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Whole-Genome Comparative Analysis of Carbapenem-

Resistant Escherichia coli Isolated from Hospitalized 

Patients in Lebanon 

Christel C. Dagher 

 

ABSTRACT 

Antibiotic resistant bacteria that are challenging and nearly impossible to treat are 

becoming more prevalent and this is resulting in an urgent public health concern. The 

horizontal gene transfer of antibiotic resistance genes between bacteria as well as the 

complex antibiotic resistance mechanisms involved have aided in the production of an 

extensive spectrum of bacterial species with multi-drug resistant patterns. Resistance 

mechanisms of Gram-negative bacteria, such as extraintestinal Escherichia coli (ExPEC), 

vary extensively and the emergence of extended spectrum β-lactamases (ESBLs) as well 

as carbapenemases have compromised the effectiveness of the majority of antibiotics. 

ExPEC is one of the major causes of community- and nosocomial-acquired infections. 

Distinct from intestinal pathogens and commensals, ExPEC causes infections of the 

bloodstream, respiratory tract, urinary tract, peritoneum and cerebrospinal fluid. The 

universal burden of diseases caused by such a microorganism is staggering and hundreds 

of thousands of people are annually affected. In this study, 27 carbapenem resistant 

ExPEC isolates were recovered from hospitalized patients at the AUBMC (American 

University of Beirut Medical Center) and were used for identification, phylogenetic typing 
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and molecular detection of associated antibiotic resistance genes (OXA, SHV, TEM, 

CTX-M and CTX-M-15). High-throughput sequencing was performed on ten isolates and 

bioinformatic tools were utilized to identify resistance and virulence determinants, 

plasmids, and phages. Overall, out of the 27 isolates, 59.6 %, 51.9 %, 7.4 %, 88.9 % and 

63 % carried the blaOXA, blaTEM, blaSHV, blaCTX-M and blaCTX-M-15 genes, respectively. The 

distribution of the isolates among the different phylogenetic groups was as follows: 5 (18.5 

%) belonged to group A, 3 (11.1 %) group B1, 6 (22.2 %) group B2 and 13 (48.2 %) group 

D. The average genome was 5.2 Mb with an average of 224–342 contigs and a G+C % 

content of 50.49 % – 50.79 %. The isolates were derived from 7 different lineages: ST-

405 (ECC153, ECC157, ECC173 and ECC188), ST-205 (EC 174), ST-410 (ECC194), 

ST-448 (ECC161), ST-617 (ECC202), ST-1284 (ECC167) and ST-648 (ECC149). 

Analysis revealed that these isolates harbored different β-lactamase genes including 

blaOXA-1, blaOXA-10, blaOXA-181, blaTEM-1b, blaCTX-M-15, blaCMY-2, blaCMY-42 in addition to 

aac(6')Ib-cr gene which confers tetracycline and aminoglycoside resistance among others. 

To the best of our knowledge, this is the first detection of blaOXA-181 encoding E. coli from 

Lebanon in addition to it being the first comprehensive genome-wide comparative 

analysis of carbapenem resistant ExPEC isolates. The pandemic potential of these ExPEC 

strains merits further large-scale comparative and functional genomic studies to better 

understand the biology of this clinically important bacterium.   

 

Key words: Escherichia coli, ExPEC, ESBL, Carbapenem Resistance, High Throughput 

Sequencing, Lebanon, Virulence, CTX-M-15, OXA-181. 
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Chapter One 

INTRODUCTION 

Escherichia coli is one of the most common member of the family Enterobacteriaceae 

that is frequently associated with both hospital- and community-acquired infections 

(Doumith et al., 2009). Besides being a harmless intestinal inhabitant, it is highly versatile 

and most often a deadly pathogen. It can cause intestinal and extraintestinal diseases with 

the help of virulence factors that alter several cellular processes (Kaper, 2004). E. coli is 

the main causative agent of urinary tract infections (UTI) and it is associated with more 

than 80% of such infections. UTIs are one of the most frequent human bacterial infections 

constituting around 25-40% of all nosocomial infections, making them a significant 

financial and medical burden on the healthcare system (Munk Vejborg et al., 2011). Over 

the past decade, there has been an increase in extended spectrum β-lactamase producing 

and carbapenem resistant E. coli in Lebanon (Moubareck et al., 2005). Although 

worldwide cases of carbapenem resistant E. coli have been reported, carbapenems are still 

the main choice of antibiotics in the treatment of multidrug resistant or ESBL producing 

E. coli (Lartigue et al., 2007). A varying number of different mechanisms are thought to 

be involved in the resistance to carbapenems. Primarily, the process includes the 

production of carbapenemases like class A KPC, class B metallo-β-lactamases (IMP, VIM 

and NDM-1) as well as class D OXA-type enzymes (OXA-48) (Matar et al., 2008). 

Moreover, resistance may be due to AmpC type enzymes along with impermeability in 

the membrane or the production of class A ESBLs (Moubareck et al., 2005). Membrane 

impermeability is usually linked to mutations in the porin channels and this in turn leads 
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to porins not functioning properly. Additionally, impermeability may be the outcome of 

complete absence of OmpC and/or OmpF porin proteins (Livermore et al., 2006), or 

associated with active drug effluxing pumps (Gröbner et al., 2009).  

The alarming increase of carbapenem resistance has triggered the need of quickly and 

accurately identifying such bacterial strains. Traditional techniques such as pulsed-field 

gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and polymerase chain 

reactions (PCR) among others are limited, time consuming, tedious and costly. High-

throughput genome sequencing on the other hand, makes the entire content of the bacterial 

genome accessible enabling detailed analysis and facilitating the identification of 

virulence and antimicrobial resistance genes (Hasman et al., 2014). High-throughput 

genome sequencing studies performed on E. coli and numerous other microorganisms 

have shown great value in giving insight about the diverse drug resistance elements and 

in describing bacterial transmission, evolution, and outbreaks (Zhu et al., 2013). 

In this study, 27 carbapenem resistant E. coli isolates were recovered from hospitalized 

patients at the AUBMC and were used for the identification, molecular characterization 

and phylogenetic typing. High-throughput sequencing was performed on ten isolates to 

enable the identification of genes responsible for resistance mechanisms as well as the 

ones involved in pathogenicity. The overall objectives of the study were to:  

 Investigate the population dynamics of pathogenic carbapenem resistant E. coli. 

 Identify genes involved in host adaptation and investigate variation in virulence 

potential. 
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 Identify antimicrobial resistance gene reservoirs in the collected isolates and 

characterize the fitness and virulence of these resistant pathogens isolated from 

Lebanon.  

 Determine the phylogenetic groups. 

 Examine and compare the genes present in the different phylogenetic groups. 

 Evaluate the phylogenetic distribution of antibiotic-resistant E. coli. 

 Detect the presence of different resistance encoding genes (TEM, SHV, OXA, 

CTX-M and CTX-M-15) through individual PCR assays, correlate to genes 

detected using high-throughput sequencing, and estimate variation within the 

genes. 

 Determine the susceptibility or resistance of collected isolates towards the most 

common antimicrobial agents used to treat E. coli associated infections. 

 Use genome sequence data to construct a genome-based phylogeny. 
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Chapter Two 

LITERATURE REVIEW 

2.1. Overview of Escherichia coli 

E. coli is a ubiquitous Gram-negative organism and is a significant member of the 

intestinal microflora. This usually harmless commensal organism requires only the 

acquisition of mobile genetic elements to turn into a highly versatile pathogen capable of 

causing diseases including: gastroenteritis and extraintestinal infections of the 

bloodstream, central nervous system and urinary tract (Croxen et al., 2010).  It is one of 

the major causes of community- and nosocomial-acquired infections. The universal 

burden of diseases caused by such a microorganism is staggering as hundreds of thousands 

of people are annually affected (Croxen et al., 2010). To date, eight E. coli pathovars have 

been identified and each utilizes a large set of virulence factors to overwhelm the host’s 

cellular functions (Croxen et al., 2010). 

The worldwide increase of bacterial resistance to antimicrobial agents has become 

worrisome. The emergence of a wide range of strains and species with multi-drug resistant 

patterns are the outcome of complex resistant mechanisms (El-Herte et al., 2012). There 

has been a remarkable increase in the number of ESBL and carbapenem producing 

microorganisms, in particular E. coli (Baroud et al., 2012). ESBLs enable Gram-negative 

bacteria to become resistant to all β-lactam antibiotics excluding carbapenems and 

cephamycins (Ben-Ami et al., 2009). The production of ESBLs is a noteworthy resistance 

tool that interferes with the treatment of infectious diseases caused by members of the 
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family Enterobacteriaceae and is a serious threat to the presently available antibiotics 

(Shaikh et al., 2015). Similarly, the detection of carbapenem resistance in E. coli is a major 

concern since carbapenems are the last resort drugs used to treat patients with severe 

infections (Peirano et al., 2014).  Therefore, there is a substantial need for the development 

of cost-effective, quicker and trustworthy diagnostic tools as well as improved therapies 

(Dhillon et al., 2012). 

2.2. Evolution of pathogens: 

The gain or loss of mobile genetic elements plays a crucial role in influencing the genome 

of a pathogen. A rapid way for a microorganism to acquire new traits is through horizontal 

gene transfer (HGT), which could enhance the survival and fitness of the pathogen as it 

coevolves with its host. Furthermore, a large collection of genes coding for virulence 

known as pathogenicity islands (PAIs) can be either integrated into the chromosome or 

located on plasmids in pathogenic bacteria. Notably, non-pathogenic bacteria do not 

possess PAIs (Shames et al., 2010).  

Generally, mobile genetic elements such as transposons and bacteriophages often flank 

PAIs. Hence, it is expected to find most of the virulence genes of E. coli located on PAIs 

in addition to prophages and plasmids. Prophages are commonly defective, but some do 

have the ability to form infectious elements. When a bacterium acquires new traits via 

HGT, it gains advantages such as becoming capable of inhabiting new niches. A bacterium 

undergoing several HGT events will become more exposed to selective pressures, which 

will favor the survival of more virulent variants that can become epidemic (Asadulghani 

et al., 2009).  
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The genome of pathogenic E. coli is diverse and can differ from the commensal ones by 

up to 1 MB as a result of gaining and losing PAIs beside other mobile genetic elements. 

The core genome of E. coli is made up of nearly 2,200 genes and its pan-genome is 

composed of 13,000 genes. It is interesting to note that even though the genomes of most 

pathogenic E. coli code for approximately 5,000 genes, less than 50% are actually part of 

the core genome. This permits plasticity and extensive genetic diversity in the pathogenic 

isolates (Touchon et al., 2009).  

2.3. The Eight Pathovars: 

The different pathovars were extensively studied and grouped as either extraintestinal E. 

coli (ExPEC) or diarrhoeagenic E. coli. The two most common ExPEC pathovars include 

neonatal meningitis E. coli (NMEC) and uropathogenic E. coli (UPEC). The rest 6 

diarrhoeagenic pathovars are enterohaemorrhagic E. coli (EHEC), enterotoxigenic E. coli 

(ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), diffusely 

adherent E. coli (DAEC) and enteroaggregative E. coli (EAEC).  

Most of the used virulence strategies are shared among the pathogenic strains. All 

pathovars except EIEC are able to adhere to host cells with the help of pili or fimbriae. 

After attachment, E. coli has to take over the host’s cellular processes often by utilizing 

secreted proteins. This way, the pathogen can manipulate the host cell’s signaling 

pathways and enable its invasion, successful colonization, escape from host’s immune 

response consequently leading to diseases. Every pathovar has its own set of mechanisms 

to invade and colonize, but yet they all seem to target almost the same processes (Croxen 

et al., 2010).  
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2.3.1. ExPEC Pathovar: 

ExPECs are part of the normally asymptomatic microflora residing in the intestine and the 

gut, however when these isolates access other niches, they cause diseases in humans 

including urinary tract infections, septicemia or meningitis in newborns. Even though 

several specific virulence factors have been associated with ExPEC infections, the 

majority of ExPECs cannot be discriminated based on the set of virulence factors that they 

possess as most often they utilize a combination of multiple virulence factors. This 

significant genetic heterogeneity and genomic plasticity within E. coli species are the 

outcome of loss and acquisition of genomic information in addition to the high 

recombination rates (Köhler and Dobrindt, 2011). Therefore, ExPECs have the potential 

to invade varying tissues and to cause infections in all age groups. The most common 

ExPEC infections are bacteremia and UTIs, but it has also been linked to infections in 

skin, soft tissue and respiratory tract. As previously mentioned, several variants such as 

neonatal meningitis E. coli (NMEC) and uropathogenic E. coli (UPEC) fall under the 

ExPEC pathovar (Poolman et al., 2016).  

UPEC pathovar is responsible for approximately 80% of all UTIs resulting in acute cystitis 

in the urinary bladder beside pyelonephritis in kidneys. A major issue encountered by the 

UPEC (uropathogenic E. coli) is to move from the intestinal into the urinary tract, causing 

an infection there, while utilizing amino acids and peptides as main carbon sources for 

survival (Alteri et al., 2009). UPEC has an incomparable mechanism for organ tropism, 

where it moves up the urinary tract from the urethra to the bladder and then to the kidneys. 

Not to mention its outstanding ability to avoid clearance by urination and to evade the 

host’s innate immune response. A group of strictly regulated virulence factors including: 
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secreted toxins [vacuolating autotransporter toxin (Vat) and secreted autotransporter toxin 

(Sat)], polysaccharide capsule, iron harvesting systems and multiple fimbriae, collectively 

contribute to the enhanced pathogenesis of UPEC (Flores-Mireles et al., 2015).  

Upon entry, UPEC adheres to the uroepithelium facilitated by FimH adhesin, and binds 

to the glycosylated uroplakin Ia in the bladder covering the terminally differentiated 

superficial capping cells (Wiles et al., 2008). It has been shown that the interaction 

between uroplakin IIIa (transmembrane protein) and FimH adhesin leads to several 

phosphorylation events that in turn stimulate signaling pathways involved in apoptosis 

and invasion (Saldaña et al., 2009). Moreover, the invasion of UPEC is also affected by 

the destabilization of microtubules and the interaction of FimH with 3 and 1 integrins, 

all of which are located along with actin at the invasion site (Eto et al., 2007). These 

interactions result in the rearrangement of actin locally by means of activating Rho-

GTPases and kinases, leading to the envelopment and internalization of the bacteria. Once 

UPEC invades, it now replicates quickly and synthesizes complexes called intracellular 

bacterial communities (IBCs) that provide a temporary safe environment (Hannan et al., 

2010). UPEC can escape from the IBCs via a fluxing mechanism, and the motile E. coli 

leave the epithelial cells moving into the lumen of the bladder (Justice et al., 2004).  

In the course of an infection, the influx of polymorphonuclear neutrophils (PMNs) results 

in damage to the tissue, and the attachment and invasion of UPEC causes bladder cells’ 

apoptosis and exfoliation. Likewise, low concentration of pore-forming haemolysin A 

(HlyA) toxin can hinder AKT triggering and leads to apoptosis and exfoliation of the host 

cell (Flores-Mireles et al., 2015). Breaching the superficial capping cells momentarily 

exposes the concealed transitional cells to invasion and propagation of UPEC.  The 
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replication of invading UPEC is restricted when they are trafficked inside endocytic 

vesicles entangled with actin fibers (Mulvey et al., 2001). However, replication is 

activated again once the bacteria disrupt the host’s actin leading to the formation of IBCs 

in the cytosol. This dormant state acts as a reservoir as it protects the pathogen from the 

host’s immune response and subsequently allows for a long-term colonization of the 

bladder (Mysorekar et al., 2009).  

Untreated UTIs can lead to the spread of the pathogen to the kidneys and result in the 

progression of the disease. The capability of bacteria to move up to the kidney is facilitated 

by the reciprocal management of motility and type 1 pili. Bacteria expressing the type 1 

pili have fewer flagella than those that don’t; consequently down regulating type 1 pili 

will result in more motile UPEC. This motility is needed for the bacteria to ascend from 

the bladder to the kidney (Lane et al., 2007). UTIs affect 150 million individuals each year 

worldwide, the detected increase in antibiotic resistance along with the high recurrence 

rates are major threats (Flores-Mireles et al., 2015).  

2.4. Extended Spectrum Beta Lactamases (ESBLs): 

The ongoing exposure of bacterial isolates to a wide variety of antibiotics in particular -

lactams has resulted in the spread of resistance against these drugs due to selective 

pressure. The first -lactamase detected in E. coli was in the year 1940 (Turner, 2005). -

lactamases are enzymes capable of hydrolyzing -lactams and are classified according to 

two methods: the Ambler and Bush-Jacoby-Medieros. The Ambler scheme is based on 

molecular classification and protein homology, whereas the Bush-Jacoby-Medieros 

scheme is based on functional similarities, which makes it more relevant for a 
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microbiologist or a physician (Rasmussen et al., 1997). The ESBLs belong to the group 

2be of the Bush-Jacoby-Medieros scheme (Bush et al., 1995). Group 2b -lactamases such 

as SHV-1, TEM-1 and TEM-2 are precursors of group 2be, which are -lactamases with 

an extended spectrum. 

ESBLs on the other hand, are -lactamases that enable bacterial resistance by hydrolyzing: 

penicillins, first-, second-, third-generation cephalosporins and aztreonam, but are 

inhibited by clavulanic acid. AmpC type -lactamases is an alternative collection of 

enzymes that are isolated from extended spectrum cephalosporin-resistant Gram-negative 

bacteria, such as E. coli. AmpC type -lactamases can be located on a plasmid or on a 

chromosome and differ from ESBLs by resisting inhibition by clavulanic acid as well as 

other inhibitors (Rupp et al., 2003).  

2.4.1. Types of ESBLs: 

2.4.1.1. SHV: 

The term refers to sulfhydryl variable and it is mostly associated with Klebsiella sp. SHV-

1 -lactamase evolved as being part of Klebsiella’s genome, but was later integrated into 

a plasmid facilitating its spread to other Enterobacteriaceae.  SHV-1 is linked to resistance 

to broad-spectrum penicillins, but not oximino substituted cephalosporins. In 1983, a K. 

ozaenae isolated from Germany showed efficient cefotaxime hydrolysis and to a minor 

degree ceftazidime (Knothe et al., 1983). After sequencing, it was found that in 

comparison to SHV-1, the -lactamase differed at the 238 position, glycine being replaced 

by serine, and hence was named SHV-2. Currently, more than 36 SHV associated ESBLs 

have been identified (Rupp et al., 2003). 
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2.4.1.2.TEM: 

The first reported TEM-1 was isolated from E. coli in 1965 from a patient named 

Temoneria (hence the term TEM) in Athens, Greece. TEM ESBLs are derived from TEM-

1 and TEM-2. TEM-1 is the main plasmid borne -lactamase of ampicillin resistant E. 

coli. TEM-1 is capable of hydrolyzing ampicillin, carbenicillin, oxacillin, cephalothin and 

is inhibited by clavulanic acid. While TEM-2 has the same properties as TEM-1, it differs 

by having a better native promoter and different isoelectric point. TEM-1, TEM-2 and 

TEM-13 are not ESBLs. The first TEM able to hydrolyze extended spectrum 

cephalosporins was TEM-3, and to date, more than 100 TEM types have been identified 

(Paterson et al., 2005).  

2.4.1.3.CTX-M: 

The designation refers to its ability to break down cefotaxime, but they are also able to 

hydrolyze ceftazidime, cefepime. CTX-M are inhibited by clavulanic acid, but are more 

efficiently inhibited by tazobactam. The number of identified CTX-M has been expanding 

drastically and being detected on every populated continent. While TEM and SHV ESBLs 

were the consequence of amino acid substitution, CTX-M-ESBLs were obtained via HGT 

(transposons or conjugative plasmids) (Paterson et al., 2005). 

2.4.1.4.OXA: 

These Class D β-lactamases were primarily penicillinases, but have the ability to 

hydrolyze oxacillin as well and thus the name oxacillinases (OXA) (Evans et al., 2014). 

OXA is predominantly found in Pseudomonas aeruginosa, but has been identified in 

several other Gram-negative bacteria. OXA-1, which is the most common OXA β-
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lactamase has been detected in one to ten percent of E. coli isolates (Shaikh et al., 2015). 

Studies suggest that class D β-lactamase genes are not just acquired resistance genes, but 

are also naturally synthesized in environmental species and clinically significant 

pathogens (Poirel et al., 2010). These enzymes are thought to be embedded into class 1 

integrons and recent discoveries suggest that other genetic structures such as transposons 

and insertion sequences may also be associated with such genes (Poirel et al., 2010). 

Generally, this class of β-lactamases is not inhibited by sulbactam, tazobactam and 

clavulanic acid, but their activities may be inhibited by sodium chloride in vitro, which is 

a unique characteristic and is useful for in vitro identification (Evans et al., 2014).  

Moreover, some class D β-lactamases that have acquired their resistance genes were 

shown to also hydrolyze carbapenems. The first class D β-lactamase with carbapenemase 

activity was OXA-23, which was detected in Acinetobacter baumanii isolate from 

Scotland and was plasmid mediated as it was transferred to Acinetobacter junii (Poirel et 

al., 2010). Since then, several carbapenem hydrolyzing class D β-lactamases have been 

identified including OXA-48, OXA-149 and OXA-181 (Evans et al., 2014). 

2.5. Carbapenems 

Carbapenems, and based on the homology of amino acid sequences, are classified into 

three groups: A, B and D. Groups A and D are serine carbapenemases, while the group B 

includes the metallo--lactamases. The genes coding for carbapenemase are generally 

located on mobile genetic elements hence playing a major role in its rapid transfer and 

spread (El-Herte et al., 2012).  
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The first detection of class A carbapenemase was in 1982 and it included all the following: 

not metalloenzyme carbapenemase class A (NMC-A), Guiana extended spectrum (GES), 

imipenem hydrolyzing (IMI), Serratia marsescens enzyme (SME) and Klebsiella 

pneumoniae carbapenemase (KPC) (El-Herte et al., 2012). Enzymes belonging to class A 

carbapenemase are able to hydrolyze all -lactams, meropenem, fluoroquinolones and 

aminoglycosides, but they are inhibited by clavulanic acid and tazobactam. The most 

clinically significant member of this class is KPC. It was detected in North Carolina in 

1996 and currently there are nine different gene variants coding for the plasmid borne 

blaKPC gene (Queenan et al., 2007). 

Class B carbapenemases include VIM, IMP, NDM-1, Sao Paulo metallo--lactamases 

(SPM), German imipenemase (GIM) and Seoul imipenemase (SIM). These enzymes have 

the ability to break down all -lactams and carbapenems, but they are inhibited by ethylene 

diamine triacetic acid (EDTA). The genes responsible for this phenotype can be 

chromosomal or plasmid-mediated (Carrer et al., 2010).  

On the other hand, class D also known as oxacillin-hydrolyzing -lactamases (OXA), can 

hydrolyze penicillin, meropenem, imipenem, but not aztreonam or extended spectrum 

cephalosporins. The majority of OXA carbapenemases seem to be chromosomally 

associated. The first E. coli OXA-48 carbapenemase producing isolate reported in 

Lebanon was in 2008. To date, approximately 121 different variants have been identified 

(Matar et al., 2010).  

2.6.  E. coli Resistance Mechanisms: 



14 
 

Several risk factors predispose the patient to ESBL infections including: sickness severity, 

duration of hospitalization, time spent in the intensive care unit, urinary and arterial 

catheterization, prior exposure to antibiotics, intubation and mechanical ventilation 

(Bradford et al., 2001). Usually, SHV, TEM and OXA -lactamases are correlated with 

ampicillin resistance in E. coli (Domínguez et al., 2002). Moreover, the dominant 

resistance mechanism to quinolone in E. coli involves the alteration of the target of 

quinolone, which is linked to the quinolone resistance determining region (QRDR), par 

and gyrA genes. On the other hand, aminoglycoside resistant E. coli express enzymes that 

modify aminoglycosides and involve several genetic determinants [(ant(2’’), aac(6’)-I, 

aph(3’)-I, aac(3)-I, aac(3)-II, aac(3)-III, aac(3)-IV)], with tetracycline resistance being 

encoded by tet genes (tetA, tetB, tetC, tetD, tetE and tetI) (Domínguez et al., 2002). 

Carbapenem resistance is due to efflux pump activity, porin impermeability as well as the 

possession of carbapenemase encoding genes (Baroud at al., 2012). The most important 

elements involved in sustaining carbapenem resistance are the acquisition of class A 

(KPC), class B (NDM, VIM, IMP) or class D (OXA-181, OXA-48) carbapenemases. Such 

genes are usually located on plasmids and are linked to mobile genetic elements such as 

transposons, insertion sequences and integrons which facilitate their spread (Nordmann et 

al., 2012).  

There are also other mechanisms involved in resistance to carbapenem including: the 

expression of AmpC and alteration of outer membrane protein (OMP) resulting in 

decreased carbapenem permeability. AmpC is a class C lactamase and is plasmid mediated 

(Baroud et al., 2011). It enables the resistance to quinolones, penicillins, cephalosporins, 

oxyimiocephalosporins, cephamycins, ertapenem, tetracycline, sulfonamide, 
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chloramphenicol, aminoglycosides and trimethoprim. Detection, prevention, 

antimicrobial management and necessary infection control measures are all critical in 

limiting the spread of resistant isolates (El-Herte et al., 2012). 

 

2.7. ESBLs and Carbapenem Resistance in Lebanon: 

E. coli strains with antibiotic resistance are increasingly being documented worldwide, 

with the rate being higher in isolates recovered from the Mediterranean region than in 

ones from various European countries (Stedt et al., 2014). The frequency of infections 

caused by ESBL producing strains is drastically increasing, particularly in Lebanon 

(Moubareck et al., 2005). In 1994, a study done in Lebanon at the American University of 

Beirut Medical Center (AUBMC) showed that as much as 65% of clinical E. coli isolates 

were ampicillin resistant (Araj et al., 1994). Approximately ten years later, the same 

institute showed a rise in that percentage to up to 72% (Araj et al., 2008). The percentage 

of ESBL producing E. coli rose from 1.3% in 1997 to 4% in 2001 (Daoud et al., 2003). 

Another study done at AUBMC showed that between 1998 and 2002, the percentage of 

ESBL producing E. coli increased from 3% to 5% (Samaha-Kfoury et al., 2003). 

Additionally, in 2006 when Daoud et al., investigated the intestinal carriage of ESBL 

producing bacteria in the intensive care unit of five different Lebanese hospitals, they 

discovered that out of 118 isolated strains, 95 (80.5%) of them were indeed E. coli (Daoud 

et al., 2006). Moreover, a study done at Saint George Hospital in Beirut, aimed to examine 

the bacterial etiology of UTIs over a ten years period. They revealed that 61% of all 

clinically significant urinary isolates were in fact E. coli and that the percentage of ESBL 

production increased from 2.3% in 2000 to 16.8% in 2009 (Daoud et al., 2011). 
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Furthermore, another study aimed to investigate urinary E. coli isolated from Lebanese 

patients between 2005 and 2012. They discovered via molecular analysis that among the 

urinary E. coli isolated from Lebanese patients, CTX-M-15 is the most frequent ESBL as 

it was found in 83% of resistant strains. Also, throughout the course of the study, the 

percentage of ESBLs rose from 12.6% to 29.4% in all E. coli isolates whereas it rose from 

11.6% to 25.3% when considering urinary isolates (Daoud et al., 2015).  

OXA-48 was the first E. coli linked carbapenemase detected in Lebanon (Matar et al., 

2010), with Beyrouthy et al. (2014) showing an increase in carbapenem resistant E. coli 

from 0.4% (2008–2010) to 1.6% (2012). This was primarily associated with the 

emergence of OXA-48 carbapenemase. In fact, E. coli constituted 10% of the OXA-48 

clinical isolates in 2008-2010 and 73% in 2012 (Beyrouthy et al., 2014). As a result, like 

other countries, Lebanon is now facing a significant threat with the emergence of 

carbapenem resistant Enterobacteriaceae (El-Herte et al., 2012). 

2.8. High Throughput Sequencing (HTS): 

HTS has been developed for relatively inexpensive and rapid DNA sequencing. Both the 

rapid turnaround time and low cost will mean that pathogen HTS can overcome the gap 

between the practice of diagnostic microbiology and microbial research. This will modify 

our understanding of pathogens’ evolution and global spread of antimicrobial resistance, 

which is identified by the World Health Organization (WHO) as one of the three greatest 

threats to human health (Köser et al., 2012).  

HTS is being applied in numerous of ways to address concerns of infectious diseases. One 

of many applications is epidemiological typing which is used to identify laboratory cross 

contaminations, outline transmissions pathways and facilitate outbreak investigations 
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(McAdam et al., 2014). Current techniques used for bacterial genotyping have limited 

resolution since they only cover small regions of microbial genomes, but sequencing 

entire genomes results in the ultimate resolution for studies of epidemiology as established 

by several studies including E. coli O104:H4 in Germany (Köser et al., 2012). For 

instance, the extent of molecular epidemiology revealing information about the 

transmission patterns and sources of an outbreak depends on the samples used and the 

resolution of the technology utilized. In 2011, Germany experienced an outbreak of E. 

coli O104:H4; however, the isolates from Germany were indistinguishable by 

conventional tests from E. coli O104:H4 isolates from an outbreak in France that same 

year. Therefore, the epidemiological analysis of these isolates was only possible by using 

HTS which in turn established the two outbreaks as different (Grad et al., 2012). 

Additionally, the high resolution of HTS enables the identification of molecular 

mechanisms involved in the occurrence of pathogenic clones, the interpretation of 

transmission pathways during localized outbreaks and global pandemics as well as 

facilitates the evolutionary analysis of bacterial populations in a patient during infection 

(McAdam et al., 2014). HTS also aids in accurately defining phylogenetic relationships 

between different clades within a species. This improvement in phylogenetic analysis will 

facilitate studies done on how bacterial lineages are distributed geographically as well as 

simplify the detection of emerging strains with unique genotypes. It is now possible to 

track the evolution and transmission of bacteria locally, globally and even within a single 

host (Klemm et al., 2016). Moreover, HTS facilitates transcriptomic analysis with several 

advantages over conventional hybridization approaches such as accurate quantification, 

single nucleotide resolution and genome wide coverage. Nevertheless, combining 
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transposon mutagenesis with HTS provides a dynamic approach to identify bacterial 

elements required for the survival in vivo. This increase in applications of the new 

technology offers extensive insight into bacterial pathogenesis, epidemiology and 

evolution (McAdam et al., 2014).    
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Chapter Three 

MATERIALS AND METHODS 

 

3.1. Ethical Approval 

Ethical approval was not needed since the clinical isolates were gathered and stored as 

part of routine clinical care. Clinical isolates and patient records/information remained 

anonymous.  

3.2. Bacterial Isolates 

Samples we collected from the American University of Beirut Medical Center (AUBMC). 

All isolates used in this study were screened for carbapenem resistance. Samples were 

cultured overnight on Tryptone Soy Agar (Bio-Rad, USA) medium for subsequent 

experimental work. 

3.3. Antimicrobial Susceptibility Testing: 

Antimicrobial susceptibility test by the disk agar diffusion technique was performed to 

establish the resistance patterns of the isolates to: amikacin, ciprofloxacin, gentamicin, 

tazobactam, trimethoprim/sulfamethoxazole, ertapenem, imipenem and meropenem 

(Biorad).  The test is performed by applying a bacterial inoculum of 0.5 McFarland to the 

surface of a Mueller-Hinton agar plate. The zone diameters of each drug are interpreted 

using the criteria published by the Clinical and Laboratory Standards Institute (CLSI, 

formerly the National Committee for Clinical Laboratory Standards or NCCLS) (Wayne, 

2009). 

3.4. DNA Extraction 
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Bacterial DNA was extracted using the Nucleospin Tissue kit (Macherey-Nagel, 

Germany) following manufacturer’s instructions.  

3.5. PCR Assays 

All PCR assays were performed on PerkinElmer GeneAmp 9700 (PerkinElmer, Wellesly, 

Massachusetts). All PCR assay runs incorporated a negative (one reagent control without 

template DNA) and a positive control (reference strain used for the gene amplified). 

Product size was determined by comparison with a 500 bp and 100 bp molecular weight 

markers (Fermentas, Vilnius, Lithuania). 

3.5.1. Phylogenetic Group Determination: 

The final volume of the reaction was 20 µl mixture containing: 1 X PCR buffer, 2.5 mM 

MgCl2, 20 pmol of each primer (Table 1), 2.5 U of Platinum Taq DNA polymerase 

(Invitrogen Inc, Carlsbad, CA), 2 µM of each deoxynucleoside triphosphate (dNTP) and 

3 µl DNA. The following reaction parameters were used: initial denaturation at 94°C for 

4 min; denaturation at 94°C for 10 s, annealing at 59°C for 10 s, and elongation at 72°C 

for 1 min, repeated for 30 cycles; final extension at 72°C for 5 min (Clermont et al., 2000). 

PCR products were separated by electrophoresis using 10 µl of the PCR product using 

2.5% agarose gel stained with 0.5 µg/mL ethidium bromide, and visualized on a UV 

Bioimaging system (GeneSnap system from Syngene). 

Table 1. Primers used in phylogenetic grouping (Clermont et al., 2000). 

Primer Primer Sequence (5'-3') Size 

ChuA-F GACGAACCAACGGTCAGGAT 279 bp 

ChuA-R TGCCGCCAGTACCAAAGACA   

YjaA-F TGAAGTGTCAGGAGACGCTG 211 bp 

YjaA-R ATGGAGAATGCGTTCCTCAAC   
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TspE4C2-F GAGTAATGTCGGGGCATTCA 152 bp 

TspE4C2-R CGCGCCAACAAAGTATTACG   

 

3.5.2. β- lactamase Genes Detection: 

Table 2. Primer sequences and PCR conditions used to identify β- lactamase genes. 

 

Gene 

 

Primers 5’-3’ Size 

(bp) 

PCR mix PCR 

conditions 
SHV-F 

SHV-R 

GGTTATGCGTTATATTCGCC 

TTAGCGTTGCCAGTGCTC 
865  25 µl 

containing:  1.5 

U Taq DNA 

polymerase, 1X 

buffer, 1.5 mM 

MgCl2, 200 µM 

dNTPs, 0.2 μM 

primer and 2 μl 

DNA template1  

one cycle of 5 

min at 96 °C, 

followed by 35 

cycles of 1 min 

at 96 °C, 1 min 

at 60 °C and 1 

min at 72 °C, 

with a final 

extension of 10 

min at 72 °C 

OXA-F 

OXA-R 

ACACAATACATATCAACTTCGC 

AGTGTGTTTAGAATGGTGATC 
814  25 µl containing: 

1.5 U of Taq DNA 

polymerase, 1X 

buffer, 2.5 mM 

MgCl2, 50 µM of 

each dNTPs, 

0.3 µM primer and 

5 µl of DNA 

template2 

one cycle of 5 

min at 96 °C, 

followed by 35 

cycles of 1 min 

at 96 °C, 1 min 

at 60 °C and 2 

min at 72 °C 

with a final 

extension of 10 

min at 72 °C 

TEM-F 

TEM-R 

ATGAGTATTCAACATTTCCG 

CTGACAGTTACCAATGCTTA 
868  50 μl containing: 

2.5 

U Taq polymerase, 

1X buffer, 1.5 mM 

MgCl2, 50 mM 

KCl, 0.4 mM each 

dNTP, 0.5 mM 

each primer and 8 

μl of template 

DNA3 

one cycle of 5 

min at 96 °C, 

followed by 30 

cycles of 1 min 

at 96 °C, 30 s at 

55 °C, 1 min at 

72 °C  with a 

final extension 

of 5 min at 72 

°C 

CTX-M-F 

CTX-M-R 

ATGTGCAGYACCAGTAARGT 

TGGGTRAARTARGTSACCAGA 
593  25 µl 

containing:  1,5 

U Taq DNA 

polymerase, 1X 

buffer, 1.5 mM 

MgCl2, 200 µM 

dNTPs, 0.2 μM 

primer and 2 μl 

DNA template1  

one cycle of 7 

min at 94 °C, 

followed by 35 

cycles of 50 s at 

94 °C, 40 s at 50 

°C and 1 min at 

72 °C, with a 

final extension 
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of 5 min at 72 

°C 

CTX-M-

15-F 

CTX-M-

15-R 

GGTTAAAAAATCACTGCGTC 

TTACAAACCGTCGGTGACGA 
874  50 µl containing: 

1.25 U Taq DNA 

polymerase, 1X 

buffer, 2 mM 

MgCl2, 200 μM 

dNTPs, 50 pmol 

primers and 2.5 μl 

DNA template4 

one cycle of 10 

min at 94 °C, 

followed by 35 

cycles of 30 s at 

94 °C, 30 s at 52 

°C and 1 min at 

72 °C, with a 

final extension 

of 10 min at 72 

°C 

1 Elumalai et al., 2014   3 Safari et al., 2015 

2 Lim et al., 2009   4Weill et al., 2004 

 

3.6. Genome Sequencing: 

Genomic DNA was used as input for library preparation using the Illumina Nextera XT 

(Illumina, San Diego, CA, USA) library preparation kit. The subsequent clean up steps 

were performed using the AMPure XP PCR purification beads (Agencourt, Brea, CA). 

The resultant libraries were then quantified using quantitative PCR on a CFX96 (Bio-Rad, 

USA) utilizing the Kapa library quantification kit (Kapa Biosystems, Woburn, MA). The 

samples were pooled together and then sequenced on an Illumina MiSeq for paired-end 

250-bp reads.  

3.7. Data Analysis: 

3.7.1. Genome Assembly: 

The assembly of the genomes was performed de novo using A5 with the default 

parameters. This pipeline automates the procedure of data cleaning, contig assembly, error 

correction, quality control and scaffolding (Tritt et al., 2012).  

3.7.2. RAST Genome Annotation: 
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The obtained de novo assemblies were annotated using RAST server 

(http://rast.nmpdr.org). This enabled the identification of proteins encoding rRNA, tRNA 

and assigning gene functions as well as predicting subsystems in the genome and 

assigning gene functions (Aziz et al., 2008; Overbeek et al., 2014). 

3.7.3. Determination of Virulence Genes, Resistance Genes and Pathogenicity: 

The ResFinder 2.1 web server (www.genomicepidemiology.org) was used to screen high 

throughput sequencing data and identify acquired antimicrobial resistance genes (Zankari 

et al., 2012). ResFinder detects the presence of whole resistance genes, but not their 

expression and functional integrity. Based on the ResFinder results and previously 

published studies, a predicted phenotype was determined. Similarly, the VirulenceFinder 

1.2 web server (www.genomicepidemiology.org) was used to identify virulence genes 

(Joensen et al., 2014) 

3.7.4. Plasmid Detection, MLST and Serotyping: 

Plasmid identification was achieved using the CGE’s PlasmidFinder 1.2 web service with 

a 95% selection threshold (Carattoli et al., 2014). MLST typing (multi-locus sequence 

typing) was performed by mapping the high throughput sequencing data to an online 

database offered at CGE website known as MLST 1.7 server (Larsen et al., 2012). E. coli 

serotypes were identified using SerotypeFinder 1.1 (Joensen et al., 2015). 

3.6.5. Phage Detection: 

Phage identification was performed using the publically available Phage Search Tool 

(PHAST) (http://phast.wishartlab.com/index.html) (Zhou et al., 2011). This tool enables 

the determination of the site of phage integration and assigns phage family.  

3.6.6. Circular Visualization: 

http://rast.nmpdr.org/
http://www.genomicepidemiology.org/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389573/#B50
http://www.genomicepidemiology.org/
http://phast.wishartlab.com/index.html
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Two different tools were used to generate a circular genome. A comparative figure was 

generated using CGView server found in the publically available Stothard Research 

Group website (http://stothard.afns.ualberta.ca/cgview_server/) (Grant et al., 2008). 

Likewise, an informative figure was generated using DNAPlotter release 1.11 (Carver et 

al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://stothard.afns.ualberta.ca/cgview_server/
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Chapter Four 

RESULTS 

4.1. Genome Statistics: 

Paired-end libraries (Illumina) were generated from extracted DNA and fragments with 

size between 300-600 bp were chosen. After pooling the samples, they were sequenced 

on the Illumina MiSeq for paired-end reads. High-quality reads were obtained after error 

correction and quality trimming.  Using the A5 assembly pipeline, the sequences were 

processed and assembled. This pipeline facilitates the procedure of error correction, data 

cleaning, scaffolding, contig assembly and quality control. The assembled genomes had 

on average 224–342 contigs, G+C % content of 50.49 % – 50.79 %, and total reads of 

4,909,271 bp - 5,394,442 bp (Table 3). 

 Table 3. General features of the sequenced isolates. 
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4.2. Representative and Comparative Circular Genomes: 

Figure 1 represents the circular genome of isolate ECC 149. Figure 2 demonstrates the 

aligned regions of draft genome ECC 149 with two reference genomes: E.coli AA86 and 

E. coli K-12 MG1665. The rest of the individual genomes can be found in ANNEX I. 

Figure 1. Genome atlas of E. coli ECC 149. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple); tRNA genes (light blue); GC plot (black above 

mean and grey below mean); GC skew (black above mean and grey below mean). 
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Figure 2. Comparative circular representation of the E. coli ECC 149 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli AA86 (accession 

number NZ_AFET01000001.1) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli AA86 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 
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4.3. Phylogenetic Grouping: 

E. coli belongs to four principal phylogenetic groups: A, B1, B2 and D. Three marker 

genes were used for the detection of phylogenetic groups: yjaA gene, chuA gene and DNA 

fragment TspE4C2 (Clermont et al., 2000). A total of 27 strains were analyzed and 

depending on the combination of the three marker genes, they were assigned to the 

respective phylogenetic group (Figure 3). Accordingly, five (18.5 %) of the isolates 

belonged to group A, three (11.1 %) group B1, six (22.2 %) group B2 and 13 (48.2 %) 

group D (Table 4).  

 

Table 4. Demography and phylogenetic grouping. 
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*DTA: deep tracheal aspirate 

  UTI: urinary tract infections 

  Other: source unidentified. 

 

4.4. MLST and Serotyping: 

The Achtman method (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli) was used to determine 

the MLST for all the sequenced isolates. The method is based on sequencing seven 

housekeeping genes (adk, fumC, gyrB, icd, mdh, purA and recA). MLST typing of the 

isolates in question was done by mapping the NGS data to an online database using CGE’s 

http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
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MLST 1.8 server (Larsen et al., 2012). The results were tabulated based on the Achtman 

method (Table 5). The most common MLST type was ST-405 (40 %) with the rest of the 

STs (ST-205, ST-410, ST-448, ST-617, ST-648 and ST-1284) having the same 

distribution of 10 % for each.  ST-405 (ECC 153, ECC 157, ECC 173 and ECC 188) 

belonged to O102:H6 serotype as determined by SerotypFinder 1.1 (Joensen et al., 2015). 

ST-205 (ECC 174) was characterized as O100:H12 serotype, while ST-410 (ECC 194), 

ST-448 (ECC 161), ST-617 (ECC 202) and ST-1284 (ECC 167) belonged to O8:H9, 

O8:H8, O89:H10 and O89:H21 serotypes, respectively. ST-648 (ECC 149) carried an H6 

serotype whereas the O type gene was untypable.  

 Table 5. Correlation between the phylogenetic groups of the sequenced isolates and their 

MLST types, serotypes and clonal complexes. 

 

 

Phylogenetic 

Groups 

Sample 

ID 

MLST 

Achtman 

method 

Serotype MLST Allele 

Numbering 

Clonal 

Complex 

A ECC 167 

ECC 194 

ECC 202 

ST-1284 

ST-410 

ST-617 

O89:H21 

O8:H9 

O89:H10 

10-4-4-8-8-13-73 

6-4-12-1-20-18-7 

10-11-4-8-8-13-73 

10 

23 

10 

B1 ECC 161 

ECC 174 

ST-448 

ST-205 

 

O8:H8 

O100:H12 

6-6-5-16-11-8 

6-23-15-16-9-8-7 

 

448 

205 

 

D ECC 149 

ECC 153 

ECC 157  

ECC 173 

ECC 188 

ST-648 

ST-405  

ST-405 

ST-405 

ST-405 

H6 

O102:H6 

O102:H6 

O102:H6 

O102:H6 

92-4-87-96-70-58-2 

35-37-29-25-4-5-73 

35-37-29-25-4-5-73 

35-37-29-25-4-5-73 

35-37-29-25-4-5-73 

648 

405 

405 

405 

405 
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4.5. Antibiotic Resistance: 

The disk agar diffusion method revealed that all isolates undertaken in this study were 

carbapenem resistant (Figure 3), and more than 60% of the isolates were resistant to 

ciprofloxacin, tazobactam and trimethoprim/sulfamethoxazole. However, only ECC 194 

(ST-410) carried a carbapenem resistance gene (blaOXA-181), and the carriage rate of non-

carbapenemase-related bla genes was high among the sequenced genomes (blaTEM and 

blaOXA) (Table 6). Additionally, The blaCMY-42 gene, which is a plasmid borne AmpC 

cephalosporinase (Feng et al., 2015), was detected in ECC 157, ECC 173 and ECC 188 

(ST-405), ECC 167 (ST-1284), ECC 174 (ST-205) and ECC 202(ST-617) while blaCMY-

2, key player in broad spectrum cephalosporin resistance, was only detected in ECC 194 

(ST-410). PCR assays targeting the SHV, OXA, TEM and CTX-M and CTX-M-15 

encoding genes in all the isolates revealed several different patterns, with the number of 

genes detected varying between one to four. Results of the PCR assays of individual 

resistance determinants were in agreement with those detected through whole-genome 

sequencing (Tables 6 and 10). The carbapenem resistant isolates were additionally tested 

for other antimicrobial agents by the disk agar diffusion method, PCR assays and whole-

genome sequencing. There was a high correlation between the detected phenotypes and 

genotypes (Tables 6-10 and Figure 3). Most of the isolates were multidrug-resistant due 

to high resistance rate to several antimicrobial classes. Among the detected genes was 

aac(6')Ib-cr, which confers resistance to aminoglycoside (tobramycin and amikacin) and 

fluoroquinolone (ciprofloxacin) and was found in all sequenced genomes except ECC 149 

(ST-648) and ECC 173 (ST-405). However, only two isolates ECC 161 (ST-448) and ECC 

194 (ST-410) were positive for aac(3)-IId gene and only ECC 157 and ECC 188 (ST-405) 
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and ECC 167 (ST-1284) had the aac(3)-IIa gene, both encoding for aminoglycoside 

resistance (Table 7). Phenicol, tetracycline lincosamide, macrolide, streptogramin B, 

trimethoprim, sulphonamide, rifampicin, fosfomycin and quinolone resistance were also 

among the detected resistant determinants (Tables 7, 8 and 9). 

Table 6. Comparative analysis of β-lactams and the antibiograms of the sequenced 

isolates. 
 

ECC 

149 

ECC 

153 

ECC 

157 

ECC 

161 

ECC 

167 

ECC 

173 

ECC 

174 

ECC 

188 

ECC 

194 

ECC 

202 

β-lactam resistance 

blaTEM-1B + - - + - - - - + - 

blaCTX-M-15 + + + + + + + + + + 

blaOXA-1 + + + - + + + + + + 

blaOXA-10 - - - + - - - - - - 

blaOXA-181 - - - - - - - - + - 

blaCMY-2 - - - - - - - - + - 

blaCMY-42 - - + - + + + + - + 

Antimicrobial resistance 

Ciprofloxacin R R R R R R R R R R 

Amikacin S S S R S S S S S S 

Gentamicin S S R R R S S R R S 
Trimethoprim-

sulfamethoxazole 
R R R R R R R S R R 

Tazobactam S I R R R R R R R R 

Imipenem R R R R R R R R R R 

Ertapenem R R R R R R R R R R 
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Table 7. Comparative analysis of fluoroquinolone, phenicol and tetracycline resistance 

of sequenced isolates. 
 

ECC 

149 

ECC 

153 

ECC 

157 

ECC 

161 

ECC 

167 

ECC 

173 

ECC 

174 

ECC 

188 

ECC 

194 

ECC 

202 

Fluoroquinolone and aminoglycoside resistance 

aac(3)-IIa - - + - + - - + - - 

aac(3)-IId - - - + - - - - + - 

aac(6')Ib-cr - + + + + - + + + + 

Phenicol resistance 

catB3 - + + - + - + + + + 

cmlA1 - - - + - - - - - - 

Tetracycline resistance 

tet(A) - - + - - - - + - - 

tet(B) + + - + + + - - + + 

 

Table 8. Comparative analysis of trimethoprim, aminoglycoside, macrolide and 

sulphonamide antibiotic resistance of sequenced isolates. 
 

ECC 

149 

ECC 

153 

ECC 

157 

ECC 

161 

ECC 

167 

ECC 

173 

ECC 

174 

ECC 

188 

ECC 

194 

ECC 

202 

Trimethoprim resistance 

dfrA1 - - - - - - + - - - 

dfrA12 - - - - - - + - - - 

dfrA17 - + - + + + - - + + 

Macrolide, Lincosamide and Streptogramin B resistance 

mph(A) - + - + + + + - - + 

mph(E) - - - + - - - - - - 

msr(E) - - - + - - - - - - 

Sulphonamide resistance 

sul1 - + - + + + + - + + 

sul2 - - - + + + - - + - 

Aminoglycoside resistance 

aadA1 - - - + - - + - - - 

aadA2 - - - - - - + - - - 

aadA5 - + - + + + - - + + 

strA - - - + + + - - + - 

strB - - - + + + - - + - 

armA - - - + - - - - - - 
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Table 9. Comparative analysis of rifampicin, fosfomycin and quinolone antibiotic 

resistance of sequenced isolates. 
 

ECC 

149 

ECC 

153 

ECC 

157 

ECC 

161 

ECC 

167 

ECC 

173 

ECC 

174 

ECC 

188 

ECC 

194 

ECC 

202 

Rifampicin resistance 

arr-2 - - - + - - - - - - 

Fosfomycin resistance 

fosA - - - - - - + - - - 

Quinolone resistance 

qnrS1 - - - - - - - - + - 

 

Table 10.  Antimicrobial resistance gene patterns of all isolates.  

Resistance Pattern  Isolate ID 

SHV, OXA, CTX-M, CTX-M-15 

 
ECC 147 

TEM, OXA, CTX-M, CTX-M-15 

 
ECC 149, ECC 161, ECC 186, ECC 187, ECC 

194 

SHV, CTX-M, CTX-M-15 ECC 319 

TEM, CTX-M, CTX-M-15 ECC 203 

OXA, CTX-M, CTX-M-15 

 
ECC 153, ECC 157, ECC 167, ECC 173, ECC 

174, ECC 188, ECC 190, ECC 202 

TEM, OXA, CTX-M ECC 314, ECC 605 

CTX-M, CTX-M-15 ECC 200 

TEM, CTX-M ECC 199, ECC 312, ECC 322, ECC 394, ECC 

396 

TEM ECC 205 
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Figure 3. Bar diagram showing the percentage resistance of all 27 E. coli isolates to the 

tested antibiotics by the disk agar diffusion method. AMK- Amikacin, CIPX- 

Ciprofloxacin, GEN- Gentamicin, TZB- Tazobactam (β-lactamase inhibitor), TMP/SMX- 

Trimethoprim/Sulfamethoxazole, ETP- Ertapenem and IPM- Imipenem. 

 

4.6. Virulence Factors: 

Virulence factors encoding genes were detected using the CGE VirulenceFinder 1.2 tool 

(Table 11). gad was detected in all the sequenced isolates, which is a glutamate 

decarboxylase that aids E. coli to survive under highly acidic conditions (Capitani et al., 

2003). Adhesins were also detected in all the sequenced genomes. As for toxins, senB was 

identified in ST-405 isolates (ECC153, ECC 157, ECC 173 and ECC 188) and the 

Enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) encoded by astA  (Silva et 

al., 2014) was found in sequence types ST-205 (ECC 174) and ST-1284 (ECC 167). iss 

encodes an outer membrane lipoprotein which enhances serum resistance (Johnson et al., 

0%

20%

40%

60%

80%
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120%

AMK CIPX GEN TZB TMP/SMX ETP IPM

Disk Agar Diffusion Susceptibility Test
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2008) and it was detected in sequence types ST-648 (ECC 149), ST-1284 (ECC 167) and 

ST-617 (ECC 202). Finally, kpsM capsular gene was detected in sequence type ST-648 

(ECC 149), and siderophores iutA and iucD were identified in sequence types ST-1284 

(ECC 167) and ST-617 (ECC 202). 

Table 11. Genes encoding the most important virulence factors on the E. coli genomes. 

 

MLST Isolate 

ID 

Serotypes Phylogenetic 

group 

Virulence factor genes 

ST205 ECC 174 O100:H12 B1 Adhesins (fimH, fimB, fimA1, 

lpfa2), toxins (astA3), serum 

resistance-associated (traT4), 

pathogenicity island marker 

(malX5) and increased acid 

resistance (gad6) 

ST405 ECC 153  

ECC 157  

ECC 173  

ECC 188 

O102:H6 D Adhesins (fimH, fimB, fimA, 

air1),  toxins (senB3), 

pathogenicity island marker 

(malX5), increased acid 

resistance (gad6) and expression 

of invasion genes (eilA7) 

ST410 ECC 194 O8:H9 A Adhesins (fimH, fimB, fimA1, 

lpfa2), pathogenicity island 

marker (malX5) and increased 

acid resistance (gad6) 

ST448 ECC 161 O8:H8 B1 Adhesins (fimH, fimB, fimA1, 

lpfa2), pathogenicity island 

marker (malX5) and increased 

acid resistance (gad6). 

ST617 ECC 202 O89:H10 A Adhesins (fimH, fimB, fimA1), 

siderophores (iucD, iutA8),  

serum resistance-associated 

(traT4), pathogenicity island 

marker (malX5), increased serum 

resistance (iss9) and increased 

acid resistance (gad6) 
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ST648 ECC 149 H6 D Adhesins (fimH, fimB, fimA1, 

lpfa2, air1), serum resistance-

associated (traT4), pathogenicity 

island marker (malX5), increased 

serum resistance (iss9), increased 

acid resistance (gad6), 

expression of invasion genes 

(eilA7) and capsular gene (kpsM 

II10)  

ST1284 ECC 167 O89:H21 A Adhesins (fimH, fimB, fimA1, 

lpfa2),  toxins (astA3), 

siderophores (iucD, iutA8), 

serum resistance-associated 

(traT4), pathogenicity island 

marker (malX5), increased serum 

resistance (iss9), increased acid 

resistance (gad6) and capsular 

gene (capU11) 
1Harrington et al., 2009    7Hüttener et al., 2014  

2 Baranzoni et al., 2016    8 Gao et al., 2012 

3 Silva et al., 2014     9Johnson et al., 2008 

4Nolan et al., 2003     10Johnson et al., 2004 

5Östblom et al., 2011     11Afset et al., 2006 

6 Capitani et al., 2003      

 

4.7. Plasmids:  

All sequenced genomes matched with different plasmid incompatibility groups including 

IncA/C2, IncFIA, IncFIB, IncFII, IncI1, IncQ1, IncX3 and IncX4. Col(BS512) was 

detected in ECC 167 and ECC 194 with ECC 194 additionally carrying ColKP3, while 

Col156 was found in ECC 157 and ECC 173 (Table 12). 
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Table 12. Comparative analysis of plasmids in sequenced isolates. 

Plasmids ECC 

149 

ECC 

153 

ECC 

157 

ECC 

161 

ECC 

167 

ECC 

173 

ECC 

174 

ECC 

188 

ECC 

194 

ECC 

202 

IncFIA   + + + + + + + + + 

IncFIB  + + + + + + + + + + 

IncFII + + + + + + + +   + 

IncI1     +   + + + +   + 

IncX3                 +   

IncX4             +       

IncQ1       +         +   

IncA/C2       +             

Col156     +     +         

Col(BS512)         +       +   

ColKP3                 +   

Col(MG828)                   + 

ColpVC   +                 

p0111 + +       +   +     

 

4.8. Phages: 

Several multi-genic regions were identified as being associated with known 

bacteriophages. stx2 converting I phage was detected in ECC 149 and ECC 194, and  stx2 

converting 1717 phage in ECC 153, ECC 157, ECC 161 and ECC 167. ECC 149 also 

carried the Burkholderia cenocepacia BcepMu phage.  The lysogenic phages P1 ( ECC 

153, ECC 157, ECC 167, ECC 173, ECC 188 and ECC 202) and P4 (ECC 161, ECC 167 

and ECC 202) were also identified. Finally, the temperate phage P2 was detected in ECC 

153 and ECC 157 and some other phages including: mEp460, fiAA91, ss, P88, Fels 2, 

HK629, HK630, SfII, SFIV, SfV, Sf6 and SSU5 were seen among the sequenced genomes.  
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4.9. Insertion Sequences: 

Figure 4 represents all insertion sequence families of ECC 149. The rest of the genomes 

can be found in ANNEX I.  

 

 

 

Figure 4. A pie chart demonstrating the different percentages of major insertion 

sequence families for ECC 149.  

 

4.10. Phylogenetic Analysis:  

A concatenated maximum likelihood tree was generated to establish the phylogenetic 

relatedness of the sequenced isolates. ST131 and non-ST131 belonging to B2 
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IS5, 4.21% IS6, 1.05% IS66, 1.05% ISAs1, 4.21% ISL3, 8.42%

ISNCY, 6.32% Tn3, 1.05%
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phylogenetic group were used as reference genomes.  Phylogenetic analysis showed the 

grouping of ECC 153, ECC 157, ECC 173 and ECC 188 into the same clade with reference 

strain UMN026, while ECC 161 and ECC 174 grouped with SE11 (Figure 5). ECC 167 

and ECC 202 were clustered together and in close association with MG1655, whereas 

ECC 194 was clustered with APECO78. 

 

 

 

Figure 5. Maximum likelihood tree generated using PhyloSift. NCBI was used to 

download the genomes. PhyloSift concatenates the alignments of 37 elite markers. The 

maximum likelihood tree was then inferred using FigTree. E. coli belonging to B2 

phylogenetic group and non-ST131 genomes used: UT189, CFT073, ED1a, E2348/69, 

S88, APEC O1 and 536. ST131 reference genomes: NA114, SE15 and EC958 
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Chapter Five 

DISCUSSION 

One of the most common Gram-negative bacterial pathogens is ExPEC, which affects all 

age groups and causes a broad range of clinical diseases (Poolman et al., 2015). Distinct 

from intestinal pathogens and commensals, ExPEC causes infections of the bloodstream, 

respiratory tract, urinary tract, peritoneum and cerebrospinal fluid. ExPEC associated 

infections can be both community and hospital acquired (Bajaj et al., 2016), and the 

increased occurrence of ESBL- and carbapenemase producing ExPEC isolates are a 

serious threat to the public health (Abraham et al., 2014). Multidrug resistant E. coli pose 

a significant challenge to manage and control the spread of infections (Poolman et al., 

2016). ExPEC isolates have acquired resistance towards nearly all antibiotic classes 

(Nicolas-Chanoine et al., 2014) with the pandemic potential of these strains particularly 

in Lebanon being of great concern. In this work we examined the genomic attributes of 

27 carbapenem resistant ExPEC isolates. 

5.1. Antibiotic resistance: 

An ideal method for investigating and tracking antibiotic resistant bacteria is via MLST 

typing, which also demonstrates the genetic variety between different multidrug resistant 

ExPEC lineages (Hazen et al., 2014). The most notorious ExPEC pathogen is the virulent 

clonal group B2-O25:H4-ST-131, but it should be acknowledged that beside B2-ST-131, 

there are group D strains that constitute around two thirds of all ExPEC infections and 

they include ST-405 and ST-648 (Ewers et al., 2014). Among our isolates, the most 
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common ST was ST-405, which was also detected in Europe, Asia and in Saudi Arabia 

(Alghoribi et al., 2015). ExPEC’s most prevalent ESBL is CTX-M-15 (Poolman et al., 

2016) and clonal outbreaks of blaCTX-M-15 carrying Enterobacteriaceae were reported in 

Italy, Portugal, Norway, Austria, France, Spain, Tunisia, Canada, South Korea and the 

United Kingdom (Coque et al., 2008). In this study, 63 % of all E. coli isolates (Table 10), 

harbored the blaCTX-M-15 gene, which reemphasizes the countrywide spread of CTX-M-15 

(Baroud et al., 2011). According to Coque et al. the worldwide dissemination of blaCTX-M-

15 gene is attributed to the two epidemic strains of E. coli belonging to phylogenetic groups 

B2 (ST-131) and D (ST-405), and the gene is carried on an IncF plasmid, which facilitates 

the transfer of resistance among isolates (Coque et al., 2008). All the ST-405 types 

detected in this study carried the blaCTX-M-15 gene (Table 6) and the IncF plasmid (Table 

12). Further, 75 % of this study’s ST-405 isolates harbored the CMY-42 gene in addition 

to OXA-1. CMY-42 is an AmpC enzyme that differs from CMY-2 by a substitution in a 

single amino acid (Ser instead of Val at Ambler’s position 211) (Feng et al., 2015). ST-

405 E. coli clone harboring CTX-M-15, CMY-42 and OXA-1 was reported recently in 

India (Alm et al., 2015). Moreover, isolate ECC 149 (ST-648) was also a CTX-M producer 

(Table 6) and resistant to trimethoprim-sulfamethoxazole. Multidrug resistance was 

previously reported to be common among ST-648 isolates particularly towards non-

lactams such as levofloxacin, trimethoprim-sulfamethoxazole, minocycline and 

gentamicin (Sherchan et al., 2015). ST-648 is widespread being detected in several 

geographical regions including Asia, Africa, North and South America and Europe 

(Sherchan et al., 2015).   
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Other multidrug resistant ST types were also detected in this study namely ST-410 

(CC23), ST-617 (CC10) and ST-1284 (CC10) (Table 5). Peirano et al. (2011) showed that 

ST-410 isolated from Rio de Janeiro was positive for CTX-M-15, aac(6′)-lb-cr, OXA-1 

and TEM-1 β-lactamases (Peirano et al., 2011), all of which were also detected in ECC 

194 (ST-410) (Tables 6 and 7). Although all the isolates in this study were carbapenem 

resistant, only ECC 194 (ST-410) harbored at the molecular level a carbapenem resistant 

determinant, blaOXA-181 gene. blaOXA-181 gene was not previously detected in Lebanon, and 

differs from OXA-48 by four amino acid substitutions (Potron et al., 2011), but had a 

similar β-lactamase hydrolysis spectrum, which included penicillins and carbapenems 

(Liu et al., 2015). The blaOXA-181 originated from an environmental bacterium, Shewanella 

xiamenensis. It was first detected in Klebsiella pneumoniae and Enterobacter cloacae 

isolated from India, and was later found in several species of Enterobacteriaceae in other 

countries including: France, Norway, Oman, Canada, Romania, United Kingdom, New 

Zealand, Singapore, Sri Lanka, South Africa, Bangladesh and Nepal (Liu et al., 2015). 

blaOXA-181 was primarily detected on an IncT plasmid (84 kb) or ColE2 type plasmid (7.6 

kb), with a more recent study reporting its detection on an IncX3 plasmid (Liu et al., 2015). 

ECC 194 (ST-410) was IncX3 positive (Table 12), and the detection of blaOXA-181 in this 

isolate and on a self-transmissible IncX3 plasmid is alarming due to the potential of rapid 

dissemination (Liu et al., 2015). In China, strain WCHEC14828 was also shown to carry 

the blaOXA-181 gene on the IncX3 plasmid along with blaOXA-1 (non-ESBL oxacillinase 

gene), blaCTX-M-15 (ESBL gene), blaCMY-2 (plasmid-borne AmpC gene), blaTEM-1b (non-

ESBL β-lactamase gene), aac(6’)-Ib-cr (codes for aminoglycoside acetyltransferase 

which results in low level activity against fluoroquinolones), qnrs1 (low level of resistance 

to fluoroquinolones), blaampC (chromosomally carried AmpC gene) and tetA (tetracycline 



44 
 

resistance gene) (Liu et al., 2015). ECC 194 (ST-410) had the same set of resistant 

determinants except for blaampC and tetA.  

Mshana et al. revealed year 2016 that ST-617 E. coli isolates harbored blaCTX-M-15, blaOXA-

1, blaTEM-1B, aac(6')Ib-cr, aac(3)-IIa, aadA5, strA and strB  as well as IncFIA, IncFIB and 

IncFII, which was similar to ECC 202 (ST-617) with the exception of blaTEM-1B, aac(3)-

IIa,  strA and strB.  ST-617 (CC10) was also reported in Belgium, with high prevalence 

in Nigeria (Brolund et al., 2014). Usually, CC10 and 23 are linked to multidrug resistance 

and in particular ciprofloxacin resistance among sepsis and UTI clones (Giufrè et al., 

2012), which was consistent with the results of this study with all the isolates being 

ciprofloxacin resistant (Table 6).  

CC10 and CC23 were both frequently associated with clinical ESBL producing E. coli 

(Oteo et al. 2009). ST-1284 (CC10) E. coli isolates were CTX-M-15 producers (Novais 

et al., 2012), which was similar to ECC 167 (ST-1284) (Table 11). E. coli ST-1284 was 

previously isolated from raw milk in Algeria (Yaici et al., 2016) and commercial swine in 

Brazil (Silva et al., 2016). However, to the best of our knowledge, this is the first isolation 

of ST-1284 from humans. Moreover, E. coli strain (WCHEC13-8) isolated in China, was 

closely related to ST-1284. WCHEC13-8 belonged to ST-3835 with an allelic profile of: 

10-4-4-411-8-13-73, differing from ST-1284 by a single allele (10-4-4-8-8-13-73) (Feng 

et al., 2015). It is noteworthy, that ST-3835 had some common resistance determinants as 

that of ECC 167 (ST-1284), in addition to blaNDM-1, blaSHV-12 and blaampC. Finally, ST-

3835 was reported in several other countries including: Germany (dog), Spain (human) 

and Korea (human) (Feng et al., 2015). 
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ST-205 reported by Aizawa et al. were identified as CMY-2 producing E. coli isolates 

(Aizawa et al., 2014), whereas ECC 174 (ST-205) was a CMY-42 producer rather than 

CMY-2 (Table 6) (Mshana et al., 2016). On the other hand in Spain, ST-448 carbapenem 

resistant E. coli was detected and it showed resistance towards all antibiotics including: 

imipenem, meropenem, ertapenem, gentamicin, amikacin, ciprofloxacin and 

trimethoprim-sulfamethoxazole as well as towards the β-lactamase inhibitor tazobactam 

(Porres-Osante et al., 2014), which was similar to ECC 161 (ST-448) resistance pattern 

(Table 5).  

 Lebanon, similar to many countries worldwide, is facing a serious threat with an increase 

in carbapenem resistant Enterobacteriaceae (El-Herte et al., 2012). Carbapenem 

resistance in Enterobacteriaceae can be linked to at least one of the following: acquisition 

of carbapenem resistance genes, alteration of penicillin binding proteins due to mutations 

and/or reduction of outer membrane permeability as a cause of porin loss in addition to 

overexpression of an ESBL or an AmpC enzyme (Adler et al., 2013). The fact that all 

isolates in this study were carbapenem resistant and yet only one carried a carbapenem 

resistant determinant could be possibly attributed to several other resistance determinants. 

Generally carbapenems are not sensitive to the CTX-M enzymes, but overexpression of 

CTX-M-15 along with decreased membrane permeability, could be linked to an increase 

in carbapenem resistance (D'Andrea et al., 2013). Similarly, Adler et al. showed that the 

overexpression of OXA-1 (carried by all sequenced isolates except ECC 161) and TEM-

1 (ECC 161 and ECC 194) led to higher catalytic activity towards carbapenems when 

combined with the loss of OmpF and OmpC porins (Adler et al., 2013). All sequenced 

isolates in this study didn’t have the OmpF and OmpC porins. Whereas some class D β-
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lactamases confer high resistance to carbapenems, others like OXA-2 and OXA-10 (ECC 

161) β-lactamases were not considered as major elements contributing to carbapenem 

resistance. However, Antunes et al. demonstrated in year 2014 that in E. coli, OXA-48 

and OXA-58 carbapenemases showed the same level of resistance to carbapenems as that 

seen with OXA-2 and OXA-10. Additionally, plasmid mediated AmpC β-lactamase in E. 

coli encodes resistance to third generation cephalosporins, and when combined with loss 

of porins the net outcome was carbapenem resistance with the most common two enzymes 

involved being blaCMY-2 (ECC 194) and blaCMY-42 (ECC 157, ECC 167, ECC 173, ECC 

174, ECC 188 and ECC 202) (Rocha et al., 2015). Thus, carbapenem resistance with the 

lack of detectable genes could be attributed to the other set of ESBLs and β-lactamases 

(OXA-1, OXA-10, TEM-1, CTX-M-15, CMY-2 and CMY-42) detected in the sequenced 

genomes. This potential resistance reservoir, which caused reduced susceptibility to 

carbapenems, is a major concern knowing that carbapenems are the antibiotics of choice 

in treating ESBL- and β-lactamase producing E. coli (Adler et al., 2013).  

5.2. Virulence: 

Our study revealed that among the 27 isolates, the distribution of phylogenetic groups was 

as follows: five (18.5 %) belonged to group A, three (11.1 %) belonged to group B1, six 

(22.2 %) belonged to group B2 and 13 (48.2 %) belonged to group D (Table 4). Although 

it seems that ExPEC strains derive from diverse origins, phylogenetic studies established 

that these bacteria fall into four main phylogenetic groups (A, B1, B2 and D) with the 

most virulent strains belonging to B2 and D (Bashir et al., 2012).  

Typically, ExPEC strains carry specialized virulence factors like adhesins, polysaccharide 

coats, invasins, toxins and iron acquisition systems (Sannes et al., 2004) that enable 
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ExPEC isolates to colonize, injure host tissues and avoid the host’s immune response 

(Blanco et al., 2013). Various studies have suggested that phylogenetic groups A and B1 

carry fewer virulence determinants, but are more resistant, whereas phylogenetic groups 

B2 and D possess and express more pathogenicity islands and virulence factors 

(Chakraborty et al., 2015).  

Adhesins, are an important group of virulence factors expressed by ExPECs to avoid 

removal and to enable tissue tropism. ExPEC’s most important adhesins are the fimbrae, 

which are organelles belonging to the chaperone-usher subclass. This class includes type 

1, S, F1C and P fimbriae (Klemm et al., 2010). Type 1 fimbriae are extremely conserved 

and common among commensals as well as UPEC isolates. Particularly, this virulence 

factor is crucial in the establishment of a UTI (Wiles et al., 2008). In this study, isolates 

of phylogenetic groups A, B1, B2 and D had equal distribution of fimA, fimB and fimH. 

All were classified as type 1 fimbrae, which mediates mannose-specific binding to 

receptors on host cells. fimA, fimB, fimC and fimD genes play a role in fimbriae synthesis, 

while fimB  and fimE are regulatory genes that control type 1 fimbriae phase variation. 

Additionally, fimF, fimG, and fimH were needed in longitudinal regulation as well as in 

adhesion (Antão et al., 2009). Although fim is found in all E. coli (pathogens and 

commensals), its expression and function varies significantly between commensal strains 

and pathogens as well as between clinical isolates from diverse syndromes. UTI associated 

clinical isolates express a form of fimH that enables it to attach to monomannose and 

trimannose receptors, which is an adaptive variation that aids it to colonize the bladder 

whereas commensal strains express a variant of fimH that binds trimannose receptors 

resulting in gut colonization (Johnson et al., 2002). lpfa is another adhesin detected in 66.7 



48 
 

% of  the isolates in this study belonging to phylogroup A, all of phylogroup B1 and 20 

% of phylogroup D. lpfa plays a role in host cell adhesion (Baranzoni et al., 2016), and is 

the second most common virulence factor among phylogenetic groups A and B1 (Campos 

et al., 2008). On the other hand, air, an adhesin involved in aggregation, colonization and 

invasion, was found in all the isolates belonging to phylogroup D (Harrington et al., 2009), 

which were additionally positive for eilA gene. EilA, a homolog of HilA, plays a role in 

the expression of invasion genes (Hüttener et al., 2014).  

Proteases and bacterial toxins are important virulence factors. senB, a plasmid encoded 

enterotoxin, and astA (Enteroaggregative E. coli heat stable enterotoxin 1) were the only 

detected toxins in the sequenced genomes. It is noteworthy that both senB and astA genes 

are frequently correlated with diarrhoeagenic pathovars rather than ExPEC strains (Sousa, 

2003), but it was established that generally, some of the toxin encoding genes have the 

potential to transfer from diarrhoeagenic E. coli to ExPEC strains and particularly to 

UPEC (Mirzarazi et al., 2015). senB was found in 80 % of the isolates in this study 

belonging to phylogenetic group D, whereas, astA was found in 50 % of B1 and 33.3 % 

of A. In harmony with our results, Mirzarazi et al. (2015) showed that senB was most 

prevalent in phylogroup D and astA in B2 followed by B1 and A. 

Moreover, serum resistance associated protein (iss) was detected in ECC 149, ECC 167 

and ECC 202, the aerobactin siderophore receptor ferric aerobactin uptake (iutA) in ECC 

167 and ECC 202 and hydroxamate siderophore aerobactin (iucD) in ECC 167 and ECC 

202. iss is more frequently associated with isolates of phylogenetic group D than A (Hiki 

et al., 2014), but in this study it was detected in 20 % of isolates in phylogenetic group D 

and 66.7 % of isolates in phylogenetic group A. iutA and iucD were detected in 66.7 % of 
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isolates belonging to phylogenetic group A, with both siderophores being associated with 

phylogenetic group B2 followed by A (Staji et al., 2016). Iron is vital for bacterial growth 

and in low iron environments such as in the urinary bladder, the acquisition of siderophore 

systems will be a great advantage during colonization (Watts et al., 2012). Aerobactin is 

a hydroxamate siderophore synthesized by the majority of pathogenic E. coli and is 

encoded by iucABCD genes. Once aerobactin is synthesized, it is taken up by the receptor 

protein encoded by iutA (Gao et al., 2012). Iron starvation is the instantaneous trigger for 

the activation of both of these components (Ling et al., 2013). Usually, these genes are 

only found in virulent strains and play an important role in pathogenesis particularly in 

the case of UPEC (Gao et al., 2012). As for the rest of the virulence factors, malX 

(pathogenicity island marker) and gad (glutamate decarboxylase) were detected in all 

isolates of phylogenetic groups A, B1 and D. traT (serum resistance-associated) (Riley, 

2014) is most commonly associated with phylogroups A (Derakhshandeh et al., 2015), 

which was the case in our isolates as it was found in 66.7 % of phylogroup A, 50 % of 

phylogroup B1 and 20 % of phylogroup D.  Finally, kpsM II (group 2 capsule) and capU 

(capsular gene) were identified by next generation sequencing in phylogenetic groups D 

(20 %) and B1 (33.3 %) respectively. kpsM II gene is most frequently linked to 

phylogenetic groups B2 and D (Petersen et al., 2009) and it aids in the protection of 

ExPEC against complement-mediated killing and phagocytosis (Johnson et al., 2004). 

Understanding how ExPEC isolates utilize their virulence factors in colonizing and 

persisting within a host will enable the customization of treatments based on the set of 

virulence genes present in the infecting strain (Wiles et al., 2008). 
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5.3. Plasmids: 

Sequences correlating to IncA/C2, IncFIA, IncFIB, IncFII, IncI1, IncQ1, IncX3, IncX4, 

Col(BS512) and Col156 plasmids were identified, with incompatibility groups IncFIA and 

IncFIB being present in all isolates (Table 12). The widespread emergence of the blaCTX-

M-15 gene, which is frequently interrelated with TEM-1, OXA-1 and aac(6’)-Ib-cr, was 

mainly linked to IncF replicons (Carattoli, 2009). As previously established, among the 

isolates carrying IncF plasmids, all were positive for CTX-M-15, 30 % for TEM-1, 90 % 

for OXA-1 and 80 % for aac(6’)-Ib-cr (Tables 6 and 7). CTX-M-15 carrying IncF 

plasmids are not exclusively for ST-131, but have also been detected in several other STs 

including ST-405, ST-410, ST-617 and ST-1284 (Carattoli, 2009 and Silva et al., 2016), 

all of which were in harmony with this study’s results (Table 6 and 11). Furthermore, ECC 

167 and ECC 194 carried the pBS512_2 plasmid, which is linked to type III secretion 

system (Villa et al., 2010). Type III secretion systems are used by pathogenic Gram-

negative bacteria to subvert the signaling pathways of host cells and inject virulence 

proteins into their cytoplasm (Zhou et al., 2014). Moreover, isolates ECC 153, ECC161, 

ECC 173 and ECC 188 harbored the pRSB107 plasmid with an allelic profile of F2:A1:B1 

which was associated with aerobactin (Woodford et al., 2009). IncX3 and IncX4 were 

found in ECC 194 and ECC 174, respectively. Resistance genes including ESBLs 

(particularly CTX-M), carbapenemases and plasmid encoded quinolone resistance 

(qnrS1) were previously reported to be localized on IncX plasmids (Lo et al., 2014). qnrS1 

is mainly associated with IncX3 plasmids (Dobiasova and Dolejska, 2016), which was the 

case for ECC 194. It is noteworthy that ECC 194 was the only isolate carrying a 

carbapenemase gene blaOXA-181, and this is in harmony with the fact that it was the only 
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islolate harboring the ColKP3 plasmid. ColKP3 plasmid was initially isolated from 

Klebsiella pneumoniae and was shown to harbor the blaOXA-181 gene (Potron et al., 2011). 

Further, only isolates ECC 157, ECC 167, ECC 173, ECC 174, ECC 188 and ECC 202 

that harbored the blaCMY-42 gene (encodes AmpC enzyme) were found to also be positive 

for the IncI1 plasmid which was in concordance with Feng et al. (2015). 

5.4. Phages and Insertion sequences: 

All ST-410 and ST-648 isolates in this study possessed stx2 converting I phage. 

Furthermore, all ST-448 and ST-1284 as well as half ST-405 isolates carried the stx2 

converting 1717 phage. It is known that ExPEC strains carry the Shiga toxin gene (Wester 

et al., 2013). STEC (Shiga toxin producing E. coli) or closely related pathogens produce 

the Shiga toxin (stx1, stx2 and stx2 variants), which is encoded by temperate double 

stranded DNA lambdoid phages and which causes drastic human diseases including 

hemolytic uremic syndrome (Muniesa et al., 2004). 

Resistance and virulence genes are fitness traits that are usually linked with transposable 

elements (Ho et al., 2016). The most common insertion sequence families detected among 

all our isolates were both IS1 and IS3 (ANNEX I). IS1 elements are correlated with heat 

stable toxins (Mahillon et al., 1998) and they are usually found flanking siderophore 

systems such as iuc/iutABCD (Ho et al., 2016).  

5.5. Phylogenetic Analysis: 

Phylogenetic analysis revealed that the isolates were mainly grouped with the reference 

strains based on their respective phylogenetic groups. Phylogenetic group D E. coli ST-

405 isolates (ECC 153, ECC 157, ECC 173 and ECC 188) clustered together and with the 
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reference ExPEC strain UMN026 (ST-69) (Doumith et al., 2015) of phylogenetic group 

D, but separately from phylogenetic group D ECC 149 (ST-648). The clade containing 

group B2 ST-131 strains (SE15, EC958, NA114 and JJ1886) was also located separately 

from phylogenetic group D isolates (Forde et al., 2014). Moreover, ECC 174 and ECC 

161 were grouped together with SE11, which was supported by the fact that they all 

belonged to phylogenetic group B1 (Oshima et al., 2008). On the other hand, ECC 194 

and APECO78 clustered together although they belonged to different phylogenetic groups 

A and B1, respectively.  However, this could be attributed to both having the same ST 

type (ST-410 and CC23) (Wyrsch et al., 2015). ECC 194 was also phylogenetically close 

to reference strain MG1655 and to isolates ECC 167 and ECC 202 with all being of 

phylogenetic group A (Forde et al., 2014).  

5.6. Future Work: 

The pandemic potential of ExPEC strains especially in Lebanon is of great concern and 

poses a serious threat to the public health. A significant threat is the dispersal of 

transmissible plasmids carrying different sets of resistance and virulence determinants, 

thus the detection and identification of such replicons is critical. Moreover, since 

carbapenem resistant ExPEC strains are now widespread and being linked to community 

and hospital acquired infections, further investigations are needed to better understand 

their dispersal, molecular epidemiology and pathogenicity. Additionally, the role of 

recombination and mobile genetic elements in the diversification and spread of 

carbapenem resistant ExPEC clonal lineages should be better studied. Finally, in Lebanon 

efforts should be focused at implementing active antibiotic surveillance and infection 

control programs to limit and avoid outbreaks of carbapenem resistant E. coli. 
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Chapter Six 

CONCLUSION 

 This study is the first detection of blaOXA-181 encoding E. coli from Lebanon in 

addition to it being the first comprehensive genome-wide comparative analysis of 

carbapenem resistant ExPEC isolates. 

 The distribution of phylogenetic groups was as follows: five (18.5 %) belonged to 

group A, three (11.1 %) belonged to group B1, six (22.2 %) belonged to group B2 

and 13 (48.2 %) belonged to group D. 

 The average sequence size of the ten isolates was 5.2 Mb with an average of 224–

342 contigs and G+C % content of 50.49 % – 50.79 %. 

 The isolates were derived from 7 different lineages: ST-405 (ECC 153, ECC 157, 

ECC 173 and ECC 188), ST-205 (ECC 174), ST-410 (ECC 194), ST-448 (ECC 

161), ST-617 (ECC 202), ST-1284 (ECC 167) and ST-648 (ECC 149). 

 Out of the 27 isolates, 59.6 %, 51.9 %, 7.4 % , 88.9 % and 63 %  carried the blaOXA, 

blaTEM, blaSHV, blaCTX-M and blaCTX-M-15 genes respectively. 

 Analysis revealed that the sequenced isolates harbored different β-lactamase genes 

including blaOXA-1, blaOXA-10, blaOXA-181, blaTEM-1b, blaCTX-M-15, blaCMY-2, blaCMY-42 

in addition to aac(6')Ib-cr gene which confers tetracycline and aminoglycoside 

resistance among others. 

 Although all isolates were carbapenem resistant according to disk agar diffusion, 

only ECC194 (ST-410) was positive for carbapenem resistance gene blaOXA-181. 
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This can be possibly attributed to loss of OmpF and OmpC porins in all sequenced 

isolates in combination with increased production or expression of certain ESBLs. 

 Adhesins fimA, fimB and fimH were also identified in all isolates. 

 Other virulence factors detected include: air, lpfa, senB, astA, iss, malX, capU, 

kpsM, iutA, iucD and traT. 

 All isolates had results that matched with different incompatibility groups 

including IncA/C2, IncFIA, IncFIB, IncFII, IncI1, IncQ1, IncX3 and IncX4. 

 Col(BS512) was detected in ECC 167 and ECC 194 with ECC 194 additionally 

carrying ColKP3, while Col156 was found in isolates ECC 157 and ECC 173. 

 stx2 converting I phage was seen in isolates ECC 149 and ECC 194. Additionally, 

stx2 converting 1717 phage was identified in isolates: ECC 153, ECC 157, ECC 

161 and ECC 167. 

 The most common insertion sequence families detected among all our isolates 

were both IS1 and IS3 (ANNEX I). 

 Phylogenetic analysis revealed that the isolates were mainly grouped with the 

reference strains based on their respective phylogenetic groups. 

 The pandemic potential of ExPEC strains especially in Lebanon is of great concern 

and poses a serious threat to the public health. A significant threat is the dispersal 

of transmissible plasmids carrying different sets of resistance and virulence 

determinants, thus the detection and identification of such replicons is critical. 

 Finally, in Lebanon efforts should be focused at implementing active antibiotic 

surveillance and infection control programs to limit and avoid outbreaks of 

carbapenem resistant E. coli. 
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ANNEX I 
  

 

Figure 1. Genome atlas of E. coli ECC 153. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple); tRNA genes (light blue); GC plot (black above 

mean and grey below mean); GC skew (black above mean and grey below mean). 
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Figure 2. Genome atlas of E. coli ECC 157. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple; in this case none present); tRNA genes (light blue); 

GC plot (black above mean and grey below mean); GC skew (black above mean and grey 

below mean). 
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Figure 3. Genome atlas of E. coli ECC 161. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple; in this case none present); tRNA genes (light blue); 

GC plot (black above mean and grey below mean); GC skew (black above mean and grey 

below mean). 
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Figure 4. Genome atlas of E. coli ECC 167. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple; in this case none present); tRNA genes (light blue); 

GC plot (black above mean and grey below mean); GC skew (black above mean and grey 

below mean). 
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Figure 5. Genome atlas of E. coli ECC 173. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple; in this case none present); tRNA genes (light blue); 

GC plot (black above mean and grey below mean); GC skew (black above mean and grey 

below mean). 
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Figure 6. Genome atlas of E. coli ECC 174. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple; in this case none present); tRNA genes (light blue); 

GC plot (black above mean and grey below mean); GC skew (black above mean and grey 

below mean). 
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Figure 7. Genome atlas of E. coli ECC 188. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple; in this case none present); tRNA genes (light blue); 

GC plot (black above mean and grey below mean); GC skew (black above mean and grey 

below mean). 
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Figure 8. Genome atlas of E. coli ECC 194. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple; in this case none present); tRNA genes (light blue); 

GC plot (black above mean and grey below mean); GC skew (black above mean and grey 

below mean). 
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Figure 9. Genome atlas of E. coli ECC 202. This graphical representation of the genome 

was generated using DNAPLOTTER. From outside to inside: E. coli, coding DNA 

sequence on the forward strand (red); E. coli coding DNA sequence on the reverse strand 

(blue); ribosomal RNA genes (purple; in this case none present); tRNA genes (light blue); 

GC plot (black above mean and grey below mean); GC skew (black above mean and grey 

below mean). 
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Figure 10. Comparative circular representation of the E. coli ECC 153 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli AA86 (accession 

number NZ_AFET01000001.1) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli AA86 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 
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These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 

 

Figure 11. Comparative circular representation of the E. coli ECC 157 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli AA86 (accession 

number NZ_AFET01000001.1) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli AA86 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 
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regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 

 

Figure 12. Comparative circular representation of the E. coli ECC 161 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli PCN033 

(accession number AFAT00000000) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli PCN033 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

http://jb.asm.org/external-ref?link_type=GEN&access_num=AFAT00000000
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indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 

 

Figure 13. Comparative circular representation of the E. coli ECC 167 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli PCN033 

(accession number AFAT00000000) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli PCN033 track, fourth 

http://jb.asm.org/external-ref?link_type=GEN&access_num=AFAT00000000
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track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 

 

 

Figure 14. Comparative circular representation of the E. coli ECC 173 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli AA86 (accession 

number NZ_AFET01000001.1) and Blast 2: E. coli K-12 MG1665. This graphical 
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representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli AA86 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 

 

Figure 15. Comparative circular representation of the E. coli ECC 174 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli AA86 (accession 
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number NZ_AFET01000001.1) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli AA86 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 
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Figure 16. Comparative circular representation of the E. coli ECC 188 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli AA86 (accession 

number NZ_AFET01000001.1) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli AA86 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 
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Figure 17. Comparative circular representation of the E. coli ECC 194 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli PCN033 

(accession number AFAT00000000) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli PCN033 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 

http://jb.asm.org/external-ref?link_type=GEN&access_num=AFAT00000000


92 
 

 

Figure 18. Comparative circular representation of the E. coli ECC 202 isolate genome 

BLASTed against the genomes of two reference strains. Blast 1: E. coli PCN033 

(accession number AFAT00000000) and Blast 2: E. coli K-12 MG1665. This graphical 

representation of the genome was generated using CGview server. Circular tracks show 

(from outside inwards): E. coli coding DNA sequence on the forward strand, E. coli 

coding DNA sequence on reverse strand (rRNA and tRNA are colored according to the 

legend inside the first two tracks), third track is the BLAST 1 E. coli PCN033 track, fourth 

track is the BLAST 2 E. coli K-12 MG1665 track. Both third and fourth tracks represent 

the positions covered by the BLASTN alignment. Inside these tracks, white regions 

indicate parts of the input sequence that did not yield a blast hit, light pink/light green 

represents parts of the input sequence that yield one blast hit, and darker pink/green 

regions indicate parts of the input sequence that yield several blast hits (overlapping hits). 

These often include rRNA or tRNA genes or repetitive sequences which represents the 

positions covered by the BLASTN alignment. Then the GC content is shown in black and 

http://jb.asm.org/external-ref?link_type=GEN&access_num=AFAT00000000
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finally the positive and negative GC skew are colored green and purple, respectively. 

Image created using CGview Server V 1.0 (Grant & Stothard, 2008). 

 

 

 

Figure 19. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 153.  
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Figure 20. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 157.  
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Figure 21. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 161.  
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Figure 22. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 167.  
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Figure 23. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 173.  
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Figure 24. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 174.  
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Figure 25. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 188.  
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Figure 26. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 194.  
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Figure 27. A pie chart demonstrating the different percentages of major insertion 

sequence families for isolate ECC 202.  
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