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Abstract This paper describes a method for using location data to optimize the
routing of pavement data collection vehicles. In much of the developed world,
pavement testing is performed on a regular basis; the pavement testing data, in
turn, serves as input to Pavement Management Systems. Currently, in the United
States of America, state departments of transportation plan this data collection
work by providing the list of roads that must be tested and then leave the routing
of the vehicles to the equipment operators who typically execute the work in an
ad hoc manner. In this study, we examine the processes required to clean the list
of roads for testing, select appropriate hotels in the region of testing, and apply
a Traveling Salesman Problem with Hotel Stops model to derive a route. We
subsequently show significant cost savings associated with this method of roadway
testing, as opposed to the current ad hoc methods.

Keywords Optimized data collection · route optimization · pavement manage-
ment system · mixed integer program · Traveling Salesman Problem with Hotel
Stops
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1 Introduction

State departments of transportation (DOTs) and public works agencies have been
performing road maintenance planning and operational activities since the 1880s
[Dror, 2000]. It wasn’t until the 1980s, however, that Information Systems began
to play a significant role in the processes of maintenance and planning. Specifi-
cally, a foundational article, published in 1982 in the journal Interfaces describes
a Pavement Management System (PMS) developed by the State of Arizona that
integrates management policy decisions, budgetary policies, environmental fac-
tors, and engineering decisions [Golabi et al., 1982]. The authors claim a savings
of $14 million as a result of system use. At the heart of the system is an opti-
mization module that recommends preservation policies to achieve long-term and
short-term standards for road conditions at the lowest possible cost. This module
relies on pavement condition data as its input and provides a maintenance and
rehabilitation (M&R) plan as its output.

Overshadowed by the immense savings that a PMS can bring to M&R planning,
little attention has been paid to the development of pavement assessment plans
to gather the input data. Over the years, surveys have shown that most agencies
still rely primarily on field experience rather than systematic analysis to conduct
roadway condition assessments [Jang, 2011]. For example, a survey in Minnesota
showed that only one agency out of 414 jurisdictions used computerized routing
software for snow and ice control [Office of the Legislative Auditor, 1995].

The authors surveyed five state highway agencies regarding their use of com-
puterized data driven processes for planning and executing pavement testing. The
states of Alaska, California and Florida had no set process to route test vehicles
during pavement data collection and they base their routing schemes on their per-
sonnel’s experience. The state of Minnesota responded to our inquiry as follows:
“MnDOT does not have any formal way to route for collecting pavement man-
agement data. Data collection is routed to ensure efficient collection during the
times of the year that the geographic areas of the state are free of frost effects to
the pavement International Roughness Index (IRI). Routing is also based on the
locations to be collected that season on local county roads. Local road collection is
based on a three-year cycle.” Along the same lines, the state of Wisconsin replied:
“We don’t use any program for routing our vans for the pavement condition data
collection on our highways. The operator simply uses a map and highlights the
routes. Two colors are used - one to identify the roads that need data collection
in both directions and a different color for those that just need one direction. The
operator then estimates distances to determine what can be done in a day. Or,
if testing will take longer than a day, then the operator selects a city to stay in
and then breaks up the areas all around it into subsections that can be tested in a
day.” This research seeks to illustrate the value of a holistic system for assimilating
roadway data into a procedure for developing optimized route plans.

The remainder of the paper is organized as follows: a literature review describes
the history and workings of PMS and highlights the absence of a routing compo-
nent in these systems. The following section, Section 3 then describes the proposed
extension to existing PMS - a method to integrate roadway data with an opera-
tional route planner. In this section we also briefly comment on the algorithmic
structure of the route planning tool. We then present the details of the case study
instances used to validate the proposed system, in Section 3.1. These instances
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originate from real-world data for a pavement testing firm in the Southwestern
United States. The results of the proposed strategy relative to a manual solution
are described in the second to last section. The article concludes with directions
for future work.

2 Literature Review

Pavement management involves all activities regarding the planning, design, con-
struction, maintenance, and rehabilitation of pavements. Pavement management
systems (PMS) consist of a set of tools or methods to help pavement managers
plan for constructing and maintaining pavements in a serviceable condition over a
given period of time. In 2002, Tsai and Lai formalized the components of a PMS
by putting forward a conceptual IT-based framework [Tsai & Lai, 2002]. Their
framework relies on an operation component, a data component, and a decision
support component. The data component is at the heart of the framework and re-
lies heavily on the input of data from the operation component – chief among these
inputs is pavement condition data. The data component, in turn, feeds the decision
support component that utilizes optimization to plan multi-year M&R budgets.
The decision support component then feeds back to the operation component in
terms of the M&R plan.

While one of the functionalities of PMSs is to optimize funding choices via
network analysis [Medury & Madanat, 2013], current systems do not actually
consider the operational routing of the pavement data collection vehicles. Highway
agencies, such as state departments of transportation (DOTs) or public works
agencies, update their PMSs every three to five years by performing data collection
on their network. Depending on the size of the network and the available budget,
the data collection is performed in one year or over several years. Furthermore, the
highway system pavement inventory of the US is monitored as part of the Highway
Performance Monitoring System (HPMS) program in a partnership between the
US federal government and the various states.

In most cases, consultants are contracted by the agencies for the data collection.
Such a task comprises sending one or more test-vehicles to drive over multiple
predefined sections within the network. The number of test sections could be as
few as a dozen sections in a small town or thousands of sections in a large city, state
or a country. Nevertheless, routing through these test sections can have significant
cost implications for the testing process.

While not currently recognized in testing, these cost implications are realized in
other pavement management domains such as snow removal and pavement mark-
ing [Jang, 2011, Perrier et al., 2007a, Perrier et al., 2007b, Office of the Legislative
Auditor, 1995]. Problems of snow removal generally require that snow plows tra-
verse all roadways in a given network. In contrast, pavement marking problems
require traversal of isolated sections of roadway. In this regard, the domain of pave-
ment marking is closest to our problem where specific, possibly disparate, sections
within the network are tested.

In general, several types of testing equipment are typically used to assess
the pavement’s structural and functional performance. Such equipment includes,
among others, falling weight deflectometers (FWDs), road surface profilers (RSPs),
pavement imaging vehicles, friction testers, and ground penetrating radars (GPRs).
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The similarity of test routing to pavement marking is most readily seen with fric-
tion testing as the route is limited by the water tank capacity just as a marking
vehicle is limited by the paint tank capacity. The pavement testing route module
that we propose, however, focusses on the majority of testing equipment that is
not limited by additional constraints such as the water tank capacity in friction
testers.

Just as [Ralyté et al., 2015] recommend a shift of Information Systems to In-
formation Services Systems, the data integration process that we suggest fits well
with existing pavement management information systems. Currently, PMSs rely on
the process of pavement testing to generate data on pavement conditions. These
conditions are then entered to the pavement condition database. The condition
database interfaces with the maintenance database which in turn feeds the main-
tenance and rehabilitation module. The M&R module then produces, through
optimization, an M&R plan. The plan is enacted and the maintenance, as per-
formed, is logged. While this process works well within the current legislation that
requires condition testing across the full network at fixed intervals, we believe
that the pavement testing activity can be improved through the addition of a
route optimization module.

Policies governing pavement testing along with available testing budgets can be
used to pull a pavement section test set from the pavement inventory and condition
databases. Once the test sections are selected, the route planning module informs
the decision maker of the optimal route and the route costs that will be incurred
with the selected road section test set. In this way, the decision maker may alter
the road section test set to meet cost targets or can solicit bids from pavement
testing contractors that abide by the expected cost levels using the optimized route
provided by the route planning module. Figure 1 illustrates, by means of a cross
functional flow chart, how the route optimization module fits within a general
PMS structure; the new, proposed elements are shaded in grey.

3 Integrating Route Planning in PMS

A PMS typically provides a list of the sections to be tested that contains the
roadway name, starting and ending post miles or cross streets, length, number of
lanes to be tested, and direction of testing. The latitude and longitude coordinates
for the starting and ending points are provided if the network is geo-referenced.

For some sections, data collection is required in both directions depending on
the functional classification, number of lanes, or other parameters specific to the
agency. For example, the data is collected on the slow lanes in both directions if
the roadway is a multi-lane divided highway, and in the slow lane in one specified
direction if it is a four lane undivided highway.

Once the PMS provides the road section test set, the location data is cleaned
and a distance matrix generated. The distance matrix is fed into an optimization
module that produces a route plan. The route is then presented to the decision
maker in a graphical manner. Figure 1 details, within a larger PMS structure, the
steps by which the optimization module works These steps are also described in
the following subsections.
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Fig. 1 Flow chart depicting the Route Optimization Module within the PMS and the steps
followed by the Route Optimization Module.

3.1 Data Cleaning and Distance Matrix Generation

The distance matrix generation requires as input a list of the start and end GPS
coordinates for every test section. These GPS points may be provided directly or
generated using the cross streets or post miles. To obtain the GPS coordinates, if
not provided, the cross streets must be entered into an online or offline mapping
program. As noted by [Zandbergen, 2008] modern geocoding software can provide
accurate location results for street networks. To expedite the process of geocoding
the test section start and end points, one may also use a coded script to lookup
sections via a mapping Application Program Interface (API) such as the Google R©

Maps Geocoding API [Google, 2016].

An example of this data processing step is illustrated for a small area in Los
Osos, CA that consists of 17 sections. The streets to be tested along with their
cross street limits were provided. The first section is Santa Ysabel Avenue from 2nd

Street to South Bay Boulevard. The latitude and longitude for the Santa Ysabel
Avenue and the 2nd Street starting cross street are 35.330011 and -120.840864,
respectively, whereas the latitude and longitude for the Santa Ysabel Avenue and
the South Bay Boulevard ending cross street are 35.329901 and -120.823426, re-
spectively. Table 1 provides a summary of the start and end coordinates of the 17
sections.

The route optimization model requires as input a matrix of the travel times
between the sections and available hotels as well as the testing times of the sections.
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Table 1 GPS Coordinates for Start and End of the 17 Los Osos Sections

Section
ID

Combined
ID

Start Latitude, Longitude End Latitude, Longitude

01 01 35.330011, -120.840864 35.329901, -120.823426
02 02 35.320657, -120.835452 35.329968, -120.835382
03 03 35.326836, -120.840804 35.330013, -120.840900
04 04 35.326921, -120.840889 35.326234, -120.829943
05 05 35.322597, -120.839650 35.326216, -120.839808
06 06A 35.316917, -120.833195 35.316499, -120.823404
07 06B 35.316499, -120.823404 35.313408, -120.817069
08 07 35.308884, -120.850654 35.308606, -120.833206
09 08 35.308759, -120.839943 35.312204, -120.839881
10 09 35.308844, -120.843170 35.312543, -120.843121
11 10A 35.299483, -120.863120 35.306641, -120.857797
12 10B 35.306641, -120.857797 35.312704, -120.852019
13 11 35.312090, -120.859145 35.311846, -120.853434
14 12 35.312793, -120.851976 35.318427, -120.852078
15 13 35.318472, -120.851962 35.318483, -120.844911
16 14 35.312730, -120.844814 35.320316, -120.844824
17 15 35.308140, -120.856645 35.300710, -120.847791

Table 2 Los Osos Travel Time/Testing Time Matrix in Minutes

Sect. ID 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

01 2.3 3.2 3.5 3.5 4.0 3.1 1.4 7.4 6.1 6.4 8.2 6.9 7.9 5.8 6.9 5.1 6.5

02 0.8 1.8 2.0 2.1 2.5 3.1 3.1 7.4 6.1 6.5 8.2 6.9 7.9 5.9 5.3 4.9 6.6

03 0.0 2.8 0.7 1.1 2.0 4.2 4.0 7.9 7.2 7.3 8.7 7.4 8.4 6.3 5.8 5.4 7.0

04 2.5 2.4 2.7 2.1 3.1 2.4 3.1 7.4 6.1 6.4 8.2 6.9 7.9 5.8 5.9 5.1 6.5

05 1.3 1.8 0.4 0.4 0.9 3.2 4.6 6.5 6.1 5.9 7.3 6.0 7.0 4.9 4.4 4.0 5.6

06 3.9 2.7 5.0 5.0 3.8 2.1 0.0 6.0 4.6 5.0 6.7 5.4 6.5 4.4 5.7 3.7 5.1

07 5.6 4.4 6.7 6.6 5.4 3.3 1.0 7.8 6.4 6.8 8.5 7.2 8.3 6.2 7.5 5.5 6.9

08 6.1 3.3 5.6 5.5 4.4 2.8 3.3 2.6 1.4 2.0 5.8 4.5 5.5 3.5 4.7 2.8 4.2

09 6.2 3.3 5.4 5.3 4.1 2.9 3.3 3.2 0.7 1.9 3.8 2.5 3.6 1.5 2.8 0.8 2.2

10 5.8 3.6 5.0 4.9 3.8 3.2 3.6 2.6 1.9 0.6 3.5 2.2 3.2 1.2 2.4 0.5 1.9

11 7.4 5.5 6.6 6.6 5.4 5.1 5.6 3.7 3.9 3.7 1.5 0.0 3.0 1.3 2.6 2.1 0.4

12 6.3 4.3 5.5 5.4 4.2 4.0 4.4 2.5 2.7 2.6 2.4 1.1 2.1 0.1 1.4 0.9 0.7

13 6.6 4.7 5.8 5.8 4.6 4.4 4.8 2.9 3.1 3.0 2.4 1.1 0.7 0.6 1.8 1.4 0.8

14 5.8 3.9 5.0 4.8 3.8 5.3 5.7 3.8 4.1 3.9 3.8 2.5 3.0 1.1 0.0 2.3 2.1

15 4.2 2.3 3.4 3.3 2.2 3.7 5.2 4.0 3.5 3.4 4.7 3.4 4.5 2.4 1.1 1.5 3.1

16 3.5 1.5 2.7 2.5 1.5 3.0 4.8 4.2 3.8 3.6 5.0 3.7 4.7 2.7 2.1 1.5 3.4

17 9.3 7.3 8.5 8.4 7.3 7.0 7.4 5.5 5.8 5.6 4.1 2.8 4.8 3.2 4.4 4.0 2.1

The matrix is a square matrix of order n, where n is equal to the total number of
sections and hotels. The diagonal entries correspond to the testing time of each
section. The matrix is asymmetric since the travel time from the end of one section
– section “A” – to the start of another section – section “B” – is not the same as
the travel time from the end of section “B” to the start of section “A”. Note if it
is desired that testing commence and return to a depot, the depot should also be
included as a location in the matrix.

Table 2 shows the travel time and testing time matrix for the 17 Los Osos,
CA sections as generated using the Google R© Maps Distance Matrix API [Google,
2015]. The diagonal entries show the testing time for every section. For example,
the testing time of section ID 01 from start to end is 2.3 minutes excluding any
equipment set up time. All other entries correspond to the travel times from the
end of the sections shown in left column to the start of the sections shown in the
top row. For example, the travel time from the end of section ID 01 to the start
of section ID 02 is 3.2 minutes.
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A setup time of about one minute is typically added to the testing time for
every section. This time is spent by the operator to mainly create a new file for
the data collection and to review the route. Whenever sections are combined for
testing in one run, the equipment setup time is reduced to only one setup. This
task is performed automatically in the optimization model.

For the purpose of comparison to the manual benchmark, Table 2 shows which
sections are adjacent and can be combined. For example, the entry of row 06 and
column 07 is zero indicating that sections 06 and 07 can be combined to form
section 06A/06B (combined IDs 06A and 06B).

3.2 Route Optimization

After a day of work, the pavement testing vehicle operators must take breaks
in a hotel or at the depot. Determining the least cost order of sections to test
while balancing the cost of staying in a hotel versus returning to the depot adds a
point of synchronization to our model. However, the need to traverse disparate arcs
yields a routing problem similar to the rural post man problem (RPP) [Eiselt et al.,
1995]. The RPP is considered an arc routing problem. However, given the distance
between the arcs that must be traversed, such routing problems can be reduced to
an asymmetric traveling salesman problem (ATSP) [Srour & van de Velde, 2013].
Given this formulation, the problem may be modeled as a traveling salesperson
problem with hotel selection (TSPHS) [Vansteenwegen et al., 2012, Castro et al.,
2013, Castro et al., 2015]. To avoid overwhelming the reader with notation, the
model is described here only in words – the full mixed integer programming model
is shown in Appendix A

The objective of the model is to minimize the total cost associated with trav-
eling between jobs, hotels, and the depot, the cost of setting up to test disparate
road sections, the cost of staying in hotels, the cost of paying each day’s regular
wages and the cost of overtime wages. In this formulation a full day of wages are
paid if any testing occurred on that day. However, if one prefers to charge for
only the time involved in testing or mobilizing on any one day, this is easily done
through a slight modification to the objective function.

This objective is subject to the following constraint sets: a set of routing con-
straints ensuring that all test sections are visited; the test vehicle must leave the
depot at least once; no test sections may be left untested; arrival times to all test
sections must be consistent in time; test sections must be served during the day;
hotels or the depot can only be visited at night; following a trip to a hotel or a
depot, the day increments by one.

The heart of this model is based on the well-known TSP, which depends on
subtour elimination constraints and can take significant amounts of time to solve.
As such, three solution methods are adopted each with different runtimes and
tradeoffs in solution quality. First, a simple nearest-neighbor greedy heuristic is
used to find a feasible solution quickly [Cormen, 2009]. This routing strategy begins
at the depot and continues adding the closest section to the end of the route
until approaching the working day’s time limit. At that point, the nearest hotel
is inserted. This process continues until all sections are accommodated and the
return to the depot is added
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Second, the heuristic suite included in Chad Hurwitz’s GNU TSP Solver is
applied along with a set of swapping and 4-opt improvement schemes [Hurwitz,
1994]. Specifically, the heuristics included in the suite relevant for the asymmetric
TSP are: a nearest addition tour finder, a farthest insertion tour finder, a disper-
sion strategy, two strategies for patching the solution of the assignment problem
into one tour, and a loss heuristic. Within the tsp solve package, a tool called
“heurbest” finds the best heuristic within the suite for the given problem. The
solution is returned as a simple ordering of the jobs with no regard for which ho-
tels should be used and when. A post-processing step is undertaken to place the
nearest hotel on the route once each day’s time limit is near.

Finally, the Gurobi v6.0 [Gurobi Optimization, 2015] exact branch-and-bound
solver is applied to the model formulation to derive an optimal solution. Since the
problem is fundamentally a TSP, we provide the exact solver with a “warm-start”
solution as input, which in our case, is the tsp solve solution. At any time the
exact solver is stopped and a solution is returned, that solution is known to be the
best solution found up to that point in time

Given these three solution strategies, the user can make important decisions
about the tradeoffs between solution time and solution quality. Such tradeoffs are
apparent in Section 5 where the results of the case studies are presented

3.3 Presentation of Resulting Route Plan

The optimization model then yields a list indicating the order in which the test
sections should be traversed. The GPS coordinates of the sections or combined
sections can then be exported to a mapping software for routing during data
collection. The map waypoints for the tested sections are deleted at the end of
the testing or end of the day. In this way, the operator can immediately see only
those sections requiring testing; not those that are complete. Simultaneously, the
pavement condition data that was collected can populate the data component of
the PMS.

4 Validation Instances

To illustrate the capabilities of the proposed routing optimization, two instances
based on real-world data were tested. The optimal routes were benchmarked
against the routes generated using the manual process of the firm that collected
the data.

The first instance is small and consists of the 17 Los Osos, CA sections. The
total combined time to test all of the sections (excluding the drive time) is 23.9
minutes, which is equal to the sum of the diagonal entries from Table 2. The
longest section requires 2.6 minutes of testing while the shortest section requires
0.6 minutes. Given the proximity of the sections to each other (the longest inter-
section drive time is 9.3 minutes), all sections may be tested within one or two
hours, on one tour from the depot, without hotel stays. The scale of this instance
allows for easy verification of the optimization solution.

The second instance is significantly larger, with 349 test sections. These sec-
tions were selected out of a larger project that consisted of 936 sections in Cali-
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fornia’s Monterey, Santa Barbara, San Benito, Santa Cruz and San Luis Obispo
Counties. A subset of 349 sections were selected for the purpose of this case as
they are located in the same geographical area and were tested over 20 consecu-
tive days. Therefore, this subset also serves to provide a manual benchmark for
comparison. The total combined time to test all of the sections (excluding the
drive time) is 1,939 minutes or 32.3 hours. The longest section requires about 1.7
hours of testing while the shortest section requires about 3 seconds. The longest
drive time is almost 5 hours, which corresponds to the drive time from the depot
(location of the equipment) in Ventura, CA to a test section in Santa Cruz, CA.

The 349 sections cannot be tested in one day and the operator needs to stay at
hotels during testing. Thirteen potential hotels were selected in all counties with
an assumed rate of $100 per night. The selection was based on where the operator
typically stays during testing. Out of the 13 potential hotels, 8 were used during
actual testing, and some of them were used up to 4 nights.

In this second, larger instance two scenarios were considered – one in which
overtime is not allowed and one which allows for overtime. In the scenario without
overtime, the daily testing for the optimal route was limited to a maximum of
8 hours per day at a wage rate of $85 per hour; for a daily rate of $680. In the
overtime scenario, the operator can work up to 12 hours per day at a wage rate
of $85 for the first 8 hours followed by a rate of $127.5 per hour for time worked
between 8 and 12 hours. The $127.5 per hour overtime rate is one and a half the
$85 regular rate.

5 Results

In this section, we compare the results of the manual benchmark from actual prac-
tice, the greedy heuristic, the tsp solve heuristic, and the optimal route obtained
using the model with the tsp solve heuristic as a warm-start. In order to compare
the routes on the basis of cost, a testing rate of $180 per hour and a mobilization
rate of $110 per hour were used, in addition to the operator wage rate. Note, that
given the size of the instance, hotel stays were not necessary for the first instance,
and thus the operator’s wages were not charged daily, but were based on a pro-
rated hourly wage of $85 per hour. Adjacent sections avoided an additional setup
cost if the end of the first section is within 0.5 minutes of the start of the second
section. The setup time at the beginning of every section or combined section was
set to 1 minute.

5.1 Instance One (17 Sections)

During the data collection, the operator selected Section 01 as the starting test
section and then proceeded, regionally, through to Section 05, before moving to
subsequent sections as shown in Figure 2. The consecutive nature of labeling re-
flects the order of testing. The route resulting from the manual process placed
the test sections in the following order: 01, 02, 03, 04, 05, 06A/06B, 07, 08, 09,
10A/10B, 11, 12, 13, 14 and 15.

In contrast, on a 64-bit server with an Intel Xeon 2.40 GHz processor and
128 GB RAM, both heuristic methods and the exact solver required less than
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Fig. 2 Test Sections in Los Osos, CA Numbered in Actual Testing Order – The Manual
Benchmark.

one second to yield a route sequence. Given the small size of this instance, there
was no depot. Thus, two open (as opposed to closed tour) routes were generated
using the optimization – one in which the route must start at S01 (as in the
manual solution) and one in which the route may begin at any of the sections;
each may end without returning to the initial segment. The optimal route with
a forced start at S01 places the test sections in the following order: 01, 11, 15,
10A, 10B, 12, 13, 07, 08, 09, 14, 02, 05, 03, 04, 06A and 06B. If the testing is
not forced to start at Section 01, then the optimal route places the test sections
in the following order: 11, 15, 10A, 10B, 12, 13, 07, 08, 09, 14, 05, 03, 01, 02, 04,
06A and 06B. The heuristic solutions, both greedy and that found using tsp solve,
follow nearly the same testing order with only a few permutations. Specifically,
the greedy solution places section 15 between 10A and 10B in both the fixed and
open start scenarios. The tsp solve solution matches the optimal solution for the
open start but permutes, at no additional cost, the single digit sections for the
fixed start scenario.

The manual benchmark route required a total time of 73.55 minutes as shown
in Table 3. The optimal solution for the 17 sections, starting at Section 01, required
a total time of 63.45 minutes, for a total savings of 13 to 14% in both time and
cost relative to the Manual Benchmark route. The optimal solution for the same
instance when the start is not constrained to Section 01 had a total time of 56.25
minutes for a total savings of 20 to 23% in both time and cost relative to the
Manual Benchmark. The heuristic solutions outperformed the manual solution,
but in the case of the greedy heuristic was more costly than the optimal solution,
for both the open and fixed start scenarios

Furthermore, in practice, the data obtained from the field for this instance indi-
cates that testing, using the Manual Benchmark route, started at 13:38 and ended
at 15:25 for total testing window of 1 hour and 47 minutes. If the actual testing
time of 23.87 minutes, the calculated mobilization time between the sections of
34.68 minutes, and the assumed setup time of 15 minutes are subtracted from 1
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Table 3 Summary of Time and Cost Required to Execute the Manual and Optimal Routes
in Test Instance One – 17 Sections

Testing Mobilization Setup Total

Scenario Time
(min)

Cost
($)

Time
(min)

Cost
($)

Time
(min)

Cost
($)

Time
(min)

Cost
($)

Manual Benchmark 23.87 105.41 34.68 112.72 15.00 66.25 73.55 284.38

Greedy (S01 Start) 23.87 105.41 34.52 112.18 13.00 57.42 71.38 275.01

tsp solve (S01 Start) 23.87 105.41 33.20 107.90 12.00 53.00 69.07 266.31

Optimal Route (S01 Start) 23.87 105.41 28.58 92.90 11.00 48.58 63.45 246.89

Savings Opt v. Manual (%) 0.0 0.0 17.6 17.6 26.7 26.7 13.7 13.2

Greedy (Open Start) 23.87 105.41 24.52 79.68 11.00 79.68 59.38 233.67

tsp solve (Open Start) 23.87 105.41 22.38 72.75 10.00 44.17 56.25 222.32

Optimal Route (Open Start) 23.87 105.41 22.38 72.75 10.00 44.17 56.25 222.32

Savings Opt v. Manual (%) 0.0 0.0 35.5 35.5 33.3 33.3 23.5 21.8

hour and 47 minutes, then a total of about 33 “unaccounted for” minutes remains.
This represents 31% of the testing window that was consumed in determining the
route sequence, performing additional setup tasks, taking breaks, having longer
mobilization times, or on other unknown factors. When the optimal route is pre-
determined, there is no longer a need to spend time in the field determining where
the test operator should go next. As such, these 33 minutes would be reduced
representing greater data collection efficiency.

While savings of more than 20% is impressive, in such a small instance it rep-
resents only a $62.06 savings in absolute terms. Thus, illustrating the capabilities
of the optimized routing solution on a larger instance is necessary.

5.2 Instance Two (349 Sections)

The results of the routing strategies on the instance with 349 sections are shown
in Table 4. Due to the size of this instance, the solutions provided by the exact
solver are not provably optimal. Yet, they are the best known solutions found
after seeding the Gurobi branch-and-bound solver with the tsp solve solution and
allowing for one hour of runtime. Since the route planning optimization module will
be used for planning purposes rather than dynamic routing advice, it is acceptable
to allow the optimization to run for one hour It is infeasible to show the details of
the routes given the size of this instance.

In contrast to the smaller instance, the costs in Instance Two include hotel
costs and therefore require a slightly different wage structure for the purpose of
studying the impact of overtime on costs. As such, a testing rate of $180 per hour
and a mobilization rate of $110 per hour were used. Any day in which testing
occurred, no matter how much or little, a cost of $680 is incurred as wages. Any
testing and mobilization that ran beyond the standard 8 hours was charged at a
pro-rated cost of $127.5 per hour. As in the first instance, adjacent sections avoided
an additional setup cost if the end of the first section is within 0.5 minutes of the
start of the second section. The setup time at the beginning of every section or
combined section was set to 1 minute.

Just as in the smaller, 17-section instance, the cost savings are remarkable:
more than 30% in both time and cost. Of note is the fact that both of the heuristic
solutions with overtime performed worse, in terms of total costs, than their no
overtime counterparts. This is due to the myopic placement of hotel stays which
tend to force too much overtime relative to any potential savings in hotel costs. The



12 author et al.

Table 4 Summary of Time and Cost Required to Execute the Manual and Optimal Routes in
Test Instance Two – 349 Sections. Note, For All Scenarios the Testing Time is 1,939 Minutes
at a Cost of $5,817

Mobilization Setup Hotel Stays Wages Total

Scenario Time
(min)

Cost
($)

Time
(min)

Cost
($)

# of
Nights

Cost
($)

Time
(hrs)

Cost
($)

Prod.
Time
(hrs)

Cost
($)

Manual
Benchmark

3,778 6,926 251 753 19 1,900 160 13,600 99.5 28,996

Greedy, No
OT

3,443 6,313 289 867 12 1,200 104 8,840 94.5 23,240

tsp solve,
No OT

2,488 4,562 247 741 10 1,000 88 7,480 77.9 19,600

Gurobi, No
OT

2,454 4,499 234 702 10 1,000 88 7,480 77.1 19,498

Savings
Gurobi v
Manual (%)

35.0 35.0 6.8 6.8 47.4 47.4 45.0 45.0 22.5 32.8

Greedy, OT 3,760 6,893 287 1268 8 800 72 6,120 99.8 38,888

tsp solve,
OT

2,543 4,663 248 744 7 700 64 5,440 78.8 19,803

Gurobi, OT 2,523 4,626 240 720 7 700 64 5,440 78.3 19,136

Savings
Gurobi v
Manual (%)

33.2 33.2 4.4 4.4 63.2 63.2 60.0 60.0 21.3 34.0

Gruobi improved route with overtime, however, yields a nearly 2% improvement
in total costs relative to the no overtime case

Furthermore, there are significant gains relative to productive time. Specifi-
cally in the Manual Benchmark, the labor paid for was 160 hours, while the total
mobilization and testing time amounted only to approximately 100 hours. Thus,
the employees were only engaged in productive work about 63% of the time. In
contrast, in the Best Route with No Overtime the employees were paid for 88
hours of work and were productive for 77.1 hours or 88% of that time. When al-
lowing overtime, the employees were paid for 78 hours of work (64 regular and 14
overtime hours) and were productive for 78 hours or 100% of that time.

5.3 Solution Quality versus Solve Time

As the primary goal of this pavement testing route planner is to provide useable
routes with less cost than current practice, the solution method should not require
a long runtime. To gain more insight into the trade-off between the problem size,
the solve time, and the solution quality, a set of six test instances were designed by
randomly selecting test sections from the largest instance of 349 sections. These
instances were then solved using both the tsp solve strategy and Gurobi seeded
with the tsp solve solution. The solution strategies were each allowed to run for one
hour (although tsp solve yields a solution much sooner) at which point the best so-
lution was returned. This solution was subsequently compared to two benchmarks
– the lowest bound established by solving an assignment problem (AP) version of
the underlying ATSP and the best known solution. Table 5 presents the results of
these tests

As shown in Table 5, the heuristic solution found by using the tsp solve pack-
age does tremendously well achieving a solution over which Gurobi yields only
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Table 5 Sensitivity analysis of solution quality and solve time relative to problem size; solu-
tions reported expressed in time and include only setup and mobilization times. * denotes an
optimal solution.

Instance Benchmarks tsp solve tsp solve + Gurobi, 1 hr

Jobs Hotels AP Best Soln. % AP % Best Time (secs) Soln. %AP % Best Time to Best (secs)

20 0 194 225* 225 16% 0% 0.01 225 16% 0% 0

25 1 267 396 467 75% 18% 0.00 396 48% 0% 19

30 1 332 436 437 32% 0.23% 0.01 436 31% 0% 112

40 2 413 535 543 31% 1% 0.02 535 30% 0% 126

80 4 630 840 936 49% 11% 0.24 840 33% 0% 462

160 6 949 1335 1415 49% 6% 4.68 1335 41% 0% 3132

moderate improvements, ranging from 0% to 18%, after one hour of solve time.
The gains found by applying Gruobi can be seen in the gap relative to the AP solu-
tion – ranging from an improvement of 27% over the gap found with the heuristic
solution for the problem with 25 jobs to a more modest improvement of 0% in the
smallest problem with 20 jobs. Interestingly, the gap relative to the AP solution is
not strictly monotonic with regards to problem size; however, there is a generally
increasing trend. Thus, as expected, the larger the problem, the larger the gap
relative to the AP lower bound and the longer the solve time – for both strategies.
Nevertheless, the heuristic strategy shows good results and can be used to gain
reasonable solutions to this problem within reasonable times in practice

6 Discussion and Future Work

In this paper, a method for extending PMSs to include the design of pavement
testing routes is presented. The proposed optimization model requires, as input,
the cross street or mile post designations for the start and end points of each
segment in the test set. This data is already contained in the data component
of PMSs. For more advanced PMSs, the GPS coordinates may also be available.
These data points along with a set of viable hotels serve as the input to the
optimization. This method, based on the TSP, yields solutions that are around
33% better than solutions generated using the best-practices currently used in the
field.

The proposed model can be easily used by any highway agency or consulting
firm to estimate the costs associated with pavement data collection. By standard-
izing the route selection using the proposed model, the differences in project costs
during the bidding phase will be mainly dependent on the consulting firms’ rates.
Furthermore, by using the proposed model in contrast to the current strategy the
“unaccounted for” time can become “accounted for”. Specifically, it will be clear
that the unaccounted time is not being used to find routes in the field, but rather
can be attributed to rest stops, setting-up equipment, and maintaining equipment.

Future work includes properly integrating the proposed route planning module
into the decision support component of an existing PMS. Specifically, relying on
the network analysis modules already included in most PMSs, a set of eligible test
sections could be automatically identified and fed to the route planning module.
These data services could all occur within the decision support component of the
PMS framework as specified by [Tsai & Lai, 2002]. The route planning module
could then provide its output – the optimized route plan – to the operation com-
ponent. The operation component, once the route had been executed, would then
automatically feed its data back to the historical pavement condition data module.
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In order for this integration to work smoothly, the route optimization module
must be able to handle all problem sizes efficiently. Typical pavement data col-
lection projects include as many as one or two thousand sections that are spread
throughout the network. The largest instance that was solved using an off-the-
shelf branch-and-bound algorithm seeded with a heuristic solution involved 349
sections and produced a good, but not necessarily optimal solution. Future work
includes further developing the heuristics used here to warm start the exact solver
with the goal of producing good solutions to the larger instances more efficiently.
Given the improvement over the current practice seen in this work, the need for
an optimal solution is not as critical as the need for a good solution rapidly. Rapid
solution generation becomes even more important when the real-time dynamics of
roadway congestion are considered.

The driving time matrix between the sections, the depot, and the hotels was
populated using the Google R© Maps distance matrix API. The generated matrix
excludes any delays based on current traffic conditions or weather related events.
During real-time data collection, traffic conditions could have a significant effect
on the route selection and the overall project cost. As such, future work includes
the development of a dynamic optimization technique that can be used during
data collection as a means to incorporate real-time traffic updates.

Finally, certain pavement data collection equipment, such as the friction testers,
require water refill after a certain number of test points or tested lane miles de-
pending on whether the testing is discrete or continuous. The water refill locations
are typically located at the DOT’s maintenance yards. For other projects, a wa-
ter tanker follows the friction tester or waits nearby the testing location for refill.
In this regard, future work requires an extension to the model to simultaneously
capture the need to visit fixed water refill locations based on the capacity of the
friction testers and the need to select hotel stops based on hours of service.
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the Shift from Information Systems to Information Services Systems. Business & Information
Systems Engineering, 57(1):37–49.

[Srour & van de Velde, 2013] Srour, F. Jordan, & Steef van de Velde 2013. Are Stacker Crane
Problems easy? A statistical study. Computers & Operations Research, 40(3):674 – 690.

[Tsai & Lai, 2002] Tsai, Yichang James, & James Lai 2002. Framework and Strategy for
Implementing an Information Technology-Based Pavement Management System. Trans-
portation Research Record: Journal of the Transportation Research Board, 1816:56–64.

[Vansteenwegen et al., 2012] Vansteenwegen, Pieter, Wouter Souffriau, & Kenneth Sörensen
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Appendix A. Mathematical Formulation of Route Optimization Prob-
lem

In the language of graph theory, the authors define a graph G comprised of arcs,
A, vertices V , and edges E. The arcs must be traversed, while the edges may,
optionally, be used as necessary to travel between non-adjacent arcs. This relatively
straight forward problem is complicated by the fact that drivers are bound by
hours-of-service regulations that require a rest period after a period of 8 hours of
work. If overtime work is allowed, then rest is permitted after a minimum of 8 hours
and before a maximum of 12 hours. Then, the drivers may either use a hotel or
return to the home city of the testing agency to rest for the evening. Determining
the tours through all arcs that minimize costs, which are a combination of drive
time and hotel stays, is the objective of this problem.

To achieve this, the arcs (the sections that must be tested) are reduced to
nodes. A node for the depot and nodes for the hotels that may be used within
the route are also specified. Multiple copies of the depot and hotel nodes may be
included in the model to allow for multiple trips to/from the depot and multiple
stays at a specific hotel. Then the problem is formulated as a routing problem in
which the goal is to construct a set of least cost cycles passing through all nodes.
Given this problem description, the following notation for the parameters is des-
ignated.
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D the set of depot copies included to permit as many trips home as necessary.
H the set of hotels (including copies of hotels as necessary).
J the set of jobs (i.e. sections for testing).
N the set of all nodes, which is: D ∪H ∪ J .
tij the time required to travel from node i to node j.
F the set of sections that are farther than a set threshold, θ, away. Math-

ematically, F = {(i, j)|tij ≥ θ}. Section pairs that are more than θ units
apart require additional equipment setup time upon arrival.

sj the time required to setup the equipment to test a section j ∈ J .
ch the cost of staying in hotel h ∈ H.
µ the cost of mobilization – that is the cost per unit time to travel to a node

in the test equipment, excluding operator wages.
τ the cost of testing – that is the cost per unit time to setup or test a

segment, excluding operator wages.
ω the operator’s wages per unit time when not in overtime.
Ω the operator’s wages per unit time when in overtime.
W the length of the working day; in our case, 8 hours or 480 minutes.
σ the allowable amount of overtime; may be 0 (indicating no overtime al-

lowed) up to 4 hours.
M a large number set to be W + 2 ·maxi,j{dij}.

Given the problem of interest, the following three variables are specified:

xij a binary variable indicating whether arc (i, j) is used in the final routing;
i, j ∈ N .

δi a continuous variable designating the time of arrival at the location of
node i ∈ N .

ηi an integer variable designating the day on which a node i ∈ N is used.
Using the notation described above, a MIP is formulated as follows:

min µ
∑

i∈N
∑

j∈N tijxij + τ
∑

(i,j)∈F sjxij +
∑

i∈J
∑

h∈H chxih
+ωW

∑
i∈J

∑
j∈D∪H xij +Ω

∑
i∈D∪H(δi −W )

(1)

such that
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∑
j∈N

xij = 1, ∀i ∈ N (2)

∑
i∈N

xij = 1, ∀j ∈ N (3)

∑
i∈J

x0i = 1, where 0 represents the first depot node. (4)

∑
i∈J

xii = 0 (5)

∑
j∈N

tijxij ≤ δj , ∀i ∈ D ∪H (6)

δj − (δi + dii + dij)−Mxij
≥ −M, ∀i ∈ J, j ∈ N excluding (i, j) ∈ F (7)

δj − (δi + dii + dij − sj)−Mxij
≥ −M, ∀(i, j) ∈ F (8)

0 ≤ δj ≤W + σ − djj , ∀j ∈ J (9)

W ≤ δi ≤W + σ, ∀i ∈ H ∪D (10)

ηi − ηj +Mxij ≤M, ∀i ∈ N, j ∈ J (11)

ηi − ηj + 1 +Mxij ≤M, ∀i ∈ J, j ∈ H ∪D \ 0 (12)

ηi − ηj +Mxij ≤M, ∀i ∈ H ∪D \ 0, j ∈ H ∪D \ 0 (13)

δi ∈ R+, ∀i ∈ N (14)

ηi ∈ R+, ∀i ∈ N (15)

xij ∈ {0, 1} , ∀i, j ∈ N (16)

(17)

In words, the objective of this model, in equation (1), is to minimize the to-
tal cost associated with traveling between jobs, hotels, and the depot, the cost of
setting up to test disparate road sections, the cost of staying in hotels, the cost of
paying each day’s regular wages and the cost of overtime wages. In this formula-
tion a full day of wages are paid if any testing occurred on that day. However, if
one prefers to charge for only the time involved testing or mobilizing on any one
day, the term ωW may be replaced by ωtij within the fourth summation of the
objective. This objective is subject to the following constraints:

Equation (2) Each job and hotel/depot node must have one and only one arc
leaving.

Equation (3) Each job and hotel/depot node must have one and only one arc
entering.

Equation (4) The first copy of the depot node must have one route departing from
it to a job. (All other copies of the depot node may be left unused.)

Equation (5) No jobs can be rejected.
Equation (6) If node j is the first node assigned following a stay in hotel/depot i,

then the arrival time to j (δj) must be later than the time required to travel
from the hotel/depot to the starting location of demand j.



18 author et al.

Equation (7)-(8) If node j follows job i then the arrival time to node j must be
later than the arrival time to job i plus the time required to serve job i plus the
time required to travel between job i and node j; if, however, xij = 0, then the
arrival time to job j is unconstrained. Furthermore, if the sections are within
θ of each other, then the setup time may be ignored.

Equation (9) The arrival time to job j must be during the working day and at least
before the time that serving job j would no longer be feasible with allowable
overtime of σ

Equation (10) The arrival time at a hotel or back at the depot must be after
the end of the working day and before a point where it would be considered
overtime.

Equation (11)-(13) The day increases by one when a hotel or depot is used.
Equation (14) δi is a positive real number.
Equation (15) ηi is a positive real number.
Equation (16) xij is binary.
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