
Hum Genet (2006) 120:390–395 

DOI 10.1007/s00439-006-0192-3

ORIGINAL INVESTIGATION

Familial molar tissues due to mutations in the inXammatory gene, 
NALP7, have normal postzygotic DNA methylation

Ugljesa Djuric · Osman El-Maarri · Barbara Lamb · 
Rork Kuick · Muheiddine Seoud · Philippe Coullin · 
Johannes Oldenburg · Samir Hanash · Rima Slim 

Received: 10 March 2006 / Accepted: 19 April 2006 / Published online: 28 July 2006
©  Springer-Verlag 2006

Abstract An imprinting disorder has been believed to
underlie the etiology of familial biparental hydatidi-
form moles (HMs) based on the abnormal methylation
or expression of imprinted genes in molar tissues.
However, the extent of the epigenetic defect in these
tissues and the developmental stage at which the disor-
der begins have been poorly deWned. In this study, we

assessed the extent of abnormal DNA methylation in
two HMs caused by mutations in the recently identiWed
19q13.4 gene, NALP7. We demonstrate normal post-
zygotic DNA methylation patterns at major repetitive
and long interspersed nuclear elements (LINEs), genes
on the inactive X-chromosome, three-cancer related
genes, and CpG rich regions surrounding the PEG3
diVerentially methylated region (DMR). Our data pro-
vide a comprehensive assessment of DNA methylation
in familial molar tissues and indicate that abnormal
DNA methylation in these tissues is restricted to
imprinted DMRs. The known role of NALP7 in apop-
tosis and inXammation pinpoints previously unrecog-
nized pathways that could directly or indirectly
underlie the abnormal methylation of imprinted genes
in molar tissues.

Introduction

Familial hydatidiform moles (HMs) are rare clinical
entities where the molar tissues have a biparental con-
tribution to their genome as opposed to sporadic
androgenetic HMs that contain two copies of the pater-
nal genome. Despite their genotypic diVerences, bipa-
rental and androgenetic moles are identical at the
histopathology level, which led to a common belief that
an imbalance in the expression of maternally and
paternally imprinted genes plays a role in their pathol-
ogy.

Others (Judson et al. 2002) and we (El-Maarri et al.
2003) analyzed the methylation patterns of imprinted
genes in familial biparental HMs and demonstrated the
absence and gain of maternal and paternal methylation
marks, respectively. In our study, we analyzed two
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molar tissues, BiCHM9 and BiCHM16, from two sis-
ters of the MoLb1 family with defect in 19q13.4, while
Judson et al. analyzed one tissue that is not caused by
defect in 19q13.4. To investigate the origin of the
abnormal DNA methylation in HM tissues caused by a
defect in 19q13.4, we analyzed the methylation of the
same imprinted genes, but in blood tissues from the
two sisters and found a normal level and pattern of
methylation (El-Maarri et al. 2005). We traced the
grandparental origin of the abnormally methylated
alleles in the moles and showed that the abnormal
DNA methylation is not due to an abnormal erasure of
the grandparental marks but was acquired de novo
either in the maternal germline or during postzygotic
development and proliferation of the moles. The most
direct way to know when the abnormal DNA methyla-
tion began, before or after fertilization, is to examine
the methylation marks in oocytes from the patients
with recurrent HMs. However, in humans it is impossi-
ble to have access to oocyte materials from patients
with rare reproductive diseases. In the present study,
we investigated postzygotic DNA methylation in the
same molar tissues from the two sisters by analyzing
diVerent CpG regions at which methylation is known
to occur between fertilization and implantation or after
implantation during early embryogenesis (Bird 1986;
Mann and Bartolomei 2002; Reik and Walter 2001;
Yoder et al. 1997). These CpGs are at repetitive ele-
ments and satellite sequences; the promoters of inac-
tive genes on the inactive X-chromosome; and the
promoters of three cancer related genes, CDKN2A
(cyclin dependent kinase inhibitor 2A, also called p16,)
CDH1 (E-cadherin), and HIC1 (hypermethylated in
cancer), known to be abnormally hypermethylated in
several sporadic HMs as well as other human cancers
(Xue et al. 2004). Moreover, we assessed the extent of
abnormal DNA methylation around the paternally
expressed gene, PEG3, that is abnormally hypomethy-
lated in these molar tissues by analyzing 13 major CpG
rich regions scattered in 762.5 kb around the PEG3
DMR.

Altogether, our data show normal DNA methyla-
tion at all the analyzed regions. This indicates, Wrst,
that postzygotic DNA demethylation and de novo
methylation are normal in familial HMs with defects in
NALP7; second, although a small number of cancer
related genes were analyzed, no detectable and signiW-
cant epigenetic changes seem to be occurring after
implantation and during the proliferation of the tro-
phoblast; and third, the abnormal DNA methylation
previously observed at imprinted genes in these tissues
is restricted to their DMRs and may reXect their intrin-
sic propriety in trophoblast tissues. Our recent identiW-

cation of mutations in the inXammatory gene, NALP7
(Murdoch et al. 2006), causing the analyzed HMs
pinpoints an important pathway that may underlie the
abnormal DNA methylation observed only at
imprinted genes in HM tissues.

Materials and methods

Subject materials

Chorionic villi from HMs and therapeutic abortions
were obtained from consenting subjects. Fresh tissues
were dissected under a stereomicroscope and used to
extract DNA.

Restriction landmark genome scan

Genomic DNA was digested with EcoRV and NotI
separated in the Wrst dimension and in situ digested
with HinfI before the separation in the second dimen-
sion as previously described (Asakawa et al. 1995).

Methylation sensitive PCR assay

DNA was overdigested with the methylation-sensitive
restriction enzymes HpaII (for AR, SMCX, PGK1),
HhaI (for ZNF261), and HhaI, AvaI, and BstUI (for
the XIST methylation analysis). The primers Xanked at
least one methylation-sensitive restriction site. The
primers and PCR conditions are as described (Allen
et al. 1992; Beever et al. 2003; Gilbert and Sharp 1999).

Results

Methylation of repetitive elements

To investigate the DNA methylation of repetitive ele-
ments in molar tissues, we used methylation sensitive
restriction enzyme digestions followed by electropho-
resis, Southern blotting, and restriction landmark
genome scan (RLGS) on DNAs from two biparental
HMs, BiCHM9 and BiCHM16, and their parents; two
androgenetic HM tissues, AnCHM23 and AnCHM28
(El-Maarri et al. 2003), and their parents; and Wve
control chorionic villi obtained from therapeutic abor-
tions of matching gestational stages. Using these
approaches, we did not detect global hypo- or hyper-
methylation in the two familial HMs when compared
to control villi. Centromeric satellite DNAs, major
repetitive elements, and ribosomal DNAs were all nor-
mally methylated in the two molar tissues from family
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MoLb1 (Fig. 1a). We noted an abnormal hypomethyla-
tion at the centromere of chromosome 8 (8q21) in only
one sporadic androgenetic molar tissue, AnCHM23,
that was not observed in control villi (data not shown).

We also compared the electrophoresis proWles after
digestion with the methylation sensitive enzyme HpaII
and its methylation-insensitive isoschizomer MspI
before (Fig. 1b) and after hybridization with a LINE
consensus probe as previously described (Hansen
2003) (Fig. 1c). The results show normal global and
LINE methylation in familial HMs from MoLb1, simi-
lar to that observed in normal control villi.

Methylation of the inactive X-chromosome

Methylation of the inactive X-chromosome was ana-
lyzed in BiCHM9, with a 46,XX [91]/46,XX,t(9;17)
(q34;q21)[6] karyotype, at three genes known to be
methylated on the inactive X-chromosome, androgen
receptor (AR), zinc Wnger protein 261 (ZNF261), and
phosphoglycerate kinase 1 (PGK1) (Allen et al. 1992;
Beever et al. 2003; Gilbert and Sharp 1999). Using a
PCR-based methylation assay, we demonstrate the
presence of a methylated inactive-X at the three genes

(Fig. 2). As controls, we assessed the methylation of
the promoters of SMCX, an X-linked gene that is
active and not methylated on both X chromosomes
(Agulnik et al. 1994), and XIST, known to be tran-
scribed from the inactive X chromosome and methy-
lated on the active X chromosome (Brown et al. 1991).
Our data show the presence of an active X-chromo-
some with a non-methylated SMCX and a methylated
XIST promoter in BiCHM9 as in normal female cells.
These results indicate normal X inactivation in this
biparental HM.

Methylation of three cancer related genes

To investigate methylation changes occurring after
implantation and during the proliferation of tropho-
blast in these biparental HMs, we analyzed the pro-
moters of three cancer related genes, CDKN2A,
CDH1, and HIC-1, that were shown to be abnormally
methylated in several cases of sporadic HMs. Using
bisulWte treatment followed by methylation speciWc
PCR (MSP) as described (Xue et al. 2004), we did not
detect abnormal methylation at these three genes in
BiCHM9 and BiCHM16: CDKN2A and CDH1 were

Fig. 1 Assessment of DNA methylation at the global genome
level using methylation sensitive restriction enzyme digestions in
two biparental molar tissues from MoLb1, BiCHM9 and
BiCHM16, and control chorionic villi of matching gestational
stages, CV412–418. The gestational stages in weeks are between
parentheses. a Restriction landmark genome scan (RLGS) was
performed as previously described (Asakawa et al. 1995). Geno-
mic DNA was digested with EcoRV and NotI before the separa-
tion in the Wrst dimension and in situ with HinfI before the second
dimension. We note the presence of two polymorphic spots from
ribosomal DNA repeats with strong signals in BiCHM16 (top

right) that were also observed in the parental DNA and in control
villi, CV412. b Genomic DNAs were digested with EcoRI and ei-
ther MspI (M) or HpaII (H), separated on a 1% agarose gel con-
taining ethidium bromide and visualized with UV. c Analysis of
L1 methylation. Genomic DNAs, digested as described in b, were
transferred into nylon membranes and hybridized with a consen-
sus L1 probe generated by PCR ampliWcation between primers
L1t-1f:505r as previously described (Hansen 2003). The compari-
son of the banding patterns of MspI and HpaII digestions indi-
cates that L1 elements are similarly methylated in molar and
normal chorionic villi
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completely unmethylated while HIC-1 displayed
methylated and unmethylated alleles in both molar and
control chorionic villi (Fig. 3). Methylated HIC-1 allele
was not present in control DNA from total blood (data
not shown) and seems to reXect tissue speciWc DNA
methylation.

Methylation of 13 CpG rich regions surrounding PEG3

We previously demonstrated an abnormal hypomethy-
lation at the PEG3 DMR in both BiCHM9 and
BiCHM16. To investigate the extent of abnormal
DNA methylation around PEG3, we identiWed 13 CpG
rich regions in a 762.5 kb genomic fragment surround-
ing its DMR and analyzed their methylation status at
two CpG sites using SIRPH (single nucleotide primer

extension SNuPE followed by separation with ion pair
reverse phase HPLC) as previously described (El-
Maarri et al. 2002) (Supplementary Table 1). Our
results at the 13 CpG rich regions demonstrate normal
levels of methylation in familial HMs similar to those
observed in control villi (Fig. 4). We note that one
CpG (number 11) showed a diVerent level of methyla-
tion as compared to controls, but this was observed
only in one HM, BiCHM16.

Discussion

Mammalian postzygotic development is characterized
by a wave of demethylation followed by de novo meth-
ylation that is completed around the time of implanta-
tion (for review see Mann and Bartolomei 2002; Reik
and Walter 2001; Yoder et al. 1997). The active and
passive demethylation waves of the paternal and
maternal genomes, respectively, aVect all CpGs with
the exception of those at DMRs of imprinted genes
(Santos et al. 2002). In female mammalian cells, DNA
methylation of housekeeping genes on the inactive-X is
one of the last X-inactivation steps and occurs around
the blastocyst stage. To investigate whether these
waves occur normally in familial biparental moles
caused by a defect in 19q13.4, we used various
approaches and analyzed two such molar tissues. We
demonstrate the absence of abnormal methylation at
the global genome level, repetitive and LINE ele-
ments, and Wve genes on the X-chromosome indicating
that early postzygotic methylation mechanisms are
properly functioning in these HMs.

Besides CpG islands at the DMRs of some
imprinted genes and inactive genes on the X chromo-
some, the methylation status of all the remaining CpG
islands (»30,000) is not known, but many are believed
to be unmethylated. However, they can be methylated
either in normal tissues during cellular programming
and tissue diVerentiation (Futscher et al. 2002; Song
et al. 2005) or in pathological tissues as a result of can-
cer where changes in DNA methylation are part of the
genetic and epigenetic modiWcations occurring during
tumorigenesis (Hatada et al. 2006; Smiraglia and Plass
2002). In cancer, these changes occur at the promoters
of tumor suppressor genes and are speciWc for each
type of tumor. Our analysis of three cancer-related
genes showed their normal methylation in familial
HMs.

The PEG3 DMR was shown to be invariably and
severely hypomethylated in all analyzed familial molar
tissues (El-Maarri et al. 2003). The assessment of 13
CpG rich regions around the PEG3 DMR revealed a

Fig. 2 Methylation analysis of X-linked genes. Genomic DNAs
from BiCHM9, and its father and mother were digested with
methylation-sensitive enzymes and used as a PCR template. The
primers Xank several methylation-sensitive restriction sites and,
thus, the DNA could only be ampliWed if the speciWc CpG sites
are methylated. The promoters of the genes used for the analysis
are methylated only on the inactive X (AR, ZNF261, and PGK1),
active X (XIST) or neither X-chromosome (SMCX)

Fig. 3 Methylation analysis of cancer loci. Bisulphite treatment
was carried out on DNA samples from molar tissues and control
chorionic villi as previously described (Xue et al. 2004). PCR
ampliWcation was performed using primers speciWc for the con-
verted methylated (M) and unmethylated (U) CpG sites in the
promoter regions of CDKN2A, CDH1, and HIC-1 
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variety of normal methylation patterns, from highly
methylated to completely unmethylated, but no abnor-
mal hypo- or hypermethylation was detected at any of
the loci in the two familial HMs, demonstrating that
the abnormal DNA methylation in HMs is restricted to
imprinted DMRs.

NALP7 has no known role in establishing or main-
taining DNA methylation and does not contain any
DNA binding domain. Therefore, it is unlikely that it
plays a direct role in the abnormal imprinting seen in
these HMs. The abnormal DNA methylation observed
in familial HMs seems to be a consequence of the
defect. NALP7 is transcribed in early oocyte stages,
germinal vesicle, and metaphase I (Murdoch et al.
2006). It is, thus, possible that a defective NALP7
leads to abnormal oocyte maturation and growth and
subsequently abnormal establishment of maternal
methylation marks on imprinted genes. NALP7 is also
known to regulate IL-1�, a pleiotropic cytokine that
activates a number of inXammatory pathways required
for blastocyst implantation and throughout gestation
(McMaster et al. 1993; Rivier and Vale 1990; Strakova
et al. 2005). HMs are characterized by the presence of
swollen chorionic villi with Xuid accumulation, which
is one of the hallmarks of inXammation. In addition,
the abundance of activated decidual T cells in the
endometrium of patients with the common form of
HMs (Wongweragiat et al. 1999) is indicative of a dys-

regulated endometrial inXammation. This suggests
that a dysregulated maternal inXammation of the
endometrium may also be responsible for moles
caused by defects in NALP7. Although, at the present
time, it is not clear how an inXammatory response in
the mother could interfere with the DNA methylation
of imprinted genes in the conceptuses, it is conceivable
that it may cause an unfavourable and hostile local
environment for the implanting blastocyst to maintain
proper imprinting marks. A number of observations
support the inXuence of the environment on the main-
tenance of imprinting marks (1) the increase in
imprinting disorders in individuals born following arti-
Wcial reproductive technologies (Maher et al. 2003;
Wrenzycki et al. 2005), (2) the defective imprinted
gene methylation in cloned animals (Humpherys et al.
2001), in intra- and interspecies crosses (Vrana et al.
1998), and (3) in tumors (Smiraglia and Plass 2002). In
the latter, epigenetic changes on imprinted genes seem
to reXect the intrinsic properties of their CpG islands,
with some being methylation-prone and others resis-
tant, in response to changes in the level of DNA meth-
yltransferases that occur frequently in many tumors
(Feltus et al. 2003).

Altogether, our data indicate an overall epigenetic
stability of familial biparental molar tissues, which is in
agreement with the genetic stability of HMs in general
and their benign outcome.

Fig. 4 Quantitative methylation analysis of a 762.5 kb region
around the PEG3 DMR. Thirteen major CpG rich regions were
investigated in both molar tissues, BiCHM9 and BiCHM16, and
normal chorionic villi. Each column represents the average of
methylation of two individual CpG sites at each of the 13 CpG
rich regions where two independent measurements were done.
Each of the measurements was derived from two independent
bisulWte treatments. The standard deviation between the diVerent
measurements is shown as vertical bars. The third column repre-

sents an average of six to seven diVerent chorionic villi samples.
The lower part of the graph represents a schematic diagram of the
CpG densities in the 762.5 kb region around the PEG3 DMR, the
13 major CpG regions investigated in this study are labeled with
arrows that connect each of them to the corresponding measured
methylation levels. The details of the studied regions, PCR condi-
tions, and primers locations on the NT_011104 contig are summa-
rized in Supplementary table 1
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