
35.2

An Automated Temporal Partitioning and Loop Fission approach for FPGA based
reconfigurable synthesis of DSP applications *

Meenakshi Kaul, Ranga Vemuri, Sriram Govindarajan and Iyad Ouaiss
{mkaul,ranga,sriram,iouaiss}@ececs .uc .edu

Digital Design Environments Laboratory, University of Cincinnati, Cincinnati, OH 45221-0030

Abstract

W e present an automated temporal Partitioning and loop
transformation approach for developing dynamically recon-
figurable designs starting from behavior level specifications.
A n Integer Linear Programming (ILP) model is formulated
to achieve near-optimal latency designs. We, also present a
loop restructuring method to achieve maximum throughput
f o r a class of DSP applications. This restructuring transfor-
mation is performed on the temporally partitioned behavior
and results in near-optimization of throughput. W e discuss
eficient memory mapping and address generation techniques
for the synthesis of reconfigurable designs. A Case study on
the Joint Photographic Experts Group (JPEG) image com-
pression algorithm demonstrates the effectiveness of our ap-
proach.

1 lntnoduction

The reconfiguration capability of the SRAM FPGAs can
be utilized to fit a large application onto the FPGA by par-
titioning the application over time into multiple segments.
The division of an application into temporal segments that
itre configured one after the other on the FPGA, is called
temporal partitioning. The first temporal partition receives
input data, performs computations and stores the interme-
diate result into the on-board memory. The device is then
reconfigured for the next segment, which computes results
based on the intermediate data, from the previous parti-
'cion. This process is repeated until all the partitions are
executed. Such temporally partitioned designs are called
Run-Time Reconfigured (RTR) systems.

In this paper, we concentrate on behavior level design
descriptions to be temporally partitioned. Since the re-
configuration overhead for currently available hardware is
usually orders of magnitude larger than the latency of the
design, we need to concentrate on throughput maximiza-
tion techniques to minimize the effects of the reconfigura-
tion overhead. For throughput maximization, we present an
automated technique for DSP style applications, that au-
tomatically sequences multiple computations in each tem-
poral partition to reduce the reconfiguration overhead. We
use a loop transformation approach called loop fission. To
our knowledge, no existing tools perform automated loop
transformation to reduce the reconfiguration overhead in the

'This work is supported in part by the US Air Force, Wright Lab-
oratory, WPAFB, under contract number F33615-97-C-1043.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
01999 ACM 1-581 13-092-9/99/oM)6..$5.00

FPGA

Figure 1: RTR System Architecture

context of reconfigurable processors. An experiment on the
JPEG [17] algorithm demonstrates the effectiveness of our
approach.

Currently many designers perform temporal partitioning
manually [l, 21 or the designer needs to specify the partition-
ing points of the application [3]. Others, have addressed
temporal partitioning heuristically, by extending existing
scheduling and clustering techniques of high-level synthesis
[4, 5, 6, 81. In an earlier work [7] we presented a mathe-
matical model for simultaneous temporal partitioning and
synthesis on operation level data-flow graphs. In that ap-
proach, synthesis cost exploration was performed at an op-
eration level in the task graph. Due to the size of the for-
mulation, small behavior specifications can be handled. In
the current work the temporal partitioning tool performs
exploration at the task level. It can handle large designs
and can simultaneously handle multiple design constraints
eg., CLBs, on-board memories while obtaining minimum la-
tency (delay) designs, that cannot be handled by current
techniques.

We present the system architecture and design flow in
Section 2, the temporal partitioning model in Section 2.1
and the loop fission technique in Section 2.2. Extensions to
support loop fission are discussed in Section 3, experimental
study in Section 4 and conclusions in Section 5.

2

In Figure 1, the hardware architecture on which the Run-
Time reconfigured design is to be mapped is shown. It con-
sists of an FPGA communicating with an external memory.
Each temporal partition is mapped to the FPGA, and the
data flowing between two temporal partitions is mapped to
the memory. A Host interacts with both the FPGA and the
memory and is used to load new configurations and store the
intermediate memory on the host, if needed. In Figure 2,
we present the design flow for building a Run-Time Recon-
figured (RTR) design. The input specification, is a behavior
level design description of the application to be implemented
on the reconfigurable hardware. The input specification is
shown in Figure 3. It consists of data flow graph, with an
outer implicit loop.
Task Estimation: First, the behavior level estimation en-
gine, part of a High Level synthesis tool, DSS [13], estimates
the resources and execution delay or latency for each task

System Architecture and Design Flow

616

Bitmap files
for each
configuration

Figure 2: Design Flow

separately based on the architecture and user constraints.
The architecture constraints are the resources available on
the FPGA, the user constraints are the maximum clock-
width for the design. The HLS tool makes use of a compo-
nent library characterized for the particular reconfigurable
device, to estimate the resource and delay. To bridge the
gap between behavior and the final layout on the FPGA,
floor planning based layout estimation techniques [lo, 111
are incorporated in the estimation engine.
Temporal Partitioning: Next, the temporal partitioning
tool divides the task graph into multiple temporal segments,
that run one after the other on the reconfigurable device.
We discuss the ILP formulation used to solve the multi-
constraint temporal partitioning problem later in detail.
Loop Fission: The output from the temporal partitioning

engine is the optimal latency design feasible. However, since
the reconfiguration overheads of currently available recon-
figurable systems is usually very large, an RTR design will
not in general give better performance than its static coun-
terpart. This analysis tool is designed for a class of DSP
applications, where the task graph of behavior specification
is executed inside an iterative loop. The same computation
needs to be performed a large number of times depending
on the input data, which is known only at runtime. A loop
restructuring (loop fission [14]) technique will be used to
maximize throughput for such applications, while minimiz-
ing the reconfiguration overhead. The output of this step is
mapping of tasks to the temporal partitions and the design
transformation needed to run more than one computation
on the same temporal partition. It also generates a software
code to sequence the configurations from the host.
High Level Synthesis: A high level synthesis system is
used to generate the RTL design for each temporal segment.
Logic/Layout Synthesis: We use commercial tools, for
logic synthesis (Synplify tools from Synplicity) and layout
synthesis (Xilinx M1 tools) to convert the RTL description
of each configuration into bitmap files for the FPGA.

Figure 3: Behavior Task Graph with implicit loop

2.1
Mathematical models of other partitioning and co-design
problems have been addressed by researchers. The prob-
lem of spatial partitioning and synthesis was formulated as
an ILP in [15]. Hardware software partitioning of co-design
systems is addressed in [16]. The inputs to the Temporal
Partitioning tool are :

(1) Behavior specifications (2) Task synthesis costs (3)
Target Architecture Parameters

The behavior specifications are in the form of a Task
Graph, as shown in Figure 3. For each task, the HLS tool
generated the synthesis costs in terms of the FPGA re-
sources and execution delay of the task, as explained ear-
lier.

The architecture constraints are stated in formal nota-
tion as

R,,,
M,,, temporary on-board memory size.
CT

ILP formulation for Temporal Partitioning

resource capacity of the FPGA.

reconfiguration time for the FPGA.
Typically resource capacity R,,, , is the combinational

logic blocks/function generators on the FPGAs of the recon-
figurable device. Mmol, is the on-board memory size. The
reconfiguration time for reconfiguring the FPGA is CT.

Preprocessing Step: To build the ILP model, we need
to determine the number of partitions for which a solution
is to be obtained. We start by getting a lower bound on the
number of partitions for the particular problem. We sum
the resources for all tasks. This value divided by the FPGA
resource will be the minimum number of partitions required
to obtain a solution.

Model Generation and Solution: We build the tem-
poral partitioning model for the given inputs and linearize
the non-linear constraints. We then solve it using a linear
programming solver. If the solution is infeasible, we relax
the partition bound N by 1, and rebuild and solve the model
till we get a solution. The solution obtained is optimal for
the given task graph.

The following notation will be used in generating the ILP
model constraints:

N

T
ti -+ t j

B (t i , t j)

B (e n u , t j)

B (t , , e n u)

bound on the number of partitions, 1 . . . N
is the order of execution of the partitions.
set of tasks in the task graph.
a directed edge between tasks, t i , t j E T ,
exists in the task graph.
number of data units to be communicated
between tasks t ; and t j .
number of data units to be read b y task
t j from the environment.
number of data units to be written from
task ti to the environment.
resources for task t , obtained from HLS tool.
delay of task t , obtained from HLS tool.

R(t)
D(t)

617

Tl

T,

ti 3 t j

Pis,

set of tasks t ; E T , where Vtj E T , i (t , -+ t j) ,
(leaf tasks of T) .
set of tasks t j E T , where V t , E T , - (t i -+ t j) ,
(root tasks of T) .
a directed path from ti E T to t j E T
i n the task graph.
{ ti 3 t j I (t i E T,) A (t j E E) } , (set of paths
from Toot tasks to leaf tasks).

Variables and Constraints
Variable y t p , models partitioning. Data transfer across a
temporal partition required due to two dependent tasks, is
modeled by w p t l t z . dp, models the execution time of the
temporal partitions.

1

0 otherwise

if task t E T is placed in partition p,
1 I P S N YtP =

Wpt1t2 =

' 1 if task t l is placed in any partition
1 . . ' p - 1 and tz is placed in any of
p.." and t l + t2

if task t l is placed in partition p and
t:! is placed in any of p + 1. + . N and
t l -+ tz

1

, 0 otherwise

d, = delay of partition p .

Variables ytp, w p t l t 2 are 0-1 variables, d, can be integer or
real depending on whether the delay values are integer or
real.
Uniqueness Constraint: Each task should be placed in
exactly one partition among the N temporal partitions.

N

p = l

Temporal order Constraint: Because we are partitioning
over time, a task t l on which another task t:! is dependent
cannot be placed in a later partition than the partition in
which task t2 is placed.

Vt2, V t i + t z , Vp2, 1 < p 2 5 N -1 :

Y t l P l + YtZPZ 5 1 (2)
P Z < P I ~ N

Memory Constraint: Data transfer across partition bound-
aries will occur due to two dependent tasks being placed in
different temporal partitions. This intermediate data needs
to be stored between partitions and should be less than the
memory, Mma,, of the reconfigurable processor. The vari-
able w p t l t z 1 if 1, signifies that t l and t2 have a data de-
pendency and are being placed across temporal partition
p . Therefore the data being communicated between them,
B (t l , t z) , will have to be stored in the memory of partition
p. The sum of all the data being communicated across a
partition should be less than the memory constraint of the
partition.

Vp, l I p I N :

< zw nsx 100 ns

I
Tcmpnral panition I 0 100 ns

so 11s Dchy = 400 ns

Figure 4: Delay Estimation

w p t l t 2 are 0-1 non-linear terms constrained as -
Vp, 1 < p I N , Vtz E T , V t i -+ t2 , :

(4)

(5)

w p t 1 t 2 2 Y t l P l * Yt2P2

Wpt1t2 2 Yt1p * Yt2P2

P I P 2 <N 1 S P l <P

P + l S P 2 I N

Equations (4) and (5) are non-linear. We can use lineariza-
tion techniques to transform the non-linear equations into
linear ones, so that the model can be solved by a Linear
Program solver. Linearization techniques have been used
successfully before in [7] to solve the combined temporal
partitioning and synthesis problem.
Resource Constraint: The sum of resource costs of all
the tasks mapped to a temporal partition must be less than
the overall resource constraint of the reconfigurable proces-
sor. Typical FPGA resources include function generators,
configurable logic blocks (CLB) etc. Similar equations can
be added if multiple resource types exist in the FPGA.

VP, 1 I P I N : C (y t p * R(t)) I Rmax (6)
t € T

Optimality Goal: The delay of design execution on a par-
tition will be the maximum delay among all the paths of the
task graph mapped to that partition. We see in Figure 4,
how the delay for a partition is determined. The final map-
ping of tasks to partitions, with the delay value for each task,
is shown. In partition 1, 3 paths are mapped. The delay of
this partition is the greatest delay along a path mapped to
the partition, i.e., maximum among 350ns, 400ns, 150ns.
The maximum delay in partition 2 is 300ns. Formally the
delay of design execution on a temporal partition is given as

Vp, 1 I p 5 N , V(t i 4 t j) E P15, :

(YtP * D (t)) 5 d P (7)
t € t j 5 t j

Now the most optimal solution will be the design with the
least delay of execution. The minimization goal is stated as

N

M i n i m i z e N * CT + dp
p = l

The result obtained by solving this ILP model, will produce
a minimum latency design for the given task graph.

618

Figure 5: Strategy for processing Multiple Computa-
tions

2.2 loop Fission

from nano-seconds, as in the Time Multiplexed FPGA [9], to
milli-seconds as in the commercially available FPGA boards
eg., WiZdForce [18]. If the overhead of reconfiguration is
much larger than time for executing the application, the per-
formance of a statically configured design may outperform a
run-time reconfigured design. The decrease in the latency of
the design due to increased availability of resources due to
reconfiguration, is dwarfed by the reconfiguration overhead.
In this section, we concentrate on FPGA's whose reconfigu-
ration overhead is in milliseconds.

We noticed, that for a host of DSP style applications
eg., Image processing, Template Matching, Encryption al-
gorithms there is an implicit outer loop for the specification
which depends on the number of inputs to be processed. For
eg., the JPEG image compression algorithm compresses im-
age files of various sizes. Such computation can be seen as a
simple loop enclosing the task graph, whose loop count can
be known only at run-time.

Multiple Computations on a static design: For a
static design (without run-time reconfiguration), all the in-
puts can be processed sequentially on the same static circuit.

Multiple Computations on a RTR design: For a
run-time reconfigured design this sequencing of inputs will
not work. This is because, when the first input is processed
by a temporal partition the intermediate result will be writ-
ten out and the next temporal partition loaded. So unless
explicit provision has been made in the design to process
more than one set of inputs in a temporal partition, more
than one set of inputs cannot be processed in the same tem-
poral partition. This implies that, if k inputs have to be
processed for correct output to be produced all the temporal
partitions have to be loaded afresh for processing each input
and so the overhead of reconfiguration becomes k * N * CT.

To overcome this problem, and reduce the effect of re-
configuration, the RTR circuit has to be synthesized such
that it processes multiple inputs in the first temporal par-
tition sequentially, and mi te out all the intermediate data.
The subsequent partitions must be capable again of reading
multiple inputs and processing them sequentially. Then if
we assume that memory size is not a limitation, the recon-
figuration overhead for processing k inputs is still N * CT.
The frequency of reconfiguration has been reduced, thus re-
ducing the reconfiguration overhead while the throughput
of the design increases.

However, if only limited memory is available to store the
inputs or intermediate data, not all inputs can be processed
together in each partition. We therefore also perform an
analysis of the number of computations k, that can be per-
formed in the amount of memory available. We use the
following terms for the ensuing discussion:

The reconfiguration time for a reconfigurable FPGA varies

I
miemp

k

D,,,

total number of computations to be performed.
size of intermediate memory required in each
partition 1 5 i 5 N , for each computation.
total number of computations that can be
performed in each temporal partition
delay in communicating 1 memory element
between the host €9 the memory of the FPGA.

The following equation gives the total number of inputs
that can be processed, by each temporal partition due to
memory constraints.

Software sequencing of RTR design: As discussed above,
k computations are performed in one run of the RTR design.
To perform all the I computations, we need to rerun the
RTR design with the next set of k computations and so on,
till all the inputs have been processed. This sequencing is
done by a software loop which is executed in the host, and
is used to load the RTR design as many times as needed.
The loop count of this software loop is I , , = [I/lc]

In Figure 5, we show symbolically the loop fission being
done in this step. In 5(a) we show the original task graph,
that has to be executed I number of times as depicted by the
outer loop. We show two software sequencing techniques,
when the task graph has been split into three temporal par-
titions. In 5(b) in each temporal partition, k computations
will be performed, and the next temporal partition will be
executed. Once, all three temporal partitions are executed
on the first set, k, of computations, The output will be sent
to the host and the next k computations is loaded. We
need to run the reconfiguration sequence on the device all
over again after every k computations. The reconfiguration
overhead associated with this strategy is N * CT * Is,. This
technique of throughput maximization is referred to as Final
Data to Host (FDH) strategy.

In the second strategy depicted in Figure 5(c), instead
of reconfiguring to the next temporal partition, on finish-
ing computation for k inputs, we continue the computation
on all inputs in each temporal partition. This implies that
after the first k computations, we need to store all the in-
termediate output in the host and then reload the next set
of k computations. Once each temporal partition finishes
execution on all the input we can proceed to the next tem-
poral partition. This strategy will be beneficial over the
FDH method, if the overhead to save and restore the inter-
mediate data is less than the reconfiguration overhead. The
reconfiguration overhead in using this strategy is given by
N * CT + 2 * k * I,, * D,,, * miemp. This technique
is referred to as Intermediate Data to Host (IDH) strategy.

The outer loop, I,, will be executed in software. The
code for this loop will be generated at the end of the loop
fission step. But since the actual value of I will be know
only at run time when the input to the problem is known,
the actual value of the loop bounds will be filled in at run
time. Of course, some care has to be taken here. If I ,
the total number of inputs to be computed is less than k,
the computations done in one run of the RTR system, then
only the first IC computations from the output will have to
be picked up. The software reconfiguration code executing
on the host for the FDH strategy would look similar to -
for (j=O; j <= 1-sv-I; j++) C
Load block j of input data
for Configuration 1 into memory.
for (i=O; i <= N-1; i++) C

Load Configuration i onto FPGA.

619

L q p
MI M3

TEMPORAL PARTITIONS
(a)

R',°CKo
RLOCK 1

MEMORY BLOCK
(h)

PHYSICAL MEMORY for
TEMPORAL PARTITION 1

(e)

Figure 6: Placement of memory for different itera-
Eons

Send S t a r t Signal t o FPGA.
Wait f o r Finish Signal f r o m FPGA.

1
Read block j of output data
from memory of Configuration N.

3

The software reconfiguration code for the I D H strategy
would look similar to -
f o r (i=O; i <= N-1; i++) {

Load Configuration i onto FPGA.
f o r (j=O; j <= 1-sw-1; j++) C

Load block j of intermediate input data
f o r Configuration i in to memory.
Send S t a r t Signal t o FPGA.
Wait f o r Finish Signal from FPGA.
Read block j of intermediate output data
from memory.

3
>
3

Once temporal partitioning and loop fission has been per-
formed, the task graph for each temporal partition is to be
synthesized by the high level synthesis process. In this sec-
tion, we discuss some modifications to the traditional syn-
thesis process to adapt it for temporally partitioned designs.
Memory Access Synthesis: In Figure 6(a), we show a

task graph mapped to two temporal partitions. The data
flowing across temporal partitions needs to be stored in the
memory of the reconfigurable processor. All memory seg-
ments that are placed in one temporal partition by the tem-
poral partitioning tool for the task graph (without consid-
ering the implicit loop) are grouped in one Memory Block.
There will be k such memory blocks mapped to the physical
memory to support the IC iterations of the loop. The total
amount of intermediate memory for temporal partition 1,
mjemp, shown in Figure 6(a) is equal to Ml+M2+M3. The
behavioral description of memory access in task T1 is given
by -

Extensions to HLS for supporting Loop Fission

Task 1:

n = Read(M1Cal) // Read locat ion a i n memory M 1

Write(MZ[b], z) // Write t o locat ion b i n
// memory M2

All three data flows M1, M2, M3 are placed in the same
memory block as shown in Figure 6(b). The actual phys-

sj START STATE Controller states

\ for the datapath
Flnbh Slxnsl lncrrmnt of the temporal

partition 1trrntlan C0""tW

Is It.r.tl"n D"Y"trl

< k

END STATE

Figure 7: Augmented Controller for a Temporal Par-
tition

ical memory for k such blocks corresponding to the mem-
ory required to perform all k computations in one temporal
partition are shown in Figure 6(c). To access the correct
memory block in each iteration, we need to update the code
fragment to the following -
Task 1:

n = Read(BlockCi1 [offset of MI i n Block + a])
// Read locat ion a i n memory M 1

Write(Block[il[offset of M2 i n Block + b], z)
// Write t o locat ion b i n memory M2

To access memory element at location Ml[a] in the i-th it-
eration of the loop, we need to get to the start of the i-th
Memory Block. The offset of memory segment M1 in the
memory block will give the starting location of memory seg-
ment M1 within the i-th Memory Block. This value added
to a will give us the correct memory reference. A memory
access can then be synthesized by having an address gener-
ation mechanism in hardware which would load the correct
address of the memory location to be accessed in a particular
iteration. The address generation would generate addresses
by the following equation -
Address = Iteration Index * Size of Block + Offset of Mem-
ory Mi within Block + Location within memory Mi
But since a multiplication operation is expensive, and will
increase the area and delay of the synthesized circuit, we
round off the memory block in each temporal partition to
the nearest power of 2 and perform address generation by a
simple concatenation/appending of data values in registers.
Address = Iteration Index.Size of Block + Offset of Memory
M; within Block + Location within memory Mi
The address generation mechanism is simplified, but some
memory wastage will occur. This tradeoff between simpli-
fying address generation versus memory wastage has to be
made for each RTR architecture. The computation of k,
given in Equation 9 has to be changed accordingly.
Controller Synthesis: The software code which has to
load the new configuration/next set of memory blocks needs
to get a signal from the board upon completion of computa-
tion on a temporal partition. This generation of the 'finish'
signal needs to be done by the synthesized controller. An
iteration counter and a register holding the total iteration
value k is required. At the end of a single run of the data
path in a temporal partition, the controller would check if
the current iteration index of the counter is less than k. If
it is, then it increments the counter and goes back to the
beginning of the controller states. If it is not, then it gen-
erates a 'finish' signal and goes to a start state to wait for
a signal from the software to begin execution again. This

620

Figure 8: Task graph for DCT

augmented finite state machine of the controller for an RTR
design is shown in Figure 7.

4 Case Study

We modeled the JPEG image compression algorithm [17],
as a Hardware software co-design. The Discrete Cosine
Transform (DCT) is the most computationally intensive
part of the JPEG algorithm. Therefore DCT was cho-
sen to be implemented in hardware, and the rest of the
JPEG subtasks(Quantization, Zig-Zag, and Huffman encod-
ing) were chosen for software implementation. The recon-
figurable board consists of a single Xilinx XC4044 FPGA
with 1600 CLBs, with a single 64K memory bank with a
32 bit word. The host computer was a Pentium P C with a
200 MHz processor. The host communicates to the reconfig-
urable board by reading/writing data on the board memory,
using a simple handshaking protocol through the PCI bus
running at 33MHz. Each reconfiguration of the FPGA takes
100ms. The DCT can be viewed as two consecutive 4x4 ma-
trix multiplications. In this study, DCT was modeled in the
form of 32 vector products. The entire DCT is a collection
of 32 tasks, where each task is a vector product. A vector
product is shown in the Figure 8. There are two kinds of
tasks in the task graph, T1 and T2, whose structure is sim-
ilar to the vector product, but whose bit widths differ. A
collection of 8 tasks, forms a row of the 4x4 output matrix,
as shown in the figure. The entire task graph consists of 4
such collections of tasks.

Two co-design versions of the JPEG compression algo-
rithm were developed. In both cases, the DCT was imple-
mented on the reconfigurable device, while the rest of the
JPEG tasks executed in software. In the rest of the discus-
sion, we concentrate on the performance of DCT as a static
design and as a dynamic design while ignoring the rest of
the tasks, since they have exactly similar execution pattern
in both the experiments.
Static Co-design Experiment: For the static design ex-
periment, the board was configured only once at the start of
the experimentation with all the computation correspond-
ing to the 4x4 DCT synthesized for the same FPGA. The
FPGA could fit two 9 bit multipliers, two 17 bit multipliers,
two 16 bit adders and two 24 bit adders. This design used
160 clock cycles with a clock width of 100ns.
RTR Co-design Experiment: The HLS estimator, es-
timated for tasks of type T1 the FPGA resources to be 70
CLBs. For tasks of type T2, FPGA resources needed are 180

I I I I I time in sec

Table 1: DCT execution time for FDH strategy
CLBs. The ILP model is solved by CPLEX software. The
result of the model is produced in 3.5 seconds. The tempo-
ral partitioning tool divided the task graph into 3 temporal
partitions, with all 16 tasks of type T1 on temporal parti-
tion 1, 8 tasks of type T2 executed on temporal partition 2
and 8 on partition 3. This is a minimum latency design pro-
duced. (A list based temporal partitioner would have placed
some tasks of type T2 into temporal partition 1 because it
has unused CLBs (1600-60*16 = 640). However doing this
would have increased the delay of temporal partition 1, thus
increasing the latency of the whole design.)

For throughput maximization, the analyzer tool then
looked at all the intermediate data being stored. It cal-
culated that the maximum memory being stored is at the
end of temporal partition 1. In partition 1, for a single 4x4
block computation 16 input words are stored and 16 output
words are stored as a result of the computation of the 16
tasks placed in partition 1. Therefore for a single computa-
tion run, 32 words are stored in partition 1. In partition 2
and 3, 8 words of input and 8 words of output are stored.
Therefore we can compute 64k/max(32,16,16) = 2048 blocks
of the 4x4 DCT in one run due to the memory limitation
of 64k words. The design was then transformed so that it
computes 2048 4x4 DCT blocks in one temporal partition.
Two different designs were generated, corresponding to the
two different RTR sequencing strategies explained earlier in
Section 2.2.

To perform a single run of the DCT on a 4x4 block of
the input image, after synthesis, the temporal partition 1
needed 68 clock cycles at 50ns, and temporal partitions 2
and 3 needed 36 clock cycles at 7011s. If we ignore the re-
configuration overhead this is a RTR design takes 7560x1s
less than the static design on a single 4x4 DCT computa-
tion. But of course, the reconfiguration overhead is pretty
large, i.e., lOOms and we will not see any performance ad-

62 1

time in sec

Table 2: DCT execution time for IDH strategy
vantage unless a large number of computations are done on
each temporal partition.

In the strategy where execution of all temporal partitions
is performed on the k computations, FDH, we found that
even for files of upto 245,760 blocks of DCT computation
as shown in Table 1, we did not see any improvement at
all. Table 1 shows the image files listed in the decreasing
order of their sizes and the total time spent by the RTR and
static designs on the images. I sw , is the number of times
the RTR sequencer in software has to execute the loop to
process all input data on a temporal partition. This was be-
cause with a 64k memory bank we can store 2048 blocks of
4x4 DCT, such that k=2048. When we calculated the break
even point where the reconfiguration overhead will become
smaller than the execution time of the DCT, we will require
roughly 42,553 blocks of DCT to be computed in each tem-
poral partition. However since the memory is limited, the
dynamic RTR design in this case performs poorly as com-
pared to the static RTR design.

Then we performed computation according to the IDH
strategy. The execution time for the DCT, for this experi-
ment is shown in Table 2. The table shows the total time
spent by the RTR and static designs on the images. We mea-
sured the execution times by inserting probes in the software
code at points where the reconfigurable board was invoked
tc execute the DCT subtask of JPEG. For images requiring
245,760 computations of 4x4 DCT, we show an improvement
of 42%. As the size of the image will increase further, more
improvement will occur as the reconfiguration overhead will
get absorbed.

We conjecture, that if the same experiments are run on
reconfigurable devices with less reconfiguration overhead we
will see many fold improvement of the RTR design over the
static design even for smaller image sizes. For a XC6000
series FPGA, with a reconfiguration overhead of for eg., 500
/I seconds, the improvement we will achieve for the XV file
shown in Table 2, is calculated to be 47%.

5 Conclusion

The algorithms presented in this paper are integrated in the
SPARCS (Synthesis and Partitioning for Adaptive Reconfig-
urable Computing Systems) [ll, 121 design environment be-
i rg developed at the University of Cincinnati. SPARCS is an
ictegrated design system for automatically partitioning and
synthesizing designs for reconfigurable boards with multiple
field-programmable devices (FPGAs). The SPARCS system
contains a temporal partitioning tool to temporally divide
axd schedule the tasks on the reconfigurable architecture, a
spatial partitioning tool to map the tasks to individual FP-
GAS, and a high-level synthesis tool to synthesize efficient
register-transfer level designs for each set of tasks destined
to be down loaded on each FPGA. For more details go to
http://www.ececs.uc.edu/~ddel/projects/sparcs/sparcs.html

References

[l] M. J. Wirthlin and B. L. Hutchings, “Sequencing Run-Time Re-
configured Hardware with Software”, ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA 1996,
pp. 122-128.

[2] R. D. Hudson, D. I. Lehn and P. M. Athanas, “A Run-Time Re-
configurable Engine for Image Interpolation”, IEEE Symposium
on FPGAs for Custom Computing Machines, FCCM 1998, pp.
88-95.

[3] M. B. Gokhale and J. M. Stone, “NAPA C:Compiling for Hy-
brid RISC/FPGA Architectures”, IEEE Symposium on FPGAs
for Custom Computing Machines, FCCM 1998, pp. 126-135.

[4] M. Vasiliko and D. Ait-Boudaoud, “Architectural Synthesis for
Dynamically Reconfigurable Logic”, International Workshop on
Field-Programmable Logic and Applications, F P L 1996, pp. 290-
296.

[5] K. M. GajjalaPurna and D. Bhatia, “Temporal Partitioning and
Scheduling for Reconfigurable Computing”, IEEE Symposium on
FPGAs for Custom Computing Machines, FCCM 1998, pp. 329-
330.

[6] J. Spillane and H. Owen, “Temporal Partitioning for Partially-
Reconfigurable-Field-Programmable Gate”, Reconfigurable Archi-
tectures Workshop in 12th International Parallel Processing
Symposium and 9th Symposium on Parallel and Distributed Pro-
cessing, IPPS/SPDP 1998, pp. 37-42.

[7] M. Kaul and R. Vemuri, “Optimal Temporal Partitioning and
Synthesis for Reconfigurable Architectures”, Design and Test in
Europe, DATE 1998, pp. 389-396.

[SI S. Trimberger, “Scheduling designs into a Time-Multiplexed
FPGA”, ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, F P G A 1998, pp. 153-160.

[9] S. Trimberger, “A Time-Multiplexed FPGA” , IEEE Symposium
on FPGAs for Custom Computing Machines, FCCM 1997, pp.
22-28.

[lo] M. Xu, F. Kurdahi, “Layout Driven High Level Synthesis for
FPGA Based Architectures”, Design and Test in Europe ’98.

[ll] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and R. Ve-
muri, “An Integrated Partitioning and Synthesis System for Dy-
namically Reconfigurable Multi-FPGA Architectures”, Reconfig-
urable Architectures Workshop in 12th International Parallel
Processing Symposium and 9th Symposium on Parallel and Dis-
tributed Processing, IPPS/SPDP 1998, pp. 31-36.

[12] S. Govindarajan, I. Ouaiss, M. Kaul, V. Srinivasan and R. Ve-
muri, “An Effective Design Approach for Dynamically Reconfig-
urable Architectures”, IEEE Symposium on FPGAs for Custom
Computing Machines, FCCM 1998, pp.312-313.

[13] J. Roy, N. Kumar and R. Vemuri, “DSS: A Distributed High-
Level Synthesis System for V H D L Specifications”, IEEE Design
and Test of Computers, v9, ne, June 1992, pp. 18-32.

[14] M. Wolf, High Performance Compilers for Parallel Computing,
Addison-Wesley Publishers, 1996.

[15] C. H. Gebotys, “An Optimal methodology of Synthesis of DSP
Multichip Architectures”, Journal of VLSI Signal Processing,
v l l , p9-19 1995.

[16] R. Niemann and P. Marwedel, “An Algorithm for Hard-
ware/Software Partitioning Using Mixed Integer Linear Program-
ming”, Proceedings of the EDBTC, 1996.

[17] G.K. Wallace, “The JPEG Still Picture Compression Standard”,
A CM Communications, 1991.

[18] WILDFORCE Reference Manual, Document #1189 - Release
Notes, Annapolis Micro Systems, Inc..

622

