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A b s t r a c t .  This paper  presents an integrated design .system ca~ed SPARCS 
(Synthesis and Partitioning for Adaptive Reconfigurable Computing Sys- 
tems) for automaticaJly partitioning and synthesizing designs for recon- 
figurable boards with multipte field-programmable devices (FPCAs). The 
SPARCS system accepts design specifications at the behavior level, in the 
form of task graphs. The system contains a tempora /par t i t ioning rod 
to temporally divide and schedule the tasks on the reconfiguraNe archi- 
tecture, a spatiM partitioning rod to map the tasks to individuM FPGAs, 
and a high-level synthesis tool to .synthesize efficient register-transfer 
level designs for each set of tasks destined to be downloaded on each 
FPGA. CommerciM logic and layout synthesis tools are used to complete 
logic synthesis, placement, and routing for each FPGA design segment. A 
distinguishing feature of the SPARCS system is the tight integration of the 
partitioning and synthesis tools to accurately predict and control design 
performance and resource utilizations. This paper  presents an overview 
of SPARES and the various algorithms used in the system, along with 
a brief description of how a JPEG-like image compression algorithm is 
mapped to a multi-FPGA board using SPARCS. 

1 Introduction 
During the past few years, reconfigurable computers (RCs) based on multiple field- 
programmable devices (FPGAs) have become ubiquitous. In order to fully realize the 
performance and cost advantages offered by these architectures, it  is necessary to de- 
velop architecture-independent partitioning and synthesis environments for reconfig- 
urable computers. 

Although well-developed commercial tools exist to perform the tasks of logic and 
layout synthesis for FPGAS, high-level synthesis and multi-FPGA partitioning, both spa- 
tial and temporal,  need to be further developed before mature commercial tools can 
emerge. Especially ignored, even in the academic community, is the problem of tem- 
poral partitioning. 

This paper presents the architecture of the SPARCS environment and describes a 
typical design flow through SPARCS. In addition, a brief summary of each major  tool 
in SPARCS is provided. Whereas various algorithms and tools in SPARCS are subjects  of 
detailed topic-specific publications in their own right, the aim of this paper is to provide 
a birds-eye view of the SPARCS system, with a specific focus on algorithm integration 
and users' view. 

The rest of this paper is organized as follows: Section 2 provides an overview of 
the SPARCS design environment. Sections 3, 4 and 5 discuss the temporal  parti t ioning, 
spatial  partitioning, and high-level synthesis algorithms and techniques used in the 
SPARCS system. Section 6 examines a design flow in SPARes and Section 7 contains 
concluding remarks. 

2 Users' View of SPARCS 
Figure 1 shows the architecture of the SPARCS system. A design specification is sub- 
mit ted in the form of four inputs to the SPARCS system: 
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1. Application's Behavior Specification: The SPARCS system accepts a behavioral spec- 
ification of an application in the form of a set of tasks. Shared data is stored 
in memories. In addition, tasks may communicate through direct communication 
channels. Tasks are modeled in behavior-level VHDL. We assume that the speci- 
fication is written such that the user provides resolution for critical regions that 
access shared memory. 

2. Rc Architecture Specification~ SPARCS admits the specification of the target recon- 
figurable FPGA board. Allowed features include local memories, globally shared 
memory, various interconnect topologies, and features of the FPGA and memory 
devices used on the board. Architecture specification includes the type of FPGAS 
used, number of FPGAs, number of resources (function generators and flip-flops) 
on each FPGA, interconnect topology, sizes of memory modules, etc. 

3. Constraints: Users of SPARCS specify a constraint on the minimum clock speed at 
which to clock the design. In addition, users may specify timing constraints on any 
straight-line block of VtlDL code inside the tasks. 

4. Macro Library: The macro library contains parameterized register-level compo- 
nents. These macros are used to estimate resource counts and performance of 
contemplated designs during high-level synthesis. 

on L,ight-Wsight i 
High*Level Synth i 

Fig.  1. S P A R C S  S y s t e m  

Typically, the reconfigurable board is attached 
to a host computer. The host controls the loading of 
the design and monitors the execution of the board. 
The SPARCS system produces a set of FPGA bitmap 
files, a reconfiguration schedule that specifies when 
these bitmap files should be loaded on the individual 
FPGAs in the Re, and in the case of programmable 
interconnect, a mask (configuration) of the intercon- 
nect for each temporal segment. 

Preprocessingis the first stage of the SPARCS de- 
sign flow. Three tasks are performed during prepro- 
cessing: (1) memory graph extraction, (2) depen- 
dency analysis for each task, and (3) resource and 
performance estimation for each task. A memory 
graph represents the relationship among the tasks 
and memories explicitly and will be used during par- 
titioning. Dependency analysis captures the task- 
level dependencies and the dataflow among the tasks. 
Finally, each task is processed by an estimator that  

estimates the FPGA resource requirements, clock speed, and schedule length of each 
task, as if it were to be individually synthesized. 

3 Temporal Partitioning 
The temporal partitioner has an abstract view of the board resources and uses aggre- 
gate costs for partitioning. From the architectural specification described in Section 2, 
the overall resource constraint (C) and shared memory size (M~) are derived. The 
temporal partitioner heuristically estimates the upper-bound on the number of tem- 
poral segments (N) for building a Non-Linear Programming (NLP) formulation. It uses 
a fast list-scheduling heuristic (a variation of [1]) for this estimation. We have incor- 
porated a synthesis model to determine the amount of resource sharing among tasks. 
This requires an operation level modeling of each task for the synthesis subproblem. 
As a preprocessing step, we determine the mobility ranges (ASAP and ALAP values) of 
all the operations in the combined graph of the entire specification. The NLP model is 
linearized and solved by an ILP (Integer Linear Program) solver. We use the following 
notation: 
ti ---+ tj, a directed edge between tasks, t l , t j  E T, represents a dependency; Bandwidth(ti, tj), 
number of data units to be communicated between tasks ti and tj; Fu(i), the set of functional units 
on which operation i can execute; F, the set of functional units corresponding to the most parallel 
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schedule obtained from the high-level synthesis estimator; N, the upper bound on the number of 
segments which are numbered 1 to N, the index specifies the order of execution of the segments; 
M~, the shared memory available for storage between segments; FG(k), the number of function 
generators used for functional unit k; C, the resource capacity of the underlying board architecture; 
I, the set of all operations in the specification. 

N o n - L i n e a r  0-1 Model: We describe here  the  variables,  cons t ra in ts ,  and  cost  func t ion  
of our  NLP model .  Not  all cons t ra in t s  have been  shown in m a t h e m a t i c a l  form. T h e  
variables:  (1) ytp models  the  par t i t ion ing  at  the  task  level: ytp = 1, if t a sk  t E T is 
placed in segment  p, 1 < p < N; 0 otherwise.  (2) Xijk models  the  synthes is  subp rob lem 
at  the  opera t ion  level: x~jk = 1, if opera t ion  i E I is placed in control  s tep  j E CS( i )  
and uses func t iona l  uni t  k C Fu(i); 0 otherwise.  (3) wptlt2 models  the  c o m m u n i c a t i o n  
cost incur red  if two tasks  connec ted  to each o ther  are not  placed in the  same segment :  
wptlt2 = 1, if t ask  t l  is placed on any segment  1 - . . p  - 1 and  t2 on any o f p . . . N  and  
t l  ~ t~: 0 otherwise,  ytp and xijk are the  f u n d a m e n t a l  model ing variables.  All o the r  
var iables  are secondary  and  are cons t ra ined  in t e rms  of the  f u n d a m e n t a l  variables.  

1. T e m p o r a l  Pa r t i t ion ing  Model: Tempora l  pa r t i t ion ing  has  the  following cons t ra in ts :  
a. Uniqueness  cons t ra in t :  Each task  should be  placed in exact ly  one segment .  
b. T e m p o r a l  order  cons t ra in t :  A t a sk  t l  on which ano the r  t a sk  t2 is d e p e n d e n t  
c a n n o t  be  placed in a l a te r  segment  t h a n  the  segment  in which task  t2 is placed. 
c. Shared  m e m o r y  cons t ra in t :  T h e  a m o u n t  of i n t e rmed ia t e  d a t a  s tored be tween  
segments  should be less t h a n  the  sha red  m e m o r y  M~. T h e  variable  Wptlt2, if 1, 
signifies t h a t  ta and  t~ have a da t a  dependency  and  are being placed across segment  
p. Therefore ,  the  d a t a  being com m un i ca t ed  be tween  them,  Bandwidth( t1 ,  t2), will 
have  to be s tored in the  memory  of segment  p. 

2 <_ p ~_ N : ~ ~_~ (wp, lt 2 *Bandwidth(tl,t2) ) ~ M~ (1) Vp, 

t2ET tl~t 2 
2. Synthesis  Model:  T h e  cons t ra in t s  due to synthesis  are: 

a. Unique  opera t ion  ass ignment  cons t ra in t :  Each  opera t ion  should be  scheduled a t  
one cont ro l  s tep  and  on only one funct ional  uni t .  
b. Tempora l  map p i ng  cons t ra in t :  P reven t s  more  t h a n  one opera t ion  f rom being  
scheduled at  the  same control  s tep on the  same func t iona l  uni t .  
c. Dependency  cons t ra in t :  Main ta ins  the  dependency  re la t ionship  be tween  opera-  
t ions.  

3. Combined  Par t i t ion ing  and  Synthesis  Model: T h e  set F ,  ob ta ined  initially, is an  
u p p e r - b o u n d  on the  n u m b e r  of func t iona l  uni t s  t h a t  can be  used in a segment .  To 
de t e rmine  whe the r  a funct ional  un i t  has  been  used in a segment ,  we define Upk; 
upk = 1, if func t ional  un i t  k E F is used in segment  p, 1 < p < N,  0 otherwise.  
a. Resource cons t ra in ts :  We in t roduce  resource cons t r a in t s  in t e rms  of var iables  
Upk. Typica l  FPGA resources include funct ion  genera tors ,  combina t iona l  logic blocks 
(¢LBs), etc. Similar equat ions  can be added if mul t iple  resource types  exist  in t he  
FPGAs. o~ is a user defined logic-opt imizat ion  fac tor  in the  range  [0;1]. Typica l  
values [2] of a using Synopsys FPGA c o m p o n e n t s  are in the  range  [0.6;0.8]. 

Vv : ~ .  ~__~(~  • F a ( k ) )  < c (2) 

kEF 
b. Unique  control  s tep  cons t ra in t :  We in t roduce  this  cons t r a in t  to make  sure  t h a t  
each control  s tep is m a p p e d  uniquely to a segment .  

4. Cos t  Funct ion:  Minimize the  cost of d a t a  t rans fe r  be tween  segments .  

Minimize:  E E E (wPtl*2*Bandwidth(tl't2)) (3) 

t2ET t l ~  2 l_<p~N 

For the  sake of brev i ty  we have presented  only a pa r t  of the  NLP model.  For more  
detai ls  a b o u t  the  cons t ra in ts ,  l inear izat ion,  and  solut ion by ILP techniques  refer to  [3]. 
To reduce  the  a m o u n t  of t ime  required for solving the  ILP model ,  t he  model  may  be  
solved to find a cons t ra in t  sat isfying solut ion r a t h e r  t h a n  an op t ima l  one. 
I n t e r a c t i o n  w i t h  S p a t i a l  P a r t i t i o n e r :  Each  segment  in the  t e m p o r a l  pa r t i t i on  mus t  
fit spat ia l ly  on the  reconfigurable  board .  Since the  t e m p o r a l  pa r t i t i one r  uses aggregate  
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estimates to model the underlying resources, the segment may fail to fit on the board. 
In such cases the spatial partitioner provides a feedback to the temporal partitioner 
by posing tightened constraints on the architectural resources to compensate for un- 
derestimations. Depending on the number of temporal segments that failed spatial 
partitioning, the temporal partitioner may choose to re-partition the entire task graph 
or may just  re-partition the segments that violated the constraints. 

4 Spatial Partitioning 
P r o b l e m  F o r m u l a t i o n :  Let Jr = {fl, f 2 , - "  fN} be the N FPGAs available on the 
target reconfigurable board. Each FPGA has a set of attributes associated with it. For 
any f ~ ~-: C(f) ,  F ( f ) ,  P( f ) ,  and L(f)  denote the bounds on the number of function 
generators, flip-flops, uncommitted I/0 pins, and local memory size in f .  CM repre- 
sents the direct connection matrix. It defines the number of dedicated fines pre-routed 
between each pair of FPGAs. Ie denotes the number of programmable interconnection 
channels available on the board. All of the above constraints posed by the reconfigurable 
board are part of the architectural constraints as described in Section 2. 
A spatial partition of a task graph, TG = (V, M, E), where V is the set of task nodes, 
M is the set of memory segments, and E is the set of dependency edges and channels, 
is a binding of each task in V to a unique FPGA and each logical memory segment to a 
unique local/shared memory, such that all architectural constraints are satisfied. Each 
task graph that is partitioned, corresponds to a temporal segment which is a subgraph 
of the whole design. 
G e n e t i c  S p a t i a l  P a r t i t i o n i n g  A l g o r i t h m :  V~re model and solve the spatial parti- 
tioning problem through a Genetic Algorithm (GA). The genetic search procedure was 
developed by John Holland in 1975 [4], and since then has been used successfully for 
solving several combinatorial problems in VLSI design automation [5]. 
Encoding: The solution representation must capture the binding of tasks to the FPGAs 
and the binding of logical memory segments to local/shared physical memories. We 
use a simple integer array to encode the above information. Each chromosome has two 
integer arrays - task array TA and memory array MA. The length of the TA is equal 
to the number of tasks in the task graph (t) and the length of the MA is equal to 
the number of memory segments (m). Consider a board having N F P G A s  with local 
memories and a shared memory. For 1 < i < t, the variable TA[i], ranging from 1 
through N, represents the FPGA number to which task i is assigned. Similarly, for 
1 < i < m, the variable MAil], ranging from 0 through N, represents the memory 
bindings. MAil] = 0 implies that the memory segment i is mapped to the shared 
memory. 
Initied Population: The task arrays for all chromosomes in the initial population axe 
set to random legal values. Then based on the task assignments, for each chromosome, 
we assign the logical memory segments to local physical memories. If the majority of 
the tasks which access a memory segment are assigned to F P G A  k then we bind the 
memory segment to the local memory of FPGA k. 
Crossover: We use a uniform crossover operator. A binary string, T, whose length is 
equal to the greater of the number of tasks and the number of memory segments, is 
generated. Each bit in this template is randomly set to either 0 or 1. Next, two parents 
are probabifistically selected for mating. Let ptl, pt2 be the task arrays and pro1, pm2 
the memory arrays in the parents. Then cta, ct2, cml, and cm2, are the corresponding 
arrays in the two child chromosomes resulting from a crossover defined as: 

c t l [ i ]={p t l [ i ] i fT ( i )=O c t2[ i ]={pt~[ i] i fT( i )=l  { p m l [ j ] i f T ( j ) = O  
pt2[i] otherwise pt2[i] otherwise cml[j] = pm2[j] otherwise 

f pro1 b'] if T(j) = 1 
cm2 [j] = \ pro2 [j] otherwise In these equations, i and j have legal values 

Mutation: The mutation operator randomly selects an entry from the chromosome 
arrays and changes its value to another legal value. 
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P a r t i t i o n  Cos t  E s t i m a t i o n :  The cost of each chromosome (spatial partition) is de- 
pendent on several constraint satisfaction requirements. The constraints we consider 
are area constraint (A), Speed Constraint (S), Pin Constraints (P), Interconnect Con- 
straint (I), and Memory Constraint (M). We use the the same multi-constraint cost 
cost function used in [5, 6]. In the case when the spatial partitioner cannot achieve a 
constraint satisfying solution, it flags a [allure and returns tighter constraints for use 
by the temporal partitioner. The new aggregate constraints are based on the degree of 
cost violated by the best achieved partition. 

5 Design Synthesis 
At the core of the SPARCS system is a high-level syn- 
thesis (HLS) tOOl, DSS [7] (Distributed Synthesis Sys- 
tem), which accepts a behavioral description speci- 
fied in VHDL and produces an equivalent RTL design 
consisting of a Datapath and a Controller. A collec- 
tion of light-weight layout algorithms is integrated 
into DSS in order to generate a floorplan along with 
the RTL design (Figure 2). This enables SPARES to 
accurately predict the performance of the FPGA i ln-  
plementation. DSS accepts a clock period constraint, 
and tries to minimize the maximum combinational 
delay of any register transfer. The area constraint is 
satisfied by trying to minimize the size of both the 
datapath and the controller. 
The HLS process consists of component set genera- 
tion, scheduling and performance estimation, regis- 

} 
t 

Fig.  2. H LS  F l o w G r a p h  

ter and interconnect optimization, and controller generation. For a detailed discussion 
of these phases, we refer the reader to Roy et al. [7]. For the purpose of this paper, we 
briefly discuss the scheduling and controller generation phases. 
Scheduling and Performance Estimation: The scheduler [7] in DSS handles several con- 
straints provided by the SPARCS system. The scheduler resolves memory access conflicts 
by scheduling operations that access the same memory in different time steps. Also, 
if the dataflow graph has user-specified critical regions, a time-constrained scheduling 
is performed and the estimated resources are checked with those available in the RTL 
component set. The SPARCS system also has a global scheduler that tries to resolve 
memory conflicts across tasks assigned to different FPGAs. After the scheduling phase, 
the SPARES system estimates the performance of the design in one of two ways: (1) 
The HLS performance estimator can be invoked to get the rough design estimates; and 
(2) The complete rtTL design can be estimated using the light-weight HLS design es- 
timators. The estimated RTL design along with the macro library can be provided to 
the light-weight layout estimators to get the design estimates. The second approach is 
slower than the first but provides more accurate estimates. 
Controller Generation: The controller for each FPGA is conceptually organized as a 
collection of communicating synchronous Finite State Machines (FSMS) each corre- 
sponding to a VHDL process (task). There is a privileged FSM called the root FSM that 
controls the execution of all other FSMs. This controller model directly facilitates the 
resolution of memory access conflicts between tasks. The root FSM also  generates a 
finish signal after all other FSMs have reached their finish states. In order to let the 
host computer know the completion of a temporal segment, the VlLS tool synthesizes 
logic in the form of an and-gate chain, across all FPGAs that tie up the individual finish 
signals to provide the done signal for the entire board. The HLS tool of the SPARCS 
system produces a datapath and controller pair for each FPGA assuming a synchronous 
clock for all the FPGAS on the board. 
The HLS tool can be used in a lighter form in order to obtain area and performance 
estimates on one or more possible RTL implementations. This would involve invocation 
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of only the initial design space exploration phases (refer Figure 2) of HLS. The l ight-  
w e i g h t  IlLS e s t i m a t o r  always over-estimates the design performance, ensuring that  the 
actual HLS process will generate only a better RTL implementation. Also, since the 
estimation process does not go through the entire (heavy-weight) HLS process, it will 
be considerably faster than the actual HLS. 

6 Case Study 
For the case study, we consider the Joint Photographic Experts  
Group (aPEG) [8] still image compression standard,  shown in 
Figure 3. The five main tasks in the JPEG flow are: (1) Dis- 
crete Cosine Transform (DCT), (2) Quantization, (3) Zig-Zag 
Transformation, (4) Run-Length Encoding, and (5) Huffman 
Encoding. As a first step, the task graph of the JPEG algorithm, 
shown in Figure 3, was implemented in behavioral VHDL and 
thoroughly simulated. DSS[7] was then used to perform high- 
level synthesis on each individual task in the design. Following 
high-level synthesis, the RTL designs and their floorplans were 
taken through Xilinx place and route tools. The Huffman en- 
coding task, due to its large size was transformed further into 
a col lec t ion  of tasks, each requiring at most one FPGA. 
A board consisting of 512 interconnect channels, 32KBytes of 

F ig .  3, J P E G  shared memory, and four XC4008 FPGAs with 4KBytes of local 
memory each, was considered for this experiment. Temporal 

partit ioning of the 3PEG task graph resulted in the first four tasks (DCT, quantization, 
zig-zag and run-length encoding) being mapped to the first temporal  part i t ion and 
tasks of Huffman Encoding to the second. For each of the temporal steps the spatial  
parti t ioner trivially assigned the tasks to one FPGA each, satisfying the architectural 
and routing constraints. The entire JPEG compression was successfully executed in two 
reconfigurations of the RC for several test images. The algorithm achieved an average 
compression factor of 30 times the original image size. 

7 Summary 
We presented an integrated design environment for automatically partitioning and 
synthesizing behavioral specifications onto multi-FPGA based reconfigurable comput- 
ers. Approaches for temporal partitioning, spatial partitioning, and high-level synthesis 
geared towards reconfigurable architectures were presented. SPARCS system is continu- 
ing to develop towards handhng large designs. 
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