MUTATION TESTING OF WEB SERVICES

By

Reda M. Siblini

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science
in Computer Science

Thesis Advisor: Dr. Nashat Mansour

Department of Computer Science
LEBANESE AMERICAN UNIVERSITY
2004

MUTATION TESTING OF WEB SERVICES

Reda M. Siblini

THESIS

Submitted in partial fulfillment of the requirement of the degree of Master of
Science in Computer Science at the Lebanese American University
Beirut, Lebanon
Feb. 2004

Dr. Nash’at Mansour (Advisor)
Associate Professor of Computer Science
Lebanese American University

Dr. Ramzi Haraty
Associate Professor of Computer Science

Lebanese American University

Dr. Faisal Abu m

Assistant Professor of Computer Science
Lebanese American University

I grant to the LEBANESE AMERICAN UNIVERSITY the right to use this work,
irrespective of any copyright, for the University's own purpose without cost to the
University or to its students, agents and employees. I further agree that the University
may reproduce and provide single copies of the work, in any format other than in or from
microforms, to the public for the cost of reproduction.

MUTATION TESTING OF WEBSERVICES

ABSTRACT

By

Reda M. Siblini

Web Service is a new promising software development technology. It provides application-to-
application interaction. Built on top of excisting Web protocols and based on open XML standards, it is
divided info communication protocols, service descriptions, and service discovery. Comsmmnication among
Web Services is done using Simple Object Access Protocol (SOAP), Web Services are described using
Web Services Description Language (WSDL), and the Universal Description, Discovery, and
Integration directory (UDDI) provide a registry of Web Services descriptions. Testing Web Services is
essential for both the Web Service provider and the Web Service user. This thesis proposes an approach
Jor testing Web Services using mutation analysis. The approach consists of applying mutation operators fo
the WSDL. document to generate mmutated Web Service interfaces that will be used to test the Web
Service. The proposed method defines mutant operators specific to the WSDL language. The experimental
results show the usefulness of the method by applying it to Web Services written in Microsoft VB.NET.

iv

Acknowledgments

I would first like to express my grateful acknowledgement to my advisor Dr.
Nashat Mansour for his patience, support, and friendship.
Dr. Mansour first indicated the use of Mutation testing to test web applications. He also
motivated me to study software testing, and provided many helpful ideas in this research
as well as in the area of software engineering. I would like also like to show gratitude to
Dr. Ramzi Haraty and Dz. Faisal AbuKhzam for their help and assistance.

TABLE OF CONTENTS

List of Figures vii
List of Tables Viii
Introduction 3
Background 5
2.1 Web Services: 5
2.2 Web Services Description Language: 8
2.3 Mutation Analysis 12
Proposed Approach 15
3.1 Applying Interface Mutation to Web Services 15
3.2 WSDL special language features 17
3.2.1 Types 18
3.2.2 Messages 23
3.2.3 Port Types 24

3.24 Bindings 27

3.2.5 Ports 27

3.2.6 Services 28
Experimental Results 31
4.1 Detailed Example 31
4.2 More experimental results 43
Conclusion 63
References 65
Glossary 66

List of Figures

Figure Title Page

FiIGUIEL: WD SEIVICE ...t seviseeisssratss st ss e sessssenesesenessassenses 5
Figure2: MUtQtion QRALYSISoceveveverecevirceeineeceeseassnesessesesessarsse e sesessesessssasssssns 14
Figure3: Web Services teSting..........ueceervninininiend ettt sttt ereene e et 30
Figured: Web Service client INIEYTACEeeeecreenreverrreecereeeencree e eseesereneneaes 35
Figure5: Web Service client interfacelcevviniricencncnerieiiieneeeerenenenenenes 36
Figure6: Web Service client INterface3ccoiuveeesiinneereceencrenneesienaneeseaenes 36
Figure8: ASP.NET mutated Client COde................uuenriiiiinrrirenieerieescennnenrensssecns 40
Figure9: Web Service client interfacedveeecvnenierinineerenecesseseeneenens 41
Figurel0: Web Service client iRterfaces ... veereenvereneesrenreeisesieniesessnneenenns 41
Figurell: VB.INET Web ServiCe COe..........o.cvuvormiecnerecrineeererisnessessssssssossessens 42
Figurel2: ASP.NET Web Service testing application..............c.ueeeeeceerervccnennnnne 44
Figurel3: Tester Web Service......... oo seseesaesenes 64

List of Tables

Table Title Page
Table 1. WSDL mutation operators. 29

Chapter 1

Introduction

Web Services (W3C, 2003) ate emerging to provide a framework for application-
to-application interaction, built on top of existing Web protocols and based on XML
standards. Nowadays, Web applications are integrating Web Services from a variety of
resoutces. One of the majot benefits is Web Services' ease of integration. You will easily
integrate your software with other pieces of software. You can run Web Setvices on all
kinds of machines, from the desktop to the mainframe, either within your enterprise or at
external sites. This ease of integration will enable tighter business relationships and more

efficient business processes.

There has been a lot of tesearch dedicated to testing software components;
however, there has not been much tesearch on testing Web Setvices on web platforms.
To assure the quality of web applications, testing techniques are needed to evaluate the

integration of Web Services.

Several Web Setvices are written in different progtamming languages, usually
distributed over a network or on the Internet that may not have the same runtime
environment. Since the client communicates with the Web Service through an interface
presented by the Web Setvice, there may be errors in the way the Web Service is used.

Interface errors could occur at the level that Web Setvices have been defined.

Since Web Service soutce code is usually not available, we will deal with them as
black box software, contraty to the client application code that is going to use the Web
Service and whose source code iIs available, it will be dealt with as white box software.

Interface etrors will result from interactions between black box and white box software,

considering the high cost of testing; adding more tests to the client application will be

inefficient.

So, a desirable and effective testing technique will be needed to test just the
interface of the Web Service and its interaction with the web application. The technique
proposed in this thesis is based on mutation analysis (Offutt and Untch, 2000). While
mutation analysis makes mutants by injecting faults to every statement of a progtam, the
proposed technique will mutate just the interface of the Web Service, which means just
the parameters of calling Web Setvices methods, and the returned variable. The proposed
method will mutate the Web Service Description Language document (WSDL) (W3C,
2001) by applying WSDL specific mutant operatots.

The desired objective is to minimize the test case domain by applying mutation at
the same time revealing Web Service errors. To the best of our knowledge the only
research available on Web Service WSDL testing is concerning WSDL document
validation.

A background of Web Service, WSDL, and mutation test is discussed in Chapter
2. Chapter 3 provides an accurate description and definition of the mutation techniques
alongside definition of WSDL specific mutant operators. An analysis of the proposed
method is given in Chapter 4 while using a Microsoft ASP.NET web application as a
client interface to a Microsoft VB.NET Web Service. Conclusions and future work are

featured chapter 5.

Chapter 2

Background

This chapter presents an overview of the concepts and technologies used
throughout the thesis. Section 2.1 gives an ovetview of Web Services, section 2.2

desctribes WSDL, and section 2.3 presents mutation analysis.

21 Web Services:

A Web Service is a software system identified by a URI, whose public intetfaces
and bindings are defined and described using XML (W3C, 1998). Its definition can be
discovered by other software systems. These systems may then interact with the Web
Service in a manner prescribed by its definition, using XML based messages conveyed by
Internet protocols as indicated in Figurel (W3C, 2003).

o

SOARIXML

Cherd Web Sanfes

FIGURE1l: WEB SERVICE

Web Services are enterprise applications that exchange data, share tasks, and
automate processes over the Internet. As a new class of Internet-native applications, Web
Service promises to increase interoperability, and lower the costs of software integration

and data sharing with partners. As they are based on simple and non-proptietary

standards, Web Services are designed to make it possible for computer programs to
communicate directly with one another and exchange data regardless of location,
operating systems, or languages. Web Services allow pieces of software written in
different languages, or running on different operating systems, running in different parts
of an organizaﬁon; or in different organizations, to talk to one another cheaply and easily
using universal and non-proprietary data standards so that integration between new

pieces of software and legacy systems will be simple.

The Web Service framework is divided into three areas: exchanging messages,

setvice descriptions, and setvice discovery.

XML Web Services expose useful functionality to Web users through a standard

Web protocol. In most cases, the protocol used is SOAP.

XML Web Services provide a way to describe their interfaces in enough detail to
allow a user to build a client application to talk to them. This description is usually
provided in an XML document called 2 WSDL document.

XML Web Services are registered so that potential users can find them easily. This
is done with UDDIL.

We have defined an XML Web Service as a softwate service exposed on the
Web through SOAP, described with a WSDL file and registered in UDDI. Exposing
existing applications, as XML Web Services, will allow users to build new, more
powerful applications that use XML Web Services as building blocks. SOAP is the
communications protocol for XML Web Services. SOAP is a specification that defines
the XML format for messages. There are other parts of the SOAP specification that
describe how to represent program data as XML and how to use SOAP to do Remote
Procedure Calls. These optional parts of the specification are used to implement RPC-
style applications where a SOAP message containing a callable function, and the

parameters to pass to the function, is sent from the client, and the server returns a
message with the results of the executed function. Most current implementations of
SOAP support RPC applications because programmers who are used to do COM or
CORBA applications understand the RPC style. SOAP also supports document style
applications where the SOAP message is just a wrapper around an XML document.
Document-style SOAP applications are very flexible and many new XML Web Services
take advantage of this flexibility to build services that would be difficult to implement
using RPC.

There is 2 common misconception that SOAP requires HTTP. Some
implementations support MSMQ, MQ Seties, SMTP, or TCP/IP transports, but almost
all current XML Web Setvices use HTTP because it is all-pervading. Since HTTP is a
core protocol of the Web, most organizations have a network infrastructure that
supports HTTP and people who understand how to manage it already. The security,
monitoring, and load-balancing infrastructure for HT TP are readily available today.

WSDL stands for Web Services Description Language. For our purposes, we
can say that a WSDL file is an XML document that describes a set of SOAP messages
and how the messages ate exchanged. In other words, WSDL is to SOAP what IDL is
to CORBA or COM. Since WSDL is XML, it is readable and editable but in most
cases, it is generated and consumed by software. WSDL will be described further in the

next secton.

Universal Discovery Desctription and Integration is the yellow pages of Web
Services. As with traditional yellow pages, you can search for a company that offers the
services you need, read about the service offered and contact someone for more
information. You can, of coutse, offer a Web Setvice without registering it in UDDI,
just as you can open a business in your basement and rely on word-of-mouth

advertising but if you want to reach a significant market, you need UDDI so your

customers can find you.

A UDDI directory entry is an XML file that describes a business and the

services it offers.

22 Web Services Description Language:

WSDL is an XMIL-based language to define Web Services and how to access
them. WSDL stands for Web Services Description Language.

WSDL is a2 document written in XML. The document describes 2 Web Service. It

specifies the location of the service and the operations, or methods, the service exposes.
The WSDL Document Structure
A WSDL document defines a Web Service using four major elements:

Element Defines

<portType> the operations performed by the Web Service

<message> the messages used by the Web Service

<types> the data types used by the Web Service

<binding> the communication protocols used by the Web Service

The main structure of 2 WSDL document looks like this:
<definitions>
<types>
definition of Bypes........
</types>
<message>
defenition of a message....
</message>

<portType>
definition of a port.......
</portType>
<binding>
defenition of a binding....
</binding>
< /definitions>
A WSDL document can also contain other elements, like extension elements and a
service element that makes it possible to group together the definitions of several Web

Services in one single WSDL document.
WSDL Ports

The <portType> element is the most important WSDL element. It defines a
Web Service, the operations that can be performed, and the messages that are involved.
The <portType> element can be compared to a function library (or a2 module, or a class)

in a traditional programming language.
WSDL Messages

The <message> clement defines the data elements of an operation. Each
message can consist of one or more parts. The parts can be compared to the parameters

of a function call in a traditional programming language.
WSDL Types

The <types> clement defines the data type that is used by the Web Service. For
maximum platform neutrality, WSDL uses XML Schema syntax to define data types.

WSDL Bindings

The <binding> element defines the message format and protocol details for each

port.
WSDL Example
This is a simplified fraction of a WSDL document:

<message name="CreditCardRequest”>
<part name="term” type="“xs:string”/>

</message>

<message name="CreditCardResponse”>
<part name="value” type=“xs:string”/>

</tmessage>

<portType name="“CreditCardLibrary”>
<opetation name=“CheckCreditCard”>
<input message=“CreditCardRequest”/>
<output message="CreditCardResponse”/>
</operation>

</portType>

In this example the portType element defines “CreditCardLibrary” as the name

of a port, and “CheckCreditCard” as the name of an operation.

The “CheckCreditCard” operation has an input message called
“CreditCardRequest” and an output message called “CreditCardResponse”.

The message element defines the parts of each message and the associated data

types.

Compated to traditional programming, CreditCardLibrary is a function library;
“CheckCreditCard” is a function with “CreditCardRequest” as the input parameter and

“CreditCardResponse” as the return parametet.

10

WSDL Bindings

WSDL bindings define the message format and protocol details for 2 Web Service.
Binding to SOAP
A request-response operation example:

<message name="“CreditCardRequest”>
<part name=“term” type="xs:string” />
</message>
<message name="CreditCardResponse”>
<patt name=“value” type="xs:string” />
</message>
<portType name=“CreditCardLibrary”>
<operation name="“CheckCreditCard”>
<input message="“CreditCardRequest”/>
<output message="CreditCardResponse” />
</opetation>
</pottType> ,
<binding type="“CreditCardLibrary” name="“b1">
<soap:binding style="“document”
transport="http:/ /schemas.xmlsoap.otg/soap /http” />
<operation>
<soap:operation soapAction=“http://abc.com/CheckCreditCard”/>
<input>
<soap:body use="literal”/>
</input>
<output>
<soap:body use=“Titeral” />
</output>
</operation>
</binding>

11

The binding element has two attributes - the name attribute and the type
attribute. The name attdbute defines the name of the binding, and the type attribute
points to the port for the binding, in this case the “CreditCardLibtary” port. The

soap:binding element has two attributes - the style attribute and the transport attribute.

The style attribute can be “rpc” or “document”. In this case we use document.

The transport attribute defines the SOAP protocol to use. In this case we use HT'TP.

The operation element defines each operation that the port exposes. For each
operation the corresponding SOAP action has to be defined. We must also specify how

the input and output are encoded. In this case we use “literal”.

2.3 Mutation Analysis

Mutation analysis is 2 fault-based testing method that measures the adequacy of a
set of externally created test cases (DeMillo and Ofutt, 1991). Mutation analysis induces
faults into software by creating many versions of the software, each containing one fault.
Test cases are used to execute these faulty programs from the original program. Hence,
faulty programs are mutants of the original, and a mutant is killed by distinguishing the
output of the mutant from that of the original program.

Mutants either represent likely faults, a mistake the program could have made, or
they explicitly require a typical testing heuristic to be satisfied, such as execute every
branch or cause all expressions to become zero. Mutants are limited to simple changes on
the basis of the coupling effect, which says that complex faults are coupled to simple
faults in such a way that a test data set that detects all simple faults in a program will
detect most complex faults. The coupling effect has been demonstrated theoretically in
1995 (Offutt and Untch, 2000).

12

‘Mutation analysis induces faults into software by producing various versions of the
software with one fault each. Mutation operators define these faults and each change or
mutation created by a mutation operator is encoded in 2 mutant program. A typical
mutant operator, for example would, replace each operand by every other syntactically
legal operand, or modify expressions by replacing operators and inserting new operators,
or delete entire statement. Test cases are used to execute these faulty programs with the
goal of distinguishing the faulty program from the otiginal one. The entire process is
shown in Figure 2.

Upon adding a new test case to the mutation system, the test case is first executed
against the original version of the test program to generate the expected output for that
use case. The tester has to examine the output; if the output is incorrect, the program
should be corrected and the mutation process should be restarted; otherwise, each live
mutant is executed against the new test case. The output of the mutant is compared to
the expected output. Mutants are killed if their output does not match that of the original,

and remain alive_ if they do.

After all mutants have been executed, the tester is left with two kind of
information. The portion of the mutants that die indicates how well the program has
been tested. The live mutants that could not be distinguished by test cases from the
original program are called equivalent mutants. To assess the adequacy of a test set, the

mutation scote is computed as follows:

Mutation score = Number of dead mutants/ (Number of total mutants — Number of

equivalent mutants).

The tester’s main goal is to improve the mutation score to 1.00, indicating all mutants
have been detected. A test set that kills all mutants is said to be adequate relative to the

mutants.

13

Faise

Qrighnal Program

Mutant Programs #

Check ifan
o numbser of
equivaient
o

program then: add

Add to number of
kiiled mudant

FIGURE2: MUTATION ANALYSIS

14

Chapter 3

Proposed Approach

The proposed approach for testing Web Services makes use of information
available from the description of Web Services® interface. The description provided by
the Web Service WSDL document is used to create coverage domains. The testing of
Web Setvices is carried out through the WSDL document. This approach does not rely
on the availability of the Web Service ‘s source code.

31 Applying Interface Mutation to Web Setvices

In traditional mutation, faults model simple etrors that programmers may make in
practice. In Web Service interface mutation, faults model the etrors that programmers
may make while defining, implementing and using interfaces. The method will also reveal
Web Setvices etrors, as you will see in the expetimental results section. The set of errors

that can be applied to the WSDL document constitute the mutation operators.

Mutation operators apply to opetation calls defined in the WSDL document. The
possible entities to which operators could apply are the operation input messages,
operation output messages, and their data types. Thete could be an infinite number of
mutation operators. One could change the value of a parameter in a number of ways
(Ghosh and Marthur, 2001). Selection of a set of mutation opetators is an important task

in performing interface mutation.

Since interface desctiption in WSDL does not contain any code the descriptions
themselves have not executed, the mutation operators would have to apply
implementations of the interface description. Sets of mutation operator that can be

applied to WSDL have been identified.

15

This proposed method differs from interface mutation in the definition of
operators that apply to the WSDL document. While defining the operators, the main
purpose was to be able to find errots related not just to the interface, but also to the logic

of Web Service programming.

Defining a set of operators is probably the most relevant point for making the use
of mutation testing feasible and effective. The set of opetators ptesented here is based on
a method of testing and experimenting. It enables the construction of a test set that
exercises the possible ways in which functions can interact. The effectiveness and utility
of these operators can only be completely assessed by further exploring its characteristics

in other studies.

Operators group will be defined next to ease the interpretation of each created

mutant opetatot, and allow the categorizing of mutant opetator into well-defined groups.

The main mutation operator gtoup defined is the Switch group. The operators
defined in this group replace the sequence of an element. Applying this operator to
WSDL document will create many mutants WSDL documents. Each mutant WSDL will
contain one variation of one replacement of one element with another one in the
operation definition. For instance if the operation, has 2 input messages 11, I2 and one
output message O. One mutant WSDL will be to replace the sequence of I1, by the
sequence of I12. Another mutant WSDL will be replacing I1 by O.

The second mutation operator group defined for WSDL is the Special group.
The operators defined in this group will modify the value of the element; the value would
belong to the same type of the element. The Input submitted to the Web Service will be
changed. The change will usually set the parameters to boundaty values, to null values (if
applicable), or to the next value in the same domain of the input. Each change may reveal

a different type of error.

16

The third operator group is the Occurrence. The operators defined in this group
will just delete or add an occutrence of an element. The Web Service operation will end

up having one of its elements deleted or added.

After defining the three main categoties of mutant operators, in the next section
we will provide more details on mutant operators which will be generated from the above

category and that will be specific to the WSDL language features.

3.2 WSDL special language features

Defining the Mutant operator will need the study of the WSDL language feature,
and to specifically point to where and how these operators will be applied. This section
will define the application of Mutant operatot to the WSDL document.

We will explain in details all the sections of a services definition that are related to
out need and provided in a WSDL document, and in the process desctibe the related

WSDL specific mutation opetatots.

WSDL define an XML grammar for desctibing network services as collections of
communication endpoints capable of exchanging messages. The WSDL document uses

the following elements in the definition of network services:

‘Types— a container for data type definitions using some type system.
Message— an abstract, typed definition of the data being communicated.
Opetration— an abstract description of an action supported by the setvice.
Port Type—an abstract set of operations supported by one or mote endpoints.

Binding- a concrete protocol and data format specification for a particular port

type.

17

Pott— a single endpoint defined as a combination of a binding and a network
address.

Setvice— a collection of related endpoints.

It is important to observe that WSDL does not introduce a new type definition
language. WSDL recognizes the need for rich type systems for describing message
formats, and suppotts the XML Schemas specification (XSD) as its canonical type
system. However, since it is unreasonable to expect a single type system grammar to be
used to describe all message formats present and future, WSDL allows using other type
definition languages via extensibility. For simplicity extensibility will not be discussed in
this paper.

The use of the import element allows the separation of the different elements of a

service definition into independent documents, which can then be imported as needed.
3.2.1 Types

The types element encloses data type definitions that are relevant for the
exchanged messages. For maximum interoperability and platform neutrality, WSDL
prefets the use of XSD as the canonical type system, and treats it as the intrinsic type
system (W3C, 2001). We will cover in this section the XSD type system in order to define

specific mutant operators that will be used in the WSDL mutation method.

The mutant operator name will follow the following convention:

Operator group name + WSDL Element Name + ElementType

18

For example, in the case of string type, the operator name will be
SwitchTypesString that define the mutant operator that will switch 2 or more elements of
type string in the Types element part of a WSDL document.

As the Type element will follow the XML schema element, we will introduce in
this section the different types, element, attributes, and data type that are defined in the
XML schema.

Complex type:

In an XML Schema, there is a basic difference between complex types that allow
elements in their content and may carry attributes, and simple types that cannot have
element content and cannot carry attributes. There is also 2 major distinction between
definitions, which create new types (both simple and complex), and declarations that
enable elements and attributes with specific names and types (both simple and complex)

to appear in document instances.
The following is a simplified description of a complex type:

<xsd:complexType name="" >

<xsd:sequence>

<xsd:element name="" type=""/>

</xsd:sequence>

<xsdattribute name="" type="" />
</xsd:complexType>

New complex types are defined using the complexType element and such
definitions typically contain a set of element declarations, element references, and
attribute declarations. The declarations are not themselves types, but rather an association

between a name and the constraints that govern the appearance of that name in

documents governed by the associated schema. Elements are declared using the element

element, and attributes are declared using the attribute element.

19

The SwitchTypesComplexTypeElement (STCE) operator is defined as the
operator that will switch elements of the same type in the complexType element that
could be defined in the Types element of 2 WSDL document.

The SwitchTypesComplexTypeAtttibute (STCA) operator is defined as the
operator that will switch attributes of the same type in the complexType element that
could be defined in the Types element of a WSDL document.

A sample example will be illustrated next to provide a complete understanding of

the described operators:

<xsd:complexType name="USAddress" >
<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsdrelement name="street" type="xsd:string" />
<xsdielement name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:stting"/>
<xsd:element name="zip" type="xsd:decimal"/>
</xsd:sequence>
<xsd:attribute name="country" type="xsd NMTOKEN" fixed="US"/>

</xsd:complexType>

This ComplexType definition shows the USAddress consisting of 5 elements and
one attribute. Applying the SwitchTypesComplexTypeElement once to this schema will

produce the following mutated definition:

<xzsd:complexType name="USAddress" >
<xsd:sequence>
<zsd:element name="street" type="xsd:string" />
<xsd:element name="name" type="xsd:string" />
<zsdrelement name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:stting"/>
<xzsd:element name="zip" type="xsd:decimal"/>
</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

20

< /xsd:complexType>

The two elements name, and street are being switched since they follow the
SwitchTypesComplexTypeElement operator rule. The complexType USAddress street

and name elements are both of the same type, xsd:string, and could be switched.

The application of the SwitchTypesComplexTypeElement to the same definition

will produce many other mutant definitions.

The minOccurs and maxOccurs attribute in the definition of an element define
the minimum and maximum number of appearances of such an clement in an XML
document. Attributes may appear once or not at all, but no other number of times, and
so the syntax for specifying occurrences of attributes is different than the syntax for
elements. In particular, attributes can be declared with a use attribute to indicate whether

the attribute is required, optional, or even prohibited.

The OccurtenceTypesComplexTypeElement (OTCE) operator is defined as
the operator that will add or delete the occurrence of an element in the complextType

element that could be defined in the Types element of a WSDL document.

The OccurrenceTypesComplexTypeAtttibute (OTCA) operator is defined as
the operator that will add or delete an optional attribute in the complextType element
that could be defined in the Types element of a WSDL document.

The nil attribute is defined as part of the XML Schema namespace for instances.
Note that the nil mechanism applies only to element values, and not to attribute values.
An element with xsi:nil="true" may not have any element content but it may still carry

attributes.

21

The SpecialTypesElementNil (STEN) operator is defined as the operator that
will set the "nil" attribute to true in the complextType element that could be defined in
the Types element of a WSDL document.

Simple Types:

Element could be of type simple that belongs to the Simple Type built in XML,
schema. The following is a list of built in data types: string, normalizedString, token,
byte, unsignedByte, base64Binary, hexBinary, integer, positivelnteger, negativelnteget,
nonNegativelnteger, nonPositivelnteger, int, unsignedInt, long, unsignedLong, short,
unsignedShort, decimal, float, double, Boolean, time, dateTime, duration, date, gMonth,
gYear, gYearMonth, gDay, gMonthDay, Name, Qname, NCName, anyURI, language,
ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN,
NMTOKENS

New simple types are defined by deriving them from existing simplé types
(built-in's and derived). In particular, we can detive a new simple type by restricting an
existing simple type. In other words, the legal range of values for the new type is a
subset of the existing type's range of values. We use the simpleType element to define
and name the new simple type. We use the restriction element to indicate the existing

(base) type, and to identify the "facets" that constrain the range of values

The SwitchTypesSimpleTypeElement (STSE) operator is defined as the
operator that will switch elements of the same data type (built in or derived) in the
SimpleType element that could be defined in the Types element of a WSDL document.

The SwitchTypesSimpleTypeAttribute (STSA) operator is defined as the

operator that will switch elements of the same data type (built in or detived) in the
SimpleType element that could be defined in the Types element of 2 WSDL document.

22

322 Messages

Messages consist of one or more logical parts. Fach part is associated with a type
from some type system using a message-typing attribute. WSDL defines an element,
which refers to an XSD element, and type, which refers to XSD simple or complex type,
as message-typing atttibutes for use with XSD. In addition to the message name attribute
that provides a unique name among all messages defined within the enclosing WSDL
document, and the part name attribute that should provides a unique name among all the

patts of the enclosing message.

Example message patt in a WSDL document:

<message name="">
<part name="" element=""" type=""/>
</message>

Multiple patt elements are used if the message has multiple logical units.

<message name="">

<part name=""" element=""/>
<part name=" " element=""/>
</message>

If the message contents are sufficiently complex, then an alternative syntax may be

used to specify the composite structure of the message using the type system directly.

<types>

<schema >

<complexType name="Composite" >

<choice>
<element name=" " type=""/>
<element name=" " type=""/>

</choice>

</complexType>

</schema>

23

< / types>
<tnessage name="">

<part name=" " type="Composite" />
</message>

The SwitchMessagesPart(SMP) operator is defined as the operator that will
switch parts of the same element type in the Message element that is defined in 2 WSDL

document.

3.2.3 Port Types

A port type is a named set of abstract operations and the abstract messages

involved.

<wsdLportType name=" ">
_ <wsdL:operation name="" />
</wsdl:portType>
The port type name attribute provides a unique name among all port types

defined within the enclosing WSDL document, and an operation is named via the name

attribute.

WSDL has four transmission primitives, referred to as operations that an

endpoint can support:
One-way. The endpoint receives a message.

<wsdl:portType name=" ">
<wsdl:opetation name="" >
<wsdLinput name=" " message=""/>
</wsdl:opetation>
< /wsdl:portType >

The input element specifies the abstract message format for the one-way

opetration.

24

Request-tesponse. The endpoint sends a message, and receives a correlated

message.

<wsdbL:portType name=" ">

<wsdl:operation name=" " parameterOrder="" >
<wsdLinput name=" " message=""/>
<wsdloutput name=" " message=""/>
<wsdl:fault name=" " message=""/>
</wsdl:operation>
</wsdLportType >

Solicit-tesponse. The endpoint receives a message, and sends a correlated message.

<wsdl:portType name=" ">

<wsdl:operation name=" "' parameterOrder="" >

P P
<wsdl:output name=" " message=""/>
<Wsdl:input name="" message=" n/>
<wsdl:fault name=" " message=""/>
</wsdl:operation>

</wsdl:portType >

Notification. The endpoint sends a message.

<wsdl:portType name=" ">
<wsdl:operation name=" ">
<wsdloutput name=" " message=""/>
</wsdl:operation>
</wsdl:portType >

The output element specifies the abstract message format for the notification

opetation.

The pame atttibute of the input and output elements provides a unique name

among all input and output elements within the enclosing pott type. If the name attribute

25

is not specified, it is defaulted to 2 unique name, which is usually the name of the

operation appended to the primitive transmission type of the message.

The SwitchPortTypeMessage(SPM) operator is defined as the operator that
will switch messages of the same type in the operation element that is defined in a
PortType element, which has as operation of type request-response or solicit-response, of

a WSDL document.

Operations do not specify whether they are to be used with RPC-like bindings or
not. However, when using an operation with an RPC-binding, it is useful to be able to
capture the original RPC function signature. For this reason, a request-response ot solicit-
response operation MAY specify a list of parameter names via the parameterOrder
attribute (of type nmtokens). The value of the attribute is a list of message part names
separated by a single space. The value of the parameterOrder attribute MUST follow the
following rules:

The part name order reflects the order of the parameters in the RPC signature.
The return value part is not present in the list. If a part name appears in both the input
and output message, it is an in/out parameter. If a part name appeats in only the input
message, it is an in parameter. If a part name appears in only the output message, it is an
out parameter. ParameterOrder is not required to be present, even if the operation is to

be used with an RPC-like binding.

Other mutant operators in this section could be defined to handle for example the

parameterOrder attribute this operator may be defined in subsequent papets.

26

3.24 Bindings

A binding defines message format and protocol details for operations and
messages defined by a particular portType. There may be any number of bindings for a
given portType. The grammar for a binding is as follows:

<wsdl:definitions >
<wsdl:binding name="nmtoken" type="qname">
<wsdl:operation name="nmtoken" >
<wsdLlinput name="nmtoken" >
</wsdLinput>
<wsdl:output name="nmtoken" >
</wsdl:output>
<wsdl:fault name=""nmtoken">
</wsdl:fault>
</wsdl:opetation>
< /wsdl:binding>
< /wsdl:definitions>

Binding extensibility elements are used to specify the concrete grammar. A binding

must specify exactly one protocol, and must not specify address information.

3.2.5 Ports

A pott defines an individual endpoint by specifying a single address for a binding.

<wsdl:definitions >
<wsdlservice ... > *

<wsdl:pott name="nmtoken" binding="qname">

</wsdl:port>
< fwsdl:iservice>

< /wsdl:definitions>

27

Binding extensibility elements are used to specify the address information for the
port. A port must not specify more than one address, and must not specify any binding

information other than address information.

3.2.6 Services

A setvice groups a set of related ports together:

<wsdl:definitions >

-t

<wsdl:service name="nmtoken"> *
<wsdL:pott />
< /wsdl:service>
< /wsdl:definitions>

We coveted all the elements in a WSDL document. Binding types; however, will
not be addressed in this paper, as our main concern is to apply mutant operators on the
WSDL document elements independently on the binding type. Table 1 summarizes the

proposed mutant operatots.

28

TABLE 1. WSDL MUTATION OPERATORS.

Mutation operator

Group

WSDL

element

Description

STCE (SwitchTypesComplexTypeElement)

Switch

Types

Switch elements of the
same type in the
complextType element

STCA (SwitchTypesComplexTypeAttribute)

Switch

Types

Switch attdbutes of the
same type in the
complextType element

OTCE
(OccurrenceTypesComplexTypeElement)

Occutrence

Types

Add or delete occurrence
of an element in the
complextType

OTCA
(OccurrenceTypesComplexTypeAttribute)

Occutrence

Types

Add ot delete an optional
attribute in the
complextType element

STEN (SpecialTypesElementNil)

Special

Types

Set the nil attribute to true
in the complextType

element

STSE (SwitchTypesSimpleTypeElement)

Switch

Types

Switch elements of the
same data type (built in or
derived) in the SimpleType
element

STSA (SwitchTypesSimpleTypeAttribute)

Switch

Types

Switch elements of the
same data type (built in or
derived) in the SimpleType

element

SMP (SwitchMessagesPart)

Switch

Messages

Switch parts of the same
clement type in the
Message element

SPM (SwitchPortTypeMessage)

Switch

PortType

Switch messages of same
type in the operation
element that is defined in a
PortType element, which
has as operation of type
request-tesponse or solicit-
response

29

Once the mutants are generated, the next steps are the same as in traditional
mutation testing: to execute the mutants, to evaluate test set adequacy, and to decide on

mutant equivalence.

Now after the mutants WSDL are created, the tester, usually called oracle, will
provide input test cases to the client. These test cases will be selected putting in mind that
their main purpose is to kill the mutation. This tester will verify that the output from the
original code is the expected one. The expected output would be the output that the Web
Service promised to provide when giving the inserted input. If the output is not the
expected one then the Web Service contains a bug. Otherwise, the input is then provided
to the one of the mutant. If the mutant output is different than the original expected

output, then the mutant is killed; we will not use it back in the testing method.

If a fault exists in the program, it is likely that there exists a mutant that can only
be killed by a test that also finds the fault. Figure 3 desctibes the entite Web Service

testing process.

FIGURE3: WEB SERVICES TESTING

Chapter 4

Experimental Results

In this section we test the method described in the previous chapter. We will first
define a detailed example of executing this method on a VB.NET (Microsoft, 2003) Web
Service. Then we will continue with more experimental results on applying the method

on online services.

4.1 Detailed Example

The experiment is performed on Microsoft .Net platform for the creation of the
client and the Web Service. The Web Service used is a sample Web Service used as a
credit card checking service. The service is built in VB.INET and will take as input a credit
card number and credit card expiry date, and will return a message describing if the
information is valid or not. The Client is a web application written in ASP.NET
(Microsoft, 2002) that will call the Web Service credit card check function and display the

relevant response.

We will start by providing the WSDL document of the Web Service alongside a
brief explanation, and then we will provide sample input while checking for the expected
output. The Web Service code and the client code, which ate both written VB.NET, are
also supplied. We will then apply one mutant operator to the WSDL document, create a
new client that will fulfill the mutated WSDL document new requitement, and check if
the mutant client request output is the same as the original client request output. In the

Web Setvice that we use, both mutant and original client request output is the same,

31

which reveals a logical etror in the Web Service, and verifies cottectness of the WSDL
mutation method defined.

The following is the WSDL document of the Web Service:

<7xmi versien="1.0" encoding="utf-8"7>
<definitions xmlns:http="http://schemas.xmlisoap.org/wsdl/http/"
xmins:soap="http://schemas.xmisoap.org/wsdl/soap/"
xming:s="http:/fwww.w3.0rg/2001/XMLSchema" xmins:s0="http:/tempuri.org/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmins:mime="http://schemas.xmlsoap.org/wsdl/mime/" targetNamespace="http://tempuri.org/"
xmins="htip://schemas.xmlsoap.org/wsdl/">
<types>
<s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/">
<s:element name="CheckCreditCard">
<s:complexType>
<sisequence>
<s:element minOccurs="0" maxCOccurs="1" name="Creditcard" type="s:string" />
<s:element minOceurs="0" maxOccurs="1" name="ExpiryDate" type="s:string" />
</s:sequence™>
<Js:complexType>
</s:element>
<s:element name="CheckCreditCardResponse">
<s:complexType>
<g:sequence™
<s:element minOccurs="0" maxOccurs="1" name="CheckCreditCardResult"
type="s:string" />
</s:sequence>
</s:complexType>
</s:element™>
<s:element name="string" nillable="true" type="s:string" />
</s:schema>
</types>
<message name="CheckCreditCardSoapIn">
<part pame="parameters” element="s0:CheckCreditCard" />
</message>
<message name="CheckCreditCardSoapOut"> :
<part name="parameters” element="s0:CheckCreditCardResponse" />
</message>
<message name="CheckCreditCardHitpGetIn">
<part name="Creditcard" type="s:string" />
<part name="ExpiryDate" type="s:string" />
</message>
<message name="CheckCreditCardHttpGetOut">
<part name="Body" clement="s0:string" />
</message™>

32

<message name="CheckCreditCardHttpPostIn">
<part name="Creditcard" type="s:string" />
<part name="ExpiryDate" type="s:string" />
</message>
<message name="CheckCreditCardHttpPostOut">
<part name="Body" element="s0:string" />
</message>
<porfType name="Servicel Soap">
<gperation name="CheckCreditCard">
<input message="s0:CheckCreditCardSoapn" />
<output message="s0:CheckCreditCardSoapOut" />
</operation>
</portType>
<poriType name="Service1HttpGet">
<operation name="CheckCreditCard">
<input message="s0:CheckCreditCardHttpGetIn" />
<output message="s0:CheckCreditCardHttpGetOut" />
</operation>
</portType>
<portType name="ServicelHttpPost">
<operation name="CheckCreditCard">
<input message="50:CheckCreditCardHttpPostIn" />
<output message="s0:CheckCreditCardHttpPostOut" />
</operation>
<fportType>
<binding name="ServicelSoap" type="s0:Servicel Soap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="CheckCreditCard">
<soap:operation soapAction="http://tempuri.org/CheckCreditCard" style="document" />
<input>
<soap:body use="literal" />
<finput>
<output>
<soap:body use="literal" />
<foutput>
<foperation™>
</binding>
<binding name="Servicel HttpGet" type="s0:Servicel HttpGet">
<http-binding verb="GET" />
<operation name="CheckCreditCard">
<http:operation location="/CheckCreditCard" />
<input>
<htip-urEncoded />
<finput>
<output>
<mime:mimeXml part="Body" />
<foutput>
</operation>
</binding>
<binding name="ServicelHitpPost" type="s0:Servicel HttpPost">

33

<htip:binding verb="POST" />
<operation name="CheckCreditCard">
<http:operation location="/CheckCreditCard" />
<input>
<mime:content type="application/x-www-form-urlencoded" />
<finput>
<output>
<mime:nmimeXml part="Body" />
<foutput>
</operation>
</binding>
<service name="Servicel">
<port name="Service1Soap" binding="s0:ServicelSoap">
<soap:address location="http://localhost/WebServicel/Servicel.asmx" />
</port>
<port name="Service | HitpGet" binding="s0:Service | HttpGet">
<http:address location="http:/localhost/WebServicel/Servicel .asmx" />
</port>
<port name="Service1HttpPost" binding="s0:ServicelHitpPost">
<http:address location="http://localhost/WebServicel/Servicel .asmx" />
</port>
</service>
</definitions>

This WSDL file shows that the input elements are: credit card of type string,
expity date as type string:

<s:element minOccurs="0" maxOccurs="1" name="Creditcard" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="ExpiryDate" type="s:string" />

The sequence of the input is credit card first, and expiry date second. The output
element is checkcreditcardresult of type string.

<s:element minOccurs="0"maxOccurs="1"name="CheckCreditCardResult" type="s:string" />

Using a Microsoft .Net tool called WSDL.exe, we create a proxy class for this Web
Service. This tool takes the WSDL file as input and creates a proxy class as output. The
client will be able to treat the Web Service call like 2 call to a local class. The client
instantiates an instance of the proxy class and calls the checkcreditcard method. The
proxy class marshals the parameter list and makes an HTTP request to the Web Service.

‘The Web Service unmarshals the incoming parameters, run the method, and marshals the

34

output parameter. These are all sent back as a HTTP response to the proxy. The proxy
unmatshals the returned parameter and passes back the result to the client. The process is

completely transparent to the developer.

We will start to test the Web Service, taking into consideration two valid values.
The first is the credit card number 4111111111111111, expity date 01/01/2004 and the
second being card number 4111111111111117, expiry date 01/01/2005.

Sending the input to the Web Service will give us the expected output as

promised.

FIGURE4: WEB SERVICE CLIENT INTERFACE

Invalid credit card number will result in a2 “Not Valid” response as promised.

35

(B i ochos febtpcation st Ram s~

FIGURES5: WEB SERVICE CLIENT INTERFACE2

The 2™ valid credit card number/ expiry date will give the expected result.

FIGUREG: WEB SERVICE CLIENT INTERFACE3

The original client code, found in Figure 7, shows the calling of the

checkcreditcard opetation taking as input the creditcardinfo and expirydate operation.

36

Figure7: ASP.NET original client code

Now we mutate the WSDL file as follows:

<Txml version="1.0" encoding="utf-8"?>
<definitions xmins:http="http://schemas.xmlsoap.org/wsdl/http/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:s="http://www.w3.0rg/2001/XMLSchema" xmlns:s0="http://tempuri.org/"
xmlins:soapenc="http://schemas.xmlisoap.org/soap/encoding/"
xmins:tra="http://microsoft.com/wsdl/mime/textMatching/"
xmins:mime="http://schemas xmisoap.org/wsdl/mime/" targefNamespace="http://tempuri.org/"
xmins="htip://schemas.xmlsoap.org/wsdi/">
<types>
<s:schema elemeniFormDefault="qualified" targetNamespace="http://tempuri.org/">
<s:element name="CheckCreditCard">
<s:complexType>

<s:sequence™>

<s:element minCccurs="0" maxOccurs="1" name="ExpiryDate" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="Creditcard" type="s:string" />

37

</s:sequence™>
</s:complexType>
</s:clement>
<s:element name="CheckCreditCardResponse">
<s:complexType>
<g:sequence>
<sxelement minOccurs="0" maxOccurs="1" name="CheckCreditCardResult"
type="s:string” />
<{s:sequence>
<Js:complexType>
</s:element>
<s:element name="string" nillable="true" type="s:string" />
<fs:schema>
</types>
<message name="CheckCreditCardSoapIn">
<part name="parameters" element="s0:CheckCreditCard" />
</message>
<message name="CheckCreditCardSoapOut">
<part name="parameters" element="s0:CheckCreditCardResponse" />
</message>
<message name="CheckCreditCardHttpGetIn">
<part name="ExpiryDate" type="s:string" />
<part name="Creditcard" type="s:string" />
</message>
<message name="CheckCreditCardHttpGetOut">
<part name="Body" ¢lement="s0:string" />
</message>
<message name="CheckCreditCardHitpPostIn">
<part name="ExpiryDate" type="s:string" />
<part same="Creditcard" type="s:string" />
</message>
<message name="CheckCreditCardHttpPostOut">
<part name="Body" element="s0:string" />
</message>
<portType name="ServicelSoap">
<operation name="CheckCreditCard">
<input message="50:CheckCreditCardSoapIn" />
<output message="s0:CheckCreditCardSoapOut" />
</operation>
</portType>
<portType name="Servicel HttpGet">
<gperation name="CheckCreditCard">
<input message="s0:CheckCreditCardHttpGetIn" />
<gutput message="s0:CheckCreditCardHttpGetOut" />
<foperation>
</portType>
<portType name="ServicelHttpPost">
<operation name="CheckCreditCard">
<input message="s0:CheckCreditCardHttpPostIn" />
<output message="50:CheckCreditCardHttpPostOut" />

38

</operation>
</portType>
<binding name="ServicelSoap" type="s0:Servicel Soap™>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="CheckCreditCard">
<soap:operation soapAction="http://tempuri.org/CheckCreditCard" style="document" />
<input> .
<soap;body use="literal" />
<finput>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<binding name="ServicelHttpGet" type="s0:ServiceHttpGet">
<http:binding verb="GET" />
<operation name="CheckCreditCard">
<http:operation location="/CheckCreditCard" />
<input> :
<http:urlEncoded />
<f/input>
<output>
<mime:mimeXm! part="Body" />
</output>
</opération>
</binding>
<binding name="Service1HttpPost" type="s0:Servicel HttpPost">
<http:binding verb="POST" />
<operation name="CheckCreditCard">
<http:operation location="/CheckCreditCard" />
<input>
<mime:content type="application/x-www-form-urlencoded" />
</input>
<output>
<mime:mimeXml part="Body" />
</output>
</operation>
</binding>
<service name="Servicel">
<port name="ServicelSoap" binding="s0:ServicelSoap">
<soap:address location="http://localhost/'WebServicel/Servicel.asmx" />
</port>
<port name="Service 1 HttpGet" binding="s0:Servicel HttpGet">
<http:address location="http://localhost/WebServicel/Servicel .asmx" />
</port>
<port name="ServicelHttpPost" binding="s0:Service1HttpPost">
<http:address locatior="http://locathost/'WebServicel/Servicel.asmx" />
</port>
</service>
</definitions>

39

By applying the STCE mutant operator, we switch elements of the same type in the
complextType element. The ExpiryDate and CreditCard element in the WSDL document
are defined of the built in type string. These two elements will be switched and we will

have:

<s:element ninOccurs="0" maxOccurs="1" name="ExpiryDate" type="s:string" />
<s:element minQcours="0" maxOccurs="1" name="Creditcard" type="s:string" />

Instead of:

<s:element minOccurs="0" maxOccurs="1" name="Creditcard" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="ExpiryDate" type="s:string" />

The proxy class generated by the WSDL.EXE tool contains the checkcreditcard

operation that will only accept input parameter in this sequence: expirydate, creditcard.

The client code is then altered to reflect the proxy class changes.

FIGURE®: ASP.NET MUTATED CLIENT CODE

The following input is then supplied to the mutated client code: credit card
number 4111111111111111, and expiry date 01/01/2005. The expected output on the
original program should not be valid because the expity date does not match. However,
the mutant client output is “Valid”. This output is incotrect. In other words, running the |

same input to the original client surprisingly gave us the same output, that the card is

valid. Have uncovered our first bug

FIGUREY: WEB SERVICE CLIENT INTERFACE4

FIGURE10: WEB SERVICE CLIENT INTERFACES

41

In order to be reliable, Web Services should be extensively validated. This Web
Service contains a logical etror; the validation of the credit card does not match its expiry
date. Figure 11 shows the code of the Web Service. Using the proposed method to test
the Web Service, we were able to find errors not only in the interface of the Web Service

but even in the Web Service logic itself.

FIGURE11l: VB.NET WEB SERVICE CODE

42

4.2 Mote expetimental results

We report further experimental results to investigate the use of proposed method
for online Web Services. We selected an online Web Service by querying the UDDI
business registry to find companies and production Web Setvices.

The analysis provided is concerned with the cost of applying interface mutation,
which was minimal, and also the effectiveness of revealing errors. It is also important to
stress the limited scope of this analysis that has used test Web Setvices and a small set of
test cases. Despite its limited scope, this experiment serves as the starting point to
evaluate the new method proposed in this thesis for mutation testing of Web Setvices.

In order to partially automate the testing process, a web application has been
implemented. Figure 12 shows the interface of the web application. The application could
be found at: http://RedaSiblini.europe.webhostingmatrix.net/webtesting. The
application is developed in ASP.NET, and it tries to automate the Web Setvice testing
process using mutation of WSDL. This application does not test all kind of Web Services;
its main focus is to test Web Services that accept primitive types as input. In addition, test
case requests to the Web Setrvice are accomplished using Http. At this stage, requests
made to the Web Service do not support SOAP.

The initial step in the testing procedure is to enter the address of the Web Service
WSDL document. When this is performed, the user should click on the Get Methods
button in order to tetrieve a list of all the methods available in the Web Service. The user
is now able to select from the list a method, which he/she wishes to test. Upon doing so,
the parameters required for the method will be listed accordingly. The parameter’s name
and data type will be explicitly shown. Moreovet, the user will be able to enter the test
value for each parameter in the space provided. This method of adding input can be seen
as a disadvantage, for the type of input, which can be inserted, is restricted to primitive
types; thetefore, objects cannot be inserted. The number of test cases allowed is not
limited. In other words, the user is allowed to add as many test cases as desired simply by
providing the test case and clicking on the Add Test Case button. In order to place the
testing procedure in action, the user has to click on the Start Testing button provided.
From this point forward, the process can be considered to be fully automated, that is the
user is no longer required to provide any input or perform any action. At this stage, the
mutation operators will be invoked upon the WSDL generating in retutn several mutated
versions of the WSDL document. Each test case provided will be used to send an http
web request to call the method selected by the user in accordance with the original
WSDL document. The retrieved results will be recorded. Next, the same procedure will
be repeated for the generated mutated versions of the WSDL. The results recorded
encompass the following:

43

? Number of test cases: the total number of test cases which the user has provided

? Number of created mutant: the number of the generated mutant versions of the
WSDL document

? Number of equivalent mutant: the number of mutants, which generate the same

results as the original WSDL document.
? Number of Killed mutant: the number of mutants, which generate different
results from the original WSDL document.
Number of Sent Requests: Total number of HTTP web request sent to the Web
Service.
? Number of Received Etrors: In case the Web Setvice generated an etror, this
counter will count the total numbet of errors received from the Web Service.

-2

In addition, the detailed result of the entire web requests will be generated. This
result will include each parameter value, the type of WSDL that is T for Test case and M
for Mutated, and the resulted output.

serviee WHBL sbdrese |

WSDL: ihtlp:f/mvw,meebsaMcas.cc/wsM/calclSimplsCabasmx?WSDL

R o it i 5 Resalt
2l ved service methuds Number of Test Cases: 1
53 Salect the methad that yeu wiost ia fost Number of Creaied Mutant: 5 Number of Sent Requesis:
] Add Number of Eyuivalent Mutant: 1 Nuwrber of Recefved Exrors 4
TestCase: ¥ alawstcasbyprmiding bymi Brde sododpmommeiory | DumberofKilled Mutan: 4
(=) : Int64

b) : but64

8. CHiok Add Tess Case o add
e St fp your test vases

The remote server retumed an error: (500)
Internal Server Error.

The remote server retumed an error; (500)
iInternal Server Error,

FIGURE12: ASP.NET WEB SERVICE TESTING APPLICATION

Figure12 presents an example of the complete procedure. The WSDL document
describes a simple calculator Web Service. The selected method is the Add method, and
this method takes in two parameters, a and b. The two parameters are of the same type,
integer. The user in this sample has entered one test case, a=1 and b=2. The test case
result shows that 5 mutant has been created. In addition, the result shows that we have 1
equivalent mutant and that’s when the element of the method has been switched and we
have the same output; 1+2 = 2+1 =3. The number of killed mutant is 4, the total
number of sent requests is 6, and the number of received errors is 4. The test case Results
grid shows us that the Web Service in test has generated an “Internal Server Error” when
one of the parameters is null. At the end the result shows that the mutation score ot
result is 80%, which means that the test case is adequate for testing this Web Setvices.
The result grid gives the opportunity for the tester to examine all the test cases and all the
results. In case of errors received, the user will be able to know what kinds of inputs
could generate etrors.

Next we will go over set of Web Services that has been tested using this web
application, and we will show the final result in addition to the generated result grid.

First we will continue with the simple calculator Web Service. The Web Service

WSDL address is http://www.xmlwebservices.cc/ws/v1/calc/SimpleCalc.asmx?WSDL.

This Web Service mimics a very simple calculator, with the following methods: add,
subtract, multiply, divide.

Function name:

? Add

Parameter in:

? A as integer

? B as integer

Parameter out

? Integer
Number of Test Cases 1
Numbet of Created Mutant
Number of Equivalent |1
mutant
Number of Killed mutant 4
Number of Sent Request 6
Number of Received Errors | 4
Mutation Score 80%

45

The remote server returned an error: (500)
Internal Setver Etror.

The remote server returned an error: (500)

> 6/ M Internal Server Error.
Function hame:

? Subtract

Parameter in:

? A as integer

? B as integer

Parameter out

? Integer
Number of Test Cases 1
Number of Created Mutant 5
Numbet of Equivalent | 0
mutant
Number of Killed mutant 5
Number of Sent Request 6
Number of Received Etrors | 4
Mautation Score 100%

id bET/ M tesliit

46

The remote server returned an error: (500):

Internal Server Ettor.

The remote server returned an error: (500)

> 6 1M Internal Server Error.
Function name:

? Multiply

Parametet in:

? A as integer

? B as integer

Parameter out

? Integer
Number of Test Cases 1
Number of Created Mutant
Number of Equivalent |1
mutant
Number of Killed mutant 4
Number of Sent Request 6
Number of Received Errors | 4
Muatation Score 80%

/ M E tesule

-

The remote server returned an error: (500)
Internal Server Exrror.

The remote setver returned an error: (500)
Internal Setver Error.

47

Function name:

? Divide
Parameter in:
? A as integer
? B as integer
Parameter out
? Integer
Number of Test Cases 2

Number of Created Mutant 10

Numbet of Equivalent |0

mutant

Number of Killed mutant 10
Number of Sent Request 12
Number of Received Errors | 9

Mutation Scote 100%

Internal Server Brror.

3010, M The remote server returned an error: (500)

The remote server returned an error:
Internal Server Error.

The remote server retutned an error:
Internal Server Error.

(500)

48

The remote server returned an etrot: (500)

11 0 M

Internal Server Ertor.

Next we will test a sample credit card checker Web Service. The Web Service WSDL

address is _http://cmws.europe.webmatrixhos ting.net/CheckCreditCard.asmx?wsdl.

The method checks a credit card, by giving the credit card type, and card number. It
returns if the credit card is valid or not.

Function name:
? CheckCardNumber
Parameter in:
? CardType as String
? CardNumber as String
Parameter out
? String
Number of Test Cases 1

Number of Created Mutant
Number of Equivalent | 1

mutant

Number of Killed mutant 4
Number of Sent Request 6
Numbet of Received Etrors | 4
Mutation Score 80%

id| CardType : E cardNumber

The remote

server

1 4111111111111111 VISA M returned an
error: (500)
Internal

49

VISA

The temote
server)

retutned an
error: (500)
Internal

Server Error.

4111111111111

This is no
valid Credit
Card.

Function name:
ConverionRate
Parameter in:
FromCurrency as String

ToCurrency as String
Parameter out

Decimal

Next we will test a currency converter Web Service. The Web Setvice WSDL address is
http:/ /www.webservicex.net/CurrencyConvertor.asmx?wsdl. The method returns
convetsion rate from one currency to another cutrrency.

Number of Test Cases 1
Number of Created Mutant 5
Number of Equivalent |0
mutant

Number of Killed mutant 5
Number of Sent Request 6
Number of Received Errors | 4
Mutation Score 100%

o
c
7]
o
=<

The remote server
eturned an error: (500) :
nternal Server Brror.

The tremote server
returned an error: (500)

Internal Server Error.

Next we will test a Web Service that gives back location information. The Web Service
WSDL addtess is http://teachatechie.com/G]TTWebSetvices/ZipCode.asmx?wsdl.

Function name:

? GetNearbyZipCodes: Returns a DataSet containing maximum of 250
zip codes and radius milage within a given radius of a zip code
Parameter in;
? ZipCode as String
? RadiusMiles as Integer
Parameter out
? String
] Number of Test Cases | 1

51

Number of Created Mutant 5
Number of Equivalent | 0

mutant

Number of Killed mutant 5

Number of Sent Request 6 X
Number of Received Errors 2
Mautation Score 100%

110 22041 M

The remote server returned an etror:

3 122041 M (500) Internal Server Error.

Functon name:
? GetlLocation: Returns a DataSet with all locations that have a given
zip code

Parameter in:

? ZipCode as String

Parameter out

? String
Number of Test Cases 1
Number of Created Mutant 1
Number of Equivalent | 0
mutant
Nutnbet of Killed mutant 1
Number of Sent Request 2
Number of Received Errors 1
Mutation Scote 1060%

52

Non-negative number required. Parameter
1 M
name: byteCount

Function name:

?

.

GetNearbyZipCodesWhereClause: Returns a string Whete clause
containing maximum of 250 zip codes within a given radius of a zip code

Parameter in:
? ZipCode as String
? RadiusMiles as Integer
? WhereFieldName as String
Parameter out
? String
Number of Test Cases 1

Number of Created Mutant 23
Number of Equivalent | 0
mutant
Number of Killed mutant 23
Number of Sent Request 24
Number of Received Etrors | 12
Mutation Score 100%

The temote server

returned an error:
1 122041 c 10 M (500) Internal

Server Error.

The remote server
3 110 c 22041 M returned an error:
(500) Internal

53

id ZipCode

Server Errot.

-

e

TR

The remote server
returned an error:
17122041 c M (5000 Tnternal

Setver Error.

54

-'The remote server
returned an errot: |
(500) Internal
Server Error. E

§ ; 2 i The remote server
%21%10 i M ‘returned an errot:

(500) Intetnal
: Server Error.

23 10 c M

Function name:

? GetNearbyLocations: Returns a DataSet containing all locations
within a given radius of a zip code
Parameter in:
? ZipCode as String
? RadiusMiles as integer
Parameter out
? String
Number of Test Cases 1

Number of Created Mutant 5
Number of Equivalent | 0

mutant

Number of Killed mutant 5
Number of Sent Request 6
Number of Received Errors | 2
Mutation Score 100%

55

RadiusMiles | -

1:10 22041

3 122041

The remote server returned an error:
(500) Internal Setver Error.

Function name:

GetDistance: returns the decimal distance between two zip codes
Parameter in:

ZipCode as String
ZipCode as String

Parameter out

String

Number of Test Cases

Number of Created Mutant

Number of Equivalent
mutant

Number of Killed mutant

Number of Sent Request

Number of Received Errors

Mutation Score

56

EThe temote server returned an
cerror: (500) Internal Server

The remote setver returned an
5 22042 M ierror: (500) Internal Setver
Error.

Next we will test The Html2Xml Web Setvice that is created by Reflection IT. The We
Service WSDL address is

http:/ /www . html2xml.ol /Services /html2xml/versiont /Html2Xml. asmx?Pwsdl.

The Html2Xml webservice takes a Url of a page and converts it into a well-formed Xml.

Function name:

? URL2XMI.Node
Parameter in:
? urlAddress as String
Parameter out
? String
Number of Test Cases 1

i

Number of Created Mutant
Number of Equivalent | 0

mutant

Number of Killed mutant 1
Number of Sent Request 2
Number of Received Errors | 1
Mutation Scote 100%

| d i urlAddress V

57

id | urlAddres

Last Web Setvice to test is the Official Exchange Rates of the Litas against Foreign
Currencies. This Web Service provides official (established by Bank of Lithuania)
exchange rates of the Litas against Foreign Currencies. The Web Service WSDL address
is http:/ /webservices.Ib.lt/ExchangeRates/ExchangeRates.asmxPwsdl.

Function name:

? getCurrentBExchangeRate

Parameter in:

? Cutrrency as string - Currency code, example USD

Patameter out

? Decimal number - Exchange Rate (expressed in Litas pet 1 currency
unit).

? If given parameter is invalid or error appeat than negative number is
returned.

Number of Test Cases 1

Number of Created Mutant 1
Number of Equivalent

mutant

Number of Killed mutant 1
Number of Sent Request 2
Number of Received Errors | 0
Mutation Scote 100%

| Cutrency

Function name:

? getExchangeRate

Parameter in:

? Currency as string- Curtency code, example JPY

? Date as string - Exchange Rate date, example 2002-09-01

58

Parametet out

? Decimal number - Exchange Rate (expressed in Litas per 1 currency
unit).
? 1f given parameter is invalid or etror appear than negative number is
returned.
Number of Test Cases 1
Number of Created Mutant
Number of Equivalent | 0
mutant
Number of Killed mutant 5
Number of Sent Request 6
Number of Received Errors | 0
Mutation Score 100%

id Cutrency

1 :2004-03-03 USD M -1
3 USD M 2.9231
5 2004-03-03 M -1
Function name:
? getBxchangeRatesByDate
Parameter in:
? Date - Exchange Rate's date, example 2002-10-05
Parameter out;
? Exchange Rates as string
Number of Test Cases 1
Number of Created Mutant 1
Number of Equivalent |0
mutant
Number of Killed mutant 1
Number of Sent Request

59

Number of Received Errors 0
Mutation Score 100%

2004.04.23AED107.8346LTL pet 10 cutrency
1 M units2004.04.23ALL1002.6995LTL. per 100
currency units2004.0

Function name:

? getExchangeRatesByCurrency

Parameter in:

? Currency as string- Currency code, example SEK
?

DatelLow as string - Interval low date, example 2002-10-04

‘DateHigh as string - Interval high date, example 2002-10-24
Parameter out:

-~

? Exchange Rates as string

Number of Test Cases 1
Number of Created Mutant 23
Number of Equivalent | 1

mufant

Number of Killed mutant 22
Number of Sent Request 24
Number of Received Etrors | 0
Mutation Score 100%

60

H
% Parameter value is invalid!
H

2004-04-
04

2004-03-
03

UsD

Parameter value is invalid!

USb

2004-03-
03

Parameter value is invalid!

2004-03-
03

USD

Parameter value is invalid!

11:USD

2004-03-
03

2004.03.03USD12.78531.TL pet
1) cutrency
unit2004.03.04USD12.8311LTL

per 1 currency
unit2004.03.05USD1

2004-04-

04

USD

Parameter value is invalid!

!

| Parameter value is invalid!

61

17:USD

Parameter value is invalid!

2004-04-

1904

2004-03-

03

Parameter value is invalid!

kA

U i
2 2004-03

H
H

i Parameter value is invalid!

23

2004-03-
03

2004-04-
04

Parameter value is invalid!

62

Chapter 5

Conclusion

We have introduced a new method for testing Web Setvices involving the
application of mutation analysis to the WSDL. The procedure depends on the usage of
WSDL specific mutant operators to mutate the WSDL document of a Web Service. We
have identified mutation operators and experimented with their functionalities. The
mutant operators list described in this paper is a basic list that is not exhaustive and will
be further elaborated in subsequent papers. The application of mutation operatots to the
WSDL documents reveals interface errors, as well as logical ones. The derived results

present the success and adequacy of our method.

In future work, we envision a Tester Web Service that provides almost complete
automated testing of other Web Services. Figure 13 presents the tester Web Services
flow. This Web Service would take as input a WSDL path of another Web Service, and
the desired mutant score value. The Tester Web Setvice will generate test cases and
execute them on the Web Service that is being tested using the original interface
desctiption, and then using mutants. If test case doesn’t kill any mutant, it will be
removed from the list, otherwise it will be recorded in a database. This method is
repeated, each time generating test cases to target live mutants, until the desited mutant
score value is reached or the tester stops the process. At the end the Web Service will
output an XML document containing effective test cases and the generated output that
the tester needs manually to examine in order to discover if it is the expected output or 2
fault in the service. This Web Service could be an extension of the provided web

application; the main difference is that it would be a completely automated Web Service.

63

Test operation:
Input:
WSDL Path

Mutation score
Output:
XML result

A

document

Creafe Generate
Mutant Test Cases
Mutation
score
reach Compare, add
number of killed

mutants, and
eliminate test case
if none

F1IGURE13: TESTER WEB SERVICE

64

Run Test
Cases

Collect

Data

Collect
Data

Original

WSDL’

References

W3C (2003). Web Service atchitecture, W3C working Draf, warw.w3.otg/tt/ws-atch/.

W3C (2001). Web Services description language (WSDL) 1.1. W3C Note 15,
www.w3.org/tr/wsdl

DeMillo, R. A. and Offutt , A. J. (1991) Constraint-based automatic test data generation.
IEEE transaction on software engineering, 17(9), 900-910.

Offutt, A. J. and Untch, R. H (2000) Mutation 2000: Uniting the orthogonal. Mutation
testing in the twentieth and twenty-first centuries, 45-55.

Ghosh, S. and Mathur, A. P. (2001) Interface Mutation. Software testing versfication and
reliabifity, 11, 227-247.

Yoon, H. and Choi B. (2001) An effective testing technique for component composition
in EJBs. Proceedings of eight Asia-pacific software engineering conference.

Martins, E. and Toyota, C. (2001), Constructing self-testable software components.
Proceedings of the international conference on dependable systems and networks.

Delamaro M., Maldonado, J., and Mathur, A. (2001) Interface mutation: an approach for
integration testing. IEEE fransactions on software engineering, 27(3), 228-247.

Chan, W., Chen, T, and TSE T. (2002) An overview of Integration testing techniques for
object oriented programs. proceedings of the 2 ACIS.

Vincenzi, A., Maldonado, J., Barbosa, E., and Delamaro M. (2001) Unit and integration
testing strategies for C progtams using mutation. software testing, versfication and reliability; 11,
249-268.

W3C (1998). Extensible Markup Language (XML) 1.0, W3C recommendation,
http:/ /www.w3.0tg/TR /1998 /REC-xml1-19980210

Microsoft (2002). ASP.NET, http://msdn.microsoft.com/asp.net/

Microsoft (2003). Visual Basic .Net, http:/ /msdn.microsoft.com/vbasic/

65

Glossary

ASP.NET

ASPNET (originally called ASP+) is the next generation of Microsoft's Active Server
Page (ASP). It is a component of the Microsoft .NET Framework for building,
deploying, and running Web applications and distributed applications.

CORBA

Common Object Request Broker Architecture (CORBA) is an architecture and
specification for creating, distributing, and managing distributed program objects in a
network. It allows programs at different locations and developed by different vendors to
communicate in a network through an "intetface broker."

COM

Component Object Model (COM) is Microsoft's framework for developing and
supporting program component objects. COM provides the underlying services of
interface negotiation, life cycle management licensing, and event services.

HTTP

Hypertext Transfer Protocol (HTTP) is the set of rules for transferring files (text, graphic
images, sound, video, and other multimedia files) on the World Wide Web. HTTP is an
application protocol that runs on top of the TCP/IP suite of protocols.

IDL

Interface definition language (IDL) is a generic term for a language that lets a program or
object written in one language communicates with another program written in an
unknown language. An interface definition language works by requiring that a program's
interfaces be desctibed in a stub or slight extension of the program that is compiled into
1t

RPC

Remote Procedure Call (RPC) is a protocol that one program can use to request a service
from a program located in another computer in a network without having to understand
network details.

SOAP
Simple Object Access Protocol (SOAP) is a simple, XML-based protocol for exchanging
structuted data and type information on the World Wide Web.

Tcre/ip

66

Transmission Control Protocol/Internet Protocol (TCP/IP) is the basic communication
language or protocol of the Internet. It can also be used as a communications protocol in
a ptivate network (either an intranet or an extranet).

UDDI

Universal Description, Discovery, and Integration (UDDI) is a specification for
publishing and locating information about Web Services. It defines a standards-based way
to store and retrieve information about setvices, setvice providers, binding information,
and technical interface definitions, all classified using a set of standard or custom
classification schemes.

URI

Uniform Resource Identifier (UR) is the way you identify any points of content on the
internet, whether it be a page of text, a video or sound clip, 2 still or animated image, or a
program. A URI typically describes the mechanism used to access the resource, the
specific computer that the resource is housed in, and the specific name of the resource on
the computer.

VB.NET

Visual Basic (VB) is a programming envitonment from Microsoft in which a programmer
uses a graphical user interface to choose and modify selected sections of code written in
the BASIC programming language.

VB.NET is part of a brand new platform, based on the .NET Framework. and is fully
object-orented.

WSDL

Web Service Description Language (WSDL) is an XML format for describing Web
Services. WSDL allows Web Setvice providers and users of such services to work
together easily by enabling the separation of the description of the abstract functionality
offered by a setvice from concrete details of a service description such as "how" and
"where" that functionality is offered.

XML

Extensible Markup Language (XML) is a markup language that provides a format for
descrbing structured data. XML is 2 World Wide Web Consortium (W3C) specification
and is a subset of Standard Generalized Markup Language (SGML).

XsD '
XML Schema Definition (XSD), a Recommendation of the World Wide Web

Consortium (W3C), specifies how to formally describe the elements in an Extensible
Markup Language (XML) document. This description can be used to verify that each

67

item of content in a document adheres to the description of the element in which the

content is to be placed.

68

