ho | h |
M2 M1
s1
t0 1 h2 x2 N
s2 M3 M1
t7 x3 x4

M3 M2
X6
t8 3 ha
s4 M3 L.\ M1
t9 t h5

VI we
s5 M3 ¥
t10 t5
hé
s6
M3 «) M1
t11
A t6
s7 M3

t12

!

y
Figure 4.2: Data flow graph for the 6™ order FIR filter

4.3. 3rd Order IIR Filter Cascade Connection

Figure 4.3 shows a data flow graph of a 3™ order IIR filter in which the scheduling

and the module assignment are completed.

43

wi_1 wi_2

SO a4 ,\a1_2\
¥
M1
M2
s1
\t1_1 t1_2
w2_1
X b1_1 b1_2
Neto N\ \
M3 M2 M1
s3 *
b1_0
\ wi\O ui_1 ui_2
s4 W M3
ul_0
t1
M3 M2
s5)
outt 2 1 b2_1
S
b2_0 2 0
\ & u2_1
M2
s7
u2 0
s8 M3
l y w2 0

w1 0

Figure 4.3: Data flow graph of a 3™ order IIR filter (cascade connection)

44

4.4. 6-Tap Wavelet Filter

Figure 4.4 shows a data flow graph in which the scheduling and the module

assignment are completed.

x4
S(? a4
M1 x5
s1 * a5
; “ \
s2 x3 N M1
) a3 t5
X2 M1
* +) M2
s3 a2 | 3
x1 *) M3
* at_| \/ 6

M1
) t2
R NS
a0 , t1 {7
" B N\ N
t0 t

o NANVZer,

R AN 7

: |5,/

M2
s10 /\ ﬁjm

11 Cg M2 M3

Approximation Detail

Figure 4.4: Data flow graph of a 6-tap wavelet filter

4.5. 4-point Discrete Cosine Transformation (DCT)

Figure 4.5 shows a data flow graph in which the scheduling and the module

assignment are completed.

45

s0 In1 In2
|
s1 In0 2N cosa Ir'13
s2 +
C’é/mo a3>" , sina
s3 G a0 / a1l sirg(@Z m1
w [750,00 6
* m3 B
s boé beta Clj/ \ / m2
s6 qu é
Outo Out1 Out2 Out3
Figure 4.5: Data flow graph of a 4-point discrete cosine transformation
4.6. Tseng

Figure 4.6 shows a data flow graph which was studied by Tseng and Siewiorek.

s0 v \%] v2 v4 v10
D |
s1 v3 @
52 a1 (22)
v7 v
: Do T, W

S v9 v8 vi1
s4

Figure 4.6: Data flow graph of Tseng

4.7. Paulin

Figure 4.7 shows a data flow graph which was studied by Paulin and Knight.

46

s2

1 \Cj
s1 t1 2 3 13
s3

Wﬁ@
e

Iy ly :

Figure 4.7: Data flow graph of Paulin

4.8. Results

We ran our methods on the above high-level synthesis benchmarks. Our
experiment was to measure the performance of our proposed method. Detailed
experimental results for the above benchmarks are shown in Tables 4.3-4.9. Area
comparisons of the synthesized BIST circuits are shown in table 4.10. The first row
for each circuit entry is the reference circuit that was generated without BIST
consideration while the second row shows the results synthesized using our method
based on the concurrent BIST selection scheme. The third row of each circuit shows
the results for the benchmarks that were synthesized using the BILBO BIST method.
Column headings for the table are explained below.

R : The total number of registers
TPGR : The total number of test pattern generators

MISR : The total number of signature registers

47

BILBO: The total number of BILBOs

M : The total number of inputs of multiplexers

Area : The number of transistors of the registers and the multiplexers
OH : The area overhead of the BIST design (%)

From the table, the area overhead for the synthesized designs derived using
our method ranges from 8.89% to 27.46% while the overhead of the BILBO designs
ranges from 20.87% to 34.56%. Note that the area overhead of two circuits is less
than 10 percent(Differential Equation and IIR3). However, since the area overhead of
a circuit is computed without considering the area for the data path logic modules, the
actual area overhead will be much lower than the ones presented in the table.

The table shows that the results from our method use less overhead than
BILBO. This is very obvious in all shown results. This leads us to conclude that our

method has a better test overhead than BILBO.

Test ALUs Number of Registers # Mux Inputs
Mode BILBO | MISR | TPGR | Normal
Concurrent | 2 (+), 2 0 2 8 5 16
Selection | (¥)
BILBO 2(+), 2 4 0 i1 0 16
*)

Table 4.3: Results from the FIR filter

48

Test ALUs Number of Registers # of Mux Inputs
Mode BILBO | MISR | TPGR | Normal
Concurrent | 2 (+), 2 0 2 5 8 21
Selection | (*)
BILBO 2(+), 2 4 0 11 0 19

*)

Table 4.4: Results from the IIR3 filter

Test ALUs Number of Registers # of Mux Inputs
Mode BILBO | MISR | TPGR | Normal
Concurrent | 2 (+), 2 0 1 4 12 24
Selection | (*), 1(-)
BILBO 2(+), 2 5 0 11 0 25

(*), 1)

Table 4.5: Results from the wavelet 6 filter

Test ALUs Number of Registers # of Mux Inputs
Mode BILBO | MISR | TPGR | Normal
Concurrent | 2 (+), 2 0 1 6 8 27
Selection | (+-), 1(+)
BILBO 2(+), 2 5 0 10 0 23

(), 1(-)

Table 4.6: Results from the DCT4 filter

49

Test ALUs Number of Registers # of Mux Inputs
Mode BILBO | MISR | TPGR | Normal
Concurrent | 3 (*),2(- | 1 2 6 3 13
Selection |), (+), (>)
BILBO 3()»2(]6 0 6 0 13

) (4,)

Table 4.7: Results from the diffeq Example

Test ALUs Number of Registers # of Mux Inputs
Mode BILBO | MISR | TPGR | Normal
Concurrent | 3 (*),2(- | 0 2 4 1 17
Selection |), (+), ()
BILBO 3(),2(-|4 0 5 0 18

) (1), ()

Table 4.8: Results from the diffeq Example with a different binding

Test ALUs Number of Registers # of Mux Inputs
Mode BILBO | MISR | TPGR | Normal
Concurrent | (/), (+%), |1 5 0 2 10
Selection | (-]), (+&)
BILBO N, (%), |4 0 4 0 10

(-D, (+&)

Table 4.9: Results from the Tseng Example

50

Ckt | Type | R | TPGR | MISR |BILBO | M | Area | OH(%)
Tseng 1 1248 0 0 0 728 | 1976
2 416 0 1520 | 388 | 400 | 2724 | 27.46
3 0 1024 0 1552 | 400 | 2976 | 33.60
Diffeq(2) | 1 1872 0 0 0 672 | 2544
2 208 | 1024 608 0 960 | 2800 | 9.14
3 0 1280 0 1552 | 1056 | 3888 | 34.56
Diffeq(1) | 1 | 2288 0 0 0 800 | 3088
2 624 | 1536 608 388 | 576 | 3732 | 17.26
3 0 1536 0 2328 | 576 | 4440 | 30.45
DCT4 1 2704 0 0 0 1148 | 3852
2 | 1664 | 1536 304 0 1248 | 4752 | 18.94
3 0 | 2560 0 1940 | 1088 | 5588 | 31.07
Wavelet6 | 1 | 2912 | 0 0 0 1312 | 4224
2 [2496 | 1024 304 0 1112 | 4936 | 14.42
3 0 | 2816 0 1940 | 1328 | 6084 | 30.57
1IR3 1 [3120] 0 0 0 1020 | 4140
2 | 1664 | 1280 608 0 992 | 4544 | 8.89
3 0 | 2816 0 1552 | 864 | 5232 | 20.87
Fir6 1 | 2912 0 0 0 768 | 3680
2 | 1040 | 2048 608 0 752 | 4448 | 17.27
3 0 | 2816 0 1552 | 752 | 5120 | 28.13

Table 4.10: Results Comparisons

51

Chapter 5

Conclusion

Testability is one of the most important requirements, along with other
constraints such as performance and cost, to be taken into consideration when
designing a circuit. Circuits with poor testability cause time as well cost losses during
post-fabrication testing and testing for serviceability. Built-In Self-Test (BIST) is an
improved technique for testability where the testing is done through built-in hardware
features.

In this Thesis we implemented the described allocation and tradeoff scheme
using six benchmark examples. The examples include the 6 order FIR (finite
impulse response) filter, a 3 order IIR (infinite impulse response) filter, a 4-point
DCT (discrete cosine transformation) circuit, and a 6-tap wavelet filter. They also
include the data flow graphs by tseng and paulin called diffeq. We show the detailed
results using those examples in terms of components as well as number and types of

test points.

52

Bibliography

[AbBF90]

[AbB185]

[Agra91]

[BaMc87]

[ChPa91]

[DAC90]

[DeMi90]

[GaKu83]

[HaPa93]

[HuPe87]

[Jain&9]

M. Abramovici, M. Breuer, A. Friedman, Digital Systems Testing and
Testable Designs,Computer Science Press, 1990.

M. Abadir, M. A. Breuer, "A Knowledge-Based System for Designing
Testable VLSI Chips ", JEEE Design & Test, pp. 56-68, August .1985.
V. Agrawal, Plenary Speech, International Conference on Computer
Design, October 1991.
P. Bardell, W. McAnney, J. Savir, "Built-In Test for VLSI:
Pseudorandom Techniques ,"Jokn Wiley & Son, 1987.

S. Chiu, C.A. Papachristou, "A Design for Testability Scheme with
Applications to Data Path Synthesis" Proc. 28th Design Automation
Conference, June 1991.

"Testing Strategies for the 1990s," Panel Discussion, Design
Automation Conference, 1990,

G. De Micheli, D. Ku, Frederic Mailhot, T. Tuong,"The Olypmpus
Synthesis System for Digital Design," Technical Report, Stanford
University, 1990.
D. Gajski, R. Kuhn, "Guest Editors' Introduction: New VLSI Tools",
IEEE Computer, 6 (12):11-14, 12 1983,
H. Harmanani, C. Papachristou, "An Improved Method for RTL
Synthesis with Testability Trade-Offs", In Proc. of the ICCAD, Nov.
1993.
C.L. Hudson, G.D. Peterson, "Parallel Self-Test With Pseudo-Random
Test Patterns", Proc. International T. est Conference, pp. 954-971, Sept.
1987.
R. Jain, K. Kukukcakar, M. Mlinar, A. Parker,"Experience with The
Adam Synthesis System," Proceedings of the 26th Design Automation
Conference, June 1989.

53

[JaKu89]

[KiHT88]

[KiTh88]

[KoZw79]

[KuWK85]

[Marw86]

[McPC90]

[PaChol1]

[PaK090]

[PaKn87]

[PaKn89]

R. Jain, K. Kukukcakar, M. Mlinar, A. Parker, "Experience with The
Adam Synthesis System", Proceedings of the 26th Design Automation
Conference, June 1989,

K. Kim, D.S. Ha, and J.G. Tront,"On Using Signature Registers as
Pseudorandom Pattern Generators in Built-in Self-Testing,"
Proceedings of the IEEE Transactions on CAD, pp. 919-928.

K. Kim, J.G. Tront and D.S. Ha, "Automatic insertion of BIST
hardware using VHDL", Proc. 25th Design Automation Conference,
pp. 9-15, June 1988.

Konemann, B.J. Mucha, and G. Zwiehoff, "Built-In Logic Block
Observation Techniques," Proc. Int'l Test conf,, pp. 37-41, Oct. 1979.
S.Y. Kung, H.J. Whitehouse, T. Khailath, "VLSI and Modern Signal
Processing", Prentice Hall, 1985, pp. 258-264.

P. Marwedel,"A New Synthesis Algorithm for the MIMOLA Software
System," Proceedings of the 23rd Design Automation Conference,June
1986, pp. 271-277.

M. McFarland, A. Parker, and R. Compasano,"The High Level
Synthesis of Digital Systems," Proceedings of the IEEE, Vol. 78, No.
2,February 1990, pp. 301 - 318.

C. Papachristou, S. Chiu, H. Harmanani, "A Data Path Synthesis
Method for Self-Testable Designs", Proc. 28th Design Automation
Conference, June 1991,

C. Papachristou, H. Konuk, "A Linear Program Driven Scheduling and
Allocation Method Followed by an Interconnect Optimization
Algorithm", Proc. 27th Design Automation Conference, June 1990, pD-
77-83.

P.G. Paulin J.P.Knight "Force —Directed Scheduling in automatic data
path synthesis", Proceedings of the 24th Design Automation
Conference, pp. 195-202, June 1987.

P.G. Paulin J.P.Knight "Force —Directed Scheduling for the Behavioral
Synthesis of ASICs." IEEE Trans. on Computer Aided Design, Vol. 8,
pp. 661-679, June 1989,

54

[Pang88] B.M. Pangrle,"Splicer: A Heuristic Approach to Connectivity
Binding," Proceedings of the 25th Design Automation Conference,
June 1988, pp. 536-541.

[Raba88] J. Rabaey, H. DeMan, J. Vanhoof, F. Cathoor,"Cathedral IT: A
Synthesis System for Multiprocessor DSP," In Silicon Compilation, pp.
311-360, 1988.

[Thom88] Thomas D.E., E.M. Dirkes, R.A. Walker, J.V. Rajan and R.L.
Blackburn,"The System Architects Workbench," Proceedings of the
25th Design Automation Conference,pp. 337-343, June 1988.

[TsSi86] C. Tseng, D. P. Siewiorek, "Automated Synthesis of Data Paths in
Digital Systems," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems,V. CAD-5, No. 3, pp. 379-395, July
1986.

[WaMc86] L.-T. Wand and E.J. McCluskey, "Concurrent Built-In Logic Block
Observer (CBILBO)," Int. Symp. On Circuits and Systems, pp. 1054-
1057, May 1986.

[WiPa83] T. Williams, K. Parker, "Design For Testability --- A Survey",
Proceedings of The IEEE, Volume 71, Number 1, January 83, pp. 98-
112.

55

