
An Integrated Partitioning and Synthesis System for
Dynamically Reconfigurable Multi-FPGA Architectures*

Iyad Ouaiss , S r i r am G o v i n d a r a j a n , Vinoo Sr in ivasan ,
Meenakshi Kaul , and R a n g a Vemuri

DDEL, Department of ECECS, University of Cincinnati, OH 45221.

A b s t r a c t . This paper presents an integrated design .system ca~ed SPARCS
(Synthesis and Partitioning for Adaptive Reconfigurable Computing Sys-
tems) for automaticaJly partitioning and synthesizing designs for recon-
figurable boards with multipte field-programmable devices (FPCAs). The
SPARCS system accepts design specifications at the behavior level, in the
form of task graphs. The system contains a tempora /par t i t ioning rod
to temporally divide and schedule the tasks on the reconfiguraNe archi-
tecture, a spatiM partitioning rod to map the tasks to individuM FPGAs,
and a high-level synthesis tool to .synthesize efficient register-transfer
level designs for each set of tasks destined to be downloaded on each
FPGA. CommerciM logic and layout synthesis tools are used to complete
logic synthesis, placement, and routing for each FPGA design segment. A
distinguishing feature of the SPARCS system is the tight integration of the
partitioning and synthesis tools to accurately predict and control design
performance and resource utilizations. This paper presents an overview
of SPARES and the various algorithms used in the system, along with
a brief description of how a JPEG-like image compression algorithm is
mapped to a multi-FPGA board using SPARCS.

1 Introduction
During the past few years, reconfigurable computers (RCs) based on multiple field-
programmable devices (FPGAs) have become ubiquitous. In order to fully realize the
performance and cost advantages offered by these architectures, it is necessary to de-
velop architecture-independent partitioning and synthesis environments for reconfig-
urable computers.

Although well-developed commercial tools exist to perform the tasks of logic and
layout synthesis for FPGAS, high-level synthesis and multi-FPGA partitioning, both spa-
tial and temporal, need to be further developed before mature commercial tools can
emerge. Especially ignored, even in the academic community, is the problem of tem-
poral partitioning.

This paper presents the architecture of the SPARCS environment and describes a
typical design flow through SPARCS. In addition, a brief summary of each major tool
in SPARCS is provided. Whereas various algorithms and tools in SPARCS are subjects of
detailed topic-specific publications in their own right, the aim of this paper is to provide
a birds-eye view of the SPARCS system, with a specific focus on algorithm integration
and users' view.

The rest of this paper is organized as follows: Section 2 provides an overview of
the SPARCS design environment. Sections 3, 4 and 5 discuss the temporal parti t ioning,
spatial partitioning, and high-level synthesis algorithms and techniques used in the
SPARCS system. Section 6 examines a design flow in SPARes and Section 7 contains
concluding remarks.

2 Users' View of SPARCS
Figure 1 shows the architecture of the SPARCS system. A design specification is sub-
mit ted in the form of four inputs to the SPARCS system:

* This work is supported in part by the US Air Force, Wright Laboratory, WPAFB,
under contract number F33615-97-C-1043.

32

1. Application's Behavior Specification: The SPARCS system accepts a behavioral spec-
ification of an application in the form of a set of tasks. Shared data is stored
in memories. In addition, tasks may communicate through direct communication
channels. Tasks are modeled in behavior-level VHDL. We assume that the speci-
fication is written such that the user provides resolution for critical regions that
access shared memory.

2. Rc Architecture Specification~ SPARCS admits the specification of the target recon-
figurable FPGA board. Allowed features include local memories, globally shared
memory, various interconnect topologies, and features of the FPGA and memory
devices used on the board. Architecture specification includes the type of FPGAS
used, number of FPGAs, number of resources (function generators and flip-flops)
on each FPGA, interconnect topology, sizes of memory modules, etc.

3. Constraints: Users of SPARCS specify a constraint on the minimum clock speed at
which to clock the design. In addition, users may specify timing constraints on any
straight-line block of VtlDL code inside the tasks.

4. Macro Library: The macro library contains parameterized register-level compo-
nents. These macros are used to estimate resource counts and performance of
contemplated designs during high-level synthesis.

on L,ight-Wsight i
High*Level Synth i

Fig. 1. S P A R C S S y s t e m

Typically, the reconfigurable board is attached
to a host computer. The host controls the loading of
the design and monitors the execution of the board.
The SPARCS system produces a set of FPGA bitmap
files, a reconfiguration schedule that specifies when
these bitmap files should be loaded on the individual
FPGAs in the Re, and in the case of programmable
interconnect, a mask (configuration) of the intercon-
nect for each temporal segment.

Preprocessingis the first stage of the SPARCS de-
sign flow. Three tasks are performed during prepro-
cessing: (1) memory graph extraction, (2) depen-
dency analysis for each task, and (3) resource and
performance estimation for each task. A memory
graph represents the relationship among the tasks
and memories explicitly and will be used during par-
titioning. Dependency analysis captures the task-
level dependencies and the dataflow among the tasks.
Finally, each task is processed by an estimator that

estimates the FPGA resource requirements, clock speed, and schedule length of each
task, as if it were to be individually synthesized.

3 Temporal Partitioning
The temporal partitioner has an abstract view of the board resources and uses aggre-
gate costs for partitioning. From the architectural specification described in Section 2,
the overall resource constraint (C) and shared memory size (M~) are derived. The
temporal partitioner heuristically estimates the upper-bound on the number of tem-
poral segments (N) for building a Non-Linear Programming (NLP) formulation. It uses
a fast list-scheduling heuristic (a variation of [1]) for this estimation. We have incor-
porated a synthesis model to determine the amount of resource sharing among tasks.
This requires an operation level modeling of each task for the synthesis subproblem.
As a preprocessing step, we determine the mobility ranges (ASAP and ALAP values) of
all the operations in the combined graph of the entire specification. The NLP model is
linearized and solved by an ILP (Integer Linear Program) solver. We use the following
notation:
ti ---+ tj, a directed edge between tasks, t l , t j E T, represents a dependency; Bandwidth(ti, tj),
number of data units to be communicated between tasks ti and tj; Fu(i), the set of functional units
on which operation i can execute; F, the set of functional units corresponding to the most parallel

33

schedule obtained from the high-level synthesis estimator; N, the upper bound on the number of
segments which are numbered 1 to N, the index specifies the order of execution of the segments;
M~, the shared memory available for storage between segments; FG(k), the number of function
generators used for functional unit k; C, the resource capacity of the underlying board architecture;
I, the set of all operations in the specification.

N o n - L i n e a r 0-1 Model: We describe here the variables, cons t ra in ts , and cost func t ion
of our NLP model . Not all cons t ra in t s have been shown in m a t h e m a t i c a l form. T h e
variables: (1) ytp models the par t i t ion ing at the task level: ytp = 1, if t a sk t E T is
placed in segment p, 1 < p < N; 0 otherwise. (2) Xijk models the synthes is subp rob lem
at the opera t ion level: x~jk = 1, if opera t ion i E I is placed in control s tep j E CS(i)
and uses func t iona l uni t k C Fu(i); 0 otherwise. (3) wptlt2 models the c o m m u n i c a t i o n
cost incur red if two tasks connec ted to each o ther are not placed in the same segment :
wptlt2 = 1, if t ask t l is placed on any segment 1 - . . p - 1 and t2 on any o f p . . . N and
t l ~ t~: 0 otherwise, ytp and xijk are the f u n d a m e n t a l model ing variables. All o the r
var iables are secondary and are cons t ra ined in t e rms of the f u n d a m e n t a l variables.

1. T e m p o r a l Pa r t i t ion ing Model: Tempora l pa r t i t ion ing has the following cons t ra in ts :
a. Uniqueness cons t ra in t : Each task should be placed in exact ly one segment .
b. T e m p o r a l order cons t ra in t : A t a sk t l on which ano the r t a sk t2 is d e p e n d e n t
c a n n o t be placed in a l a te r segment t h a n the segment in which task t2 is placed.
c. Shared m e m o r y cons t ra in t : T h e a m o u n t of i n t e rmed ia t e d a t a s tored be tween
segments should be less t h a n the sha red m e m o r y M~. T h e variable Wptlt2, if 1,
signifies t h a t ta and t~ have a da t a dependency and are being placed across segment
p. Therefore , the d a t a being com m un i ca t ed be tween them, Bandwidth(t1 , t2), will
have to be s tored in the memory of segment p.

2 <_ p ~_ N : ~ ~_~ (wp, lt 2 *Bandwidth(tl,t2)) ~ M~ (1) Vp,

t2ET tl~t 2
2. Synthesis Model: T h e cons t ra in t s due to synthesis are:

a. Unique opera t ion ass ignment cons t ra in t : Each opera t ion should be scheduled a t
one cont ro l s tep and on only one funct ional uni t .
b. Tempora l map p i ng cons t ra in t : P reven t s more t h a n one opera t ion f rom being
scheduled at the same control s tep on the same func t iona l uni t .
c. Dependency cons t ra in t : Main ta ins the dependency re la t ionship be tween opera-
t ions.

3. Combined Par t i t ion ing and Synthesis Model: T h e set F , ob ta ined initially, is an
u p p e r - b o u n d on the n u m b e r of func t iona l uni t s t h a t can be used in a segment . To
de t e rmine whe the r a funct ional un i t has been used in a segment , we define Upk;
upk = 1, if func t ional un i t k E F is used in segment p, 1 < p < N, 0 otherwise.
a. Resource cons t ra in ts : We in t roduce resource cons t r a in t s in t e rms of var iables
Upk. Typica l FPGA resources include funct ion genera tors , combina t iona l logic blocks
(¢LBs), etc. Similar equat ions can be added if mul t iple resource types exist in t he
FPGAs. o~ is a user defined logic-opt imizat ion fac tor in the range [0;1]. Typica l
values [2] of a using Synopsys FPGA c o m p o n e n t s are in the range [0.6;0.8].

Vv : ~ . ~__~(~ • F a (k)) < c (2)

kEF
b. Unique control s tep cons t ra in t : We in t roduce this cons t r a in t to make sure t h a t
each control s tep is m a p p e d uniquely to a segment .

4. Cos t Funct ion: Minimize the cost of d a t a t rans fe r be tween segments .

Minimize: E E E (wPtl*2*Bandwidth(tl't2)) (3)

t2ET t l ~ 2 l_<p~N

For the sake of brev i ty we have presented only a pa r t of the NLP model. For more
detai ls a b o u t the cons t ra in ts , l inear izat ion, and solut ion by ILP techniques refer to [3].
To reduce the a m o u n t of t ime required for solving the ILP model , t he model may be
solved to find a cons t ra in t sat isfying solut ion r a t h e r t h a n an op t ima l one.
I n t e r a c t i o n w i t h S p a t i a l P a r t i t i o n e r : Each segment in the t e m p o r a l pa r t i t i on mus t
fit spat ia l ly on the reconfigurable board . Since the t e m p o r a l pa r t i t i one r uses aggregate

34

estimates to model the underlying resources, the segment may fail to fit on the board.
In such cases the spatial partitioner provides a feedback to the temporal partitioner
by posing tightened constraints on the architectural resources to compensate for un-
derestimations. Depending on the number of temporal segments that failed spatial
partitioning, the temporal partitioner may choose to re-partition the entire task graph
or may just re-partition the segments that violated the constraints.

4 Spatial Partitioning
P r o b l e m F o r m u l a t i o n : Let Jr = {fl, f 2 , - " fN} be the N FPGAs available on the
target reconfigurable board. Each FPGA has a set of attributes associated with it. For
any f ~ ~-: C(f) , F (f) , P(f) , and L(f) denote the bounds on the number of function
generators, flip-flops, uncommitted I/0 pins, and local memory size in f . CM repre-
sents the direct connection matrix. It defines the number of dedicated fines pre-routed
between each pair of FPGAs. Ie denotes the number of programmable interconnection
channels available on the board. All of the above constraints posed by the reconfigurable
board are part of the architectural constraints as described in Section 2.
A spatial partition of a task graph, TG = (V, M, E), where V is the set of task nodes,
M is the set of memory segments, and E is the set of dependency edges and channels,
is a binding of each task in V to a unique FPGA and each logical memory segment to a
unique local/shared memory, such that all architectural constraints are satisfied. Each
task graph that is partitioned, corresponds to a temporal segment which is a subgraph
of the whole design.
G e n e t i c S p a t i a l P a r t i t i o n i n g A l g o r i t h m : V~re model and solve the spatial parti-
tioning problem through a Genetic Algorithm (GA). The genetic search procedure was
developed by John Holland in 1975 [4], and since then has been used successfully for
solving several combinatorial problems in VLSI design automation [5].
Encoding: The solution representation must capture the binding of tasks to the FPGAs
and the binding of logical memory segments to local/shared physical memories. We
use a simple integer array to encode the above information. Each chromosome has two
integer arrays - task array TA and memory array MA. The length of the TA is equal
to the number of tasks in the task graph (t) and the length of the MA is equal to
the number of memory segments (m). Consider a board having N F P G A s with local
memories and a shared memory. For 1 < i < t, the variable TA[i], ranging from 1
through N, represents the FPGA number to which task i is assigned. Similarly, for
1 < i < m, the variable MAil], ranging from 0 through N, represents the memory
bindings. MAil] = 0 implies that the memory segment i is mapped to the shared
memory.
Initied Population: The task arrays for all chromosomes in the initial population axe
set to random legal values. Then based on the task assignments, for each chromosome,
we assign the logical memory segments to local physical memories. If the majority of
the tasks which access a memory segment are assigned to F P G A k then we bind the
memory segment to the local memory of FPGA k.
Crossover: We use a uniform crossover operator. A binary string, T, whose length is
equal to the greater of the number of tasks and the number of memory segments, is
generated. Each bit in this template is randomly set to either 0 or 1. Next, two parents
are probabifistically selected for mating. Let ptl, pt2 be the task arrays and pro1, pm2
the memory arrays in the parents. Then cta, ct2, cml, and cm2, are the corresponding
arrays in the two child chromosomes resulting from a crossover defined as:

c t l [i]={p t l [i] i fT (i)=O c t2[i]={pt~[i] i fT(i)=l { p m l [j] i f T (j) = O
pt2[i] otherwise pt2[i] otherwise cml[j] = pm2[j] otherwise

f pro1 b'] if T(j) = 1
cm2 [j] = \ pro2 [j] otherwise In these equations, i and j have legal values

Mutation: The mutation operator randomly selects an entry from the chromosome
arrays and changes its value to another legal value.

35

P a r t i t i o n Cos t E s t i m a t i o n : The cost of each chromosome (spatial partition) is de-
pendent on several constraint satisfaction requirements. The constraints we consider
are area constraint (A), Speed Constraint (S), Pin Constraints (P), Interconnect Con-
straint (I), and Memory Constraint (M). We use the the same multi-constraint cost
cost function used in [5, 6]. In the case when the spatial partitioner cannot achieve a
constraint satisfying solution, it flags a [allure and returns tighter constraints for use
by the temporal partitioner. The new aggregate constraints are based on the degree of
cost violated by the best achieved partition.

5 Design Synthesis
At the core of the SPARCS system is a high-level syn-
thesis (HLS) tOOl, DSS [7] (Distributed Synthesis Sys-
tem), which accepts a behavioral description speci-
fied in VHDL and produces an equivalent RTL design
consisting of a Datapath and a Controller. A collec-
tion of light-weight layout algorithms is integrated
into DSS in order to generate a floorplan along with
the RTL design (Figure 2). This enables SPARES to
accurately predict the performance of the FPGA i ln-
plementation. DSS accepts a clock period constraint,
and tries to minimize the maximum combinational
delay of any register transfer. The area constraint is
satisfied by trying to minimize the size of both the
datapath and the controller.
The HLS process consists of component set genera-
tion, scheduling and performance estimation, regis-

}
t

Fig. 2. H LS F l o w G r a p h

ter and interconnect optimization, and controller generation. For a detailed discussion
of these phases, we refer the reader to Roy et al. [7]. For the purpose of this paper, we
briefly discuss the scheduling and controller generation phases.
Scheduling and Performance Estimation: The scheduler [7] in DSS handles several con-
straints provided by the SPARCS system. The scheduler resolves memory access conflicts
by scheduling operations that access the same memory in different time steps. Also,
if the dataflow graph has user-specified critical regions, a time-constrained scheduling
is performed and the estimated resources are checked with those available in the RTL
component set. The SPARCS system also has a global scheduler that tries to resolve
memory conflicts across tasks assigned to different FPGAs. After the scheduling phase,
the SPARES system estimates the performance of the design in one of two ways: (1)
The HLS performance estimator can be invoked to get the rough design estimates; and
(2) The complete rtTL design can be estimated using the light-weight HLS design es-
timators. The estimated RTL design along with the macro library can be provided to
the light-weight layout estimators to get the design estimates. The second approach is
slower than the first but provides more accurate estimates.
Controller Generation: The controller for each FPGA is conceptually organized as a
collection of communicating synchronous Finite State Machines (FSMS) each corre-
sponding to a VHDL process (task). There is a privileged FSM called the root FSM that
controls the execution of all other FSMs. This controller model directly facilitates the
resolution of memory access conflicts between tasks. The root FSM also generates a
finish signal after all other FSMs have reached their finish states. In order to let the
host computer know the completion of a temporal segment, the VlLS tool synthesizes
logic in the form of an and-gate chain, across all FPGAs that tie up the individual finish
signals to provide the done signal for the entire board. The HLS tool of the SPARCS
system produces a datapath and controller pair for each FPGA assuming a synchronous
clock for all the FPGAS on the board.
The HLS tool can be used in a lighter form in order to obtain area and performance
estimates on one or more possible RTL implementations. This would involve invocation

36

of only the initial design space exploration phases (refer Figure 2) of HLS. The l ight-
w e i g h t IlLS e s t i m a t o r always over-estimates the design performance, ensuring that the
actual HLS process will generate only a better RTL implementation. Also, since the
estimation process does not go through the entire (heavy-weight) HLS process, it will
be considerably faster than the actual HLS.

6 Case Study
For the case study, we consider the Joint Photographic Experts
Group (aPEG) [8] still image compression standard, shown in
Figure 3. The five main tasks in the JPEG flow are: (1) Dis-
crete Cosine Transform (DCT), (2) Quantization, (3) Zig-Zag
Transformation, (4) Run-Length Encoding, and (5) Huffman
Encoding. As a first step, the task graph of the JPEG algorithm,
shown in Figure 3, was implemented in behavioral VHDL and
thoroughly simulated. DSS[7] was then used to perform high-
level synthesis on each individual task in the design. Following
high-level synthesis, the RTL designs and their floorplans were
taken through Xilinx place and route tools. The Huffman en-
coding task, due to its large size was transformed further into
a col lec t ion of tasks, each requiring at most one FPGA.
A board consisting of 512 interconnect channels, 32KBytes of

F ig . 3, J P E G shared memory, and four XC4008 FPGAs with 4KBytes of local
memory each, was considered for this experiment. Temporal

partit ioning of the 3PEG task graph resulted in the first four tasks (DCT, quantization,
zig-zag and run-length encoding) being mapped to the first temporal part i t ion and
tasks of Huffman Encoding to the second. For each of the temporal steps the spatial
parti t ioner trivially assigned the tasks to one FPGA each, satisfying the architectural
and routing constraints. The entire JPEG compression was successfully executed in two
reconfigurations of the RC for several test images. The algorithm achieved an average
compression factor of 30 times the original image size.

7 Summary
We presented an integrated design environment for automatically partitioning and
synthesizing behavioral specifications onto multi-FPGA based reconfigurable comput-
ers. Approaches for temporal partitioning, spatial partitioning, and high-level synthesis
geared towards reconfigurable architectures were presented. SPARCS system is continu-
ing to develop towards handhng large designs.

References
1. M. Vasitko and D. Ait-Boudaoud, "Architectural Synthesis Techniques for Dynamically Recon-

figurable Logic", FPL'96.
2. M. Vootukuru, R. Vemuri, and N. Kumar, "Resource Constrained RTL Partitioning for Synthesis

of Multi-FPGA Designs", Proceedings of the lOth Internat ional Conference on VLSI Design,
IEEE Press, 12 pages, 140-145, January 1997.

3. M, Kaul and 1%. Vemuri, "Optimal Temporal Partitioning and Synthesis for Reconfigurable Ar-
chitectures", to appear in Design, Automat ion, and Test in Europe, February 98.

4. Holland J., "Adaptation in Natural and Artificial Systems", Ann Arbor: University of Michigan
Press, 1975.

5. Ram Vemuri, "Genetic Algorithms for Partitioning,, Placement, and Layer Assignment for Mul-
tichip Modules", PhD thesis, University of Cincinnati, usA, July 199$.

6. V. Srinivasan, S. Radhakrishnan, and R. Vemuri, "Hardware/Software Partitioning with Inte-
grated Hardware Design Space Exploration", to appear in Design, Automation, and Test in
Europe, February 1998.

7. J.Roy, R.Dutta, N.Kumar, R.Vemuri, "DSS: A Distributed High-Level Synthesis System for
VHDL Specifications", IEEE Design and Test o] Computers 1992.

8. Gregory K. Wallace, "The JPEG Still Picture Compression Standard", Communicat ions of the
ACM, pages 30-44 , Apri l 1991.

