gl
<
Bank Intra Routing Protocol

BIRP

by

Rabie Sadek

Thesis submitted in partial fulfillment of the requirements for the Degree of

Master of Science in Computer Science

Division of Computer Science and Mathematics
LEBANESE AMERICAN UNIVERSITY

2006

LEBANESE AMERICAN UNIVERSITY

Thesis Approval Form
Student Name: Rabie Sadek 1.D.: 200302014
Thesis Title Bank Intra Routing Protocol BIRP
Program : M.S. in Computer Science
Division/Dept : Computer Science and Mathematics
School : Arts and Sciences - Beirut

Approved/Signed by:
Thesis Advisor Dr. Ramzi Haraty
Member Dr. Samer Habre
Member * Dr. Abdul Nasser Kassar
Date: August 21, 2006

Plagiarism Policy Compliance Statement

I certify that I have read and understood LAU’s Plagiarism Policy. I understand that
failure to comply with this Policy can lead to academic and disciplinary actions against

me.

This work is substantially my own, and to the extent that any part of this work is not my

own I have indicated that by acknowledging its sources.

Name: Rabie Sadek

Signature: Date:

I grant to the LEBANESE AMERCIAN UNIVERSITY the right to use this work,
irrespective of any copyright, for the University’s own purpose without cost to the
University or its students and employees. I further agree that the University may

reproduce and provide single copies of the work to the public for the cost of reproduction.

To my parents

Acknowledgment

I would like to thank my advisor for his guidance and the committec members
throughout my Thesis work. I would like to express my sincere gratitude to the Lebanese
American University whose financial support during my graduate studies made it all
possible.

Finally, I would like to thank my friends and family for their long support.

Abstract

SWIFT is a financial institution which provides an interface for banks in order
communicate and transfer money worldwide. All banks over the world and all their
branches are directly connected to SWIFT, so banks that have many branches in
several countries will have lots of expenses including security infrastructure, SAA
package license, yearly maintenance, and message costs. Banks always look for a
good investment and the SWIFT routing protocol does not deal with intra bank
message processing as a separate case. If a message is sent for either a branch or
another bank, it must pass through SWIFT before it continues to the correspondent.

In this work, I will provide a new protocol Bank Intra Routing Protocol (BIRP) that
intra routes all messages which are exchanged between the main branch and all its

branches.

Contents

I - Introduction

1.1 Overview
1.2 Need for the Study
1.3 Structure of the thesis

IT - SWIFT Background and History

IIX - SWIFT Alliance Access (SAA)

3.1 SWIFT Alliance Overview
3.2 Structure of SWIFT Message
3.2.1 Header
3.2.2 Text Block
3.2.3 Instance Types
3.2.4 Intervention
3.2.5 Appendix
3.3 The Life Flow of a Message
3.4 SWIFT Alliance Access Services
3.5 Access Control Application
3.5.1 Calendar Application
3.5.2 Correspondent Information File Application
3.5.3 Event Journal Application
3.5.4 Message File Application
3.5.5 Monitoring Application
3.5.6 Routing Application
3.5.7 Security Definition Application
3.5.8 System Management Application
3.5.9 BK Management Application
3.5.10 Message Preparation Application
3.5.11 Message Creation Application
3.5.12 Message Approval Application
3.5.13 Message Modification Application
3.6 Security, Reliability, Recovery
3.6.1 Who are the Security Officers?
3.6.2 Alliance Security Installation
3.6.3Creating and Managing Operators

3.7 Alliance Developer Kit (ADK)

Page

12

12
13
14

15

18

19
19
19
20
20
21
21
21
23
23
25
25
26
26
27

27
28
28
29
29

29
30
30
32

32

33
34

36

3.8 Disadvantages of SWIFT Routing Protocol According To Intra Banking Message

Processing

38

IV - Enhanced Bank Intra Routing Protocol (BIRP)

V - Experimental Results
5.1Costs $
5.2 Comparison between both Protocols
5.3 Delay
5.4 Connectivity

VI - Conclusion
6.1 Limitations of the Research
6.2 Future Work

VII - References

VIII - BIRP Implementation

39

44
44
45
46
47

48
49
49

50

53

List of Figures

Figure 3.1 The Life Flow of a Message 22

Figure 3.2 How Messages are being Processed 22
Figure 3.3 Access Control Application 24
Figure 4.1 Bank Intra Routing Protocol BIRP 41
Figure 4.2 Scenario 1 Receiver is a Branch 42
Figure 4.3 Scenario 2 Receiver is not a Branch 43
Figure 5.1 Comparison between both Protocols 46

10

List of Tables

Table 3.1 Summary of all Access Control Applications
Table 3.2 LSO and RSO Installation Steps

Table 3.3 Steps used for Creating Operators by LSO and RSO

11

31

33

35

Chapterl

Introduction

1.1 Overview

SWIFT is a financial organization that provides all banks with a dynamic graphical
interface known as SWIFT Alliance Access (SAA) in order to communicate and

transfer money all over the world.

SWIFT Alliance Access is a financial message switch used to interface to multiple

networks in order to transfer money in the most secure and consistent way.

The main goal of SWIFT is to create a world wide message processing and a

common language for all international transactions.

All banks are directly connected to SWIFT via SWIFT net secure links so that they
can communicate with each other. Every message sent by the sender must go to
SWIFT and from there it will be forwarded to the correspondent.

SWIFT messages pass through many queues before they are moved to SWIFT. First,
they are created in the message creation; then after that they are routed to both the
verification and the authorization queues where they can be verified and authorized
before continuing their tour to SWIFT. A message can be modified by sending it back

to the modification queue, after that it can continue its path normally.

12

1.2 Need for the Study

The main problem is that every message sent to a branch must pass through SWIFT
before going to the receiver and this leads to additional costs to the bank, besides that,
if the connection is down then all branch messages will fail to be received and must
wait until the connection is up again, and this delay will increase because of network
traffic that is why all these problems must be avoided in order to have a better bank

investment.

Institutions that have many branches in several countries have lots of expenses
including security infrastructure, SAA package license, yearly maintenance, and
message costs. Banks always look for a good investment and that can be achieved
only if:

-message costs are saved
-messages are received with less delay

-connectivity is trusted

The SWIFT routing protocol does not deal with intra messages exchanged between
branches as a separate case, so all messages will have the same flow regardless of

whether the receiver is a branch or any other bank.

That is why I will provide a new protocol Bank Intra Routing Protocol (BIRP) that
intra routes all messages which are exchanged between the main branch and all its

branches.

13

The main goal of this routing protocol is: to make all branches centralized to the
main branch, to save message costs transferred between branches, to decrease delay,

and to provide better connectivity.

1.3 Structure of the Thesis

First in chapter two, I will provide a background related work and literature review;
Second in chapter three, I will give a SWIFT Alliance overview then I will briefly
give an explanation of the structure of a SWIFT message, its life flow in SWIFT, and
the different services it provides. After that I will discuss all access control
applications such as the routing application, message file application, message

approval application, event journal application, message creation application etc...

In this chapter I will talk about the security, reliability and recovery that SWIFT
provides for its banks. Then I will talk about the disadvantage of SWIFT routing
protocol regarding intra message processing. Finally, in chapter four a new enhanced
protocol called Bank Intra Routing Protocol BIRP for intra routing system will be
proposed. Before concluding the thesis in chapter six, I have made a case study in
chapter five on the enhanced BIRP protocol, where I have made a comparison

between both protocols in terms of costs, delay, and connectivity.

14

Chapter2

SWIFT Background and History

SWIFT is a wide financial industry which provides a secure message exchange for
around 8000 financial institutions in more than 200 countries.
SWIFT always provides the best services to its customers and this is clear from the

products it offers, the security it maintains, and the reliability it provides.

In Belgium 1973, SWIFT was established by a group of people supported by 239 banks
in 15 countries [1]. The Society for Worldwide Inter bank Financial Telecommunication
SWIFT started the goal of creating a worldwide message processing [1] and a common
language for global financial transactions. At that time all communications where via
telex and there was not very strong security. In 1974, large organizations planned to be
members of SWIFT. Initially, it has emphasized its security and reliability.

In 1977, SWIFT started to be active and the first message was sent by King Albert [1]. In
that year about 3,000,000 messages were exchanged between 518 banks in 21 countries.

In 1978, the first ten million messages were sent in less than 12 months.

In the 1980s, Hong Kong and Singapore [1] were ready to exchange messages live.
SWIFT also introduced the ST100 interface application [1], [2] which was used by 900
customers. With the SWIFT geographical expansion, it introduced new message
standards. In order to support traffic growth, SWIFT provided satellite communications

for enhancing the financial services.

15

In 1991, SWIFT received the Computerworld Smithsonian Information technology
Award [1] for its excellent work in maintaining financial telecommunication in an

advanced way.

In 1995, SWIFT opened its office in Germany. Its target was to improve security and
reduce costs for customers. In 1996, about 3,000,000 million messages were processed

every day.

In 2001, SWIFT’s aim was to gain the trust of all banks worldwide and to process
messages throughout the net, thus the idea SWIFT net was established.
In 2002, SWIFT net Release 4.0 specified in [1] [10] went live and concurrently the first

SWIFT net message was sent.

Now most of the banks around the world communicate with each other throughout
SWIFT alliance access SAA interface in order to transfer money worldwide in the most
secure way. Nowadays, SWIFT can be considered as one of the largest organizations

which provide for financial institutions the best worldwide message processing.

In the annual report published on 11 August 2006 Johan Kestens [1] [11], the head of
marketing and member of the SWIFT Executive Steering Group, said, “We are
encouraged by the results customers continue to value our performance in the critical
areas of
security, reliability and standards, with scores of 9.0 or higher. However, we should not

be complacent; the results also pointed to a number of areas for improvement.”

16

On Monday 26 September 2005, the launch of the first international money exchange
company located between Western Europe and East Asia took place which is known by
Dubai International Financial Exchange (DIFX) [1] [12]. Their aim is to become the

leading message exchange. They want to have customers from all banks over the world.

Dr. Omar Bin Suleiman [12], The general manager of the DIFX, said, “This is a
historic day for Dubai, the Middle East, and the entire region the DIFX will serve. The
exchange will be a catalyst for economic growth and prosperity. It will strengthen the ties
between the countries of the DIFX region, as well as between the region and the rest of
the world.” "The DIFX has been able to invest in the latest technology and, as a result, is

highly automated, enabling it to act upon trades immediately."

According to Simon Eacott [13], Managing Director of Corporate Banking Services
“SWIFT is becoming the ‘Microsoft’ of financial messaging — the benchmark against

which everything else is measured.”

According to Lori Hricik [13], Executive Vice President and Head of Treasury
Services “SWIFT is a critical part of the value chain we deliver to our clients. When
thinking about the role that SWIFT plays for them, my paramount concern is the need for

resiliency and efficiency.”

Chapter3

SWIFT Alliance Access (SAA)

SWIFT Alliance Access is a financial message interface [2], built in a way in order to

facilitate the LAN and WAN network communication and transfer money securely.

SWIFT Alliance Access is made up of several applications each one has its own
importance and specific role. For example, the routing application has to deal with
routing rules and the processing of messages, while the role of the event journal
application is to report any action that has been done by the operator in the system, the
role of the message approval is to verify and authorize messages, and the role of the

system management is to create operators and start/stop components etc. ..

Banks over the world are directly connected to SWIFT through SAA interface via

different wired and wireless lines:

Wired connections:
-Dial up

-Leased line
-ISDN

-Internet

Wireless connections:
-Microwave

-VSAT

etc....

3.1 SWIET Alliance Overview

SWIFT Alliance Access [2] runs on the server using the Windows 2000 or XP platform
where operators work at different machines and communicate with the central server. The

central server is the one that controls the message flow.

In SWIFT, messages are classified into two subformats:
Input: every message created at the sender side is called input message which is going to
be forwarded to the correspondent.

Output: messages that are sent to the correspondent are called output messages.

3.2 Structure of the SWIFT Message

It is made up of:

1-Header
2-Text block
3-Instances
4-Interventions
5-Appendix
3.2.1 Header
It is the essential part of the message which consists of the sender and correspondent

bank identifier code [2] [3]. The Bic [8], Bank Identifier Code, uniquely identifies the

bank and differentiates it from other banks. It is made up of 11 characters.

Such as: JTBKLBBEXXX

The first four characters are for the bank name, the fifth and sixth characters are for
country code, the seventh and eighth characters are for the city, and the last three are for

branches. For example, XXX is the main branch and BO1 for a branch.

Each message has its own, unique message identifier, UMID which is automatically
generated by the system. It is used internally by Alliance as the identifier of the message.
It forms the primary key of the message.

It comes in the following form: IITBKLBBEXXX103REFERENCE
The first character is for the subformat, next for the correspondent bic code then the

message type and finally the reference of the message.

3.2.2 Text Block
The text block [2] [3] contains the text details of the message. Each message type has its
own text block syntax. It is made up of many field numbers and each field has its syntax.
Such as:
20 is for the sender reference
32 is for the amount transferred
59 is for the beneficiary customer name and address
52 is for the ordering institution
Etc...
3.2.3 Instance Types

The SWIFT message is made up of three instances original, copy and notification

message instances as defined in [2].

When a message enters the system an original message instance is created. An
important role of Alliance it is that messages can have copies and their process is
independent from the original message, they can be created by specifying in routing rules.
This allows, for example, an original message to enter the system, to be processed and

then completed and at the same time for a copy to be processed to another queue.

3.2.4 Intervention
All events [2] that occur in the life of the message from the time it is created till its
completion will be reported as interventions inside the message. They are automatically

generated by SWIFT Alliance.

3.2.5 Appendix

The main purpose of appendix [2] [3] is to record all network interactions such as a
message has been failed to be authenticated, or a message has been acknowledged, or a
message was rejected so it returns as a non acknowledge etc...
Every reception from a network and every emission to a network must have one appendix

attached to the message in order to record this interaction.

3.3 The Life Flow of a Message

A SWIFT message during its life passes through many queues before being routed to
SWIFT. It is first created in the message creation queue then it is moved to the message

verification then to the authorization. Now if the authorizer found that a message should

21

be modified then it will be moved to the modification queue otherwise it continues to
sitoswift queue and from there it will be finally processed to SWIFT. The life flow of the

message is shown on figure 3.1 in detail.

Message creation Verification Authorization

Modification SitoSWITT £

Figure 3.1 Life Flow of a Message

When a message is forwarded to SWIFT it is an input message, after an output message
has been created SWIFT sends it to the correspondent returning either an

acknowledgment or a non acknowledgment to the sender as shown in the figure 3.2.

The original message stays live till a notification acknowledgment or a non

acknowledgment is received by SWIFT.

SWIFT

Ack/Nack

Receiver

Sender

Figure 3.2 How Messages are being Processed

There are 999 types of SWIFT messages [2] each one has its own syntax. Some which
financial, acknowledgment, confirmation and free text messages.

MT 100,110,200,201,202,330,340,.500,504...600,630,...800...910,912,...999.

3.4 SWIFT Alliance Access Services

The SWIFT Alliance interface application [2] provides several services to users and to

the interface applications itself.

There are a number of different services that SWIFTAlliance provides:
__Access control application: is the alliance interface
__ Bank information: used in order to search for bank details such as bank name
_ Message processing: for checking and routing messages

_ Routing definition: deals with queues and routing rules

23

_Security definition: deals with creating operators and changing passwords

__ System management: for start and stop components

3.5 Access Control Application

The Access Control application is the key into all SWIFT Alliance applications. It

controls all SWIFT Alliance applications and functions.

When the user logs on into SWIFT Alliance, the applications that the user can use

appear in the Access Control window. (figure 3.3)

-, = Access Control - Primary Instance - SWIFTAlllance Worksbation

Figure 3.3 Access Control Application

24

These are all the applications that are provided by SAA [2]. The user profile defines
which applications he can use. The user cannot sign on to SWIFTAlliance unless the

administrator has allowed him to use the Access Control application.

The Security Officer or System Administrator is responsible for creating user operators
and gives them privileges through the Security application in order to define the user’s

profile.

Users are not permitted to access the interface application unless they have

authenticated username and password.

3.5.1 Calendar Application

The Calendar application [2] is used to:
_Create a yearly calendar
_ Modify a yearly calendar

_ Schedule SWIFT alliance applications in order to run them on different times.

For example, all messages sent and received are stored in alliance and in order to avoid
the database from growing too large it is better to archive every time by scheduling the

message file application and this can be done either manually or automatically.

3.5.2 Correspondent Information File Application
The Correspondent Information File (CIF) [2] [7], [8] contains essential data about
correspondents. Each correspondent includes details such as the correspondent bic code,

bank name, city, country, address, and so on.

25

The Correspondent file application is used to:

_ Search for banks based on a specific criterion such as bank name.
_ Add records

_ Remove records

_ Modify records that are in the list

The CIF is updated every four months in order to accommodate banks that have been
recently included then the list in alliance will be updated and add all additional

information.

3.5.3 Event Journal Application
All actions done by users, and by the SWIFT Alliance system, are recorded as events in
the Event Journal application [2]. This file provides all actions performed in

SWIFTAlliance.

Every event has number of details such as:
_ The date and time of the event
__ The name of the user that is using the system

__ The importance of the event.

The user can search for events in the event journal application based on specific criteria.
Events can be implemented as alarms. Alarm events are used in order to alert the operator

that a serious action must take place.

3.5.4 Message File Application

The message file application [2] is used in order to display all incoming and outgoing

messages that are in alliance database.

26

Every message is made up of many instances, it can be original, copy, and notification.
Each instance has many interventions which are the history of the instance and many

appendixes that are the network interactions of the message.

In this application the user can:

_Look at the message details including interventions, appendixes
_Complete a message

_Route a message

_Reactivate a message

_Move a message

_Archive all messages that are completed in order to save database space.

3.5.5 Monitoring Application

This application is used in order to control the SWIFT Alliance system and ensure that
it is running smoothly and if any problem or error occurs the user can control and
manipulate it. The Monitoring application [2] provides an updated status for message
queues, events, and processes.

For example, when a user wants to check how many messages are in a specific queue
in order to avoid being full, or the administrator wants to check which user is accessing

which queue.

3.5.6 Routing Application
The flow of messages within SWIFTAlliance is controlled by a routing schema. The

routing application is made up of many queues where messages accumulate.

Each queue can have many routing rules defined by the user; they are used in order to
control the flow of messages. The routing schema is activated when no more changes are

needed in the routing rules.

In the routing application [2] the user can:
_Create routing rules
_Delete routing rules
_Activate routing schemas
_Deactivate routing schemas
All messages are controlled by the message processing function MPFN, its role is to

process all messages from one queue to another.

3.5.7 Security Definition Application
The role of Security Definition application [2] is to define which SWIFTAlliance

Application each user can access in order to work on it. This is done by assigning a user

profile to each user.

The Security Definition application is used to:

_ Create SWIFT Alliance users

__ Modify SWIFT Alliance users

_ Remove SWIFT Alliance users

__ Configure security parameters, such as the number of days which a user password has
to change the password.

_ Approve user in order to be able to sign on to alliance.

The user that is created must be approved by the administrator in order to have access

to the alliance application.

3.5.8 System Management Application
The role of System Management application [2] is to control SWIFTAllance.
It is used to:
_Change date/time formats
__ Shut down the system
_ Create queues
__ Back up and restore SWIFT Alliance database
__ Stop and start a protocol application

_ Define events that need to be set as alarms

3.5.9 BK Management Application
The main job of bilateral management key [2], [9], [15] is to authenticate messages that

are created by the sender and that are going to be sent to the receiver via SWIFT net.

Sets of bilateral keys are used by correspondents in order to legally exchange messages.
When the user sends a message, SWIFT alliance uses the bilateral key agreed on in order
to calculate the MAC and attach it to the message, now after the receiver receives it he

calculates the MAC based on the bilateral key, if they match then this means that the

message arrived without errors while if the MAC did not match it means that the message

is not reliable, it was invaded.

3.5.10 Message Preparation Applications

There are three message preparation applications [2] in the life of a message:
Message Creation, Approval, and Modification. These applications are used in order to
create, verify, authorize and modify incoming and outgoing messages inside SWIFT

Alliance application.

3.5.11 Message Creation Application

The Message Creation application [2] is the base application since there we create all
message types, we should fill all fields before routing the messages in order to continue
the process.

We should fill the sender, receiver, text block, network if it is SWIFT or telex. The

messages can be saved as templates in order to be used next time.

3.5.12 Message Approval Application

The Message Approval application [2] is used in order to verify and authorize
messages before going to SWIFT. This is used for security reasons in order to be sure that
for example the amount transferred to the beneficiary X is correctly sent.

In banks there are users whose jobs are only to authorize or verify messages.

3.5.13 Message Modification Application
Every message that is wrongly created or it has failed to be authenticated and verified
is directly sent to the message modification application [2] so that it can be checked again

in detail and correct the wrong field values entered.

30

After the user has modified successfully the message, he can route it so that it can be

verified and authorized again before it continues its tour to SWIFT.

In the table 3.1 below there is a summary

roles.

of all access control applications and their

Table 3.1 Summary of all Access Control Applications

Access Control Applications

Role

System Management Application

Start and stop components

Calendar Application

Provides calendar for the system in order to
schedule applications

Correspondent Information File Application

Searches correspondent details based on
specific criterion

Event Journal Application

Displays all events and alarms occurred in
the system

Message File Application

Displays all messages that are inside
alliance database

Monitoring Application

Controls the alliance system

Routing Application

Routes messages from queue to another

Security Definition Application

Creates, modifies, deletes operators and
assigns profiles for them

BK Management Application

Authenticates messages exchanged between
two parties

Message Creation Application

Creates messages

Message Modification Application

Modifies messages

Message Approval Application

Authenticates and verifies messages

31

3.6 Security, Reliability, Recovery

3.6.1 Who are the Security Officers?
Security Officers [2] play the main role in configuring and managing the security

functions of SWIFT Alliance.

Two Security Officers are defined in SWIFT Alliance [2] the Left Security Officer
LSO and the Right Security Officer RSO; each one has a specific role. Both Security
Officers can create operator definitions, both must approve before changes are taken into
consideration. Users are unable to enter alliance unless approved by both security officers.
Assuming that the responsibility of user] is to authorize messages so the security officer
provides for him the message approval application in order to authorize and route

messages.

Both LSO and RSO security officers are responsible for:
- entering both the SWIFT Alliance initialization passwords and the SWIFT Alliance
master password when SWIFT Alliance is installed for the first time.
- creating new operators and assigning for them specific applications to be accessed.
- modifying operator privileges.
- removing operators.
- approving operators so that the user can authentically access the alliance application.

- resetting user passwords in case a user forgot his password.

32

3.6.2 Alliance Security Installation

As seen in table 3.2 below before installation SWIFT provides the security officers
with generated initialization and master passwords and they are sent each part of the
password to LSO and RSO [2], [21]. They store the password securely because based on

them SAA are installed on the system.

During installation LSO enters partl of the initialization password and RSO enters
part2. LSO signs on using Part 1 of the Master Password as the operator password in
order to enter the system for the first time, and then changes the LSO operator’s password
after he enters the first time. Also RSO does the same job and in this way they can enter

the system and create users and assign them profiles.

Table 3.2 LSO and RSO Installation Steps

Bef SWIFT generates an Initialization Password and Master Password,
oetore and sends one part of each password to the LSO and RSO
installation
LSO and RSO store the passwords until they are required
During LSO enters Part 1 of the Initialization Password.
Installation RSO enters Part 2 of the Initialization Password
LSO signs on using Part 1 of the Master Password as the operator
password, and then changes the LSO operator password.
After
Installation | RSO signs on using Part 2 of the Master Password as the operator
password, and then changes the RSO operator password.

3.6.3 Creating and managing Operators

Both LSO and RSO security officers are responsible for creating operators [2]. In the
first step, LSO must enter the security definition application, then he creates a new user
name, assigns a profile for the user and approves him after having memorized the left part
of the password. Now the RSO signs in so that it can approves and displays the right part

of the password.

After the operator has been approved, The LSO and RSO give the left and the right part
of the passwords to the user so that he can change them from the first log in and enters the

system normally. The steps are summarized in the table 3.3 as seen below.

Table 3.3 Steps used for Creating Operators by LSO and RSO

LSO signs on access control application and opens the
Security Definition Application

LSO enters the new user full name

LSO assigns profile(s) to the operator

LSO approves the operator

LSO displays the left part of the user’s system password

LSO signs off

RSO signs on access control application and opens the
Security Definition Application

34

RSO approves the operator. Now that both security officers
have approved the operator, the operator is automatically
enabled.

RSO displays the right part of the user’s system password

RSO signs off

Both LSO and RSO give left and right part of the passwords
to the user so that he can change them from the first log in

In order to have a reliable application, SWIFT has provided two SWIFT Alliance

databases, the live database and the shadow database.

The live SWIFT Alliance database contains all operational files such as the event

journal and the message file, they are continuously updated.

The shadow SWIFT Alliance database consists of a copy of the live database. It is used
for backup and recovery purposes so that if a crash occurs then the alliance can recover
by restoring the shadow database to live and it will return to its initial state before the

crash.

3.7 Alliance Developer Kit (ADK)

The SWIFT Alliance system is composed of a collection of components that are
integrated inside alliance. Each one has its own role, functionality, and importance inside

SWIFT. Developers are able to create new components by ADK.

The Alliance Developers Kit (ADK) [3] is a package which allows developers outside
of the SWIFT Alliance development team to implement new protocols. These protocols
that have been developed using the ADK can be smoothly integrated with SWIFT
Alliance. They will have the same security which is available for the standard SWIFT

components.

The ADK provides libraries that contain APIs. APIs are functions or procedures that
are implemented in C programming language and these procedures are called via remote
procedure calls RPC [3]. There are classes for every part of the message such as the
header, text block, interventions, and appendix. Each one has a set of parameters which
defines each class. For instance if I want to read a message from SWIFT I use
mfsgetmessage (), if specifically I decided to read only the header or the text block I will

use mfsgetheader (), mfsgettext ().

Some of the APIs are listed below:
-Mfsaddheader ()
-Mfsupdateheader ()
-Mfsgetheader ()

-Mfsgettext ()

-MfsgetIntervention ()

36

-Mfsupdateintervention ()
-Mfsgetappendix ()
-Mfsupdateappendix ()
In order to have all APIs operational, they must be registered first before
implementation otherwise the functions will not work. The full implementation is

available in Appendix A.

3.8-Disadvantages of SWIFT Routing Protocol According To Intra Banking

Message Processing

The problem is that every branch is directly connected to SWIFT and so lots of
expenses and problems arise including Security infrastructure, SAA package license,
yearly maintenance, especially message costs. In case SWIFT connectivity is down then
all banks are disconnected. If the correspondent bank is a branch or not it should pass to
SWIFT. So I have found that if I create a new protocol whereby the main branch takes the

job and intra routes the message to the receiver it will be great.

Our main goal is to provide a new protocol having the following enhancements.
- All branches centralized to the main branch.
- Save costs: in this way banks are saving messages costs that are intra to their branches.
- Less delay: since it takes less than 1 sec for a message to reach the correspondent
because of real time exchange.
- Fault tolerance: since all branches will be centralized to the main branch this means that

if it is disconnected from SWIFT then all branches will continue to operate normally.

37

Chapter 4

Bank Intra Routing Protocol (BIRP)

Intra Routing Protocol was created as an enhancement to SWIFT routing protocol
in order to take every input message from the routing point BIRP Input and checks if

the Bic Receiver is a branch or not now there are two possibilities:

If the correspondent is a branch then it creates two messages an output message
which is sent to queue Output and process it to the correspondent and an
Acknowledge notification instance sent to queue Acked telling the sender that the

message has been received successfully by the correspondent.

Otherwise if the receiver is not a branch then only an instance non acknowledge is
created and the message is routed to queue Nacked so that it can be forwarded to
Sitoswift by a routing rule specified on this queue.

After that the message is directed to SWIFT for processing an output message to the

correspondent.

The original instance will always be complete so it is free from any routing point
while both the notification and the output messages are live placed in the
corresponding queues BIRPAcked and BIRPOutput. All events are reported as

interventions inside every message.

38

There are four different BIRP routing points created in order to handle the incoming
messages in an efficient way. They are listed as follows: BIRPinput, BIRPoutput,

BIRPacked, and BIRPnacked.

The BIRPinput is the central queue of the component where every incoming message is
read by the BIRP protocol. Routing rules have been created on this queue so that if the
message instance is an acknowledgment then it is sent to queue BIRPacked, while if the
message instance is a non acknowledgment then it will be sent to BIRPnacked and the
output message will be sent to BIRPoutput in order to be forwarded to the correspondent

by a specified routing rule.

All messages that pass through these routing points are automatically handled by the
message processing function mpfn whose role is to process and control messages. The
BIRP protocol is integrated in the main branch system and all branches are linked to it.

So all messages will pass through the main branch and its role is like SWIFT to decide
whether to create an output message and transfer it to the branch or to forward it to
SWIFT so that it can send the message to the specified correspondent. This protocol can

be started or stopped by the system administrator.

In this way all messages that are exchanged between branches will not be forwarded to
SWIFT. All the communication will take place between the branches and the main branch

independent of SWIFT net.

39

Branches 1 and 2 are only linked to the main branch as seen in figure 4.1.

Branchl Branch?2

BIRP System
Main Branch

Figure 4.1 BIRP Processing

In figure 4.2 we can see the first case if the receiver is a branch so the routing will be
intra the main branch, the message will go from branchl “sender” to the main branch it is
verified and authorized and then it enters the BIRPinput queue where the protocol starts

to scan the message.

40

Since the correspondent is a branch “branch2” an output message is created and
processed to queue BIRPoutput which will then be forwarded to branch2 and an
acknowledge notification will be created confirming that the message has been received

successfully by branch2.

Main branch

Branchl Branch2

Figure 4.2 Scenario 1 Receiver is a Branch

Now in the second scenario as shown in figure 4.3 the receiver is not a branch so the
BIRP routing protocol creates a non acknowledgement notification sending it to the BIRP
nacked queue. By a defined routing rule, the message will be forwarded to SitoSWIFT

queue and then it continues its tour to SWIFT.

Branch
Not a branch

Figure 4.3 Scenario 2 Receiver is not a Branch

Chapter 5

Experimental Results

The BIRP routing protocol has been applied to ECOBANK of AFRICA which is the
largest bank in Africa. It has branches in 12 countries. That is why I decided to do a case

study on this bank and I have reached the following results according to:

5.1 Cost ($)

A message sent charges 0.25 cents per day. If the ECOBANK sends 9000 messages per
day all over the world and around 4000 of them are for their branches in different
countries then we calculate the annual costs in order to see how much savings per year.
Annual Message Costs for Every Branch=
4000 messages *0.25=1000EUR per day*317*1.28$=405.760% saving costs per year

As we can see the increase of branches leads to the increase of saving costs to the bank.
In ECOBANK there are 12 countries worldwide so in this case 12*405.760$ which is

around 5 million dollars a year is clearly worth to be saved.

5.2 Comparison Between Both Protocols

If we take a look at the expenses in the old protocol we find that the total yearly
expenses for every branch connected to SWIFT is as follows:
Maintenance + SAA License + Security Infrastructure = 40,000EUR = 51,2008

Total Yearly Expenses = 51,2008 + 405,760$ messages = 456,960$ for every branch

43

While the expenses for the new BIRP routing protocol are:
Total Yearly Expenses = 5000 EUR License + 0 Security Infrastructure + 0 (since no

more message costs with the new system)

We can see the difference in message costs saved and it is worth to use the new
protocol because no security infrastructure is needed since it is already implemented in

the main branch.

Statistics projections the next 5 years and how much costs will be saved for the bank.

In the figure below 1,260,000 messages are sent yearly to branches and these cost
405,760$ per year. In 2010, we are expecting the bank to save over 2 million dollars,
which is worth a good investment and it corresponds to 6,340,000 messages and this is all

for one branch.

According to ECOBANK around 25 million dollars are saved in 5 years for 12

countries. This is an excellent investment for ECOBANK.

44

expected saving costs per branch

2 million$

1.6 million$ yearly costs

1.2 million$
811,520%
405,760%
2006 2007 2008 2009 2010
1,268,000 messages per year
Saving around 24 million$
in 5 years for 12 branches
Figure 5.1 Comparison between both Protocols
5.3 Delay

The estimated time taken for a message to go to SWIFT then forwarded to the
correspondent takes an estimation minimum of 3 to 5 seconds depending to the network
traffic and while with BIRP less than 1 second because of real time exchange between

branches.

There are several aspects that affect delay:
- Distance.

-Physical medium

45

In SWIFT protocol the sender is connected to SWIFT through routers, servers, vpn box
[14] and the delay is increased with the increase in distance, while there is no such delay

in BIRP protocol since the connection is direct.

5.4 Connectivity

It is a good solution for connectivity since branches will not be directly connected to
SWIFT, and any problem to SWIFT connectivity, BIRP routing protocol will stay
working normally. While if branches are connected to SWIFT then any failure in the

connectivity will stop the message processing till the connection comes up again.

As we can see in the below figure 5.2 in case 1 which is the BIRP protocol all branches

are connected to the main branch while in case 2 all banks and branches are connected to

SWIFT.

Casel Case 2

Figure 5.2 BIRP connectivity

46

Chapter 6

Conclusion

This thesis discusses how to enhance the intra message processing system and this was
achieved by the new BIRP routing protocol. The final conclusion of this thesis can be

summarized by three main results.

First, the thesis presented the BIRP Bank Intra Routing Protocol which has proved its
power in exchanging messages in zero cost and zero security infrastructure so that all
messages are intra processed between the main branch and the branch; receiving
messages in less delay because of a shorter distance since there is a difference if a
message flows through SWIFT or only through the main branch; and providing better

connectivity.

Second, the thesis presented an analysis of the new BIRP protocol, its procedure, and

how it efficiently works shown in Appenix A.

Third, the thesis presented a case study done on the Ecobank of Africa and I have tried

to provide accurate statistics regarding total yearly message costs saved.

Comparing to yearly costs I have found that it is strongly worth to use the BIRP routing

protocol and its disadvantage can be overcome since it is fine to increase bandwidth.

Banks can find this protocol as an asset for their investment. Finally, we can say that

BIRP can be considered an efficient and dynamic real time exchange protocol for intra

routing banks.

6.1 Limitations of the Research

Despite the major advantages that BIRP has regarding the costs it can save for the bank,
it still has some limitations that need more bandwidth.
In SWIFT protocol each branch is directly connected to SWIFT and the database is
distributed. The Bandwidth is 8kb/s and the connection is leased line LL provided by one

of these providers (EQUANT, COLT, INFONET, AT&T).

While BIRP needs higher bandwidth, since the database now is centralized to the main
branch and the delay will increase because of continuous access to the database and banks
almost print all the incoming messages so a huge load will occur in the main system that

is why it is better to have either:

Band of 128kb/s, it costs 30EUR/month

Band of 64kb/s, it costs 15SEUR/month

Also this protocol is limited only to intra processing between branches while the SWIFT

protocol process to all banks.

6.2 Future Work

Many additional features can be added to the new protocol implementation so that it
can be a virtual SWIFT routing protocol having all its functionalities, such as letting all
messages be intra processed regardless of the receiver, but this is prohibited in SWIFT

since amounts that are transferred to other banks must be authorized and verified by the

SWIFT institution.

References

[1] SWIFTHistory, SWIFT routing protocol [Online]. Available: http:/www.SWIFT.com

[2] SWIFT team Belgium (2004). Getting Started with SWIFT Alliance Access (Release
5.5)
Document version 2.0

[3] SWIFT Team (2005). Alliance Developer Kit ADK (Release 5.5)

[4]DirkBogaert,[Online]. Available http://www.mkssoftware.com

[SISWIFTAllianceproducts{Online]Available
http://www.perago.com/Products/services/SWIFT.html

[6]SWIFTPartners{Online]Available
http://www.swissrisk.com/partners/index SWIFT.php

[7] Bic Directory [Online] Available http://www.SWIFT.com/biconline/

[8] SWIFT Team (2005). Bic Directory

[9]BKE Bilateral Key Management [Online]Available
http://public.logicacmg.com/~fsd/Prod_desct/Bke.PDF

[10] SWIFT Team. SWIFT Net Phase 2

[11]MakingiteasiertodobusinesswithSWIFT,[Online]. Available: http://www.SWIFT.com,
11 August 2006.

[12] Dubai bridges the gap between East and West, [Online]. Available:
http://www.SWIFT.com, 15 November 2005.

[13] Kumar Parekh. Society for Worldwide Inter bank Financial Telecommunication.

[14] Alwin Thomas and George Kelley.
Cost-Effective VPN-Based Remote Network Connectivity over the Internet

[15] SWIFT Team. BESS Bilateral Key Exchange (BKE)

Appendix A: Implementation of The Bank Intra Routing Protocol

LITTTTTTTTTTT T *xxssxssshnnsnsnxwsxwsxwxsxx[[[[[[]]]]/[/]/]]/
BIRP

[117771777717777777%%*xxkksxkhkixhrwssxrwssxxxxx/[/[/]/][]////]///]/
#include <stdio.h>
#include <«stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "cifs.h"
#include "rs.h"
#include "mfs.h"
#include "adk field.h"
#include "pcs.h"
#include "ejs.h"
#include "adk.h"
#include "adk trace.h"

#define LOG_SUCCESS (1)

int process_running = 1;
L10L70177177707000077 7770770070777 770777770707077007077077077070777777777777

int Search_Receiver (MfsAddressXlString t namel,FILE *fptr,char *s1[17]) {

char bufferl1([13];
int 1=0,3=0;

int resultl,result2;

while(j<17){

resultl=strcmp (namel,sl(j]) ;

if (resultl==0)

{ i=1;

fprintf (fptr, "Sender BIC message %s\n",namel);
14+
}

return i;}

51

//creating an output message subformat
void add(MfsHeader t *mesg,MfsHeader_t *mesgl,MfsText_t
*textl,MfsInstance t *inst,MfsInstance_t *inst2,FILE* fptr) {

AdkStatus_t rc;

MfsMessageDiagnostic t diagnostic;
MfsMessageSubFormat_t subformat=ADK OUTPUT;
MfsMessageFormatString t sformat;
MfsAddressX1String t sender={0},receiver={0};
CifsCorrespondentType t corrtype,correspondent_type;
bool_t live,partial;

MfsMessageFormatString t format;
MfsMessageTypeString t type;
MfsNetworkPriority t priority;
MfsSWIFTAddressString t add,addl,N1,N2;
MfsNetworkApplicationIndexString t applindex;
MfsUnitNameString t unit;

MfsRpNameString t routing;

MfsInstanceType t instance_type;

char 1i;

FieldGetValue (mesg, "mesg_type", 0, type,

"mesg_is live", 0, &live,

"mesg_is partial", 0, &partial,
"mesg_sender_corr_type", 0, &corrtype,
"mesg_sender X1", 0, sender,
"mesg_frmt_name", 0, format,

"mesg network priority", 0, &priority,
"mesg_sender SWIFT address", 0, add,
"mesg_receiver SWIFT address", 0, addl,
NULL) ;

FieldGetValue (mesg, "mesg network appl_ind", 0, applindex, NULL);

i=add[8];
add[8]="X";

add1([8]=1;
JIII71777007077007777700777077077777077700711777777177

FieldSetValue (mesgl, "mesg_sub_format", 0, &subformat,
"mesg_s_umid", 0, mesg->mesg_s_umid,
"mesg class", 0, &(mesg->mesg_class),
"mesg is live", 0, &live,
"mesg_is partial", 0, &partial,
"mesg_sender_corr_type", 0, &corrtype,
"mesg_sender X1", 0, sender,
"mesg frmt_name", 0, format,
"mesg_ type", 0, type,
"mesg network priority", 0, &priority,

NULL) ;
fprintf (fptr, "\nSENDER ADDRESS $s\n",add) ;
fprintf (fptr," RECEIVER ADDRESS %s\n",addl);

52

strcpy(routing, inst->inst_rp name) ;

strcpy (unit, inst->inst_unit_ name) ;

FieldGetValue (inst, "inst_type", 0, &instance_type,
"inst_sm2000_priority", 0, &priority,
"inst_rp_ name", 0, routing,
"inst_ unit_name", 0,unit,

"inst receiver X1", 0, receiver,
NULL) ;

fprintf (fptr, "\nSENDER%s \n", sender) ;

fprintf (fptr, "RECEIVERS%S \n", receiver) ;

FieldSetValue(inst2, "inst_ s umid", 0, &(mesg->mesg s umid),
"inst_ type", 0, &instance_type,
"inst_sm2000_priority", 0, &priority,

"inst_rp_name", 0, routing,
"inst_unit_name", 0,unit

"inst_receiver X1", 0, receiver,
NULL) ;
FieldGetValue (mesgl, "mesg_sender SWIFT address", 0, NI,

"mesg_receiver_ SWIFT_address", 0, N2,NULL);

1

rc MfsAddMessage (mesgl, textl, inst2, NULL, NULL, &diagnostic);

rc = RsRouteInstance(inst2->inst_s_umid, 0, "IBRSINPUT",
ADK R _SUCCESS, 0, 0);
}//end of add

/‘k***‘k**:‘c*************** MAIN ************k*******’k***‘k***/

void main(int argc, char *argv[]){

AdkStatus_t rc,status;
MfsSumidString t s_umid;
int32_t inst num;
MfsHeader t mesg,mesgl;
MfsText t text,textl;
MfsIntervention_ t intv;

53

MfsInstance_t inst,instl, inst2;

bool_t yes=TRUE,RESTARTED;

MfsInstanceType t instance type = ADK_INST_TYPE NOTIFICATION;
MfsReceiveDeliveryStatus_t delivery=ADK_EM DELIVERED;
MfsPriority t priority = ADK_PRIORITY 1;

MfsInstanceType t inst_typel;

FILE *fptr, *fptrl;

int process=1;

char rout [ADK_RP NAME LEN]={0};

AdkExitStatus_t exit_status=ADK SUCCESS_EXIT;

MfsMessageSubFormat_t subformat=ADK OUTPUT;

MfsAppendix_t appe;

MfsAppendixType t appe_type = ADK APPE RECEPTION;

MfsAppendixSessionHolderString t sess holder;

MfsAppendixSessionNbrString t sess _nbr;
MfsNetworkDeliveryStatus_t deliv_status =

ADK_DLV_ACKED,deliv statusl =ADK DLV NACKED ;

MfsReceiveDeliveryStatus_t

non=ADK EM ABORTED,non2=ADK_EM_ DELIVERED;
MfsAuthResult_t RES=ADK_AUTH_NO KEY;
MfsMessageDiagnostic_t diagnostic;
MfsAddressX1lString_t receiver, senderl,receiverl;
MfsRpNameString t routing,rou;
MfsUnitNameString t unit;
MfsInstanceStatus_t insta:ADK_COMPLETED;
MfsAppendixSeqgNbrString_t seq nbr;
MfsNackReasonString t ap;

int Senderll=0,Receiverll=0;

char temp, *templ, *temp2, *temp3, *temp4,

*tempb5, *temp6, *temp7, *temps, *temp?9,

*templO, *templl, *templ2, *templ3, *templ4, *templ5, *templé;
char *MAINBRANCH[17];

fptr=fopen("news.txt","w") ;

LITITP00T 0770770070070 7770000770007 7700770777077 7777777707777177777
temp=(char *)malloc (20*sizeof (char));
templ=(char *)malloc (20*sizeof (char))
temp2= (char *)malloc(20*sizeof (char));
temp3=(char *)malloc(20*sizeof (char)) ;
)
)

’

temp4=(char *)malloc(20*sizeof (char)) ;
temp5=(char *)malloc(20*sizeof (char)
temp6=(char *)malloc(20*sizeof (char));
temp7= (char *)malloc(20*sizeof (char));
temp8=(char *)malloc(20*sizeof (char)) ;
temp9= (char *)malloc (20*sizeof (char)) ;
templO=(char *)malloc(20*sizeof (char)) ;

2

54

templl=(char *)malloc(20*gizeof (chax)) ;
templ2=(char *)malloc(20*gizeof (chaxr)) ;
templ3=(char *)malloc(20*sizeof (char)) ;
templ4=(char *)malloc(20*sizeof (char)) ;
templ5=(char *)malloc(20*sizeof (char)) ;
templé6= (char *)malloc(20*sizeof (char)) ;

//**

//these are the 12 bic code branches that ends XXX and the others

// are branches inside these countries

strepy (temp, "ECOCGHACXXX") ;
gstrepy (templ, "ECOCGHACTMA") ;
strepy (temp2, "ECOCGHACTDI") ;
strcpy (temp3, "ECOCGHACKSI") ;
strcpy (temp4 , "ECOCGNCNXXX") ;
strcpy (temp5, "ECOCNGLAXXX") ;

strepy (temp6, "ECOCNENIXXX") ;

strcpy (temp7, "ECOCTGTGXXX") ;
strepy (temp8, "ECOCTGTGETI") ;
strcpy (temp9, "ECOCTGTGWPS") ;
strcpy (templ0, "ECOCBIBJXXX") ;
strcpy (templl, "ECOCLRLMXXX") ;
strcepy (templ2, "ECOCMLBAXXX") ;
strcpy (templ3, "ECOCSNDAXXX") ;
strcpy (templ4, "ECOCBFBFXXX") ;
strcpy (templ5, "ECOCCMCXXXX") ;

strepy (templ6, "ECOCCIABXXX") ;

MAINBRANCH[0] = (char *)malloc((strlen(temp)+1)*sizeof (char)) ;
strcpy (MAINBRANCH[0] , temp) ;
MAINBRANCH[1] = (char *)malloc((strlen(templ) +1) *sizect (char)) ;
strcpy (MAINBRANCH [1] , templ) ;

MAINBRANCH[2] = (char *)malloc((strlen(temp2)+1) *sizeof (char));

55

strcpy (MAINBRANCH[2] , temp2) ;

MAINBRANCH([3] =(char *)malloc((strlen(temp3)+1) *sizeof (char));
strcpy (MAINBRANCH (3], temp3) ;

MAINBRANCH [4] = (char *)malloc((strlen(temp4)+1)*sizeof (char));
strcpy (MAINBRANCH [4] , temp4) ;

MAINBRANCH[5] = (char *)malloc((strlen(temp5)+1)*sizeof (char));
strcpy (MAINBRANCH([5] ,temp5) ;

MAINBRANCH[6] = (char *)malloc{(strlen(temp6)+1)*sizeof (chaxr));
strcpy (MAINBRANCH [6] , temp6) ;

MAINBRANCH[7] = (char *)malloc((strlen(temp7)+1) *sizeof (char));
strepy (MAINBRANCH([7], temp7) ;

MAINBRANCH[8] =(char *)malloc((strlen(temp8)+1)*sizeof (char));
strcpy (MAINBRANCH[8], temp8) ;

MAINBRANCH[9] = (char *)malloc((strlen({temp9)+1)*sizeof (char));
strcpy (MAINBRANCH[9] , temp9) ;

MAINBRANCH{[10] =(char *)malloc((strlen(templO)+1)*sizeof (char));
strcpy (MAINBRANCH[10], templ0) ;

MAINBRANCH [11]=(char *)malloc((strlen(templl)+1) *sizeof (char));

strcpy (MAINBRANCH [11], templl) ;
MAINBRANCH [12] = (char *)malloc((strlen(templ2)+1) *sizeof (char));
strcpy (MAINBRANCH([12], templ2) ;

MAINBRANCH [13] = (char *)malloc((strlen(templ3)+1)*sizeof (char));
strcpy (MAINBRANCH [13] , templ3) ;

MAINBRANCH[14] = (char *)malloc((strlen(templ4) +1)*sizecf (char));
strcpy (MAINBRANCH [14] , templ4) ;

MAINBRANCH[15] = (char *)malloc((strlen(templ5)+1)*sizeocf (char));
strcpy (MAINBRANCH[15] , templ5) ;

MAINBRANCH([16] =(char *)malloc((strlen(templé6)+1) *sizeof (char)) ;
strcpy (MAINBRANCH [16] , templ6) ;

MfsInstancelnit (&inst) ;

MfsInstancelnit (&instl) ;

56

MfsHeaderInit (&mesg) ;
MfsHeaderInit (&mesgl) ;
MfsTextInit (&text) ;
MfsTextInit (&textl) ;
MfsAppendixInit (&appe) ;

MfsInstancelnit (&inst2) ;

strcpy (rout, "BIRPINPUT") ;

///message should be reserved in order to read its contents after that

//we free it by unreserved or make the message complete

rc = RsReservelnstanceNext (s_umid, &inst_num,rout,ADK PRIORITY 1,"");

strcpy(inst.inst_s umid, s _umid) ;

inst.inst_num=0;

//to read the message
rc = MfsGetMessage (&mesg, &text, &inst);

LILTTEPLTI L0077 0000077000077 777077700077771707770007777700777070701777777

FieldGetValue (&inst, "inst_receiver X1", 0, receiverl,
NULL) ;

FieldGetValue (&mesg, "mesg sender X1", 0, senderl,
NULL) ;

Receiverll=Search Receiver (receiverl, fptr, MAINBRANCH) ;

//check if receiver is a branch

if (Receiverll==1){

add (&mesg, &mesgl, &text, &inst, &inst2, fptr) ;

FieldGetValue (&inst, "inst_ receiver X1", 0, receiver, NULL);

strcpy(routing, inst.inst_rp name) ;

57

strcpy (unit, inst.inst_unit_name) ;

FieldSetValue(&instl, "inst_s umid", 0, &(mesg.mesg s umid),
"inst_type", 0, &instance_type,
"inst_sm2000_priority", 0, &priority,

"inst_rp_name", 0, routing,
"inst_unit_name", 0,unit,

"inst receiver_X1", 0, receiver,
NULL) ;

instl.inst_notification type=ADK INST NOTIFICATION TRANSMISSION;

rc = MfsAddInstance (&instl) ;

strcpy (sess _holder, "BIRP");
strcpy (sess_nbr, "1234");
strcpy (seq _nbr, "123456");
FieldSetValue (&appe,
"appe_s_umid", 0,mesg.mesg_s_umid,
"appe_inst _num", 0, &instl.inst_num,
"appe_iapp_name", 0, "BIRP:BIRP_A",
"appe_type", 0, &appe_type,
"appe_session_holder", 0, sess_holder,
"appe_session _nbr", 0, sess_nbr,
"appe_sequence_nbr", 0, seq_nbr,
"appe_network delivery status", 0, &deliv_status,
"appe ack nack_text", 0, "Network Delivery Status:NetworkAck",
"appe_rcv_delivery_ status", 0, &non2,
NULL) ;

//ADD ACK notification to the message

rc = MfsAddAppendix (&appe) ;

//complete the original message

RsMoveInstance (mesg.mesg_s_umid, inst.inst_num,ADK ACTION_TYPE_ COMPLETE,
routing, ADK R_SUCCESS) ;

//route the notification instance to BIRPINPUT

rc = RsRoutelInstance(mesg.mesg s _umid, instl.inst_ num,

"BIRPINPUT",ADK_R SUCCESS,

}

// 1f receiver not a branch create nack appendix in the notification

0, 0);

//instance

elsef

FieldGetValue (&inst, "inst receiver X1", 0, receiver, NULL);

strepy (routing, inst.inst_rp_name);
strepy (unit, inst.inst_unit_name) ;
FieldSetvValue (&instl, "inst_s_umid", 0, &(mesg.mesg_s_umid),

"inst type", 0, &instance_type,
"inst sm2000_priority", 0, &priority,

"inst rp name", 0, routing,
"inst unit name", O,unit,

"inst receiver X1", 0, receiver,
NULL) ;

instl.inst notification_type=ADK INST NOTIFICATION_ TRANSMISSION;

rc = MfsAddInstance (&instl);
strepy (sess holder, "BIRP");
strcpy (sess _nbr, "1234");

strcpy (seq nbr, "123456");

FieldSetValue (&appe,
"appe s umid", 0,mesg.mesg_s_umid,
"appe inst_num", 0, &instl.inst_num,
"appe iapp name", 0, "BIRP:BIRP A",
"appe_type", 0, &appe_ type,
"appe session_holder", 0, sess_holder,
"appe session_nbr', 0, sess_nbr,
"appe_seguence_nbr", 0, seqg_nbr,

"appe network_delivery status", 0, &deliv_statusl,

"appe_ack nack_text", 0, "NACKED NOT LICENSED",
"appe_rcv_delivery_status", 0, &non,

"appe auth_result", 0, &RES,

NULL) ;

FieldGetValue (&appe, "appe nak reason", 0, ap, NULL);

rc = MfsAddAppendix (&appe) ;

RsMoveInstance (mesg.mesg s umid, inst.inst_num,ADK_ACTION_TYPE COMPLETE,

routing, ADK R SUCCESS) ;

RsRoutelInstance (mesg.mesg_s umid,
instl.inst num, "BIRPINPUT",ADK R_SUCCESS,

0, 0);

LI1ILITL07 0002777070077 7700077 788D/)77 00777771707770007177007777777777

59

